
Auditing Cloud Administrators Using Information Flow
Tracking

Afshar Ganjali
a.ganjali@utoronto.ca

David Lie
lie@eecg.utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

ABSTRACT
In the last few years, cloud computing has evolved from
being a promising business concept to one of the fastest
growing segments of the IT industry. However, one im-
pediment to widespread adoption by enterprise customers
is the threat of attack by a malicious cloud administrator.
To address this security and privacy challenge, we propose
H-one, a new auditing mechanism for cloud. H-one uses in-
formation flow tracking techniques to implement complete,
efficient and privacy-preserving logs that will enable the au-
diting of the administrators of the cloud infrastructure, thus
increasing the customer’s trust in cloud services.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
formation flow controls; K.6 [Computing Milieux]: Secu-
rity and Protection

Keywords
Cloud Computing, Information Flow Tracking, Security, Pri-
vacy

1. INTRODUCTION
Infrastructure-as-a-Service (IaaS) clouds provide a service

where users can rent virtual machines (VMs) from a cloud
provider instead of having to own the hardware themselves.
Such a model reduces the capital costs of deploying compute
infrastructure and allows for much needed elasticity; allow-
ing users to only pay for the compute cycles they need and
allowing cloud providers to easily shift hardware resources
between customers. However, despite these apparent ad-
vantages, many companies and organizations have been re-
luctant to embrace cloud computing for their compute in-
frastructure. An IDG survey of industry leading CIOs and
information-technology decision makers in 2011 and 2012,
showed that security was the top concern for using cloud
computing in both years [5]. As a result, a key advantage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’12, October 15, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1662-0/12/10 ...$15.00.

for the cloud provider will be to provide technologies that
instill confidence in their customers that VMs running on
the cloud provider’s infrastructure are safe from tampering
and data leakage.

One of the new threat vectors that IaaS clouds introduce
is exposure of customer VMs and their data to the system
administrators of the cloud provider. Because the cloud ad-
ministrators must have privileges to access all aspects of the
cloud infrastructure, they pose a significant threat to the
security of any VM running in an IaaS cloud. With root
privileges on the hypervisor, the administrator has the abil-
ity to install and execute arbitrary software. For example,
in the Xen hypervisor, tools like LibVMI [2] allow an admin-
istrator to observe the contents of a VM’s memory at run
time. While there have been proposals to attest and protect
the integrity of the hypervisor [16,17,24], attestation of the
large, privileged management stack above the hypervisor is
impractical because of the diversity of legitimate software
and configurations that can exist in the management stack.

To protect customer VMs from tampering by a malicious
administrator, the cloud provider must guarantee that an
administrator does not abuse their ability to access the pri-
vate memory, disk or processor state of a VM, regardless of
whether it is running or suspended to disk [16]. One way
to achieve this is to attenuate the administrator’s privileges.
For example, the cloud provider might disable shell access
for its administrators and only permit them to perform tasks
through a limited web interface such as OpenStack [3] or a
management client such as VMware’s vSphere. However, re-
moving the privileges of the administrator ultimately makes
them less efficient and impedes their ability to manage the
cloud infrastructure. For example, the limited interface pre-
vents the administrator from using full-featured scripting
languages such as Perl or Python to automate her tasks.
Administrators benefit from being able to use commodity
software, but due to the complexity of commodity software
stacks, correctly implementing the fine line between remov-
ing unnecessary privileges and keeping the useful privileges
for an administrator is very challenging.

In this paper, we advocate a fundamentally different ap-
proach. Rather than attenuating the capabilities of the
administrator to prevent abuse, we use secure auditing to
record any unauthorized use of administrator privileges. Au-
diting has been long employed with great success in other
domains such as banking, taxation and public service. In-
stead of enforcing correct behavior through restrictions, au-
diting deters individuals from misbehaving by creating an
indisputable log of their actions. In a cloud environment,

1

auditing will also enable the correct assigning responsibility,
which is crucial in the enforcement of the service level agree-
ments (SLA). We aim to use a similar approach for logging
data manipulation by administrators. By just logging events
we do not hinder a legitimate administrator from fulfilling
his duties, but at the same time are able to deter malicious
administrators from attacking customer VMs.

Our proposal, called H-one has three main goals. First,
the audit log produced by H-one should be complete, i.e.,
enough information must be recorded during the audit pro-
cess to reconstruct what information was read from the cus-
tomer’s VM or what modifications were made to the cus-
tomer VM by the administrator. Second, the recording of
the audit log must be efficient – imposing minimal perfor-
mance and storage overheads on the cloud provider. Finally,
audit logs will be made available to the customer and in the
event of a dispute, be broadly shared with arbitrators or
to courts in the legal system. As a result, it is important
that an audit log for a VM be privacy-preserving and thus
contain only the information pertinent to that VM.

To achieve these goals, H-one uses information flow track-
ing. Having the entire path gives H-one several options to
try and impose minimal performance and storage overhead
for logging. For example, for an administrator performing a
backup of a VM image, ultimately, the administrator may
only need to see the total number of bytes archived by the
backup operations. By identifying the entire flow of infor-
mation, rather than recording the entire backup operation,
which would touch every bit in the VM image, we only need
to record the information that finally flowed to the admin-
istrator. Similarly, if an administrator injects data into a
VM via a malicious virtual CD-ROM image, having knowl-
edge of the entire information flow path allows us to record
only the bytes read by the VM rather than the entire con-
tents of the CD-ROM. In both examples, information flow
also ensures that separate audit logs can be maintained for
each customer. Even if the administrator backs up the VMs
of several customers, information flow allows H-one to tear
apart the flows of data into separate audit logs for each cus-
tomer.

2. ATTACK MODEL AND PROBLEM DE-
SCRIPTION

Our goal is to log all flows of information both from an
administrator to a customer VM and vice versa. Recording
information flows from VMs to administrators will capture
violations of VM confidentiality. For example, a misbehav-
ing administrator on a Xen hypervisor can use various exist-
ing tools like LibVMI [2] or VIX [14] for introspecting VM’s
memory, CPU, disk and network to reach user’s private in-
formation. However, completely preventing any information
flow from VMs to administrators is not desirable because ad-
ministrators may have legitimate reasons for such flows. For
example an administrator may have to observe VM’s disk for
backup purposes or its memory for virus scanning. Another
common example is that sometimes administrators are sup-
posed to help customers for troubleshooting and need to log
into the user’s VM. All these examples highlight a legitimate
flow of information from VMs to administrators.

We also have to track all the information flows from ad-
ministrators to VMs to assure the integrity of the guest VMs.
As an example, most of the existing cloud management tool

stacks provide APIs for attaching a CD-ROM to a user VM
by administrators. A malicious administrator can abuse this
API by inserting a malicious CD and rebooting the sys-
tem, causing it to boot from the CD-ROM and allowing
the administrator to then access the VM’s disk using the
software on the CD-ROM. Auditing flows from administra-
tors to VMs can deter such malicious actions. However, not
every flow from administrators to VMs are malicious. For
example, to resolve customer issues, it is not uncommon for
an administrator to ping a customer’s VM or even log into
the customer’s VM to make changes.

We assume that the administrator has the equivalent of
root or superuser access on the management stack of the
hypervisor. Examples of such access would be root in Do-
main 0 of Xen, the host OS in KVM or SSH access to an
ESX server. As a result, the administrator is able to install
and execute arbitrary user code in the management stack,
as well as change the configuration of any of the running ser-
vices. Also the underlying network layer is in control of the
administrator and any kind of traditional network attacks
have to be expected.

We assume that the hypervisor and management stack
kernel are protected from tampering by the administrator.
There has been several works in the literature that deal with
integrity and attestation of the hypervisor [16,17] and we as-
sume a similar mechanism in our system has been used to
secure those components. Unfortunately, because of the va-
riety of configurations and software that must run above the
management stack kernel, it is not realistic to extend attes-
tation above that of the kernel. We also assume that some
access control policy prevents administrators from corrupt-
ing the kernel by loading unauthorized modules, tampering
with the kernel binary or directly accessing kernel mem-
ory. A Linux Security Module (LSM) or an enhancement
to POSIX capabilities may be ways to achieve this.

We also assume physical security of the hardware run-
ning the hypervisor, so that hypervisor and management
stack kernel are protected from tampering through hard-
ware. This is fairly straightforward to fulfill since most
administrative tasks do not require physical access to ma-
chines. In addition, methodologies for securing physical ma-
chines using cages, locked doors and security cameras are
fairly well understood and can be transferred over from a
variety of other areas. Hence, any physical attack such as
cold boot attacks are beyond the scope of this paper.

Another attack vector on guest VMs is covert channels.
Data from a customer VM may be leaked indirectly through
a covert channel or a side-channel. Such channels may exist
either because our information flow tracking is incomplete
and misses certain flows, or information is steganographi-
cally encoded by a compromised process so that the user
does not realize information has been leaked during an audit
even though the flow is caught and recorded by our system.
We currently consider such attacks against our system out
of scope.

H-one’s goal is to produce audit logs that will capture the
tampering of customer VMs by a malicious administrator.
This is an orthogonal and complementary goal to systems
that try to protect VMs against vulnerabilities in the hy-
pervisor or management stack [8,24]. These systems protect
against vulnerabilities by reducing the size of the TCB on
which the security of customer VMs depend, while H-one
only requires that the logging infrastructure be protected

2

from an administrator. As a result, so long as the logging
infrastructure is secure, H-one is agnostic to the size of the
TCB for customer VMs.

3. USING INFORMATION FLOW
We expect H-one to be applicable to any hypervisor ar-

chitecture, but for convenience will describe a possible im-
plementation on the Xen hypervisor. We assume an admin-
istrative VM (domain 0 in Xen), which has special privileges
and implements a management stack that contains a com-
modity OS. Operations in the management stack, such as
VM creation, require the management stack to directly ac-
cess the state of a VM [13]. The administrator has root
privileges on the management stack and thus has the ability
to use all privileges conferred on the administrative VM.

As we mentioned earlier, logging infrastructure must be
protected from tampering (i.e. it must be self-protecting).
H-one implements logging in the kernel of the management
stack. Thus, to protect the logging infrastructure, H-one
needs only to protect the integrity of the kernel, which can
be protected by restricting the administrator from tamper-
ing with the kernel image or loading unauthorized mod-
ules. This can be achieved by using Linux Security Modules
(LSM) [20] and is the only attenuation of privileges that
H-one imposes on the administrator.

Our solution has two components. The first is the abil-
ity to track all flows of information emanating from both a
customer VM and an administrator. It is important that
this tracking is complete; otherwise a malicious administra-
tor will be able to steal information from a VM or tamper
with its state without being logged. By tracking all flows, we
are able to detect paths of “tainted” processes in the man-
agement stack along which information flowed. The second
component is selecting the best point along these tainted
paths to log the information. Since the goal is to log only
the information that is finally consumed, this implies that
the best logging point will usually be as close to the con-
sumer of the information as possible, given that logging at
that point does not incur too high of a performance penalty.
In another words, information tainted with the VM should
be recorded as close to the administrator, and information
tainted with the administrator should be recorded as close
to the VM as possible.

3.1 Tracking All Information Flows
When information enters the management stack, it must

be “seeded” with a label for tracking purposes. If the infor-
mation comes from a VM then H-one seeds it with a label
corresponding to the customer who owns the VM and if the
information comes from an administrator, H-one seeds it
with a label corresponding to the identity of the administra-
tor.

Information from a customer VM can enter the manage-
ment stack either through direct interaction with compo-
nents in the management stack that virtualize hardware for
guest VMs, or through indirect interaction via the hypercalls
made by the management stack. As a result, the seeding of
labels is performed by both the hypervisor and management
stack kernel. If information returned from a hypercall is de-
rived from a guest VM, the hypervisor passes this informa-
tion to the management stack kernel, which then labels the
return value as containing information from the particular
VM.

Xen implements virtual hardware using either a backend
driver for paravirtualized guest VMs or hardware QEMU
emulation for fully virtualized guests. In both these cases,
the virtual hardware emulation is performed in the manage-
ment stack and the management stack kernel is responsible
for labeling information from customer VMs and tracking
the information flow appropriately. A typical example is a
write to a virtual disk whose image is stored in the manage-
ment stack. The backend driver or QEMU would be seeded
with the customer VM’s label and would thus taint the disk
image. Any process that then accesses the disk image will
also be tainted with the customer VM’s label.

Administrator information enters the management stack
through a terminal process. To properly label terminal pro-
cesses with the identity of the administrator that controls
them, we modify remote terminal services, such as the SSH
daemon in the management stack to seed the child terminal
process with the label of the administrator that authenti-
cated and logged in. Any child processes started by the ad-
ministrator’s shell are also seeded with the administrator’s
label.

After seeding initial labels, we have to track propagation
of taint. Again we handle this in management stack’s ker-
nel. Table 1 lists various propagation channels that we need
to consider for applying taint analysis. We have to address
two issues: i) How to intercept all these channels of commu-
nication? ii) How to propagate labels?

Three of these taint propagation paths can be caught
by intercepting hypercalls in the management stack kernel.
However, other paths are entirely within the management
stack and have to be intercepted using some hooks in the ker-
nel. We are considering using a customized LSM to monitor
and interpose on the operations that propagate taint within
the management stack kernel.

As Table 1 indicates, whenever a process in the manage-
ment stack kernel maps memory belonging to a VM, we con-
servatively assume that the process will read management
stack memory and propagate taint from the VM to the pro-
cess. Even though the mapping operation can be intercepted
by monitoring hypercalls in the management stack kernel,
we are more precise for propagating administrator taint from
a process to a VM since such a flow requires logging. To de-
tect flows from a process to a VM via shared memory, we
can map the shared region as read-only inside the process’s
address space, causing the management stack kernel to take
a fault if the process writes to the region. This is similar to
how the HyperLock project [19] prevents the KVM hypervi-
sor from writing into any domain other than its own or how
the SecVisor project [18] prevents the kernel from executing
user pages.

For propagating taint, when a communication event hap-
pens, we propagate the labels from the source to the desti-
nation, if it is a read operation; or the other way around, if
it is a write operation.

3.2 Selecting the Best Point to Log
In order to reduce the storage cost of logging, H-one at-

tempts to log as close as possible to the consumer of the data
(i.e. the administrator or the VM). For finding the points
closest to the administrator, we have to detect when VM-
tainted information is about to leave the management stack
kernel through network or any other I/O channel. This is
observable using LSM I/O hooks when a process writes to

3

Channel Flow Interception Mechanism Label Propagation

Mapping a guest VM’s memory image. VM → Process Intercepting Hypercalls VM → Process
Reading VCPU state of a guest VM. VM → Process Intercepting Hypercalls VM → Process
Reading an arbitrary file. File → Process LSM Filesystem Hooks File → Process
Inter Process Communication (IPC) Process → Process LSM IPC Hooks Process → Process
Writing into memory image of a guest VM. Process → VM Paging Mechanism Process → VM

Should be logged.
Writing VCPU state of a guest VM. Process → VM Intercepting Hypercalls Process → VM

Should be logged.
Writing into an arbitrary file. Process → File LSM Filesystem Hooks Process → File

May need to be logged.
Writing to network. Process → Network LSM Network Hooks Process → Exporter

May need to be logged.
Writing to an output device. Process → Admin LSM I/O Hooks Should be logged.

Table 1: List of taint propagation channels; how they get intercepted and how the labeling gets effected.

network or any other I/O device. In these cases we have to
record all the exchanged information for auditing purposes.

The other constraint for selecting the point at which to
log is that H-one must be able to determine which VM the
information pertains to. Thus, if a process reads information
from several VMs, H-one must log before the information is
read and mixed together by the process. Similarly, if an ad-
ministrator uses a single process to administer several VMs,
to be able to unambiguously determine which administrator
actions pertain to which VMs, H-one must log the outputs of
the program to the individual VMs as opposed to the inputs
the administrator sends to the process.

Capturing data at the network interface is not effective
if the process, such as an SSH shell, encrypts the data be-
fore sending it over the network. Since we already modify
SSH for seeding labels, we can have the modified SSH log
unencrypted data before transmission. However, adminis-
trators may install their own application that encrypts data
before writing to a network socket. To address this case,
we plan to implement exporter daemons similar to those in
DStar [23], which will label outgoing network data. The
remote host will then assign those labels to the received
network data and continue to track the information until it
is consumed by the administrator’s terminal. We will use
DStar-like access control to restrict network connections by
administrator-installed programs only to verified hosts that
also implement H-one logging.

For finding points closest to VM, we have to detect when
information is about to be written to the VM. When a pro-
cess writes into the memory image, VCPU state or disk im-
age of a VM, it should be considered as consumption of in-
formation by the guest VM. In these cases all the exchanged
information has to be recorded. For example when an ad-
ministrator attaches a virtual CD-ROM, it will be visible to
the VM as a block device. Communication between block
device and VM is over shared memory, which is expensive
to monitor. Instead, we can monitor what bytes are read
from the CD-ROM image by the QEMU device emulator
that the back end driver communicates with. Note that in
this case, QEMU would be part of the logging infrastructure
so we must protect it to make sure it is not modified. Other-
wise, a misbehaving administrator could modify QEMU to
directly write malicious data into VM instead of reading it
from the CD-ROM image.

4. DISCUSSION

4.1 Auditing Instead of Restricting
One of the key differences between H-one and previous ap-

proaches is that H-one performs no access control and pro-
vides no active protection to customer VMs. Instead, H-one
provides tamper-resistant, complete and efficient logging of
cloud administrator activities. The advantage of auditing is
that since it is passive, it guarantees that administrators will
not be unnecessarily restricted in any way. For instance, we
could prevent tainted processes from generating logs to be
seen by administrators to avoid privacy violations. However,
sometimes specific kinds of data need to be passed to an ad-
ministrator for specific purposes. For example, data to be
used in log files or some information provided by daemons
inside guest VMs for the purpose of monitoring, measur-
ing or provisioning are legitimate types of data that we can
pass to administrators. Restricting all these channels can
guarantee privacy for the user but conflicts with our goal of
not to inhibit administrative duties. Since appropriate secu-
rity policies in such cases are context dependent, applying
a policy that restricts administrators will almost inevitably
lead to a situation where an administrator is prevented from
performing some legitimate action. In our approach we just
audit all the classified information passed to administrators
and defer the further decisions to the user, who owns the
data and is aware of the consequences of such leakage.

Our approach for letting administrators get access to clas-
sified data is equivalent to declassification techniques used
in DStar [23] and other information flow control systems.
In our system, any process can declassify information and
pass it to an entity without required clearance level. By
just auditing all the channels, we do not have to deal with
the problem of identifying processes that can be trusted as
declassifiers, which is context dependent.

4.2 Realtime Filtering of Logs
Using information flow techniques, we can save extensively

on the amount of data we log, which reduces cost at the
end. For further reduction of the log size, we are consid-
ering implementing a realtime filtering daemon that filters
some unnecessary logs before committing to disk and the
end user. For example, in our information flow system, we
intercept all the data written to the memory image of a guest
VM. However, operations like VM creation have to map the
whole memory address space of the VM in the beginning to
copy the memory image from disk to VM’s memory before

4

executing the VM. Since VM creation happens though user
space management processes, our system would intercept
all those operations and would log the whole memory image
as exchanged data between an administrator and the guest
VM. By knowing beforehand that this type of information
exchange is legitimate, our filtering system can reduce the
logs by simply comparing the data written to the memory
with the existing memory image file on the disk. If those
sets of data are exactly the same, we can easily skip the
logging and trust the operation. Otherwise, we log the data
and notify the user. We believe there are other scenarios
that we can predict beforehand and our filtering system can
use them to narrow down the illegitimate data.

5. RELATED WORK
Trusted Cloud Computing. Over the past several years,
there has been a lot of work on trusted cloud computing.
The management stack has traditionally been a monolithic
privileged virtual machine. Different projects such as Qubes
OS [4], Citrix XenClient [1], Xen Disaggregation [13] and
Xoar [8] have reduced the TCB size of Xen by breaking the
management stack into smaller isolated components. How-
ever, all these solutions require a complete reorganization
and significant changes in the management stack architec-
ture.

Santos et al. [16] propose a trusted cloud architecture to
protect the confidentiality and integrity of customer VMs.
Li et al.’s paper [11], CloudVisor [24], and Excalibur [17] are
more recent efforts that share the high-level vision proposed
in that work. CloudVisor uses nested virtualization to pro-
tect guest VMs from malicious hypervisor and management
stack. Excalibur proposes a system that implements policy-
sealed data to address some of the limitations of trusted
computing on the cloud. However, we are not aware of any
previous work using information flow for providing more se-
curity at cloud computing environments.

Information Flow Control. Prior work on information
flow control can be broadly categorized into static language-
based techniques [15], which seek to detect and prevent in-
formation leakage at compile time, and dynamic runtime
enforcement. Asbestos [9] and HiStar [22] are two example
operating systems that track information flow dynamically
using a relatively small, trusted kernel.

Recently, there has been significant work on incorporat-
ing DIFC (Decentralized Information Flow Control) mech-
anisms into operating systems and runtime environments
with the goal of enforcing end-to-end information flow poli-
cies that are set by individual applications instead of a cen-
tral administrator. As an example, DStar [23] extends the
OS-level information flow control architecture to a distributed
environment with the goal of mitigating the effects of un-
trustworthy distributed applications and compromised ma-
chines. It uses “exporters” to map machine-level security
policies into a distributed context, allowing hosts to define
the degree of trust between host nodes. The dynamic en-
forcement in DStar and in earlier OS-level systems tracks in-
formation flows at a process granularity, which often requires
monolithic applications to be split into several processes to
make information flows within an application explicit to the
OS. Flume [10], one of the more recent efforts, demonstrates
that runtime DIFC does not require a clean-slate redesign

of the software stack and can be retrofitted into an existing
UNIX-based operating system.

Some other works [6] employ IFC for providing security
in other contexts. SilverLine [12] is another system that
uses IFC to improve both data and network isolation for
cloud-based services without requiring cloud application de-
velopers to rewrite their applications, and without requiring
the deployment of specialized network hardware.

6. CONCLUSION AND FUTURE WORK
One of the biggest obstacles in the way of the adoption of

cloud-based services is the risk that data stored in the cloud
will be compromised by a misbehaving administrator. To
deter such attacks, we proposed H-one, an auditing mech-
anism for cloud that logs information leakage by tracking
data using information flow tracking techniques. By using
auditing, H-one allows administrators the freedom to use
whatever tools they wish to perform and automate admin-
istrative tasks.

Our next steps would be to have a fully implemented pro-
totype to evaluate the performance overhead and log storage
costs of H-one. We aim to use the Xen [7] hypervisor for
implementation. As we mentioned in Section 3.1 we have
to implement some hooks in the management stack kernel
for intercepting sensitive operation done by administrators
and for protecting the log system. For these cases we are
planning to employ a customized Linux Security Module
(LSM) module. LSM provides a wide range of hooks in the
Linux kernel, which can be used to monitor and interpose
on the operations that propagate taint within the manage-
ment stack kernel. LSM is lightweight and designed to im-
pose little performance overhead. We plan to also employ
the LSM hooks both to prevent administrator tampering of
the management stack kernel and H-one logging infrastruc-
ture and to track information flows in the management stack
kernel. For assuring completeness of this method, previous
study [21] has used automatic static analysis of the kernel
code to verify that all of the necessary hooks have actually
been inserted into the Linux kernel.

Another challenge will be to ensure that the logging is
complete enough for a third party to reconstruct the actual
events that led to the log being produced and make an un-
equivocal judgment as to whether the administrator acted
maliciously or not. As an example, assume a user receiving
logs related to her VM’s execution on the cloud. She can
check the logs for various types of violations. For instance,
since mapping of VM memory should only occur on guest
VM boot, she can check if the mapping of her VM’s mem-
ory to the management stack has a one-to-one relation with
VM starts happened by her. If data has been read from the
VM’s file system or from a certain process, she can determine
which files or process were accessed. If the administrator in-
stalls or runs some code on the VM, she can determine the
binary of the code and as a result, possibly run the code
again to ascertain its purpose or identity. While it will be
difficult to prove that recorded logs will be able to result in
an unambiguous determination in every instance, we hope
to show that for a large number of scenarios, the logs will al-
low an impartial third party to prove the guilt or innocence
of the cloud administrator.

5

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments. Funding for this work was provided by the NSERC
ISSNet Strategic Network, an NSERC Discovery Grant, an
MRI Early Researcher Grant and a gift from AT&T.

7. REFERENCES
[1] Citrix XenClient.

http://www.citrix.com/xenclient.

[2] LibVMI. http://code.google.com/p/vmitools/.

[3] OpenStack: Open source cloud computing software.
http://www.openstack.org/.

[4] QubeOS. http://qubes-os.org/Home.html.

[5] IDG Enterprise - Cloud Computing.
http://www.idgenterprise.com/report/

idg-enterprises-cloud-computing, Apr. 2012.

[6] Abadi, M., Birrell, A., and Wobber, T. Access
control in a world of software diversity. In Proceedings
of the USENIX Workshop on Hot Topics in Operating
Systems (HotOS) (2005).

[7] Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
and Warfield, A. Xen and the art of virtualization.
In Proceedings of the ACM Symposium on Operating
Systems Principles (Bolton Landing, NY, USA, 2003),
ACM, pp. 164–177.

[8] Colp, P., Nanavati, M., Zhu, J., Aiello, W.,
Coker, G., Deegan, T., Loscocco, P., and
Warfield, A. Breaking up is hard to do: Security
and functionality in a commodity hypervisor. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP) (2011), pp. 189–202.

[9] Efstathopoulos, P., Krohn, M., VanDeBogart,
S., Frey, C., Ziegler, D., Kohler, E., Mazieres,
D., Kaashoek, F., and Morris, R. Labels and
event processes in the Asbestos operating system. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP) (New York, NY, USA,
2005), ACM, pp. 17–30.

[10] Krohn, M., Yip, A., Brodsky, M., Cliffer, N.,
Kaashoek, M. F., Kohler, E., and Morris, R.
Information flow control for standard OS abstractions.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP) (Oct. 2007), pp. 321–334.

[11] Li, C., Raghunathan, A., and Jha, N. K. Secure
virtual machine execution under an untrusted
management OS. In Proceedings of the IEEE 3rd
International Conference on Cloud Computing (2010),
pp. 172–179.

[12] Mundada, Y., Ramachandran, A., and Feamster,
N. SilverLine: Data and network isolation for cloud
services. In Proceedings of the USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud) (2011).

[13] Murray, D. G., Milos, G., and Hand, S.
Improving Xen security through disaggregation. In
Proceedings of the ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments (VEE) (Seattle, WA, USA, 2008),
pp. 151–160.

[14] Nance, K., Bishop, M., and Hay, B. Virtual
machine introspection: Observation or interference?

IEEE Security & Privacy Magazine 6, 5 (Sept. 2008),
32–37.

[15] Sabelfeld, A., and Myers, A. C. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications 21, 1 (2003), 5–19.

[16] Santos, N., Gummadi, K. P., and Rodrigues, R.
Towards trusted cloud computing. In Proceedings of
the USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud) (2009), USENIX Association.

[17] Santos, N., Rodrigues, R., Gummadi, K. P., and
Saroiu, S. Policy-Sealed data: A new abstraction for
building trusted cloud services. In Proceedings of the
USENIX Security Symposium (2012).

[18] Seshadri, A., Luk, M., Qu, N., and Perrig, A.
SecVisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. In Proceedings of
ACM SIGOPS Symposium on Operating Systems
Principles (Stevenson, Washington, USA, 2007),
ACM, pp. 335–350.

[19] Wang, Z., Wu, C., Grace, M., and Jiang, X.
Isolating commodity hosted hypervisors with
HyperLock. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys) (New
York, NY, USA, 2012), ACM, pp. 127–140.

[20] Wright, C., Cowan, C., Smalley, S., Morris, J.,
and Kroah-Hartman, G. Linux security modules:
General security support for the linux kernel. In
Proceedings of the USENIX Security Symposium
(2002), pp. 17–31.

[21] Xiaolan Zhang, Antony Edwards, and Trent
Jaeger. Using CQUAL for static analysis of
authorization hook placement. In Proceedings of the
USENIX Security Symposium (2002).

[22] Zeldovich, N., Boyd-Wickizer, S., Kohler, E.,
and Mazieres, D. Making information flow explicit
in HiStar. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (2006).

[23] Zeldovich, N., Boyd-Wickizer, S., and
Mazieres, D. Securing distributed systems with
information flow control. In Proceedings of the
USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2008), pp. 293–308.

[24] Zhang, F., Chen, J., Chen, H., and Zang, B.
CloudVisor: Retrofitting protection of virtual
machines in multi-tenant cloud with nested
virtualization. In Proceedings of ACM SIGOPS
Symposium on Operating Systems Principles (SOSP)
(2011).

6

http://www.citrix.com/xenclient
http://code.google.com/p/vmitools/
http://www.openstack.org/
http://qubes-os.org/Home.html
http://www.idgenterprise.com/report/idg-enterprises-cloud-computing
http://www.idgenterprise.com/report/idg-enterprises-cloud-computing

	Introduction
	Attack Model and Problem Description
	Using Information Flow
	Tracking All Information Flows
	Selecting the Best Point to Log

	Discussion
	Auditing Instead of Restricting
	Realtime Filtering of Logs

	Related Work
	Conclusion and Future Work
	References

