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2007

Redundant execution systems increase computer system reliability and security by si-

multaneously running multiple replicas of an application and comparing their outputs.

Currently, no redundant execution system can account for the non-determinism that oc-

curs when multi-threaded applications execute on multiprocessors, making such systems

ineffective on the very hardware that could benefit them most.

This thesis is part of a larger project called Replicant where we explore a fundamen-

tally different approach to redundant execution. Rather than requiring the execution of

the replicas to be identical, Replicant permits replicas to diverge and only makes out-

puts that a majority of application replicas agree upon externally visible. Output value

divergences are suppressed using determinism annotations, where needed, at some per-

formance cost. This removes a great deal of synchronization among replicas and improves

performance. This thesis focuses on the mechanisms that support redundant execution

and handle non-determinism in order. We implemented and evaluated a 2-replica proto-

type.
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Chapter 1

Introduction

Recent trends in computing hardware indicate that the vast majority of future computers

will contain multiple processing cores on a single die. By the end of 2007, Intel expects

to be shipping multi-core chips on 90% of its performance desktop and mobile processors

and 100% of its server processors [15]. These multiprocessors can offer increased perfor-

mance through parallel execution, as well as more system reliability and security through

redundant execution.

Redundant execution is conceptually straightforward. A redundant execution system

runs several replicas of an application simultaneously and provides each replica with

identical inputs from the underlying operating system (OS). The redundant execution

system then compares the outputs of each replica, relying on the premise that their

execution is deterministic based on their inputs, so that any divergence in their outputs

must indicate a problem. For example, executing identical replicas has been used to

detect and mitigate soft-errors [5]. More recently, there have also been several proposals

to execute slightly different replicas to detect security compromises [10], and private

information leaks [45].

Unfortunately, redundant execution systems to date have not been able to support

multi-threaded programs on multiprocessor systems, even though the growing preva-
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Chapter 1. Introduction 2

lence of multiprocessors will encourage the use of multi-threaded programming. This is

because the relative rates of thread execution among processors are non-deterministic,

making inter-thread communication difficult to duplicate precisely in all replicas, espe-

cially when the communication is through shared memory. Allowing the order of this

communication to diverge among replicas can cause a spurious divergence, which is not

the result of a failure or violation. This undermines the primary premise on which redun-

dant execution depends. Näıve solutions to make communication deterministic, such as

trapping on each shared memory access, can result in unacceptable performance degrada-

tion. This inability to efficiently deal with the non-determinism that exists when running

multi-threaded programs on multiprocessors threatens the future feasibility of redundant

execution systems on the very hardware that benefits them the most.

This thesis is part of a larger project called Replicant, where the key insight is that re-

dundant execution systems can be made to run efficiently on multiprocessors by enabling

them to tolerate non-determinism, rather than forcing them to eliminate it completely.

Replicant places each replica in an OS sandbox and only loosely replicates the order of

events among the replicas. Replicant then compares the outputs of the replicas and only

externalizes outputs that occur in the majority of the replicas, thus making the replicas

appear to the outside world as one process whose behavior is determined by the majority.

When identical event ordering among replicas is required, e.g. when replica output values

diverge under normal execution, Replicant can be instructed to enforce such an ordering

through determinism annotations, which need to be inserted by the application devel-

oper [27, 26]. Our experiences show that the number of determinism annotations required

is related to the nature and amount of communication among threads in an application,

and can, for the most part, be inferred from the use of locks in the application.

The goal of Replicant is to increase the security and reliability of computing systems

at reasonable performance costs. As an example, Replicant can be used to prevent an

adversary from exploiting buffer overflow vulnerabilities in applications by varying the
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address space layout of replicas. Address space layout randomization (ASLR), on its own,

has been shown to be only a probabilistic defense mechanism and can be brute-forced [31].

While an adversary may be able to successfully overflow a subset of replicas, to subvert

the externally visible behavior of the application, an adversary must compromise and

control a majority of the replicas. By increasing the number of replicas, we can make

it arbitrarily improbable that an adversary will be able to simultaneously compromise

enough replicas with the same attack. Replicant can also improve the availability of a

system by removing any crashed or unresponsive replicas, thus allowing the remaining

replicas to carry on execution.

As will be explained in the next chapter, there are two classes of non-determinism

that are exhibited by multi-threaded applications, both of which can be handled by

Replicant: non-determinism in order and non-determinism in value. The focus of this

thesis is on the first sub problem. We discuss the design and implementation of the kernel

mechanisms, which handle the redundant execution of multi-threaded applications that

do not exhibit non-determinism in value. Those that do exhibit such non-determinism

require determinism annotations, a concept which we will introduce in Chapter 3. The

design and implementation of determinism annotations is the topic of another thesis and

is discussed in [27, 26].

1.1 Contributions

The contributions of this thesis are two fold. First, we describe the mechanisms that

enable Replicant to support redundant execution and to tolerate non-determinism in

order between replicas. We then evaluate the correctness of the output produced by

applications running on Replicant as well as the performance of a 2-replica system using

three SPLASH-2 parallel benchmarks [44] and some of our own microbenchmarks.
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1.2 Thesis Structure

In the next chapter, we give some background and explain in detail the difficulties associ-

ated with executing multi-threaded applications redundantly on multiprocessors, which

we classify into two problem categories. Chapter 3 provides an overview of the complete

Replicant system that handles both non-determinism in order and non-determinism in

value, and as a result any multi-threaded application. The rest of the thesis then focuses

on the mechanisms that support redundant execution and non-determinism in order

specifically. Chapter 4 elaborates on the architecture of Replicant, and Chapter 5 de-

scribes the implementation of a 2-replica system, which can be generalized to an n-replica

system. We then evaluate the performance of Replicant, reported in Chapter 6, both at

the macro and micro level for applications that do not exhibit non-determinism in value

and discuss Replicant’s limitations in Chapter 7. Related work is dealt with in Chapter 8

and we conclude in Chapter 9.



Chapter 2

Background

This chapter gives some background on the concept of redundant execution and ASLR.

The effectiveness of ASLR for an application running redundantly is then illustrated

by way of an example. However, redundantly executing multi-threaded applications on

multi-core hardware have a few problems, which are described in detail in the last section

of this chapter to motivate Replicant.

2.1 Redundant Execution

The idea behind redundant execution is to perform the same task multiple times and

ensure that all re-executions produce the same consistent result. These systems are

typically supported by a voting mechanism to determine which results are correct, in the

face of inconsistency produced by some of the re-executions.

Redundant execution has been successfully applied for decades in expensive high-

availability systems such as ATMs and life-critical systems such as aircrafts and space-

crafts, which require fault-tolerant systems. There is a rich literature on fault tolerance

and only a facet will be introduced here [39, 33]. Fault-tolerant systems can be imple-

mented at the system-level and leverage design diversity of redundant sub-systems, i.e.

each sub-system is implemented independently, but all of them conform to a common

5
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specification. An example is the Boeing 777, where the redundant flight sub-systems

exchange proposed outputs as votes before sending them out to the actuators [39].

Software-level fault tolerance uses the same idea of design diversity, with multiple

versions of an application being developed for a common specification, a concept known

as N-version programming [3]. The N-versions leverage language diversity and algorithm

diversity among others. Such software systems also have a voting algorithm to decide on

the outputs, which are determined by the majority.

Apart from fault-tolerant applications, the concept of software redundant execution

has been used to detect security compromises [10] and private information leaks [45]. Our

approach to redundant execution is to support multi-threaded applications on multipro-

cessor systems, which can be used to detect security compromises or improve reliability.

A more comprehensive survey of existing redundant execution systems is presented in

Chapter 8 alongside other related work.

2.2 Address Space Layout Randomization

Design diversity is a very desirable property but usually a very expensive one. Designing,

manufacturing and testing specialized hardware is a very costly venture and the same is

true for N-version software. This is only warranted in life-critical applications. Similar to

how the cost of redundant systems that employ hardware design diversity can be reduced

by utilizing cheaper commercial off-the-shelf components, the cost of diverse software can

be reduced by using cheaper methods to inject diversity automatically. There are different

means of achieving this goal, e.g. using different compilers on the same source tree [33]

and ASLR [6, 7] among others.

In a security context, diversity in software is also desirable since it makes software

appear different to attackers, making them harder to attack and more resilient against a

fast propagating attack [36]. Since Replicant uses ASLR to diversify replicas to detect



Chapter 2. Background 7

memory corruption attacks, we focus on the concepts of ASLR in this section and delay

discussion of other methods of diversity in Chapter 8 and Chapter 9.

ASLR reorganizes the layout of code and data in virtual memory without affecting

the application’s semantics and has low runtime overhead. It is effective against mem-

ory corruption attacks (e.g. buffer overflow attacks) and makes the job of the attacker

harder. Typically, attack payloads consist of a hard-coded absolute address, also known

as the jump address, which is based on the adversary’s prior knowledge of an applica-

tion’s address space layout. The jump address defines the location in memory where the

attacker wants to re-direct the control flow of an application, i.e. to the malicious code

in the overflowed buffer in the case of a buffer overflow attack. With ASLR, the attacker

now has to guess this jump address since it changes every time an application is loaded

in memory and is thus different in each instance of an application.

The example in Figure 2.1 (a) shows how a simple buffer overflow attack works but

more details can be found in [2]. The adversary crafts an attack payload that would

overflow the buffer on the stack and overwrite the return address with a hard-coded

jump address (0xbeaddead). When the return address is loaded into the program counter,

control is transferred to the malicious code inside the overflowed buffer. Consider the

case where an ASLR-protected application runs on Replicant, but unfortunately, the

attacker correctly guesses a valid jump address in one of the replicas, thus compromising

an instance of the application. This is illustrated in Figure 2.1 (b), where the attack

payload successfully compromises Replica 1. Since the application is running on top

of Replicant, the same attack payload (application input) is replicated to Replica 2.

However, the same attack fails on Replica 2 because its address space layout is different

from Replica 1, meaning that the hard-coded jump address does not point back to the

overflowed buffer but to an arbitrary (illegal) address in memory. The system will fail-

stop as Replica 2 will crash, making the attack detectable.

While ASLR is a very light-weight memory corruption detection technique, it is only
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Stack

return addr

0xbeadffff
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jump address 0xbeaddead

Jump to 
injected code

...
int a

char buf[10]

...

Stack of Replica 1 0xbeadffff

0xbeaddead

Jump to 
injected code

Stack of Replica 2 0xb460ffff

0xb460beefBuffer overflow exploit with 
jump address 0xbeaddead

Identically replicated exploit payload

Jump to invalid 
address 0xbeaddead

S
ta
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ro
w

th

Increasing address

(a)

(b)

return addr
...

int a

char buf[10]

...

return addr
...

int a

char buf[10]

...

Figure 2.1: Address space layout randomization. (a) gives an example of how buffer
overflow attacks typically work and (b) illustrates how replicas with ASLR would thwart
an attack, even if one replica was successfully compromised by guessing the absolute
jump address correctly.

probabilistic. It has been shown that on 32-bit systems, ASLR can be brute-forced within

minutes [31]. In Replicant however, in order to subvert the externally visible behavior

of an application, the adversary would have to compromise a majority of the replicas.

Since the same exploit is replicated to all replicas, it can be made arbitrarily improbable

that the attacker would be able to compromise the majority of replicas simultaneously,

by increasing the number of replicas.

2.3 Problem Description

Redundant execution systems rely on the presumption that if inputs are copied faithfully

to all replicas, any divergence in behavior among replicas must be due to undesirable
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1: int counter = 0;
2:
3: void thread_start() {
4:     int local;
5:
6:     lock();
7:     counter = counter + thread_id();
8:     local = counter;
9:     unlock();

10:    
11:     printf(“%d\n”, local);
12: }
13:
14: void main() {
15:     thread_create(thread_start); // thread_id = 1
16:     thread_create(thread_start); // thread_id = 2
17:     thread_create(thread_start); // thread_id = 3
18: }

Replica 1:
Thread 1 prints “1”
Thread 3 prints “4”
Thread 2 prints “6”

Replica 2:
Thread 2 prints “2”
Thread 3 prints “5”
Thread 1 prints “6”

Figure 2.2: Code example illustrating non-determinism in a multi-threaded program.
Not only can the order of the thread outputs between Replica 1 and Replica 2 differ, but
the contents of the outputs may differ as well.

behavior, such as a transient error or a malicious attack. On such systems, the repli-

cation of inputs and comparison of outputs are typically done in the OS kernel, which

can easily interpose between an application and the external world, such as the user or

another application on the system. However, since inter-thread communication through

shared memory is invisible to the kernel and relative thread execution rates on different

processors are non-deterministic, events among concurrent threads in a program cannot

be replicated precisely and efficiently, leading to spurious divergences.

To illustrate, consider the scenario described in Figure 2.2. Three threads each add

their thread ID to a shared variable, counter, make a local copy of the variable in

local, and then print out the local copy. However, as illustrated below the program, the

threads may update and print the counter in a non-deterministic order between the two

replicas. In Replica 1, the threads print “1”, “4” and “6” because they execute the critical
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section in the order (1, 3, 2) by thread ID. On the other hand, the threads in Replica

2 print “2”, “5” and “6” because they execute the critical section in order (2, 3, 1).

This example demonstrates that multi-threaded applications may non-deterministically

generate outputs in both different orders and with different values.

To avoid these spurious divergences, the redundant execution system must ensure

that the ordering of updates to the counter is the same across the two replicas. If the

redundant execution system ensures that threads enter the locked region in the same

order in both replicas, then both replicas will produce the same outputs, though possibly

in different orders. If the system further forces the replicas to also execute the printf

in the same order, then both the values and order of the outputs will be identical.

A simple solution might be to make accesses to shared memory visible to the OS

kernel, by configuring the hardware processor’s memory management unit (MMU) to

trap on every access to a shared memory region. For example, since counter is a shared

variable, we would configure the MMU to trap on every access to the page where counter

is located. However, trapping on every shared memory access would be very detrimental

to performance, and the coarse granularity of a hardware page would cause unnecessary

traps when unrelated variables stored on the same page as counter are accessed.

A more sophisticated method is to replicate the delivery of timer interrupts to make

scheduling identical on all replicas. While communication through memory is still invis-

ible to the kernel, duplicating the scheduling among replicas means that their respective

threads will access the counter variable in the same order, thus resulting in the exact same

outputs. Replicating the timing of interrupts is what allows systems like ReVirt [11] and

Flashback [35] to deterministically replay multi-threaded workloads. Unfortunately, as

the authors of those systems point out, this mechanism only works when all threads are

scheduled on a single physical processor and does not enable replay on a multiprocessor

system. This is because threads execute at arbitrary rates relative to each other on a

multiprocessor and as a result, there is no way to guarantee that all threads will be in
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the same state when an event recorded in one replica is replayed on another.

Finally, a heavy-handed solution might be to implement hardware support that en-

forces instruction-level lock-stepping of threads across all processors. Unfortunately, this

goes against one of the primary motivations for having multiple cores, which is to reduce

the amount of global on-chip communication. In addition, it reduces the opportunities

for concurrency among cores, resulting in an unacceptably high cost to performance. To

illustrate, a stall due to a cache miss or a branch misprediction on one core will also stall

all the other cores in a replica.

In summary, in order to support multi-threaded applications on a multi-core archi-

tecture, the redundant execution system must be able to handle outputs produced in

non-deterministically different orders (non-determinism in order) among replicas. The

redundant execution system must also be able to deal with the non-deterministic ordering

of communication among replicas, which may result in divergent replica output values

(non-determinism in value). In both cases, the system must either enforce the necessary

determinism at the cost of some lost concurrency, or it must find ways to tolerate the

non-determinism without mistaking it for a violation.



Chapter 3

The Replicant System

The previous section illustrated the problems that redundant execution systems face

when running multi-threaded applications on multiprocessors. In this chapter, we give

an overview of Replicant and discuss how it handles both non-determinism in order

and non-determinism in value. Mechanisms that handle non-determinism in order allow

Replicant to support only multi-threaded applications where the non-determinism does

not affect external output, but when determinism annotations are used, Replicant can

handle any multi-threaded application.

3.1 Redundant Execution and Non-Determinism in

Order

Replicant is a redundant execution system that supports multi-threaded applications on

commodity multi-core processors with the goal of improving system security and reliabil-

ity. For example, by randomizing the address space layout of each replica, Replicant can

detect memory corruption attacks. This is an improvement over existing systems such

as N-Variant [10] that do not support multi-threaded applications.

Replicant implements an input replicating and an output matching architecture that

12
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is tolerant to the non-determinism in order, and only uses determinism annotations to en-

force the ordering of events that can cause divergence in replica output values. Replicant

loosely replicates the ordering of events among replicas and compares outputs, external-

izing only those confirmed (i.e. independently reproduced) by the majority of replicas.

From Figure 2.2, Replicant will resolve the different ordering of printf by buffering the

outputs, then matching up the same printf instances and externalizing the outputs as

they are confirmed.

A unique aspect of Replicant is that it allows replicas to execute independently in an

OS sandbox, as opposed to executing in lockstep. This creates greater opportunities for

concurrency both among threads within a replica and among replicas, hence leveraging

the parallelism available on multiprocessor platforms.

Moreover, from the stand point of an external observer (e.g. the user or other appli-

cations running on the system), replicas appear as a single application whose behavior is

determined by the majority. Redundant execution and dealing with non-determinism in

order are the focus of this thesis, which we discuss in subsequent chapters.

3.2 Non-Determinism in Value

While Replicant can match and externalize outputs that occur in different order, it

will not externalize divergent output values. Depending on the application, some non-

determinism in the code execution will result in divergent output values while others

will not. As shown in our code example in Figure 2.2, non-deterministic accesses to the

counter will result in different output values. On the other hand, non-deterministic or-

dering of calls to printf will only result in different ordering of outputs, which Replicant

can resolve. Further, there are many events whose ordering generally will not have any

effect on the ordering or value of outputs, such as calls to malloc, the heap allocator.

Replicant provides the application developer with a determinism annotation that can be
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BEGIN_SEQ_REGION
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eBEGIN_SEQ_REGION

BEGIN_SEQ_REGION

BEGIN_SEQ_REGION

BEGIN_SEQ_REGION
BEGIN_SEQ_REGION

BEGIN_SEQ_REGION

BEGIN_SEQ_REGION

Figure 3.1: Determinism annotations. This example shows how determinism annotations
(BEGIN SEQ REGION and END SEQ REGION – not shown for simplicity) are used to enforce
the order in which sequential regions are crossed among replicas. The order is defined
by threads in Replica 1 and Replicant forces threads in Replica 2 to cross the sequential
regions in the same order.

used to remove the non-determinism and hence eliminate the resulting divergent outputs.

Replicant’s determinism annotations are analogous to memory barrier instructions

in relaxed memory consistency models [1] where, in the common case, memory accesses

and modifications are not ordered unless explicitly specified by the application developer.

Enforcing the order of memory operations incurs some performance penalty, but relax-

ing them allows aggressive compiler optimizations as well as hardware optimizations to

be leveraged by the application. Like memory barrier instructions, determinism anno-

tations are used to suspend the relaxations in Replicant that allows replica threads to

execute independently. When specified by the application developer, Replicant enforces

deterministic ordering of thread execution across replicas. However, this operation has a

performance cost since the execution of threads in replicas are serialized.

Determinism annotations are used to remove the non-determinism in value, which

arises from different ordering of events across replicas, such as inter-thread communi-

cation events, that are invisible to Replicant but affect externally visible outputs. The
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application developer can explicitly identify the events, whose ordering must be deter-

ministically replicated, by annotating the code that executes those events with a de-

terminism annotation that defines the bounds of a sequential region. Replicant ensures

that the order in which threads enter and exit a sequential region is the same across

all replicas. As illustrated in Figure 3.1, determinism annotations (BEGIN SEQ REGION

and END SEQ REGION) are used to annotate the application code. The END SEQ REGION

annotation, which is not shown on the diagram for simplicity, appears after each grey

box. The order in which sequential regions should be crossed is defined by threads in

Replica 1 and Replicant forces the corresponding threads in Replica 2 to cross the sequen-

tial regions in the same order. This concept is similar to the shared object abstraction

introduced by LeBlanc et al. [19]. In short, the determinism annotations make the in-

visible inter-thread communication deterministic such that the contents of the outputs

they affect are deterministic.

In the example given in Figure 2.2, the developer should place a sequential region

around the critical section bounded by the lock and unlock operations at lines 6 and 9

respectively. This ensures that corresponding threads in each replica pass through this

region in the same order and update the counter variable in the same order. Thus, the

threads will produce the same output, even though they may still print out their results

in a different order. Replicant can then match the out of order outputs. We have found

that a good heuristic for using sequential regions is to place them around locks that

protect shared variables so that communication through shared memory is performed in

the same order across all replicas.

3.3 Summary

We have given an overview of Replicant and showed how applications are redundantly

executed. Replicant can handle both non-determinism in order and non-determinism
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in value that multi-threaded applications exhibit. Non-determinism in order is handled

by matching up the outputs of the different threads in an application. For applications

that have divergent outputs, only the non-deterministic code section affecting the output

values must be annotated with determinism annotations to eliminate the divergence.

Replicant then enforces the order in which the sequential regions are executed across

replicas, which suppresses the non-determinism in value at some performance cost.

The topic of determinism annotations is that another thesis that was developed in par-

allel and its design and implementation are discussed in [27, 26]. Although determinism

annotations are a crucial component that allows Replicant to handle any multi-threaded

application, it is orthogonal to this thesis. The remainder of this thesis describes redun-

dant execution and the mechanisms to deal with non-determinism in order. The resulting

system is then evaluated with applications that do not exhibit non-determinism in value

(e.g. SPLASH-2 benchmarks [44]), and hence do not need determinism annotations.

However, it is worth keeping in mind the guarantees that determinism annotations pro-

vide, i.e. enforce the order in which sequential regions are crossed across all replicas such

that events invisible to the kernel are made deterministic.



Chapter 4

System Architecture

This chapter describes the architecture of the Replicant. Conceptually, Replicant im-

plements an input replicating and an output matching architecture that is tolerant to

re-ordering of events. A unique aspect of Replicant is that it permits replicas to execute

independently and diverge in their behavior for performance gains. However, only out-

puts that a majority of replicas have confirmed are externalized outside of the redundant

execution system. In the next sections, we outline the design considerations for Replicant

and elaborate on how redundant execution is performed and how Replicant deals with

non-determinism in order.

4.1 Design Considerations

Replicant allows replicas to execute independently and tolerates non-determinism for

performance reasons, as long as it does not affect externally visible output. As discussed

in Section 2.3, existing techniques for enforcing a completely deterministic execution of

replicas have very high performance costs and thus are not practical.

Like other redundant execution systems [10, 45], Replicant manages the inputs and

outputs of the replicas at the system call interface for two reasons. First, we would like

Replicant to be isolated from the applications for security, as a compromised application

17



Chapter 4. System Architecture 18

S2:read

S2:read

Time Replica 1 (R1) Replica 2 (R2)

S3:write

S4:read

R1 starts S1
R1 is first to execute S1 

and waits for confirmation
R2 confirms S1 
and both execute it

R2 starts S4 and 
waits for confirmation

R1 starts S3 (spurious) 
and waits for confirmation

S1:open

S1:open

R1 starts S2
R1 is first to execute S2 

and waits for confirmation
R2 confirms S2 
and both execute it

Figure 4.1: Deadlock scenario for a simple rendez-vous approach in a 2-replica system,
where one of the replicas (R1) makes a spurious system call (S3) which R2 does not
make. By deadlock, we mean that both replicas cannot make forward progress.

would be able to corrupt and disable mechanisms implemented in user-space, e.g. in

a shared library. Replicant thus has to be in kernel-space for isolation and since the

system call interface is the communicating interface between user-space applications and

the kernel, it is an intuitive interface for Replicant to interact with applications. Secondly,

it offers more contextual information that makes it significantly easier to replicate inputs

to replicas, buffer unconfirmed outputs until confirmed and discard unconfirmed system

calls, if and when needed.

A simple approach for confirming system calls would be to stall execution or rendez-

vous on every system call until the majority of replicas confirm it and then proceed

with their execution, like N-Variant [10]. A drawback of this approach is that it forces

several context switches on each system call, which is likely to degrade performance if
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the application makes many system calls.

While this approach works well for single-threaded applications, multi-threaded ap-

plications would cause any system that uses a rendez-vous mechanism to deadlock, i.e.

replicas cannot make any forward progress, due to non-determinism. To illustrate, con-

sider a scenario where non-determinism in an application causes one of its threads to

make a spurious system call, which is a system call made by a minority of the replicas,

as illustrated in Figure 4.1. Spurious system calls could be benign or malicious and thus

cannot and should not be confirmed respectively. The example shows a 2-replica system,

for simplicity, that confirms system calls in the above-mentioned rendez-vous fashion.

Up until system call S1, all system calls made by the two replicas have been successfully

matched and confirmed. Replica 1 (R1) is then the first to execute system call S1 and

waits for Replica 2 (R2) to confirm it. When Replica 2 finally reaches system call S1,

it confirms the system call and they both execute it and proceed. This is repeated for

system call S2. However, if the next system call that Replica 1 makes is spurious (S3),

i.e. Replica 1 executes system call S3 before it executes S4 while Replica 2 executes S4

next, then both Replica 1 and Replica 2 will wait for each other at different system call

rendez-vous points and hence the system deadlocks. The same scenario can be applied

to the re-ordering of system calls. Replicant solves this by allowing replicas to execute

independently and confirms system calls by buffering them and matching them up.

This benign scenario arises in Apache where the first worker thread in a replica to

execute the libc function localtime r will read the current timezone from the OS

and this is cached by libc to be re-used on subsequent calls. This operation may be

performed by an arbitrary thread in each replica. As a result, the system calls associated

with this operation will not match. Although this can be made deterministic across

threads by using determinism annotations, we note that this non-determinism does not

cause output divergence and thus can be omitted. Moreover, determinism annotations

serialize the execution of the block of code annotated by a sequential region to make
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the execution order deterministic across replicas and has a performance cost. As the

number of determinism annotations inserted in an application increases, Replicant will

unnecessarily incur an increasingly large performance penalty.

To illustrate how Replicant will incur a performance penalty with determinism anno-

tations, let us reconsider the code example given in Figure 2.2. As previously mentioned,

the threads in Replica 1 execute the critical section in the order (1, 3, 2) by thread ID

while in Replica 2, the threads execute in order (2, 3, 1). In order to instruct Replicant

to enforce deterministic execution of the critical section across replicas, lines 6 to 9 of the

code is annotated with determinism annotations to identify a sequential region. Since

Thread 1 in Replica 1 is the first to execute the critical section, whenever Threads 2 and

3 in Replica 2 try to execute the critical section, they will be stalled until Thread 1 in

Replica 2 has finished executing the critical section. The stall time of Threads 2 and

3 translates into a loss of concurrency and hence a performance penalty. We observed

that the performance penalty is proportional to the number of threads and the number

of sequential regions in each replica, thus implying that the number of sequential regions

should be minimized for performance.

Another example as to why a rendez-vous approach is not suited for multi-threaded

applications is demonstrated by the non-determinism in libc itself. To illustrate, con-

sider 2 threads in each replica that print out a string. Assume Thread 1 in Replica 1 and

Thread 2 in Replica 2 invoke printf first, as shown in Figure 4.2. Since libc functions

are thread safe and use locks to ensure mutual exclusion, the printf function will acquire

the lock protecting the output stream before flushing the outputs in a write system call.

Therefore, when Thread 1 in Replica 1 invokes printf, it will grab the printf lock in

libc and then issue a write system call. This write will be stalled waiting for confir-

mation from Thread 1 in Replica 2 (Arrow #1). Similarly, since Thread 2 in Replica 2

invokes printf first, it will acquire the printf lock in libc and invoke the write system

call. This write will also be stalled, waiting for confirmation from Thread 2 in Replica
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Figure 4.2: Deadlock scenario 2. This figure illustrates another problem with the rendez-
vous approach for multi-threaded applications. Here the non-determinism in libc pre-
vents forward progress.

1 (Arrow #2). However, Thread 2 in Replica 1 will never confirm the write of Thread 2

in Replica 2 because it cannot acquire the printf lock being held by Thread 1 in Replica

1 (Arrow #3). The same dependency occurs for Thread 1 in Replica 2 (Arrow #4),

thus creating a cycle and preventing further progress of the application. The rendez-vous

approach introduces an undesirable dependency between threads, even though they are

unrelated (e.g. Thread 1 in Replica 1 and Thread 2 in Replica 2). Although this can be

solved by annotating all locks in libc with determinism annotations, this is a daunting

task and is likely to severely degrade performance. Replicant eliminates this dependency

(Arrow #1 and #2) by allowing replicas to execute independently in an OS sandbox and

buffering and matching outputs as they are confirmed.

In summary, the architecture we propose for Replicant is a kernel-based system that
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Figure 4.3: The Replicant architecture.

interacts with applications at the system call interface. Replicant allows replicas to

execute independently for performance and tolerates non-determinism in order as well as

spurious system calls. Moreover, Replicant will use determinism annotations only when

needed to handle non-determinism in value, at some performance cost.

4.2 Replicant Architecture

Based on the design considerations we outlined earlier, we elaborate on the architecture

of Replicant, shown in Figure 4.3, which consists of two main components: the harness

and the matcher.

4.2.1 Harness

A key requirement for supporting independent execution of replicas is that each replica

needs to execute in an isolated and initially identical environment. Replicant places each
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replica in an OS sandbox, called a harness, which is composed of a copy-on-write (COW)

file system as well as other private copies of OS state. In addition, each replica has

its own address space, which is randomized to detect memory corruption. The harness

state is visible only to the replica that owns it, i.e. all threads in the same replica share

the harness and can communicate through it, if needed, without affecting other replicas.

The harness is kept up-to-date by applying the outputs and effects of all system calls a

replica makes, even if they are not confirmed. With these facilities, the Replicant harness

emulates the underlying OS with enough fidelity that the replica is not aware that its

outputs are being buffered.

A nice side effect of the COW file system is simplicity. Since replicas can act on

their environment independently, they can create new files or delete existing files in their

harness without affecting the externally visible environment (e.g. the OS file system) or

other replicas. Thus, Replicant does not need to track file system dependencies, e.g. if

a replica deletes a file but the delete operation has not yet been confirmed, then that

replica should no longer have access to the file but the other trailing replicas should still

be able to access the file until they confirm its deletion. Similarly, replicas can also write

unconfirmed data to a file in their harness and then read back the modifications without

having to worry about read after write dependencies in the OS file, which lives outside

the harness. Our initial implementation of Replicant included a file system dependency

tracking mechanism but the level of complexity it introduced was not justified. Moreover,

it made a copy of each file that was opened such that modifications to the file could be

made in isolation until confirmed. This copying penalty was very expensive for large files.

Although each replica executes independently of the others, each thread within a

replica keeps information about its peers. Each thread in a replica is associated at birth

with exactly one thread in every other replica, and this group of threads forms a peer

group across all replicas as shown in Figure 4.3. Threads in a peer group are all created

by the same thread creation event. In the contrived example given in Figure 2.2, threads
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with the same thread ID form a peer group across the replicas and share the same system

call list. Within a peer group, the thread that executes a system call first is called the

leading peer thread while the rest are called trailing peer threads. It is worthwhile to note

that due to thread independence and different relative rates of execution, the currently

leading peer may become one of the trailing peers and vice versa.

4.2.2 Matcher

Replicant also includes a matcher component for each set of replicas. In this section,

we introduce the matcher and classify the system calls handled by the matcher into 4

categories, each of which is supported by an example. In particular, these examples

illustrate how the matcher identifies equivalent system calls, replicates inputs, buffers

outputs and does system call matching in the presence of spurious system calls.

The purpose of the matcher is to fetch and replicate inputs from the external world

into the harness, and determine when outputs from the harness should be made externally

visible. The matcher is implemented as a set of system call lists that are used to buffer

the arguments and results of system calls made by the replicas, and then match up the

system calls on a per-peer group basis. Threads in a peer group share a system call list in

the matcher as shown in Figure 4.3. A new thread is not allocated a system call list and

is not permitted to run until a majority of threads in its parent’s peer group have also

created a new thread. At this point, the thread creation event is confirmed, a new peer

group is formed, a new system call list is allocated, and the new group will be permitted

to execute and confirm system calls.

As summarized in Table 4.1, Replicant splits the handling of each system call invoked

by the replicas between the replica’s harness and the matcher depending on whether the

system call requires inputs or creates outputs, and whether those inputs and outputs

are external or non-external. We illustrate how each of these classes of system calls is

handled using examples in the context of a 2-replica system for simplicity, but this can be
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Does not Require Requires External Input
External Input

Does not have
Externally Visible
Output

Execute within harness. If system call matches a
list entry: Replay recorded
inputs to the harness.
If system call does not
match any list entries:
Execute system call on OS
and record system call in the
list.

Has Externally
Visible Output

Execute system call within
harness and buffer the output
in the system call list until
confirmed.

Extrapolate the result based
on current OS state and re-
turn it to the harness. De-
fer execution on OS until the
system call is confirmed.

Table 4.1: Replicant’s handling of system calls from replicas.

generalized to an n-replica system. In each example, the order in which the peer threads

make the system calls is shown with respect to a timeline. Each system call is tagged by

the replica ID and the thread ID, both of which are used during matching. The scenario

is also represented on a schematic, with numbered arrows illustrating the flow of actions

that Replicant undertakes. In a 2-replica system, the leading peer invokes a system call

first and it is confirmed when the trailing peer invokes the same system call instance.

Scenario 1. If the system call transfers inputs to the application, Replicant considers

whether the input is generated from state external to the harness or not. System calls that

require non-external inputs are executed on the harness, which emulates the underlying

OS, and do not need the aid of the matcher (top-left quadrant of Table 4.1). Consider

the example of a non-external input from Figure 4.4, where the application makes a read

from a file stored on the COW file system in the harness (Step 1). The system call is

executed on the harness and the outputs are returned to the application (Step 2). When

the trailing peer makes the same instance of the system call (Step 3), the system call is

executed on its harness as well (Step 4), without the intervention of the matcher. Other

examples are getpid, brk, mmap, etc.
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1. Thread 1 (T1) in Replica 1 (R1) 
requests a read from a file on the 
harness’ copy-on-write file system.
2. Since the read is non-external, the 
system call is executed on the harness 
and the results are returned to R1T1, 
which can continue execution.
3. The same read is requested by the 
peer thread T1 in Replica 2 (R2).
4. Again, since it is non-external input, 
it is executed on the harness.

…

…

Figure 4.4: Scenario 1 (top-left quadrant of Table 4.1). This scenario illustrates Repli-
cant’s handling of system calls that do not have externally visible outputs and do not
require external inputs. They are executed without the help of the matcher.

Scenario 2. On the other hand, external inputs (top-right quadrant of Table 4.1) are

those that cannot be handled by the harness alone, such as a read from the network or

from a device, and must be forwarded to the matcher as illustrated in Figure 4.5. This is

necessary since consecutive reads from the network (e.g. one from each replica) will not

return the same input data to the replicas, which will cause them to diverge. Therefore,

the matcher records any external inputs and replays it to the other replicas, when they

invoke the same system call instance, thus ensuring that the replicas get the same inputs.

As shown in the example, when the matcher receives a system call that requires

external input (Step 1), it first picks the system call list corresponding to the correct

peer group, i.e. R1T1|R2T1 in Figure 4.5. It then checks the system call list to see if

another thread in its peer group has already made a matching system call. The matcher

determines that two system calls match if the name and arguments of the system calls
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1. Thread 1 (T1) in Replica 1 (R1) makes 
a read system call from the network. 
The call is forwarded to the matcher 
since it is requesting an external input. 
2. The matcher checks the syscall list for 
a matching entry, but because it is the 
first read, no match is found and the 
system call is executed on the OS.
3. The results are recorded in the syscall
list for replication.
4. The read results are also returned to 
the caller, which can continue execution.
5. Thread 1 (T1) in Replica 2 (R2) then 
makes the corresponding read system 
call from the network. Since it is 
requesting external input, the read is 
forwarded to the matcher.
6. The matcher checks the syscall list 
and finds a matching entry (confirmed). 
The results are retrieved and returned to 
R2T1.

…

…

R1T2 | R2T2 
syscall list

open
read

Figure 4.5: Scenario 2 (top-right quadrant of Table 4.1). This scenario illustrates how
the matcher handles system calls that do not have externally visible outputs but require
external inputs.

are the same. When trying to match system calls, the matcher searches the entire list for

a matching system call, thus allowing the matcher to tolerate system calls that occur out

of order among peers. If there is no match, the matcher executes the system call on the

OS to fetch the external inputs (Step 2). It then records the system call arguments and

its results in the system call list of the thread’s peer group for replication (Step 3) and

returns the external inputs to the caller thread (Step 4). When the trailing replica makes

the corresponding system call (Step 5), the matcher will find a matching system call and

return the same result that the previous replica received (Step 6). System call entries

are removed from the list when all threads in the peer group have matched the system
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1. Thread 1 (T1) in Replica 1 (R1) 
executes a write to a file. This is a 
system call with externally visible output 
but does not require external input.
2. The syscall list is checked for a 
matching write, but since it is the first 
instance of the write, it is recorded.
3. The write is also executed on the 
harness and the results are returned to 
R1T1, which can continue executing.
4. Subsequently, when T1 in Replica 2 
(R2) makes the corresponding system 
call, the harness forwards the system call 
to the matcher.
5. The matcher checks the system call 
list for a matching system call and 
checks if the majority has confirmed it.
6. If the system call has been confirmed, 
the outputs are externalized to the OS.
7. The write is also executed on R2’s 
harness and the results are returned.

7

…

…

Figure 4.6: Scenario 3 (bottom-left quadrant of Table 4.1). This scenario illustrates how
the matcher handles system calls that have externally visible outputs but do not require
external inputs.

call. Other examples are gettimeofday, read from a device such as /dev/random, etc.

Scenario 3. Replicant also takes into account whether the system call has outputs

that are only visible to the replica itself, or whether the system call has outputs that will

be externally visible. Recall that externally visible outputs must be confirmed before

they are externalized. System calls with no externally visible outputs, such as a write to

a pipe between two threads in a replica, are only run on the harness state (Scenario 1).

However, system calls with externally visible outputs (bottom-left quadrant of Table 4.1),

such as unlink (to delete a file) or a write to a file, are run on the harness state and

then forwarded to the matcher. The system call has to be run on the harness to keep
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the harness state up-to-date, such that the application does not realize that its outputs

are being buffered before they are externalized on the OS by the matcher.

Consider the example of a write to a file (Step 1) in Figure 4.6. The outputs of

the write are buffered by the matcher in the system call lists (Step 2) until they are

confirmed, at which point they are externalized by the matcher. The write is also run on

the harness (Step 3) and the results of the system call are returned to the replica, which

can proceed with its execution. Thus, any subsequent read from the file, by the same

replica, to retrieve the previously written but unconfirmed data will succeed. When the

write is confirmed by the trailing thread (Steps 4 and 5), the matcher externalizes the

outputs by executing it directly on the OS (Step 6) – which will succeed unless there is a

catastrophic failure of the disk. The trailing thread also executes the system call on its

harness (Step 7) to update its state and the return value is compared with the results

from Step 6 for consistency.

Scenario 4. Finally, a write to a socket is a system call with external outputs

but also requires external inputs derived from the OS socket as opposed to the harness

(bottom-right quadrant of Table 4.1). In this case, the external input refers to the return

value (or error code) of the write when it is executed on the OS socket because there is

no equivalent socket in the harness, as will become clear in Section 5.3.1. This scenario

is illustrated in Figure 4.7. As before, the application makes a write to the network

which is recorded in the system call list until confirmed (Steps 1 and 2). Since the

system call cannot be executed on the OS until it is confirmed, Replicant extrapolates

the input from the state of the OS socket at the time of the write and allows the replica

to proceed (Step 3). When the write is confirmed by the trailing thread (Steps 4 and

5), the outputs are externalized (Step 6). The results are returned to the trailing replica

(Step 7), but are also checked against the extrapolated results returned to the leading

peer for consistency. Other system calls that require extrapolation are writev, send,

sendto, send msg which are all used to write to a socket, sendfile64 which is used by
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1. Thread 1 (T1) in Replica 1 (R1) makes 
a write system call to the network. 
Since it is a system call with external 
output and also requires internal input, it 
is forwarded to the matcher.
2. The matcher checks if the system call 
is being confirmed. Since it is the first 
instance, it is recorded on the syscall list.
3. The matcher examines the OS state, 
extrapolates the external input and 
returns it to the application.
4. Subsequently, when the peer thread 
T1 from Replica 2 (R2) makes the 
corresponding system call, it is also 
forwarded to the matcher.
5. The matcher checks the syscall list 
and decides that the system call has 
been confirmed.
6. The outputs are externalized to the 
network.
7. The results are checked against the 
extrapolated ones and returned to R2T1.

7

…

…

Figure 4.7: Scenario 4 (bottom-right quadrant of Table 4.1). This scenario illustrates
how the matcher handles system calls that have externally visible outputs and require
external inputs.

some applications to efficiently transfer data from a file to a socket and shutdown which

is used to shutdown part of the duplex connection.

Extrapolation is done by making a few simple checks on the file descriptor, e.g.

whether the specified file descriptor is a valid socket and whether the socket is connected,

and returning success or the appropriate error code to the application. Unfortunately,

extrapolation can return inconsistent results to the peers, if not done carefully. For

example, this can occur if the leading peer extrapolates success but the remaining peers

return failure because the remote host subsequently disconnected. Inconsistent return

values can cause the replicas to diverge and therefore, it is only safe to extrapolate
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if the paths taken by the peers do not diverge or converge after a short divergence,

without loss of critical outputs. In cases where the inconsistent return value affects the

code path (hence the system call sequence) and the replica does not converge again,

Replicant provides a developer annotation make sync to suppress extrapolation. When

an annotated system call is invoked, Replicant blocks all replicas in a rendez-vous fashion

until the system call is confirmed, thus ensuring that all replicas get a consistent and

correct return value. The drawbacks of this approach is the loss of concurrency and

the fact that a make sync annotated system call cannot be spurious or the system will

deadlock. This user-space annotation can easily be converted to a kernel mechanism,

if needed. TightLip [45] performs a similar rendez-vous, using barriers and conditional

variables, for system calls that modify kernel state.

System Call Matching. The matcher does system call matching for input repli-

cation or output confirmation as illustrated in the previous examples. System calls are

matched both by the system call name and its arguments. For arguments that are set

by the application but passed down to the kernel as addresses, the matcher checks the

content of the buffers as opposed to the address values for better accuracy. Moreover,

addresses cannot be compared since dynamic memory allocation is non-deterministic and

the address space of each replica is randomized.

Consider the case where a replica makes 2 spurious (or malicious) write system calls –

shown in striped boxes in Figure 4.8, a legitimate write and a close, all of which remain

to be confirmed by the other replica. The prototype function of a write system call is as

follows: write(fd, buf, num bytes), where fd is the file descriptor to write to, buf is

a pointer to the buffer to be written and num bytes is the length of the buffer. When the

legitimate write system call is made by the second replica (Step 1), the matcher searches

the corresponding system call list for a matching write by comparing the file descriptor

number, the number of bytes to be written as well as the contents of the write buffer

(Step 2). In this example, the matcher proceeds to the next entry in the system call list
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R1T1 | R2T1 syscall list

write(3,buf,6)
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R1T1    close(5)   

R1T2 write(5,buf,5)

Figure 4.8: System call matching. This scenario illustrates how the matcher does system
call matching in the face of spurious (or malicious) system calls by comparing all argu-
ments in matching, including buffer contents. The spurious (or malicious) system calls
are never matched and thus their outputs are never externalized.

after a simple check of the file descriptor numbers, i.e. the legitimate write is to fd = 5

while the spurious ones are to fd = 3, which do not match. If the file descriptor numbers

did match, the matcher would then try to match the number of bytes to be written and

only if both fd and num bytes were equal would the matcher perform the most expensive

operation of matching the contents of the buffer using a byte-by-byte comparison. When

a match is found, the write is confirmed and the output is externalized (Step 3). Note

that the spurious (or malicious) write system calls are nonetheless executed on the

harness, but are never made externally visible.
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Because a thread restricts its search to its system call list, it will only match system

calls with other threads in its peer group. One might be tempted to allow a thread

to match system calls with any other thread in the other replicas. However, certain

input system calls, such as gettimeofday, do not have arguments that are set by the

application. As a result, the matcher cannot use the arguments to match the right

system call if there are several instances available. By restricting threads to only match

with other threads in the same peer group and taking into account that the system call

lists maintain temporal order information, the matcher ensures that system calls always

match with the appropriate system call instances.

4.2.3 Summary

In summary, the harness allows the replicas to execute independently for performance

and replicates enough OS state such that the replicas are not aware that their outputs

are being buffered.

The matching algorithm handles system calls based on their classification as external

or non-external. It matches system calls from the same peer group and compares a system

call’s name and arguments. Matching system calls from the same peer group with the

help of contextual information allows Replicant to deal with re-ordering of system calls

among threads, while buffering outputs until they are confirmed solves the problem of

spurious system calls. This also implies that the outputs of malicious system calls are

never externalized unless a majority of replicas are compromised, thus preserving data

integrity of the system.

Once a system call has been confirmed, its outputs are made externally visible, and

thus outputs are externalized in the order in which they are confirmed by the replicas.

The examples used to illustrate how the matcher works were in the context of a 2-replica

system for simplicity. These mechanisms can be generalized to an n-replica system.
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Implementation

In this chapter we elaborate on the implementation of our Replicant prototype, which

was implemented by modifying a standard Linux 2.6.16 kernel [38, 8]. The prototype

consists of two components, namely the harness and the matcher, which we will discuss

in turn. As a proof of concept, our prototype currently supports two replicas, but can

be extended up to any number of replicas. We end this chapter by discussing some

interesting aspects of implementing a Replicant system.

5.1 Harness

Each Replicant harness houses a single replica and supports independent execution. The

file system namespace for each replica is directed to a COW image of the OS file system,

which is implemented by the dm-snapshot module that is part of the Linux kernel. This

allows a harnessed replica to open files in the harness that are not open or may not even

exist on the underlying OS.

Linux’s process descriptors were extended to include harness state, as shown in Fig-

ure 5.1. Each replica (hence each harness) has a unique replica number, rep id, which

is assigned at harness creation time. All threads within the same replica share the same

rep id and all subsequent processes or threads that are forked or cloned by a replica have

34
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struct task_struct {
...

/* HARNESS STATE */
int rep_id; /* All threads in the same replica

* have the same ID. Non-Replicant
* threads have ID 0. */

struct list_head *rep_peer_list; /* list of all threads in peer grp */
struct files_struct *rep_harness_files; /* harness FDT */
...

}

Figure 5.1: Harness state. The harness is implemented by a COW file system and harness
state is kept in Linux’s process descriptors.

the same rep id as their parent. A rep id of 0 denotes a process not running on top of

Replicant and hence does not execute the instrumented system call handlers. Instead,

non-Replicant threads or processes execute the unmodified system call handler code.

As mentioned previously, each thread in a replica is part of a peer group. The harness

state includes a pointer to a list named rep peer list, which is shared among all threads

in the same peer group. The peer list keeps track of all peers, from different replicas,

that form the peer group and is initialized when the peer group is created.

The harness state also keeps a pointer to the harness’ file descriptor table (FDT),

rep harness files, which is shared among all threads in the same replica (assuming that

clone is called with CLONE FILES flag), but never among peers. The FDT keeps track of

file descriptors owned by all threads sharing the same FDT, while the file descriptors are a

reference to Linux’s open file objects that represent opened resources and their associated

state [8]. File descriptors that live in the harness FDT are backed by resources within

the harness, e.g. files on the COW file system, where possible. External resources like

sockets, which we discuss in Section 5.3.1, have no corresponding harness resource and

thus their existence in the harness’ FDT is merely a place holder that keeps track of the

resource’s state (e.g. socket state). Note that since each harness has its own COW file

system, each requires its own FDT. The OS file system is accessed through another FDT,



Chapter 5. Implementation 36

the OS FDT, which is managed by the matcher. We elaborate on it in the next section.

A Replicant harness is created when the application process is created. Just as regular

processes are created via a fork system call, replica processes are created via a new

rep fork system call, which will create two new harnessed replica processes and setup

their relationships. In this way, each harness provides a replica with its own address

space and its own private copy of the file system. rep fork only needs to be called once

to start replicating an application. Subsequent confirmed calls to fork or clone by the

application will create two new replica processes. These new processes automatically

inherit their parent’s view of the file system, but other harness components, such as the

FDT, may or may not be inherited depending on the options passed to the forking call.

Similar to the default fork system call, the rep fork system call provides the replicas

with COW memory pages [8].

As discussed in Chapter 2, Replicant detects memory corruption by randomizing the

address space layout between the two replicas. This is incorporated in Replicant by

utilizing the ASLR facility that is part of the PaX/grsecurity Linux kernel patch [25].

PaX randomizes the brk-managed heap, the mmap-managed heap, the stack, the base

address at which libraries are loaded and optionally the base of the executable itself.

5.2 Matcher

The matcher is implemented by extending Linux’s process descriptors to include the

matcher’s state (Figure 5.2) and by modifying the Linux’s system call handlers (Fig-

ure 5.5). We first describe the matcher’s state and then elaborate on the matcher’s

mechanisms, which adhere to the design outlined in Chapter 4. We end this section by

describing enhancements to the matcher. Note that resources that are shared are also

protected by spinlocks, which are omitted here for simplicity.
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struct task_struct {
...

/* MATCHER STATE */
int rep_trailing_peer; /* leading or trailing peer flag */
struct files_struct *rep_os_files; /* OS FDT */

struct list_head *rep_syscall_list; /* per-peer group system call list */
int rep_syscall_count; /* Number of pending syscalls */
struct list_head *rep_search_start; /* Pointer to next item where

* searching should start */
void *rep_current_elem; /* Current syscall being processed */
wait_queue_head_t *rep_elem_done_wq; /* Waitqueue for syscalls in

* progress (e.g. blocking calls) */
...

}

Figure 5.2: Matcher state. The matcher’s state is incorporated in Linux’s process de-
scriptors.

5.2.1 Matcher State

The matcher state, shown in Figure 5.2, includes a per-peer flag, rep trailing peer,

which indicates whether the current peer is leading or trailing (note that this state can

change back and forth during a peer’s execution). It also includes a pointer to the system

call list, rep syscall list, which is shared among all peers within the same peer group.

The system call list is used by the matcher for replicating inputs and buffering outputs, as

described earlier. When outputs are confirmed, the matcher uses the OS FDT, denoted

by rep os files, to access the external resources and externalize the outputs. The file

descriptors that live in the OS FDT are backed by OS file system inodes that includes

external resources such as sockets.

The OS FDT is also used to simplify system call matching by restricting how file

descriptors are assigned to resources. Normally, Linux assigns file descriptors to resources

based on the order in which the resources are allocated. Since resources can be allocated

in different orders among the replicas, the mapping between file descriptors and resources

will be different in every replica, requiring the matcher to maintain a translation table

for each pair of replicas. Instead, Replicant creates a unified file descriptor namespace
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and ensures that all threads across replicas use the same file descriptor for a particular

resource instance, regardless of the order in which resources are allocated. The OS FDT

tracks the allocation status of file descriptors among all replicas. Once a file descriptor is

allocated by one replica, it can only be assigned to threads in the same peer group that

are accessing the same resource in other replicas. The descriptor cannot be reused for a

different resource or by a different peer group until all threads in the current peer group

have closed and released the file descriptor.

Consider an example of two replicas, each having two threads of execution. Thread

1 opens file “foo.txt”, while Thread 2 opens file “bar.txt”. If in Replica 1, Thread

1 invokes the open system call before Thread 2, while the opposite occurs in Replica

2, then on a vanilla Linux system, the same resource will have different file descriptors

assigned to it in each replica. However in Replicant, regardless of the order, the same

file descriptor is always assigned to the same resource instance.

A consequence of the unified file descriptor namespace is that the replicated applica-

tion use more file descriptors than what the unmodified application would. This becomes

more pronounced as the number of system calls on a system call list gets larger, a num-

ber we call the system call distance, because the file descriptors used and released by

the leading peer are not deallocated until they are confirmed and released by the trailing

peer. While the very nature of this side effect is benign, the implication is that the ap-

plications cannot assume anything from the file descriptor allocation mechanism, which

a well designed application should not be doing anyway. For example, even if a single-

threaded application closes file descriptor 4 and opens a file right away, it cannot expect

to get the same file descriptor 4 back.

The matcher state also consists of a pointer to the current element of the system

call list that is being processed (rep current elem), a waitqueue (rep elem done wq)

that we discuss in the next section, a pointer to the next element in the system call

list where searching should begin, denoted by rep search start, and a pending system
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typedef struct rep_list_elem {
struct list_head list;
pid_t pid; /* thread ID of enqueuing task */
int rep_id; /* leading replica identifier */
unsigned int sysnum; /* system call number */
void *args; /* system call arguments */
void *res; /* system call return value and recorded inputs */
atomic_t done; /* indicates if the system call has completed */

} rep_list_elem_t;

Figure 5.3: System call list element. This data structure keeps information about the
system call and its initial caller.

call counter, rep syscall count. The last two are matcher enhancements that will be

discussed in Section 5.2.3, after the system call handler modifications are described.

5.2.2 System Call Handler Modifications

While each system call requires modifications specific to its semantics, Figure 5.5 presents

a general description of how each system call is modified. generic syscall depicts the

system call handler code and search for matching syscall is a helper function that

does the system call matching. When the matcher attempts to match a system call, it

looks up the peer group’s system call list and skips those entries that have the same replica

ID (rep id) as itself. If an entry matches on the system call number, the matcher invokes

system call specific compare functions that will compare the arguments of the current

system call against those recorded in the system call list entry, to ensure that the same

instance is being matched. All system call specific functions are function pointers kept in

a table that is indexed by system call number. As previously mentioned in Section 4.2.2,

for system calls that lack context information in their arguments, the matcher relies on

temporal order information stored implicitly in the peer group’s system call list.

Each system call recorded in the system call list is of type rep list elem t as shown

in Figure 5.3. It records information about the caller (leading peer) such as its pid and

rep id. It also records system call information such as the system call number and its
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arguments, which are used for comparison. When the leading peer completes a system

call, it records the return value as well as external input, if needed, and sets the done flag.

The arguments and results recording routines create system call specific data structures

to buffer the information. For example, in addition to the file descriptor number and the

number of bytes to be written, the contents of output buffers of a write are recorded in

a kernel buffer and used for comparison during system call confirmation. Similarly, input

buffers returned to system calls such as gettimeofday are recorded for replication.

The done flag in each list element indicates whether that system call has completed.

It is particularly useful when the leading peer makes a blocking system call such as

accept. If the trailing peer tries to confirm that system call while the leading peer has

not yet returned, the trailing peer should wait for the leading peer’s results as opposed

to executing it or reading the results (not yet available). This is achieved by checking

the done flag of a matching system call. If the flag is not set, the trailing peer then waits

on the waitqueue denoted by rep elem done wq in Figure 5.2. Upon completion of the

system call, the leading peer checks this waitqueue and wakes up any waiting peers.

Finally, for system calls that require extrapolation, e.g. writing to a socket (Chap-

ter 4), Replicant currently performs a few simple checks such as checking whether the

specified file descriptor is valid and whether it is a socket (inode mode). A more complete

and accurate solution would be dependent on the system call being invoked and resource

type. For example, on a send, Replicant could check for all possible error conditions such

as ensuring that the OS socket is connected, that the OS socket can be written to, that

no invalid arguments are being passed by the application, and more. However, it will not

always be able to predict the exact outcome of the send action on the OS socket. For

example, the client could disconnect when the trailing peer is performing the confirmed

send action. In this case, we rely on the application to handle the divergence and later

converge, as explained in Chapter 4. Otherwise, extrapolation must be suspended.

As mentioned in Chapter 4, Replicant provides the application developer with an
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annotation, called make sync, that suspends extrapolation and stalls execution of the

current peer until the annotated system call is confirmed. make sync is implemented as

a new system call, which informs Replicant that the next system call should be stalled

until it is confirmed. This is done by placing the caller on a waitqueue until the system

call is confirmed, at which point, both peers would perform the requested action and

return consistent results.

5.2.3 Matcher Enhancements

The search start pointer, rep search start, mentioned earlier in Section 5.2.1 and shown

in Figure 5.2, takes advantage of the fact that the list retains the order in which system

calls were made by the leading peer to skip spurious system calls. It denotes the point

at which the trailing peer starts its search for a match and is updated to point at the

next entry in the list when a match is found, as shown in Figure 5.5. The next time the

trailing peer makes a system call, it starts searching the list at that point and will wrap

around to the beginning of the list if it reaches the end without finding a match. We have

observed that the majority of system calls made are not spurious on real workloads; so

the most likely match is the system call immediately after the one that was just matched.

The pending system call counter, rep syscall count, also shown in Figure 5.2 is a

matcher performance optimization. We have found that the system call distance can be

large for some workloads, which occurs when one replica is far ahead of the other in its

execution. In addition, we also found that it is unnecessary for the leading peer to search

the system call list if the list is populated only with system calls it has made. Thus, we

allow the leading peer to proceed without searching the list if we can determine that it

produced all the system calls in the list, i.e. if rep syscall count = 0. Only when the

trailing peer enqueues a system call is the leading peer told to search the list (by incre-

menting the leading peer’s rep syscall count). When a peer thread consumes a system

call from the system call list, rep syscall count is decremented. Other optimizations
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for speeding up the trailing peer path are also possible but not all of them have been

implemented. As a simple example, applications use the select system call to sleep, for

portability reasons. The leading peer will execute the select and sleep for the specified

time, but in the trailing peer, we can skip this sleep and capitalize on this opportunity

to catch up on the leading peer and thus reduce the system call distance.

Finally, system calls that have not been matched after a specified amount of time

are removed from the list. As unmatched system calls age, the likelihood they will be

matched becomes lower. As an example, consider the Apache scenario mentioned in

Section 4.1, where only the first thread reads the timezone information from the OS.

This operation may be performed by an arbitrary thread in each replica. As a result, the

system calls associated with this operation will not match. Such spurious system calls

do not affect correctness of Replicant’s outputs, but consume extra memory – especially

if large buffers are involved. In our prototype, we remove system calls from the system

call list that have aged past a configurable threshold (10 minutes in our case). We also

remove all system calls and deallocate the system call list when all threads in the peer

group have exited.

5.3 Caveats

In this section, we discuss some interesting aspects of implementing a Replicant system

on Linux. We identify cause of these problems and describe how Replicant solves them.

5.3.1 Files vs Sockets

In Linux, all resources are abstracted as files, which are referenced by file descriptors

that reside in the FDT of the process that has opened the resources. This exports

a clean abstraction that unifies pipes, regular files, sockets and character devices, and

allows the kernel to use the same system call handlers for different resources, regardless
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Leading Peer
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(b)

Trailing Peer

fcntl(NONBLOCKING)

read() /* external 
input fetched */

fcntl(BLOCKING)
fcntl(NONBLOCKING)

read() 
/* replicated */

fcntl(BLOCKING)

fcntl(NONBLOCKING)

write() 
/* buffered */

fcntl(BLOCKING)
fcntl(NONBLOCKING)

write() 
/* confirmed & 
externalized */

fcntl(BLOCKING)

Time

Figure 5.4: Socket state consistency. Scenario illustrating the problems associated with
keeping socket state consistent across replicas. In (a) the fcntl side effects are applied
to the OS socket on confirmation (shaded box), while in (b) they are applied during the
first invocation.

of their type. Although this concept is attractive, it effectively complicates system call

handling for Replicant since the resources backing a file descriptor might be providing

non-external or external inputs and outputs. As a result, these system call handlers have

to be modified to handle things differently depending on their semantics and the type of

resource backing the file descriptor.

Pipes are easy to handle because they live only within a replica harness. Similarly,

files are easily handled since our design provides a COW file system where inputs from

files can be internally derived and outputs are applied to the harness, then externalized

by the matcher when confirmed. However, sockets are associated with an entity external

to the harness, typically a remote host. For several reasons, only one socket, the OS

socket as opposed to the harness socket, is connected to the remote host. First, only

one socket can be bound to the port requested by the application and this needs to be

accessible to both the leading and trailing peers (through the shared OS FDT). Second,

the replicas should appear as one application to the outside world and cannot create

multiple connections to the same remote host. As a result, inputs cannot be derived
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from and outputs cannot be applied to the file descriptor (socket) in the harness since it

is not backed by the external resource. Therefore socket related system calls (except for

those created from socketpair which are non-external sockets) require the help of the

matcher to execute. Character devices are external resources that have similar behavior.

The unification of resources providing non-external and external input (files and sock-

ets) under one abstraction makes system calls like select and poll, both of which op-

erate on a set of file descriptors, tricky since the threads could be selecting or polling

both files and sockets in a single call (i.e. requesting both non-external and external

inputs simultaneously). To handle this, Replicant must split this call transparently and

forward the resources that require external input (sockets) to the matcher and derive

non-external inputs (files) from the harness. Here the inputs refer to the status of the

sockets or files. The union of the result sets is then returned to the application.

Last but not least, dealing with resource state is tricky. We illustrate this through

a comparison between socket state and regular file state. System calls that manipulate

resource state, e.g. fcntl and setsockopt, are applied both to the harness resource and

to the OS resource. Since regular files live in the harness and inputs are derived from the

harness, any system call that manipulates file state has the desired effect when applied

to the harness. It does not matter whether the side effects of fcntl are applied to the

OS file at the time the leading thread makes the system call or when the trailing thread

confirms it. However, this is not the case for sockets since they are external resources and

exist only as place holders in the harness. As a result, inputs cannot be derived from the

file descriptor in the harness and outputs cannot be applied to it. Here it does matter

when the effects of fcntl are applied to the socket state, i.e. when the leading thread

makes the system call or when the system call is confirmed. However, each approach has

its own problems as we show next.

Consider Figure 5.4(a), where a socket is set to non-blocking mode (using fcntl),

before reading from it, and set back to blocking after the read has completed. Also,
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suppose that the effects of fcntl are applied on confirmation (shaded boxes in the figure

indicates when the system call side effects are applied to the OS socket). In this scenario,

the trailing thread has not yet confirmed the first fcntl to set the socket to non-blocking

mode when the read is executed by the leading peer. The read is forwarded to the

matcher to derive external input from the OS socket, which is still in blocking mode and

thus not the behavior that was intended by the application. If we now consider another

approach whereby the effects of fcntl are applied at the time the leading thread makes

the system call, the problem for socket read is solved but we have a similar problem for

socket write as shown in Figure 5.4(b). We solve both of these problems by applying

any state change made by the leading and trailing peers to their harness place holder and

copy the harness socket state to the OS socket right before a system call is performed on

that socket, so as to reflect the socket’s latest state consistently across replicas.

5.3.2 Unified File Descriptor Namespace

In Section 5.2, we argued why applications should not assume anything of the file de-

scriptor allocator. In this section, we discuss the use of arbitrary file descriptor numbers

in the Replicant framework. The Linux kernel provides a dup2 system call that allows

the application developer to create a copy of a file descriptor (old) to an arbitrary file

descriptor (new). After the system call completes, the two file descriptors reference the

same resource and can be used interchangeably. According to dup2 semantics, if new

is already backed by a resource, the latter is closed and new now references the same

resource as old. Typically, this facility is used by applications to duplicate the applica-

tion’s log file onto stdout and/or stderr. While Replicant can handle the latter case or

dup2 to other file descriptors, those that Replicant returns to the application, it cannot

handle dup2 to arbitrary new file descriptors that have not been previously allocated by

Replicant. We do not see this as a fundamental problem because it is bad program design

in the first place.
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5.3.3 Signals

Asynchronous signals are delivered to a process when it transitions from kernel mode

to user mode. This is done by checking the signal descriptor of the process and if a

signal is pending for the current process, either the default signal handler is called or an

application specific signal handler is invoked [8].

Since signals can be raised at any point during a process’ execution, they could be

delivered at different instructions in each replica. This difference in invocation point of

the signal handler might cause the execution path of the replicas to diverge and hence

the ordering of system calls to be different in each peer. As long as signals do not result

in divergent outputs, the matcher can handle the re-ordering of system calls.

However, Replicant also provides a mechanism to enforce deterministic delivery of

signals to suppress divergent outputs. When a signal is delivered to the leading peer,

Replicant delays the delivery of the signal until a thread transitions from kernel-space

to user-space after a system call. As such, it records the system call on which the signal

was delivered for the leading peer as well as the signal type. Replicant then ensures that

the same signal is delivered to the trailing peer, on the same system call instance, and

delays the signal delivery if it is raised too early. This mechanism restricts signals in

two ways. First, signals are only delivered after a system call has been invoked. If the

application makes few system calls, the signal delivery might be arbitrarily delayed, but

signals may remain pending for an unpredictable amount of time in the normal case as

well [8]. Second, signals cannot be delivered on spurious system calls. Otherwise, it will

never be delivered to the trailing peer. Replicant’s signal delivery mechanism is similar

to TightLip’s [45].

Lastly, signals can be sent using system calls such as tgkill specify a target thread ID

and group ID. Since we strive to make replicas appear as one application to the outside

world, the replicas are always returned the same thread ID and group ID, no matter

which replica makes the system call first. As a result, both replicas executing a tgkill
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system call will specify the same thread ID and the same group ID. Since the target for

trailing replica would be incorrect, Replicant has to translate the specified target thread

ID and group ID to the appropriate thread in the trailing replica.

In practice, we have not encountered the use of signals that result in divergent outputs

in the multi-threaded applications we have tested.

5.3.4 Thread Pools

Multi-threaded applications often use thread pools as an optimization. In many server

applications, there is a dedicated thread that listens for new incoming connections, ac-

cepts the connections and dispatches the work to worker threads. In a simple system

without thread pools, a worker thread is spawned upon accepting a new connection and

its resources are freed after serving the connection, but at a performance cost. The idea

of a thread pool is to avoid spawning and destroying threads on each and every connec-

tion. Upon a new connection request, the dispatcher will look for a free thread in the

thread pool and delegate the work to it using thread synchronization primitives. If there

is none, it spawns a new thread to handle the connection. After handling a connection, a

worker thread would mark itself as free and go back to the thread pool. In this model, the

threads are memoryless, i.e. they do not remember anything from any past connections.

The important implication of thread pools is that due to non-determinism in relative

thread execution rates, different threads in each replica could be picked from the thread

pool by the listener thread to handle the same connection, as opposed to the same

peer threads handling the same connection. This causes a divergence in the system call

sequences of peer threads, since they are now serving two different requests and this is

analogous to two different programs that cannot be matched.

Since the threads are memoryless, one might be tempted to dynamically re-associate

the threads in each replica, effectively re-creating the proper peer groups on every work

request, as if those worker threads were being cloned. However, it is difficult to infer
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application semantics by observing the sequence of system calls made by the application.

More precisely, it is difficult to infer when a new request is being dispatched to a worker

thread in the thread pool, which is the re-association point, since this is done through

shared memory using synchronization primitives. Using the first system call at the start

of every new connection to infer this re-association point is not a solution. If the first

system call of a new request is gettimeofday, there is not enough context information

for matching the correct instance, especially since gettimeofday occurs frequently and

at arbitrary points in an application’s execution. If the first system call made by a worker

thread, upon handling a new work unit, has enough context information in its arguments

and does not occur at any point except as the first system call on each new connection,

e.g. getsockname in Apache, then this approach would be feasible. However, which

system call denotes this re-association point is application specific and might not always

be usable due to the lack of context.

Our initial implementation of Replicant implemented a mechanism that supported dy-

namic re-association of threads. While it worked for some applications, it could not easily

be generalized, precisely because of the above-mentioned problems. Instead, Replicant

currently solves this problem with determinism annotations by forcing peers to always

handle the same connections. We consider this deviation in system call sequence as non-

determinism in value since the two peer threads are serving different requests and would

be writing different buffers to the network. The details of how this is done are outside

the scope of this thesis and are discussed in [26].
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1. search_for_matching_syscall(syscall_list, syscall_info) {
2. /* starting from search_start pointer */
3. for each element in syscall list {
4. if ((element->rep_id != this_thread->rep_id) &&
5. (element->sysnum == syscall_info->sysnum)) {
6. match = compare_syscall_arguments(element, syscall_info);
7. }
8. }
9. return match | no_match;
10. }
11.
12. generic_syscall(...) {
13. /* fast path, does not need to check the system call list */
14. if (this_thread->syscall_count == 0) {
15. execute syscall;
16. record syscall args and results;
17. return results;
18. }
19. else {
20. search_for_matching_syscall(syscall_list, syscall_info);
21. if (no match found) {
22. peer_thread->syscall_count++;
23. execute syscall;
24. record syscall args and results;
25. return results;
26. }
27. else {
28. this_thread->syscall_count--;
29. set search_start pointer to next syscall;
30. confirm syscall and externalize results;
31. delete syscall list entry;
32. return results;
33. }
34. }
35. }

Figure 5.5: Matching algorithm. Note that the execute syscall operation combines the
logic that decides whether the system calls should be executed immediately (if they have
no external outputs) or buffered until confirmed (if they do have external outputs). The
logic that extrapolates results on system calls with external input and external output is
omitted for simplicity.
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Evaluation

One of the goals of Replicant is to make redundant execution of multi-threaded applica-

tions practical on multiprocessor systems. In this chapter, we evaluate the performance

of applications running on Replicant, which we compare to an unmodified (vanilla) appli-

cation and a theoretical best-case estimate. We next examine the performance benefits

of our matcher optimization and then explore the overhead of Replicant at the micro

level by analyzing the cost of a few common system calls. For closure, we evaluate the

correctness of the outputs produced by applications running on Replicant.

6.1 Application Benchmarks

In order to evaluate the feasibility of Replicant with realistic multi-threaded workloads,

we have chosen three multi-threaded applications from the SPLASH-2 [44] benchmark

suite. These workloads can run on Replicant without the need to add any determinism

annotations because the non-determinism, due to shared-memory communication, does

not affect the external outputs of the application.

The SPLASH-2 benchmark suite is a set of parallel computational workloads designed

to test shared-memory multiprocessor performance. Out of the suite, we ported the LU,

FFT and WATER-N2 benchmarks. All of these benchmarks communicate exclusively
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through shared memory, and use locks to synchronize accesses to shared memory. Access

to shared memory outside of locks was restricted to a few stylized ways. For example,

FFT uses a barrier to ensure that all threads have completed their writes to the shared

memory, before allowing threads to perform unsynchronized reads.

6.1.1 Methodology

Since we are not aware of any existing redundant execution systems that can support

multi-threaded workloads on multi-core hardware, we develop a best-case estimate of the

overhead of a kernel-based redundant execution system, against which we can measure

the performance of Replicant. Our best-case estimate is computed by measuring the ratio

between the time an application spends executing user code, and the time the application

spends in the kernel. Any kernel-based n-replica redundant execution system will have to

execute the user-space portion n times, and ideally only execute the kernel-space portion

once. Thus, to compute the best-case performance for a particular application, we use

the following method: in a run of a vanilla application on an unmodified kernel, suppose

the amount of time spent in user-space is u, the amount of time spent in the kernel is s,

and the total execution time required is t seconds. In the case where all processors are

fully utilized by the application, the best-case execution time t′ for the same application

on an n-replica system can be estimated as:

t′ =
n · u + s

u + s
× t (6.1)

where n = 2 in our 2-replica prototype of Replicant. By comparing Replicant against this

estimated performance, we gain an understanding of the extra overhead that Replicant

adds with the additional bookkeeping associated with the harness and the matcher.

All benchmarks were performed on an Intel Core 2 Duo 2.13GHz machine with 1GB

of memory running Fedora Core 5. The working set of all benchmarks fit in memory

and the number of threads was increased until the vanilla benchmark could no longer
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Application Vanilla (s) Best-Case (s) Replicant (s)

1P 2P

FFT 2.95 (±0.00) 2.21 (±0.01) 4.29 (±0.03) 3.44 (±0.03)

LU 61.06 (±0.02) 33.61 (±0.04) 67.17 (±0.08) 58.41 (±0.09)

WATER-N2 12.10 (±0.04) 6.30 (±0.01) 12.59 (±0.03) 12.02 (±0.06)

Table 6.1: Performance of the Replicant on three SPLASH-2 benchmarks. We also
provide measurements of the unmodified application on both one processor and two
processor hardware, as well as an estimate of the best-case performance of Replicant.
The numbers in the brackets indicate standard deviation.

utilize any more CPU time. We note that this does not mean that applications were

necessarily able to utilize both CPUs to their maximum utilization. We then compare

the performance of Replicant against a vanilla application with only one CPU enabled,

both CPUs enabled and a best-case estimate, derived from our dual processor runs, as

described in Equation 6.1. The comparison against the vanilla application running on a

single CPU is indicative of the case where the vanilla application is not able to use all

the cores available to it. This is a reasonable scenario considering that future processors

are projected to have over 80 cores [14].

6.1.2 Results

We will now present and analyze the performance of our application benchmarks on

Replicant. FFT was benchmarked using a data set of 222 complex data points while

LU and WATER-N2 used a matrix size of 4096 × 4096. The results are summarized in

Table 6.1 and compared in Figure 6.1.

Execution times for FFT, LU and Water-N2 were averaged over 5 runs. They are all

heavily computational kernels that spend very little time in the kernel. However, because

of lock contention the applications exhibit poor scalability and were not able to utilize

both CPUs fully. As a result, all three applications beat the best-case estimates because



Chapter 6. Evaluation 53

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

WATER-N2LUFFT

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e

Vanilla-1P
Vanilla-2P
Best-Case
Replicant

Figure 6.1: SPLASH-2 benchmarks. Comparison of the execution time of SPLASH-2
applications on Replicant, normalized to the single processor case.

Replicant was able to utilize the left over processor cycles that the vanilla applications

were not able to use. Moreover, both LU and WATER-N2 exhibited speedups on Repli-

cant versus the single processor vanilla run, effectively illustrating that Replicant would

benefit from unused cores.

FFT results are different from LU and WATER-N2 because the data set is small and

hence the runtime is small. During this short execution time, the threads are not able to

ramp up CPU utilization. Increasing the data set size to the next allowable increment,

i.e. 224 complex data points, results in a data set that does not fit in memory and causes

the CPU to thrash. The short runtime also explains why the speedup is not as significant

under Vanilla-2P as compared to LU and WATER-N2.

6.2 Matcher Optimization

In Section 5.2, we discussed an optimization that we incorporated into the matcher

that allowed the leading peer to enqueue a system call in its system call list without
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first searching the list. We evaluate the performance gains by using the WATER-N2

benchmark.

6.2.1 Methodology

WATER-N2 is very compute intensive and it spends a lot of time in user-space. In

addition, it makes most of its system calls during its initialization phase and the execution

time of the initialization phase is negligible as compared to the total runtime of the

benchmark. In order to get meaningful results, we have benchmarked only the startup

code of the WATER-N2 benchmark, at which point it is still single-threaded.

Since the runtime of the benchmark is very short, the performance numbers are

reported in clock cycles, which we obtained using the rdtsc assembly language instruction

that reads the time stamp counter register. This instruction returns a 64-bit value that

represents the number of clock cycles since processor reset and is incremented on each

clock signal. Our processor is an Intel Core 2 Duo clocked at 2.13GHz with frequency

scaling turned off to maintain a constant clock period across runs. The execution time

of the leading and trailing peers, from start to finish, is measured by taking two time

stamps (one at execve and the other at exit). In order to get accurate readings for each

of the peers, without one interfering with the other, it is necessary to allow the leading

peer to finish execution before the trailing peer is allowed to run. This is done using

synchronization primitives in the kernel.

However, the above experiment is not a realistic scenario under normal execution.

Therefore, additional measurements from a similar experiment were taken, with the dif-

ference that the leading peer and the trailing peer were allowed to execute concurrently.

6.2.2 Results

The results, averaged over 5 runs, are reported in Table 6.2. Although it is not represen-

tative of a typical run where the leading peer and the trailing peer would be executing
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Configuration Leading Peer (cycles) Trailing Peer (cycles)

Optimized matcher 119.4× 106 174.3× 106

Leading peer always searches 32.7× 109 169.7× 106

Table 6.2: Benefits of matcher optimization whereby the leading peer does not search
the system call list on every system call. The numbers, shown in clock cycles, are the
total time taken to execute the initialization phase of WATER-N2 with each of the peers
executing serially.

concurrently, it does illustrate that, if the leading peer were to always search the list be-

fore enqueuing a system call, then the overhead would be proportional to the system call

distance. The execution time of the trailing thread, without the matcher optimization,

was unaffected.

For our second experiment, we noticed that the trailing thread spent a lot of time

waiting on the spinlock protecting the system call list while the leading thread was

searching the list. Since the leading thread spends more time searching the list, not

surprisingly, the system call distance drops from an average of 5063 (for the optimized

matcher) to an average of 603.

6.3 Microbenchmarks

We next evaluate the performance of Replicant on a few of the most frequent system

calls both for the leading and trailing peers. We compare these numbers to the cost of a

vanilla system call. By comparing the cost of the leading and trailing peers to the vanilla

cost, we get an idea of how much overhead Replicant introduces on each of the leading

and trailing peer path. It is worth noting that no efforts were put in optimizing Replicant

and this is left as future work. The system calls we investigate are time, read, write,

open and close. Note that LMbench [21] cannot be used to measure the latency of

Replicant’s system calls, on each of the leading and trailing paths, because of its timing

harness that uses gettimeofday. The gettimeofday system call is intercepted when
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the leading thread invokes it and is replayed to the trailing thread, effectively distorting

real time. As a result, inaccurate time values will be returned to the timing harness in

LMbench and both the leading and trailing peers will report the same latency.

6.3.1 Methodology

The microbenchmarks are single-threaded applications that make 20 system calls (ex-

cluding setup and tear-down system calls) and the average over 5 runs is computed. The

cost of each system call is individually measured in clock cycles, using the rdtsc assembly

language instruction at the entry (before line 14 from Figure 5.5) and exit (before lines

17, 25 and 32 from Figure 5.5) points of each system call, and then taking the difference.

Again, we ensured that frequency scaling was turned off and additionally ensured that

kernel preemption was turned off.

The numbers reported for opening, reading, writing and closing an on-disk file are all

on a warm cache. The read and write microbenchmarks are reading and writing 4096

bytes respectively to the same page frame. By resetting the file position after each read

and write, using lseek, we ensure that only one page is being accessed and that it is

always in the page cache, thus eliminating the effects of kernel optimizations such as the

read-ahead algorithm in Linux. The open and close numbers were obtained by running

a single microbenchmark that repeatedly opens and closes the same file in a loop.

6.3.2 Results

The results are shown in Table 6.3 and compared in Figure 6.2. The time microbench-

mark illustrates the cost of a NULL system call. It represents the best-case scenario

where only user-space code execution is repeated while kernel-space code is executed

only once. Moreover, since time is called with NULL as argument, the system call does

not have to perform large argument copying and comparing like in write and there are no

buffers to copy (for replication) after the system call has completed like in read. It is the
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Microbenchmark Vanilla Leading Peer Trailing Peer

(cycles) (cycles) (cycles)

TIME 6437 (±39) 8006 (±35) 2757 (±86)

READ 4057 (±38) 11179 (±234) 6875 (±57)

WRITE 4069 (±16) 9258 (±353) 28159 (±181)

OPEN 4921 (±65) 12577 (±136) 10370 (±663)

CLOSE 1230 (±6) 2929 (±56) 4602 (±118)

Table 6.3: Performance of Replicant on common system call microbenchmarks. We
provide vanilla, leading peer path and trailing peer path execution times for comparison.
Numbers in brackets show standard deviation.

minimal overhead that can be incurred on Replicant, having a single word-size argument

to copy and a word-size return value to buffer. From Figure 6.2, we can observe that the

overhead incurred on the leading peer’s execution path is not much higher than that of

vanilla. The trailing peer performs even better as it does not execute the time system

call per se. Instead, the trailing peer only copies the value that the leading peer read

from the OS and buffered by the matcher, thus incurring purely Replicant overhead.

The read microbenchmark is representative of the base cost of operations by the

leading and trailing peers when operating on the harness only. In this case, both peers

have to execute the system call on the harness but not on the OS (by the matcher).

As expected, they are both more expensive than vanilla because they incur vanilla base

cost and Replicant overhead. The extra overhead of the leading peer as compared to

the trailing peer is an implementation artifact due to an extra buffer copy. Recall that

external inputs are replicated to the trailing peer, while non-external inputs are derived

from the harness. Since read can be used on both external (e.g. sockets or devices

like /dev/random) and non-external inputs (e.g. files), Replicant’s default behavior (for

simplicity) is to copy the buffer after the read system call in anticipation that it will be

needed for replication. This additional copying is done on read from files as well, even
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Figure 6.2: Microbenchmarks. Comparison of microbenchmark performance for vanilla,
leading peer and trailing peer execution paths, normalized to the vanilla cost.

though it is not necessary. Hence, the additional overhead, which is proportional to the

buffer size, is attributed to this extra copying together with the resource allocation and

deallocation associated with it.

The write microbenchmark illustrates the cost incurred when the trailing peer con-

firms a system call and calls upon the matcher to externalize the system call by re-

executing it on the OS kernel. In this case, the trailing peer bears the overhead incurred

by the matcher, as illustrated in the pseudo-code from Figure 5.5. The extra overhead of

the trailing peer is due to the byte-by-byte comparison of the write buffers when match-

ing the system call, data structure deallocation and re-execution of the write system call

by the matcher to externalize the buffer to the OS file. All these costs are not incurred

by the leading peer and are proportional to the buffer size.

The open and close system calls are other frequent system calls that are interesting

to analyze. It is worth noting that these system calls do not have external inputs but do

modify the state of the harness as well as the matcher state. The update on the matcher

state, e.g. the OS FDT used by the matcher, is not necessarily done at the time when the
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system call is confirmed. For instance, open is re-executed by the matcher at the time the

leading peer calls open because the leading peer might require external inputs from that

file descriptor next, e.g. if it is reading from /dev/random, and therefore requires an open

file in the OS FDT. Meanwhile, close is re-executed on the OS when confirmed because

the trailing peer might still need to use this file descriptor to externalize some outstanding

system calls, even though the leading peer has closed that file. This explains the higher

cost of the leading peer on open since it incurs the cost of the matcher re-opening the

file on the OS, as well as the higher cost of the trailing peer on close.

We do not report on the cold cache numbers but it is obvious that the leading peer

incurs the high cost of a cache miss while the trailing peer does not, since they are reading

the same physical page backing a file on the COW file system. This is a good example

where the trailing peer would have an opportunity to catch up on the leading peer.

6.4 Output Correctness

Each of the application benchmarks were tested to confirm that the outputs produced

by Replicant were indeed correct. LU and FFT both contain self-tests that check the

consistency of their outputs and these were used to check the outputs that they produced

when run on Replicant. The WATER-N2 benchmark has no self-test, but did not report

any errors during execution.
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Discussion

Although Replicant can support any multi-threaded applications with the help of deter-

minism annotations, there are some limitations that are currently open problems. While

we do not believe any of these are fundamental limitations, we point out that other

redundant execution systems like [10, 45] are also not able to handle a few of them.

7.1 User-Space Randomness

Some applications rely on randomness and try hard to leverage different sources of ran-

domness, some of which are not visible to the kernel and cannot be replicated in other

replicas. For example, some libc library functions, like mkstemp, use static variables to

store state from previous calls to this library function. Other applications, like OpenSSH

and MySQL, gather randomness from the heap or the stack. Since this randomness is

invisible to Replicant and is not deterministic across replicas, applications that rely on

randomness will have to derive it from the kernel, by using facilities such as /dev/random

and /dev/urandom. By deriving randomness from the kernel, Replicant can thus replicate

the random inputs to the replicas deterministically.

60
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7.2 Uninitialized Buffers

Since Replicant compares the contents of buffers during its matching phase, buffers that

contain uninitialized data or partly initialized data will not match, and thus will not be

externalized. We argue that this is bad practice because it leaks application information.

This can be solved by intercepting and replacing all calls to malloc with calloc and

using compiler support to zero out the stack buffers. However, this option is not available

in all compilers.

7.3 ioctl System Call

The ioctl system call is used to manipulate device parameters. ioctl is hard to handle

in a general way because its semantics, and hence the system call arguments passed to

the kernel, are device specific. The manual pages for ioctl and ioctl list illustrate the

complexity of this system call, since there is no standard to ioctl usage and there are

a large number of possible device-specific commands. Moreover, the parameters to the

system call are encoded in the device-specific request code that defines which arguments

are input or output buffers. These buffers, usually pointers, could in turn point to an

array of pointers (buffers).

Replicant handles only a subset of the ioctl system call request codes, i.e. those used

by the applications we benchmarked. Based on the device-specific request code, Replicant

calls upon specialized functions to copy the arguments, to compare the arguments and

output buffers (if needed), and to record and replicate inputs as needed.

7.4 Non-trapping Instructions

Non-trapping instructions such as the rdtsc assembly language instruction, used to read

the time stamp counter register, are invisible to the kernel and thus are external inputs
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that cannot be replicated to other replicas. If this external input value is used to influence

control flow or if it affects external output, then the replicas will diverge. Another such

instruction is rdpmc, which allows applications to read performance monitor counters.

7.5 Memory-Mapped Files

Just like inter-thread communication through shared memory is invisible to the kernel,

accesses to memory-mapped files are also invisible. Since memory-mapped files are on

the COW file system of the harness, the outputs are never confirmed (since they are

invisible to Replicant), and thus are never externalized to the OS file. Replicant can

handle this at a coarse granularity by comparing the memory-mapped regions on unmap

and externalizing them. However, it could happen that the output values diverge due to

non-determinism and therefore require determinism annotations support.

7.6 File-based Inter-Process Communication

Processes can communicate using numerous Inter-Process Communication (IPC) mech-

anisms. While Replicant can handle IPC through sockets and pipes in a general way,

file-based IPC can only be handled if the communicating entities are within the Replicant

framework.

If a process A running on Replicant performs file-based IPC with a process B not

running on Replicant, then A will externalize its messages on confirmation to the OS file

(which will be visible to B) but A will never see the messages that B writes to the OS file.

Process A always reads from the COW file in the harness, while process B only knows

about the OS file. This is because, by design, Replicant handles inputs from regular

files as non-external inputs that are derived from the harness. If there were a way to

differentiate between regular files and files meant for IPC (e.g. a UNIX socket – which

Replicant can handle), then Replicant would be able to handle file-based IPC.
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Related Work

We compare Replicant to other projects along 4 major axes. We begin by discussing

redundant execution, replay systems, the concept of external visibility and intrusion de-

tection systems (IDS). We then briefly address common misconceptions about Replicant.

8.1 Redundant Execution

In Chapter 2, we provided a brief overview of redundant execution systems. In this sec-

tion, we classify redundant execution systems into three categories, namely hardware-

based systems, software-based systems implemented at the virtual machine monitor

(VMM) layer and finally application-level redundant systems. We discuss each of them

in turn.

8.1.1 Hardware

Redundancy has enjoyed a long history of use to improve system reliability and avail-

ability. For example, IBM’s S390 microprocessor features redundant hardware functional

units and employs aggressive error checking [34]. Results from the redundant functional

units are compared on every clock cycle and rolled back on error detection to a check-
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pointed state, also taken on every cycle. With similar goals for continuous availability,

HP’s NonStop Advanced Architecture (NSAA), which has its roots in systems designed

in 1974 by Tandem Corp. [5], replicates all hardware components so that there is no sin-

gle point of failure. NSAA runs an application on redundant processors in loose lockstep,

i.e. they execute the same instruction stream independently and communicate their re-

sults to a voting hardware unit, which compares the outputs of I/O operations. System

software running on NSAA is also redundant. They are implemented as process pairs

where the primary copy executes and communicates state changes to the backup copy.

The latter can take over should the primary copy fail.

The IBM’s S390 microprocessor and HP’s NSAA differ from Replicant since they fea-

ture redundant hardware units and implement error detection and fail-over mechanisms

in hardware. Meanwhile, Replicant is a software layer that is part of the kernel and runs

on commodity multiprocessor hardware. Moreover, while S390 and NSAA can tolerate

hardware failures, Replicant cannot. Last but not least, NSAA requires a specialized mid-

dleware layer that allows applications to be run as process pairs without modifications

and requires that memory state across redundant processors is synchronized to maintain

determinism. In contrast, Replicant modifies the OS kernel and might require applica-

tion source instrumentation with determinism annotations, where required, to maintain

deterministic execution across replicas that exhibit non-determinism in value.

More recently, commodity hardware trends towards simultaneously threaded and

multi-core processors have renewed interest in hardware-based redundant execution sys-

tems, e.g. SRT [29] and SlicK [24]. Both SRT and SlicK leverage simultaneous multi-

threading (SMT) [41], where multiple hardware contexts are provided to improve usage

of superscalar microprocessors, for the purposes of redundant execution. These systems

provide a cost-effective approach to transient fault detection but provide weaker guar-

antees than NSAA and S/390. The main difference between SRT and SlicK is that the

latter does partial redundant execution, at the granularity of slices, for performance rea-
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sons. Instead of executing all instructions redundantly, SlicK uses a set of predictors to

predict store addresses and values. Only if the prediction fails or is indeterminate does

SlicK perform redundant execution. The instructions lying on the backward-slice leading

to the failed prediction is re-executed by the trailing thread.

Like Replicant, SRT and SlicK perform input replication and output checking by us-

ing two simultaneously executing threads, known as the leading and the trailing threads,

which appear as one thread to the OS. However, unlike Replicant, SRT and SlicK mech-

anisms are all in hardware and are transparent to the application. Because of the better

visibility into the hardware that hardware-based redundant execution systems have, they

are better able deal with the non-determinism that occurs between replicas. Unfortu-

nately, they are at the wrong semantic level to be able to correlate system calls among

replicas that are slightly different, as is needed to detect security violations.

Finally, hardware-based redundant execution has been used to increase application

performance. For example, Slipstream processors are used to run two replicas in parallel,

one of which (A-stream) runs slightly ahead of the other (R-stream) [37]. The R-stream is

monitored at runtime and using predictors, useless instructions are accurately identified

from the dynamic instruction stream and removed from the A-stream, which thus be-

comes shorter and runs faster. The A-stream in turn provides feedback (accurate branch

prediction) to the R-stream, which also executes faster, while validating the execution

of the A-stream. The end result is an application that runs faster than the original one.

The goal of Slipstream is different from Replicant and it also requires hardware support.

8.1.2 Virtual Machine Monitor

A VMM is a thin layer of software that executes on bare hardware, below systems soft-

ware. The VMM virtualizes the underlying hardware and exports an interface that allows

multiple commodity operating systems to be run concurrently. Scheduling, memory man-

agement and accesses to devices are under the control of the VMM.
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There have been several propositions to incorporate redundant execution logic in

the VMM as a cost-effective alternative to full hardware replication for fault-tolerant

systems [20, 9]. These systems implement redundant execution in software at the granu-

larity of a virtual machine with the benefit that they do not require modifications to the

operating system or the applications.

However, like their hardware-based counterparts, it will also be difficult for VMM-

based solutions to compare replica outputs due to the semantic gap that exists between

the VMM and the OS.

8.1.3 Applications

The idea of application-level redundancy for reliability was introduced in 1977 by Avizie-

nis et al. with N-Version programming [3]. The idea is to generate different implementa-

tions of an application from the same initial specifications, using different programming

languages, algorithms and development teams, with the assumption that there is a very

low probability of identical software faults in the different implementations. Replicant

is different in that it uses the same implementation of an application and introduces

diversity automatically in the replicas, at a much lower cost.

More recently, there have been a plethora of projects that introduce diversity into

replicas for the purposes of increasing security, privacy and reliability. The fundamental

difference is that none of them can support multi-threaded applications while Replicant

is able to support multi-threaded applications on multiprocessor hardware, with the help

of determinism annotations where needed.

Like Replicant, the N-Variant framework [10] aims to provide highly secure systems

by introducing differences between replicas such that it becomes very hard for an at-

tacker to compromise them all with the same input. Similarly, N-Variant uses ASLR as

diversity, with the difference that the replicas have disjoint address spaces as opposed

to a randomized base address, and in addition uses instruction set tagging. Moreover,
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N-Variant also interacts with replicas at the system call interface. However, the differ-

ence in this interaction is that, N-Variant requires all replicas to rendez-vous and agree

on every system call while Replicant allows replicas to execute independently.

On the other hand, TightLip [45] aims to protect a user’s privacy through redundant

execution. TightLip does not perform full redundant execution like Replicant, but instead

executes redundantly only when sensitive data is accessed. It provides one replica with

the requested sensitive data, while providing the other replica with “scrubbed” data. If

the outputs of the replicas diverge, then the kernel can detect that the application may

be leaking sensitive data and take appropriate action. Like Replicant, TightLip compares

outputs at the system call interface and performs rendez-vous on some system calls.

Similarly, Doppelganger uses two web browsers with different cookie jar contents to

detect which cookies need to be stored and which ones can be safely discarded [32]. HTTP

cookies are used to provide useful functionality like shopping carts and authentication

to a website, but are also used to infringe on a user’s privacy by tracking all websites

visited by the user. The goal is of Doppelganger is to find the ideal cookie policy that

would provide the user with desired functionality while preserving the user’s privacy.

Doppelganger forks a browser replica in the background and performs a cost/benefit

analysis among alternative cookie policies, by comparing the outputs, in order to find

the best policy for the user. This is fundamentally different from Replicant since it

doesn’t replicate inputs to the replicas to maintain deterministic execution, but instead

uses different inputs to analyze similarities and differences in outputs.

DieHard implements a memory manager that approximates an infinite heap to provide

probabilistic memory safety [4]. The goal is to avoid memory corruption errors and allow

applications to continue executing soundly, even in the presence of these errors. To this

end, the memory manager randomizes the address at which objects are allocated on the

heap. DieHard also has a redundant execution mode in which the outputs of several

replicas, each initialized with a different random number generation seed, are compared
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to detect uninitialized reads. Unlike Replicant which intercepts system calls, DieHard

intercepts library calls that it forwards to the memory manager. Moreover, DieHard does

not support applications that write to the file system or to the network. As an extension

to DieHard, Exterminator probabilistically detects, tolerates and corrects heap-based

memory corruption error by executing replicas redundantly [23].

8.2 Replay Systems

Replicant is related to deterministic replay systems since it uses similar intercepting,

recording and replaying of system calls. liblog [13] is a tool that helps developers

debug distributed applications, which are non-deterministic in nature. liblog is a user-

space library that is loaded in a process’ address space and performs logging at the libc

function call interface. Each process logs enough information locally during monitoring

and these logs are used for deterministic replay. Like Replicant, which records the return

values and input buffers of system calls for replication, liblog buffers return values of

libc function calls for replay.

Flashback [35] is another replay system used for debugging software. It provides an

in-memory checkpointing facility for process state and records system calls from within

an OS kernel like Replicant. A process can then be rolled back and replayed by simulat-

ing the side effects of system calls previously recorded and returning the results to the

replayed process. ReVirt [11] is different from Replicant in that it supports replay for

an entire virtual machine. In ReVirt, the VMM replays network and keyboard input by

logging accesses to these calls during the original run. ReVirt can replay asynchronous

interrupts by recording the instruction pointer and branch taken counter, thus allowing

it to replay multi-threaded workloads by scheduling the threads precisely. Unfortunately,

as the ReVirt authors point out, this technique does not enable deterministic replay on

a multiprocessor.
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Rx executes several replicas to mitigate transient software faults [28]. Rather than

executing the replicas simultaneously, Rx repeatedly replays the application in a slightly

different environment after a crash until one of the re-executions does not crash. Rx solves

a different problem than the one Replicant solves since Rx is trying to allow crashed

applications to continue executing, while Replicant is trying to detect and eliminate

malicious or erroneous activity from a group of replicas.

8.3 Externally Visible Concept

Like Replicant, xsyncfs [22] also has a concept of external visibility which is called exter-

nal synchrony. Xsyncfs implements an externally synchronous file system that provides

the same guarantees as a synchronous file system, with improved performance. When

an application performs a synchronous I/O operation, the outputs are buffered by the

operating system and control is returned to the application, which proceeds with its

execution, before the data is committed to disk. Outputs are batched and externalized

when necessary, while maintaining causal output ordering to guarantee data durability.

On the other hand, Replicant externalizes outputs whose content has been confirmed by

the majority of replicas and the order in which outputs are externalized is dependent on

the order in which system calls are confirmed.

8.4 Intrusion Detection Systems

Replicant is related to host-based IDS since it is detecting and preventing exploits from

compromising vulnerable applications. Moreover, like host-based IDS, Replicant is intro-

specting systems calls made by the applications from within the OS kernel. We examine

two techniques that IDS use, namely static code analysis and dynamic analysis.
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8.4.1 Static Analysis

Wagner and Dean used static code analysis to model an application’s expected behav-

ior [42]. This approach verifies that the application’s system call trace is consistent with

what is expected from the source code. While static analysis has no false positives and

does not require training data like dynamic analysis techniques, it suffers from several

drawbacks. First, application source code is required to perform the analysis, which may

not be available in all cases. Second, achieving coverage for all code paths can be very

difficult, if not impossible for reasonably large programs. This gets more complicated

when considering system calls made by libraries that are dynamically linked in and due

to the large state space, this approach is usually slow. Replicant does not need to build

a model prior to running the application but instead use the replicas as runtime models

against which system calls are compared.

8.4.2 Dynamic Analysis

Dynamic analysis is an alternative technique that gathers data (system call traces of

“normal” behavior) through a runtime training period. Sekar et al. use this training

data to produce a finite state automaton (FSA) that represent “normal” behavior [30].

This FSA is then used at runtime to validate the sequences of system calls made by

the program being monitored. Using dynamically generated training data still suffers

from the potential of poor coverage because all runtime paths must be exercised in order

to have a complete FSA. This is not trivial considering that there are typically several

paths which are not commonly exercised. Another approach [12] improved upon [30] by

using more context information such as call stack information. Replicant does not require

training to build a model but instead uses a replica of the application as model and feeds

it with the same inputs. As a result, it does not suffer from poor coverage since replicas

should execute the same system call sequence when given the same input.
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8.5 What Replicant is Not

Replicant solves a different problem than fault-tolerant distributed systems. In a dis-

tributed setting, the problem is on how to reach consensus about the system state in

a reliable way. The different components of a distributed system need to communicate

their state to every other component (a vote), and together, they try to achieve a com-

mon decision. However, in a distributed environment, the problem is much harder since

the system has to deal with Byzantine faults [18], i.e. messages may be dropped, faulty

components may give conflicting information to the other components and it is assumed

that any component can fail. Replicant solves a different problem and does not have

to deal with Byzantine faults since it is a centralized system on a single host and has a

centralized decision maker (the matcher), which is assumed to never be faulty.

Replicant also solves a different problem than Paxos [17]. Paxos is a three phase

consensus protocol for implementing fault-tolerant distributed systems. The goal of Paxos

is to enable a collection of agents in a distributed system to suggest proposals and reach

agreement by majority vote, in the face of non-Byzantine faults. On the other hand,

Replicant aims to detect divergent behavior among a group of independently executing

replicas by comparing their outputs. Although Replicant also uses a majority vote of

replicas for decision making, it does so with the help of a trusted entity – the OS kernel.



Chapter 9

Conclusions and Future Work

We have implemented and evaluated Replicant, a system that is able to efficiently sup-

port redundant execution for multi-threaded applications on multiprocessor hardware, in

order to improve the security and reliability of applications. The class of multi-threaded

applications that are supported without any determinism annotations on Replicant are

those where the non-determinism, caused by invisible inter-thread communication, does

not affect externally visible output. With the help of determinism annotations, which are

used to suppress non-determinism in value, any properly instrumented multi-threaded

application can run on Replicant.

Replicant leverages the independent execution of replicas for performance and toler-

ates replica divergence by buffering their outputs. Once the outputs are confirmed by a

majority of the replicas, they are externalized. Independent execution is facilitated by

sandboxing each replica in a harness, which provides the replica with enough OS state,

such that it does not realize that its outputs are being buffered.

The evaluation of Replicant showed that it is able to offer good performance on the

multi-threaded workloads, especially when the original applications are not able to take

full advantage of all the processors available to them.
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9.1 Future Work

9.1.1 Prototype Improvements

As discussed previously, no effort was put into optimizing Replicant prototype for per-

formance. We could improve Replicant’s performance by implementing its own memory

management subsystem to reduce the number of data structure allocation and destruc-

tion that is currently being done on every system call interception. The current prototype

can also be generalized to an n-replica system.

9.1.2 Future Research Directions

Diversity. Replicant currently uses ASLR as a form of diversity to detect memory

corruption. However, many other forms of diversity could be explored to detect various

classes of bugs and vulnerabilities. For instance, replicas could be compiled with different

optimization levels to detect timing bugs or compiled with different compiler implemen-

tations as in [33]. Like Rx [28], Replicant could also use different library versions for each

replica as another form of diversity. The caveat here is that, although the implementa-

tion of library functions can be different, they will need to invoke the same sequence of

system calls with the same arguments so that the system calls can be matched.

Recovery. Replicant currently detects divergent behavior and other forms of diver-

sity improve upon the detection aspect. Future work could also examine the interesting

recovery problem upon detection of attacks or failures. Currently, in the face of attacks

or failures that disrupt a minority of replicas, only data integrity is preserved. However,

we could explore mechanisms to recover from attacks or failures. More specifically, can

the faulty/crashed replicas be discarded and new ones spawned to replace them? This

raises a number of interesting problems, e.g. how to get the new replicas up to speed

and re-generate the appropriate application/replica state?
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Part-Time Replicant. For the purposes of intrusion detection, Replicant replaces

the application with diversified replicas to prevent memory corruption attacks. This im-

proves upon running a single application with ASLR since the latter is only probabilistic

and brute force attacks are possible within minutes [31]. However, while the performance

degradation of an application with ASLR only is close to zero, it is significantly more in

Replicant. Conceptually, we could think of a server application triggering Replicant if

and only if it starts experiencing frequent crashes, which might be indicative of an attack

attempt in progress. The concept of triggering the heavy-weight solution is similar to that

of Sweeper [40] which uses light-weight mechanisms in the common case and falls back

to heavy-weight analysis when the appropriate flags have been raised; or TightLip [45]

which spawns a doppelganger process only when sensitive information is being accessed.

Multi-Versioning. Finally, Replicant could also be used for multi-versioning. Previ-

ous work [43] has shown that soon after a vulnerability is disclosed, application developers

try to patch it as fast as possible. This results in a patch that has undergone limited

testing and organizations rightfully delay the patching of their production systems for

further testing in their customized environment. This delay opens an undesirable vulner-

ability window during which the production servers are vulnerable to attacks. Moreover,

assuming that the patches are only a few lines of code [16], then it is very likely that

the sequence of system calls are identical in both the patched and unpatched versions.

Therefore, Replicant could potentially be used to address this problem by running the

patched and the unpatched versions concurrently, replicating inputs to each version and

verifying their outputs. If the patched replica crashed anywhere outside the patched re-

gion of code, this would be indicative of new bugs being introduced by the patch, and the

unpatched replica would be allowed to complete the current request. However, if Repli-

cant detected a crash in the patched region of code, this would be indicative of an attack

attempt. At this point, the request would be discarded and a new patched replica would

be spawned. This strategy effectively increases the availability of computing systems.
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