
Kernel Support for Deterministic Redundant Execution of
Shared Memory Workloads on Multiprocessor Systems

by

Jesse Pool

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2007 by Jesse Pool

Abstract

Kernel Support for Deterministic Redundant Execution of Shared Memory Workloads

on Multiprocessor Systems

Jesse Pool

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2007

Motivated by future processors that will contain an abundance of execution cores, we

believe redundant execution will be a practical method for increasing system security and

reliability. However, redundant execution relies on the premise that duplicating external

inputs identically to a set of replicas will produce identical outputs. Unfortunately, multi-

threaded applications exhibit non-determinism that breaks this premise, especially on the

multiprocessors that will be widely available in the future.

This thesis presents a method for deterministically replicating the accesses to shared

memory made by concurrent threads in a kernel level redundant execution system. Our

approach relies on user space annotations, which define sequential regions in the applica-

tion that the kernel will schedule deterministically. Further, we show that these annota-

tions can be largely derived from the use of locks already present in the application and

that replication can be achieved with only modest overhead.

ii

Acknowledgements

I would first like to thank Professor David Lie for his tireless contributions to this

thesis. Our many discussions and analysis sessions formed the foundation of my work.

Thank you for pushing me to always be at my best.

I also acknowledge the contributions of Ian Sin, with whom I worked on many aspects

of this thesis. Our debates and time at the whiteboard were of great value to me and I

will always look back on those times with fond regard.

For their financial assistance, I thank the Natural Sciences and Engineering Research

Council of Canada (NSERC), as well as the University of Toronto and The Edward S.

Rogers Sr. Department of Electrical and Computer Engineering.

To those who gave helpful comments on early versions of this work, I kindly thank.

Specifically, Lionel Litty, Tom Hart, Richard Tamin and Ashvin Goel for being consis-

tently critical, as well as all of the members of the Security Reading Group (SRG) and

the members of the System Software Reading Group (SSRG).

Finally, I thank my friends and family for their much needed support throughout my

studies. I have achieved all that I have achieved thanks to you. I especially thank Marta

Antoszkiewicz for her ever celebrating spirit. Thank you for helping me take joy in every

accomplishment, big or small.

iii

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Outline . 4

2 Background 5

2.1 Redundant Execution . 5

2.2 Programming Concurrency . 7

2.2.1 Concurrency, Shared Memory and Locking 8

2.2.2 Native POSIX Thread Library . 9

2.2.3 Fast Userspace Mutex . 10

2.3 Multiprocessor Systems . 12

3 Overview 14

3.1 Problem Description . 14

3.2 Argument for Annotations . 16

3.3 Replicant . 18

4 Architecture 22

4.1 Design Considerations . 22

4.2 Source Code Annotations . 24

4.3 Guarantees . 27

iv

4.4 Discussion . 28

5 Prototype Implementation 32

5.1 Domains . 32

5.2 Sequential Regions . 36

5.3 GNU/Linux POSIX Support . 40

5.4 Automatic Annotations . 43

6 Applications 46

6.1 Overview . 46

6.2 Apache HTTP Server . 48

6.3 Squid Web Proxy Cache . 50

6.4 MySQL Database Server . 50

6.5 Firefox . 52

6.6 Discussion . 52

7 Evaluation 54

7.1 Performance . 54

7.1.1 Methodology . 54

7.1.2 Results . 56

7.1.3 Output Correctness . 59

7.1.4 Discussion . 59

7.2 General Applicability . 60

8 Related Work 61

8.1 Intrusion Detection . 61

8.1.1 Static Analysis . 62

8.1.2 Dynamic Analysis . 63

8.2 Program Isolation . 63

v

8.3 Redundant Execution . 64

8.3.1 Fault-Tolerance . 64

8.3.2 Security and Diversity . 66

8.4 Replay Debugging . 66

9 Future Work 68

9.1 Performance Improvements . 68

9.2 N-replica Generalization . 70

9.3 Automatic Annotations . 71

9.3.1 glibc Integration . 71

9.3.2 Static Analysis . 73

10 Conclusion 74

A Example Annotated Application 76

Bibliography 78

vi

List of Tables

3.1 Writable Application Pages . 17

5.1 System Call Annotations . 33

5.2 Data Structures Summary . 33

6.1 Lock and Sequential Region Statistics . 48

7.1 Performance of Replicant . 57

vii

List of Figures

2.1 Pthreads Function Prototypes . 13

3.1 The Replicant Architecture . 19

3.2 Non-deterministic Threaded Application 21

4.1 Annotated Threaded Application . 24

4.2 Non-locking Shared Memory Access . 31

5.1 Sequential Region Domain Design . 34

5.2 Enforcing Thread Ordering . 40

5.3 Conditional Variable Execution . 41

5.4 Sequential Region Data Structures . 45

7.1 Replicant Application Overhead . 56

viii

List of Acronyms

Acronym Definition

API Abstract Programming Interface

ASLR Address Space Layout Randomization

CMP Chip-level Multiprocessor

COW Copy on Write

CPU Central Processing Unit

FSA Finite State Automaton

GTK The GIMP Toolkit

IPI Inter-processor Interrupt

MMU Memory Management Unit

MPM Multi-Process Module

NPTL Native POSIX Thread Library

OS Operating System

PCB Process Control Block

PID Process Identifier

POSIX Portable Operating System Interface

SMP Symmetric Multiprocessor

TLB Translation Lookaside Buffer

VMM Virtual Machine Monitor

ix

Chapter 1

Introduction

The recent trend toward commodity multiprocessor hardware, in the form of multi-core

chips, has encouraged the research community to search for methods to take advantage of

the newly available processing power. We feel that, although multiprocessors will allow

for improved performance on commodity hardware, they are also attractive for redundant

execution applications. Redundant execution maps naturally to multiprocessors because

it is inherently parallelizable. As a result, redundancy provides an immediate application

for under-utilized execution cores.

Kernel level redundant execution is conceptually straightforward. A redundant exe-

cution system runs several replicas of an application simultaneously and provides each

replica with identical inputs from the underlying operating system (OS). The redundant

execution system, operating at the system call interface, compares the outputs of each

replica. It relies on the premise that replica inputs are deterministic, so that any diver-

gence in their outputs must indicate an error. For example, executing identical replicas

has been used to detect and mitigate soft-errors from the kernel [4] and a similar approach

has been shown to work from user space as well [3, 43]. There have also been several

proposals to use kernel level redundant execution to execute slightly different replicas to

detect security compromises [14] and private information leaks [68]. In the latter two

1

Chapter 1. Introduction 2

projects, injecting carefully chosen differences among replicas will cause them to produce

divergent outputs only when some violation has occurred.

Although the growing prevalence of multiprocessors will encourage the use of multi-

threaded programming, kernel level redundant execution systems to date have not been

able to efficiently support multi-threaded programs on multiprocessor systems. This is

because the relative rates of thread execution among processors are non-deterministic,

making inter-thread communication difficult to duplicate precisely in all replicas, espe-

cially when the communication is made through shared memory. Allowing the order of

shared memory communication to diverge among replicas can cause a spurious divergence,

which is not the result of a failure or violation. The inability to efficiently deal with the

non-determinism that exists when running multi-threaded programs on multiprocessors

threatens the future feasibility of kernel level redundant execution systems.

Intuitively, when all accesses made to shared memory are done so deterministically

in an application, the outputs derived from those accesses will also be deterministic.

A kernel level redundant execution system must ensure that all replicas access shared

memory deterministically, so that no spurious divergences can occur as a result of non-

deterministic thread scheduling on a multiprocessor system. While hardware support

for memory page protection may be used by the operating system kernel to synchronize

access to shared memory, this would require that replicated threads be interrupted on

all memory accesses and would be prohibitively expensive. Rather than examine and

faithfully replicate every memory access, we rely on the application to inform the kernel

when it is accessing shared memory and would like access ordering to be replicated.

Annotation directed shared memory interposition by the OS kernel allows our system to

achieve deterministic replication without the high overhead cost of thread interruption on

every memory access. Our system also avoids the repeated cost of altering memory page

protection bits, which is an expensive operation on multiprocessor systems. Annotations

placed in the target application, either by manually editing the source code or through

Chapter 1. Introduction 3

automatic inference, call into the kernel before and after each explicit access to shared

memory is made. The kernel may then force a thread to wait if an attempt is made

to access a shared memory region out of turn. Annotated sections of code that access

shared memory are referred to as sequential regions. The order in which threads execute

these sections of code is deterministically duplicated for all replicas in the system.

We have implemented a kernel level redundant execution system, Replicant, to eval-

uate the feasibility of annotation directed deterministic redundant execution of shared

memory workloads on multiprocessor systems. Preliminary work on Replicant can be

found in [48] and a detailed description of its replication architecture can be found in [67].

Replicant is implemented as a modification to the LinuxTM 2.6.16 kernel [5, 37], allow-

ing us to evaluate our approach with several representative multi-threaded applications,

including: Apache HTTP Server, Squid Web Proxy Cache and MySQL database server.

This thesis will focus on the architecture, implementation and evaluation of Replicant’s

shared memory annotation mechanisms.

1.1 Contributions

This thesis makes three contributions to the research area of kernel level redundant

execution systems:

1. The evaluation of several large scale, multi-threaded server applications and their

shared memory non-determinism properties.

2. The development of an architecture for shared memory annotation that allows

deterministic redundant execution, including a definition of guarantees that such a

system must provide to ensure determinism.

3. The implementation, evaluation and analysis of a working system that is able to

redundantly execute several representative large scale server applications.

Chapter 1. Introduction 4

1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 will provide the reader

with relevant domain background. Chapter 3 will present our problem description and

briefly describe Replicant, our kernel level redundant execution engine. We describe

a method for annotation directed deterministic redundant execution of shared memory

workloads in Chapter 4 and follow with a detailed description of our 2-replica prototype

implementation in Chapter 5. Chapter 6 will enumerate the multi-threaded applications

that we have ported for execution on Replicant and Chapter 7 will evaluate their per-

formance. A literature survey is provided in Chapter 8, which describes the many works

on which this thesis derived motivation and inspiration. We highlight several areas of

interesting future work and potential improvements to our prototype implementation in

Chapter 9. Finally, we conclude in Chapter 10.

Chapter 2

Background

In order to provide the reader with relevant domain background, this chapter will give

an overview of redundant execution and its uses as well as describe shared memory work

loads and multiprocessor systems in the context of this thesis.

2.1 Redundant Execution

Redundant execution has long been studied in an attempt to promote availability [20]

and fault tolerance [34]. Availability can be achieved by maintaining several, potentially

distributed, instances of an application and its data. In the event of a failure in the

primary instance, there is at least one backup that can brought online in its place,

limiting system downtime perceived by an observer. In the case of fault tolerance, a

consensus of the majority can be taken before performing some critical action, ensuring

that the effects of a faulty replica remain isolated. Availability and fault tolerance have

been naturally achieved in user space and implemented as cooperation protocols between

replicas [32, 33]. Redundant execution may also be supported by the operating system

kernel [4] or hypervisor [6] to achieve the same goals. However, they are implemented

beneath the application and are generally not distributed. Moreover, redundant execution

systems that exist at a layer below the application may require little or no application

5

Chapter 2. Background 6

support for replication.

There has been a recent effort to use redundant execution, along with control flow in-

dependent application diversity, such as Address Space Layout Randomization (ASLR) [47],

to achieve security guarantees that cannot be made by running a single application in-

stance. These redundant execution systems exist in the operating system kernel. It is

an important consideration for security mechanisms to be isolated from the application

and a layer below approach is generally considered more secure (i.e. either in the kernel

or in the hypervisor). When redundant execution protocols are implemented as part of

the application, or as a module in the same address space, a subverted application would

mean the redundant execution system is compromised.

Replicated instances of an application can be compared for consistency in the ker-

nel, where a divergence in outputs or control flow can indicate a security compromise.

Consider the N-Variant system [14]. n instances of the same binary are started and in-

puts from the operating system are replicated to each instance. The instances, called

variants, contain some diversity such that a malicious input can only compromise one of

the n instances. As a result, a malicious input will cause a divergence and the security

compromise can be flagged. TightLip is another system that attempts to achieve security

through redundant execution. It operates on the same principles as N-Variant, but aims

to protect user privacy [68]. These applications are more closely examined in Chapter 8,

but an important limitation of previous work in this area is a lack of support for shared

memory workloads on multiprocessor systems.

The premise of redundant execution is that, given deterministic inputs, an application

will reproduce deterministic output. Unfortunately, security applications rely on some

element of non-determinism, such that an attack on one application instance may succeed,

while the same attack fails on another instance. However, all non-malicious inputs must

result in deterministic output. The goal of a redundant execution system, targeted

at promoting security guarantees, is to remove any non-determinism in outputs, while

Chapter 2. Background 7

providing enough diversity to effectively prevent a compromise from malicious input. A

widely used method for adding inexpensive, application agnostic diversity is through the

use of ASLR [53]. Other forms of diversity include, but are not limited to, instruction

set tagging [14], changing complier optimization levels and varying library versions.

Our work focuses on redundant execution implemented in the operating system kernel

to support security guarantees. Our system is not distributed, but rather allows for

several instances of an application to execute concurrently on the same machine. Each

instance on its own may be vulnerable to attack, but the replicated system as a whole

can detect some important classes of malicious input. Further, our system supports

applications that communicate through shared memory and also supports this execution

on multiprocessor systems [48, 67].

2.2 Programming Concurrency

As multiprocessor systems move to commodity hardware architectures, developers will

attempt to take advantage of the additional parallelism by refactoring applications to op-

erate in parallel units. Efficient applications are typically parallelized into several threads

of execution, which share resources that are protected by a synchronization mechanism.

Thread programming is non-trivial because the developer may encounter synchro-

nization issues that lead to race conditions, deadlocks, and starvation. Further, multi-

threaded application development will often require care due to issues such as lock gran-

ularity, non-determinism and awkward debugging. While multi-threading with synchro-

nized shared memory access is generally considered difficult to program, it is currently

the most common method of achieving concurrency in application development.

Another efficient programming paradigm is event driven programming [45]. However,

on its own, an event driven application cannot effectively take advantage of a multiproces-

sor system due to a lack of parallelism. Alternatively, the transactional memory [28, 55]

Chapter 2. Background 8

paradigm may address some of the short comings of synchronized communication be-

tween threads, such as deadlocks. However, transactional memory is not currently being

widely used in practice and so our work focuses primarily on multi-threaded applications

with synchronized access to shared memory.

The following sections describe multi-threaded programming on Linux and provide

some insight into how the internal concurrency constructs are implemented.

2.2.1 Concurrency, Shared Memory and Locking

There is a long history of using several concurrent execution contexts with shared re-

sources for achieving parallelism. The Dining Philosophers Problem [15], which was

introduced in the early 1970s, continues to be a part of computer science curricula today.

The difference between threads and other execution contexts, such a processes, is

that threads typically share more of their resources. This includes, but is not limited to,

address space, the file descriptor table and signal handlers. There are several advantages

to allowing resource sharing, including performance benefits. However, when several

threads have access to shared resources, the developer must ensure that these accesses

are synchronized. Synchronization refers to protections placed around shared resources

such that concurrent accesses do not corrupt data or place the system in an inconsistent

state. For example, one shared resource may require mutually exclusive access, while

another will allow any number of concurrent readers. The synchronization mechanism

protecting a shared resource will depend on the type of resource and the semantics of the

application in its use of the resource. Performing synchronized access to a shared resource

is often the primary cause for error and complexity in multi-threaded applications. A

by-product of synchronizing access to shared resources is that successive runs of the same

application may not be deterministic. As a result, debugging multi-threaded applications

can also be complex and tedious.

Threaded applications running on UNIX and UNIX-like platforms will most often

Chapter 2. Background 9

require support for POSIX Threads (IEEE Std 1003.1c) from the operating system and

shared libraries [26]. POSIX Threads, or Pthreads, is a standard Abstract Programming

Interface (API) for creating and manipulating threads of execution. In order to allow

synchronized access to shared resources, the Pthreads standard also provides several

constructs that allow a developer to implement portable resource sharing. This includes

several variations of mutual exclusion. Figure 2.1 depicts the C language definitions

for several representative Pthread functions. [26] provides a complete list of function

prototypes in the Pthreads standard.

2.2.2 Native POSIX Thread Library

The Native POSIX Thread Library (NPTL) should not be confused with Pthreads in

general, discussed in the previous section. NPTL is a specific implementation of the

Pthreads standard that has been targeted to take advantage of specific features in the

Linux kernel.

Early Pthreads support on the Linux platform was implemented in the form of Lin-

uxThreads as part of the GNU C Library, glibc. This was an entirely user space im-

plementation which included a manager thread to perform tasks such as handling fatal

signals and managing some aspects of memory. Although individual threads did share

an address space through the clone system call, LinuxThreads was inefficient and lacked

complete POSIX compliance [56, 16]. Inefficiencies were largely related to synchroniza-

tion primitives that were implemented with signals as well as having a thread creation

bottleneck at the manager thread. Compliance with the POSIX standard was incomplete

due to incorrect signal behaviour, incorrect process identification as well as a limit on

the total number of threads – 8192, minus one for the manager [16].

The goals for NPTL were to improve upon the LinuxThreads implementation with

complete POSIX compliance, effective use of SMP, low startup costs and scalability.

NPTL does not include a manager thread, which has its functionality moved into the

Chapter 2. Background 10

kernel along with POSIX compliant signal support. As a result, startup cost is reduced

because thread creation is no longer serialized. By moving functionality into the kernel,

POSIX compliant synchronization is also possible, which will be discussed in the following

section. Applications can link in the libpthread library on Linux to use the the NPTL

Pthreads implementation. libpthread is compiled as part of the glibc source code,

which contains many individual libraries compiled along side the Standard C Library.

We will refer to libpthread simply as part of glibc for the remainder of this thesis.

There are several aspects of the NPTL implementation that are relevant to a redun-

dant execution system implementation based on the Linux 2.6 kernel. (1) There is a 1-on-

1 user thread to kernel thread relationship. (2) Synchronization is implemented through

shared memory primitives that rely on the kernel to arbitrate only on contention [16].

A 1-on-1 user thread to kernel thread implementation means that for every user

space thread there is a corresponding kernel space representation (a task in the case of

Linux). This is in contrast with an m-on-n approach where several user space threads

are scheduled on top of one kernel thread, or process. Had NPTL used a m-on-n design,

a kernel level redundant execution system would be unaware of some of the user space

threads, potentially leading to added complexity. Because each user space thread has

a corresponding kernel space representation, our system can maintain per-thread state

that may have been complicated otherwise.

In NPTL, synchronization primitives are designed so that traps to the kernel are only

incurred when there is contention. As a result, the kernel may or may not be able to see

the result of a lock acquisition. Without being informed of which thread has acquired a

lock in one replica, other replicas cannot be deterministically replicated and may diverge.

2.2.3 Fast Userspace Mutex

The Fast Userspace Mutex, or futex, is an alternative to the more classical, heavy weight

mechanisms provided by UNIX-like operating systems to support process synchroniza-

Chapter 2. Background 11

tion. Traditional synchronization is provided through System V semaphores, file locks

and message queues, which all require system calls on each lock access [22]. With a futex,

the kernel is only called on a contended operation, which should reduce overhead on a

lightly contended workload, or when locks are sufficiently fine grained.

In Linux, a futex is an integer value in user space, shared among a number of threads

or processes. A corresponding system call, called sys futex, operates on this integer

to arbitrate contended access. The futex system call is wrapped by a library, NPTL in

glibc, with atomic operations that perform abstractions to the futex interface for porta-

bility. The futex construct is used for many of the Pthreads operations on Linux. These

include implementations for locking and unlocking a mutually exclusive region with the

pthread mutex * family of functions, as well as to implement conditional variable opera-

tions such as pthread cond wait, pthread cond signal and pthread cond broadcast.

Internally the kernel maintains a single, system wide, static hashtable that is indexed by

several properties of the futex, such as its offset into a page. Waiting threads enqueue

themselves on a waitqueue and are appended to a linked list. When the futex is woken,

threads are dequeued in the same order that they were enqueued. Tasks which are waiting

on a futex are set to an interruptible state, which allows them to be dequeued if a signal

is pending. In this case, the futex system call will return a status code indicating that it

was interrupted (EINTR) and the NPTL library code will automatically re-execute the

system call. Note that this will give the opportunity for any pending signal to execute

its handler.

The futex mechanism presents a challenge to redundant execution systems in general.

Since futex library calls operate non-deterministically on shared memory, some futex calls

may never require kernel involvement, such as when a lock is uncontended. However,

a redundant execution system may require determinism in futex operations, as these

operations may be directly involved in functions that will produce replica divergence. As

a result, any kernel level redundant execution system will need to enforce at least some

Chapter 2. Background 12

determinism in futex operations, which are a special case of shared memory access.

2.3 Multiprocessor Systems

Multiprocessor systems are computing platforms that contain two or more central pro-

cessing units (CPU). There are many varieties of multiprocessing platforms, but we

are primarily concerned with symmetric multiprocessors (SMP) and chip-level multipro-

cessors (CMP). These are the types of multiprocessors that are typically available on

commodity hardware found in large scale enterprise servers and even modern personal

computers. In an SMP system, several CPUs are available to the operating system that

are essentially identical. Although there may be some efficiency advantages to being

selective, the operating system is free to schedule tasks on these CPUs interchangeably

and concurrently. CMPs are SMPs where several processing cores are packaged onto a

single chip. There may be cache size, communication channel and other differences, but

these differences are not relevant for this thesis.

Multiprocessing is an important element in the design of a kernel level redundant

execution system for several reasons: (1) it is inherently more difficult to enforce de-

terminism on a multiprocessor and (2) redundant execution can benefit from the added

parallelism of a multiprocessor system by making use of unused processing cycles. These

two opposing topics will be discussed throughout the remainder of this thesis.

Chapter 2. Background 13

1 /∗ Thread Creat ion /Des t ruc t ion ∗/
2 int pthr ead c r ea t e (pthread t ∗ r e s t r i c t , const p th r e ad a t t r t
3 ∗ r e s t r i c t , void ∗ (∗) (void ∗) , void ∗ r e s t r i c t) ;
4 void pth r ead ex i t (void ∗) ;
5 int pth r ead j o i n (pthread t , void ∗∗) ;
6
7 /∗ Mutual Exc lu t ion ∗/
8 int pthread mutex destroy (pthread mutex t ∗) ;
9 int pthread mutex in i t (pthread mutex t ∗ r e s t r i c t , const

10 pthread mutexatt r t ∗ r e s t r i c t) ;
11 int pthread mutex lock (pthread mutex t ∗) ;
12 int pthread mutex try lock (pthread mutex t ∗) ;
13 int pthread mutex unlock (pthread mutex t ∗) ;
14
15 /∗ Read−wr i t e Locks ∗/
16 int pthread rw lock de s t roy (pthread rw lock t ∗) ;
17 int p th r e ad rw l o ck i n i t (p thread rw lock t ∗ r e s t r i c t , const
18 p th r ead rw l o cka t t r t ∗ r e s t r i c t) ;
19 int pthread rw lock rd lock (pthread rw lock t ∗) ;
20 int pthread rwlock wr lock (pthread rw lock t ∗) ;
21 int pthread rwlock un lock (pthread rw lock t ∗) ;
22
23 /∗ Condi t iona l Var iab l e s ∗/
24 int pthread cond des t roy (pthread cond t ∗) ;
25 int pthread cond broadcast (pthread cond t ∗) ;
26 int pth r ead cond in i t (pthread cond t ∗ r e s t r i c t , const
27 pth r ead condat t r t ∗ r e s t r i c t) ;
28 int pth r ead cond s i gna l (pthread cond t ∗) ;
29 int pthread cond wait (pthread cond t ∗ r e s t r i c t , pthread mutex t
30 ∗ r e s t r i c t) ;

Figure 2.1: Pthreads Function Prototypes. Several representative functions from the
POSIX Threads API. While these are among the most often used functions, the POSIX
Threads standard interface contains many more less frequently used operations.

Chapter 3

Overview

This chapter highlights the difficulties inherent in redundant execution of shared memory

workloads, and describes the platform we have implemented to evaluate the design of a

working solution.

3.1 Problem Description

Redundant execution systems rely on the presumption that if inputs are copied faithfully

to all replicas, any divergence in outputs among replicas must be due to undesirable be-

haviour, such as a transient error or a malicious attack. On such systems, the replication

of inputs and comparison of outputs are done in the OS kernel, which can easily interpose

between an application and the external world, such as the user or another application

on the system. However, since inter-thread communication through shared memory is

invisible to the kernel, and relative thread execution rates on different processors are

non-deterministic, events among concurrent threads in a program cannot be replicated

precisely and efficiently, leading to spurious divergences.

To illustrate, consider the scenario described in Figure 3.2. Three threads each add

their thread ID to a shared variable, counter, make a local copy of the variable in local,

and then print out the local copy. However, the threads may update and print the counter

14

Chapter 3. Overview 15

in a non-deterministic order between the two replicas. Assume we have a 2-replica system

where in Replica 1 threads execute the locked section in the order (1, 3, 2) by thread

ID. Then the printed output would be the values “1”, “4” and “6”. If the threads in

Replica 2 execute the locked section in the order (2, 3, 1), then its printed output would

contain the values “2”, “5” and “6”. This example demonstrates that multi-threaded

applications may generate output values based on the ordered access to shared memory

regions.

To avoid these spurious divergences, the redundant execution system must ensure

that the ordering of updates to the counter is the same between the two replicas. If the

redundant execution system ensures that threads enter the locked region in the same

order in both replicas, then both replicas will produce the same outputs, though possibly

in different orders. If the system further forces the replicas to also execute printf in the

same order, then both the values and order of the outputs will be identical.

A simple solution might be to make accesses to shared memory visible to the OS

kernel, by configuring the hardware processor’s memory management unit (MMU) to

trap on every access to a shared memory region. For example, since counter is a shared

variable, we would configure the MMU to trap on every access to the page where counter

is located. However, trapping on every shared memory access would be very detrimental

to performance, and the coarse granularity of a hardware page would cause unnecessary

traps when unrelated variables stored on the same page as counter are accessed.

A more sophisticated method is to replicate the delivery of timer interrupts to make

scheduling identical on all replicas. While communication through memory is still invis-

ible to the kernel, duplicating the scheduling among replicas means that their respective

threads will access the counter variable in the same order, thus resulting in the exact same

outputs. Replicating the timing of interrupts is what allows systems like ReVirt [17] and

Flashback [60] to deterministically replay multi-threaded workloads. Unfortunately, as

the authors of those systems point out, this mechanism only works when all threads are

Chapter 3. Overview 16

scheduled on a single physical processor and does not enable replay on a multiprocessor

system. This is because threads execute at arbitrary rates relative to each other on a

multiprocessor and as a result, there is no way to guarantee that all threads will be in

the same state when an event recorded in one replica is replayed on another.

Finally, a heavy-handed solution might be to implement hardware support that en-

forces instruction-level lock-stepping of threads across all processors. Unfortunately, this

goes against one of the primary motivations for having multiple cores, which is to reduce

the amount of global on-chip communication. In addition, it reduces the opportunities

for concurrency among cores, resulting in an unacceptably high cost to performance. To

illustrate, a stall due to a cache miss or a branch misprediction on one core will also stall

all the other cores in a replica.

In summary, to support multi-threaded applications on a multiprocessor architec-

ture, the redundant execution system must be able to handle outputs produced in non-

deterministically different orders among replicas. The redundant execution system must

also be able to deal with the non-deterministic ordering of communication among repli-

cas, which may result in divergent replica output values. In both cases, the system must

either enforce the necessary determinism at the cost of some lost concurrency, or it must

find ways to tolerate the non-determinism without mistaking it for a violation.

3.2 Argument for Annotations

We have outlined the non-determinism issues inherent with redundant execution of shared

memory workloads in the previous section. Non-deterministic outputs may be produced

when interleaving threads of control access shared memory in different orders. There-

fore, the ordering of shared memory accesses must be deterministically reproduced in all

replicas. Unfortunately, kernel level redundant execution systems have limited visibility

into accesses made to shared memory by application level threads.

Chapter 3. Overview 17

Application Threads Mappings Pages

Writable Total Writable Total

Apache 2.2.3 64 88 176 169376 170057

Squid 2.3.STABLE9 16 35 71 1999 2620

MySQL 5.0.25 8 30 61 23258 24810

Table 3.1: Writable Application Pages. The number of writable shared pages mapped into
several representative applications. Application versions and configurations are equiva-
lent to those described in Section 7.1.2.

Ideally, hardware support should be used to allow the operating system to interpose

on scheduled access to shared memory. As described in the previous section, hardware

page protection may be used by the operating system to trap on access to shared memory.

The results of each instruction can be buffered and then replicated. Unfortunately, this

solution is prohibitively expensive, because the application would need to be interrupted

on every access to writable memory.

A default configuration of the Apache HTTP Server 2.2.3, with the worker Multi-

Process Module (MPM) enabled and 64 threads, contains 169376 writable memory pages

in 88 mappings after start up. Any instruction that accesses memory on these pages would

require a trap to the kernel for interposition. Table 3.1 lists the number of writable pages

in several representative applications taken immediately after start up. Although most

of these pages will never be shared among threads, the kernel cannot reason about which

pages should be protected without resorting to heuristics or annotations. In either case,

the kernel would need to have some information about how memory is shared in the

application. Further, manipulating hardware page protection is an expensive operation

on x86 multiprocessors. Each time the protection is modified by one processor, an Inter-

processor Interrupt (IPI) is triggered so that any cached reference to the modified page

on other processors may be flushed. This includes flushing the Translation Lookaside

Buffer (TLB).

Chapter 3. Overview 18

Hardware support has been used in the past to facilitate deterministic replaying of

shared memory applications [6, 17]. In this work hardware branch counters, along with

the program counter, were recorded every time an interrupt was delivered. During replay,

the recorded counters were referenced to determine the exact instruction at which an in-

terrupt should be delivered. As a result, thread access to shared memory is scheduled

deterministically. However, this mechanism cannot be applied for replay on multiproces-

sors. As we noted in the previous section, threads execute at arbitrary rates relative to

each other on a multiprocessor and the counters used in replay systems cannot be used

to reason about interrupt delivery.

At present, no hardware solution exists that will allow the deterministic replication

of shared memory access on a multiprocessor with acceptable overhead. The result is

a dependence on the user space application to inform the kernel of accesses to shared

memory. This is a disadvantage, because it requires developer involvement in the form of

annotations to the application. However, there is also the benefit that annotations may

only be added when needed in order to enforce determinism rather than at every access

to shared memory – allowing for acceptable performance overhead. We will also show

that development effort can be minimized by automatically inferring the placement of

annotations.

3.3 Replicant

In order to explore the challenges of redundant execution of shared memory workloads on

multiprocessor systems, we have implemented a novel redundant execution engine as an

extension to the Linux 2.6.16 kernel. Our system, called Replicant, implements an input

replicating and output matching architecture that is tolerant to the reordering of events,

and uses determinism annotations to enforce ordering on events that can cause divergence

in replica output values. While the focus of this thesis is on deterministic shared memory

Chapter 3. Overview 19

Figure 3.1: The Replicant Architecture. Replicant allows each replica to execute inde-
pendently with the support of a harness. Outputs are only externalized by the matcher.

workloads, this section will give a high level overview of the larger Replicant system. A

detailed description of Replicant’s implementation can be found in [48] and [67].

The architecture of Replicant is described in Figure 3.1. A unique aspect of Replicant

is that it permits replicas to execute independently of each other and diverge in their

behaviour. However, only outputs that a majority of replicas have confirmed (i.e. inde-

pendently reproduced) are externalized outside of the redundant execution system. To

allow replicas to execute independently, Replicant places each replica in an OS sandbox,

called a harness, where the replica can make changes to the OS state that are only visible

to the replica itself. The harness is kept up-to-date by applying the outputs and effects

of all system calls to a copy-on-write (COW) file system provided to each replica, as well

as private copies of other OS state. With these facilities, the Replicant harness emulates

the underlying OS with enough fidelity that the replica is not aware that its outputs are

being buffered.

Replicant also adds a matcher component to the OS kernel for each set of replicas.

Chapter 3. Overview 20

The purpose of the matcher is to fetch and replicate inputs from the external world into

the harness, and determine when outputs from the harness should be made externally

visible. The matcher is implemented as a set of system call lists that are used to buffer

the arguments and results of system calls made by the replicas. Each thread in a replica

is associated with exactly one thread in every other replica, and this group of threads

forms a peer group across all replicas. Threads in a peer group are all created by the same

thread creation event and share a system call list in the matcher. In the example given

in Figure 3.2, threads with the same thread ID form a peer group across the replicas. A

new thread is not allocated a system call list and is not permitted to run until a majority

of threads in its parent’s peer group have also created a new thread. At this point, the

thread creation event is confirmed, a new peer group is formed, a new system call list is

allocated, and the new group will be permitted to execute and confirm system calls.

Replicant allows each replica to diverge in its execution and will only commit out-

puts that are independently reproduced by the majority of replicas. However, because

some non-deterministic events can cause spurious divergences that cannot be matched,

Replicant requires some user space annotations to produce correct results. One such

annotation is the sequential region. A sequential region ensures that thread execution

of specified code regions is performed deterministically across all replica instances. As a

result Replicant is able to support multi-threaded workloads that use shared memory as

a communication mechanism between threads. This is an important class of application,

that includes many server workloads. Further, Replicant is also able to support these

workloads on multiprocessor architectures, which present a unique set of problems as

described in the previous section. The remainder of this thesis will focus on the design

and implementation of sequential regions. The implementation details of Replicant’s re-

dundant execution mechanisms and architecture are outside the scope of this thesis, but

are described in detail in [48] and [67].

Chapter 3. Overview 21

1 /∗ A g l o b a l counter t ha t i s incremented by a l l t h reads . ∗/
2 int counter = 0 ;
3
4 /∗ Functions t ha t are used as a b i g l o c k to grab a l l memory . ∗/
5 extern g l o b a l l o c k (void) ;
6 extern g l oba l un l o ck (void) ;
7
8 /∗ Each thread acqu i r e s a g l o b a l l o c k and adds i t s i d e n t i f i e r to
9 a g l o b a l counter . A l o c a l copy i s p r in t ed . ∗/

10 void t h r e ad s t a r t (void ∗ arg)
11 {
12 int l o c a l ;
13
14 g l o b a l l o c k () ;
15 counter = counter + thr ead id () ;
16 l o c a l = counter ;
17 g l oba l un l o ck () ;
18
19 p r i n t f (‘ ‘%d\n ’ ’ , l o c a l) ;
20 }
21
22 /∗ Create t h r ee threads t ha t execu te the t h r e a d s t a r t rou t ine . ∗/
23 void main (void)
24 {
25 th r e ad c r e a t e (t h r e ad s t a r t) ; /∗ t h r e ad i d = 1 ∗/
26 th r e ad c r e a t e (t h r e ad s t a r t) ; /∗ t h r e ad i d = 2 ∗/
27 th r e ad c r e a t e (t h r e ad s t a r t) ; /∗ t h r e ad i d = 3 ∗/
28 }

Figure 3.2: Non-deterministic Threaded Application. Pseudo code example illustrat-
ing non-determinism in a multi-threaded program. Two independent executions of this
application will often result in divergent outputs.

Chapter 4

Architecture

When inputs are duplicated to all replicas in a single threaded application, deterministic

execution will result. Similarly, multi-threaded applications which do not communicate

can be replicated using traditional methods. However, in order to replicate shared mem-

ory workloads, where non-determinism can result in diverging executions, alternative

mechanisms are needed.

Section 3.1 described why redundant execution of shared memory workloads is a dif-

ficult problem, and also explained why this problem is exacerbated when shared memory

workloads are executed on a multiprocessor architecture. We have implemented a ker-

nel level redundant execution system that can replicate shared memory workloads by

enforcing order on memory operations. This chapter outlines our method for enforcing

deterministic execution of shared memory workloads.

4.1 Design Considerations

In order to implement a mechanism that both allows redundant execution of shared

memory workloads and is practical in modern systems, we have defined several goals

which our implementation must meet.

22

Chapter 4. Architecture 23

Multiprocessor support. The future of the commodity processor architecture will

be multi-core or many-core [29]. As such, it is important that our system be generalizable

to any number of physical or logical processors. Further, executing redundant instances

of an application will typically result in some measurable loss in performance. Multi-

core systems will be advantageous for Replicant, because the likelihood of idle cycles

is increased. Redundant execution systems in general should be able to make use of

available processing power offered by running on under-used cores, limiting performance

overheads. The runtime overhead of our system is evaluated on a multiprocessor platform

in Section 7.1.

Intuitive annotation. From the discussion in Sections 3.1 and 3.2, we have argued

that user space annotations will provide the best method for enforcing ordered access to

shared memory. Since we will be calling on a developer to add annotations to his or her

application, we want to make the process of adding annotations intuitive. As discussed

in Section 2.2, POSIX Threads provides the most common API for dealing with shared

memory on Linux, and UNIX systems in general. We would like our annotations to

intuitively map to locking constructs available in the Pthreads library. This should allow

our system to integrate with existing server applications targeted to UNIX platforms more

easily. The ability to port existing applications to our system with proper annotations is

evaluated in Chapter 6.

Generally applicable. There are several recent redundant execution systems, tar-

geting security, that are unable to support multi-threaded shared memory workloads

on multiprocessors [14, 68]. Our implementation should be equally well applicable to

these systems. Achieving this goal will demonstrate a clear contribution to the research

community. We evaluate the porting of our shared memory determinism mechanism to

another redundant execution system in Section 7.2.

Chapter 4. Architecture 24

1 /∗ A g l o b a l counter t ha t i s incremented by a l l t h reads . ∗/
2 int counter = 0 ;
3
4 /∗ Each thread acqu i r e s a g l o b a l l o c k and adds i t s i d e n t i f i e r to
5 a g l o b a l counter . A l o c a l copy i s p r in t ed . ∗/
6 void t h r e ad s t a r t (void ∗ arg)
7 {
8 int l o c a l ;
9

10 BEGIN SEQ REGION;
11 g l o b a l l o c k () ;
12 counter = counter + thr ead id () ;
13 l o c a l = counter ;
14 g l oba l un l o ck () ;
15 END SEQ REGION;
16
17 p r i n t f (‘ ‘%d\n ’ ’ , l o c a l) ;
18 }

Figure 4.1: Annotated Threaded Application. Pseudo code example illustrating a how
Figure 3.2 may be manually annotated.

4.2 Source Code Annotations

In order to satisfy our design goals, outlined in the previous section, we have implemented

a user space annotation mechanism, which provides information to the operating system

kernel allowing it to duplicate shared memory access ordering across replicas. The appli-

cation developer can explicitly identify accesses to shared memory whose ordering must

be deterministically replicated by annotating the corresponding code with a sequential

region. A sequential region ensures that thread interleaving through the specified code

segment is performed deterministically across all replica instances.

In the example given in Figure 3.2, the developer places a sequential region around

the critical section bounded by the lock and unlock operations at line 14 and line

17, respectively. This ensures that corresponding threads in each replica pass through

this region in the same order. Thus, each individual thread will produce the same output

value.

Chapter 4. Architecture 25

In order for an application to be completely annotated, a sequential region must

be placed around any shared memory operation that has a direct or indirect effect on

the externally visible output of the application. Although it is admittedly difficult to

generalize a minimal annotation scheme, a replicated application will execute correctly

if sequential regions are used more often than needed. Initially, applications should have

all shared memory accesses annotated, which will ensure correctness. Annotations can

be removed on a case-by-case basis to improve performance.

Definition 4.2.1. A sequential region is a section of code, delimited by annotations,

where the operating system kernel will guarantee deterministic thread execution ordering

across all replicas.

Sequential regions are identified to the kernel by annotating the source code of an

application. The annotations are translated into system calls that are placed in the code

and executed at runtime. Figure 3.2 illustrates a key insight that makes it easier to place

sequential region in source code – accesses to shared variables are typically protected by

critical sections defined by lock and unlock pairs. Further, lock structures, such as the

Pthreads standard pthread mutex t structure, are shared variables themselves. Based on

this observation, placing sequential regions around critical sections already defined in the

application source code provides a logical mapping. Conceptually, the developer uses the

annotations by placing a BEGIN SEQ REGION; whenever a critical section begins, such as

before the lock statement in Figure 3.2, and an END SEQ REGION; whenever the critical

section ends, such as right after the corresponding unlock. Figure 4.1 demonstrates

how the previous example can be manually annotated so that Replicant will ensure

deterministic access to shared memory. When executed on the Replicant kernel, the

annotated application will produce deterministic replica executions.

Replicant allows individual replicas to diverge in execution, provided that their ex-

ternally visible outputs are consistent (e.g. writes made to a file must be deterministic).

As such, sequential regions need only be inserted if the ordering of events can affect

Chapter 4. Architecture 26

externally visible outputs. For example, if the program in Figure 4.1 did not print the

intermediate values of the shared counter variable on line 17, but instead only printed

the final value after all threads had completed, then no sequential regions would be

needed. This is because the thread ordering no longer has any effect on the application

output. Since sequential regions enforce ordering of threads within a replica, they can

reduce opportunities for concurrency, and should be used only when necessary. There

are many events whose ordering will not have an effect on the values of outputs, such

as calls to malloc, the heap allocator. Although these non-determinisms will result in

inconsistencies across replicas, they will not effect Replicant’s ability to match output

values, and as such do not generally require annotations.

In annotating an application, the developer may need to annotate several critical

sections with sequential regions. To avoid adding unnecessary dependencies between

critical sections protected by unrelated locks, Replicant allows the developer to define

an arbitrary number of sequential region domains, also referred to simply as domains.

Replicant enforces the order in which threads cross sequential regions that belong to the

same domain, but does not enforce any order on sequential regions in different domains.

As a result, there is a one-to-one mapping between locks in an application and sequential

region domains, and each critical section that is protected by a certain lock maps to a

sequential region in the corresponding domain.

Definition 4.2.2. A domain allows a partial order to be placed on sequential regions.

Ordering guarantees are made on sequential regions of the same domain, but no ordering

is enforced on sequential regions of differing domains.

Consider a producer/consumer application where a producer enqueues items on a list

which are dequeued by several consumers. Both the enqueue and dequeue operation

require a sequential region in order to support redundant execution. Further, these two

sequential regions will also belong to the same domain, because they access the same

shared memory addresses (i.e. the work queue). If the consumer threads also happen to

Chapter 4. Architecture 27

share another global structure that is protected by a different lock, then access to that

structure could be safely placed in a separate domain to avoid the performance penalty of

serialized access to a single domain. Well written, optimized applications will generally

have a very fine grained locking scheme, rather than one big lock. This is beneficial to

our system, because unrelated sequential regions will not affect one another, allowing for

increased parallelism.

4.3 Guarantees

Sequential region implementations may depend on the target operating system or on

scalability requirements. However, regardless of implementation, the following guarantees

must hold in order to remove non-determinism:

1. The order in which threads enter a sequential region of a particular domain is

reproduced deterministically for all replicas.

2. Sequential regions are mutually exclusive within a replica, but are not necessarily

mutually exclusive across multiple replicas.

Guarantee (1) is intuitive and forms the basis of our approach. As threads in one

replica enter a sequential region the order is observed and recorded for the specific domain.

Threads in a following replica must be made to access the sequential region in the same

order. The definition of which thread sets the ordering and which threads are made to

follow is not fundamental to the concept. An implementation may have this relationship

established at startup or it may dynamically reevaluate the relationship during operation.

Our implementation, which will be described in detail in Chapter 5, allows for flexibility

in thread relationships.

Guarantee (2) is less obvious. Once a thread is allowed to enter a sequential region,

another thread may not enter until the first has exited. This is important, because the

Chapter 4. Architecture 28

kernel cannot enforce relative thread execution rates and allowing more than one thread

to execute a sequential region at a time prevents the kernel from making guarantees

on the order in which threads execute each instruction in the bounded region. Since

the order of shared memory accesses must be controlled, and because relative thread

execution rates in a sequential region cannot be enforced, sequential regions are made

mutually exclusive. Although the mutually exclusive property of sequential regions may

seem to pose an overhead cost, they are most often aligned with critical sections that are

already mutually exclusive. As a result, mutual exclusivity adds little or no overhead in

the common case.

4.4 Discussion

While one can infer most of the inter-thread communication in an application from

its use of locks, developers frequently find application-specific opportunities to increase

performance by avoiding the use locks when accessing shared variables. As a result,

when porting applications, we have found that while using information gleamed from the

locks to automatically add sequential regions saves a great deal of time, some amount of

manual analysis is usually required to discover the communication that does not occur

in a critical section, but can still affect external output values.

Consider the example in Figure 4.2. This is a slightly simplified code section copied

from Apache 2.2.3. In this example, queue info is a global variable shared by a producer

thread, which receives connections from the network, and n consumer threads, which

handle each connection. This function is called by the producer thread to wait for an

idle consumer thread to handle the next work item. Upon completing an item of work,

a consumer will increment the queue info->idlers count. When the producer finds

an idle consumer, the same counter will be decremented, as shown on line 39 in the

example. However, incrementing and decrementing this counter is not performed inside

Chapter 4. Architecture 29

a lock and atomic operations are used instead. Further, because the producer is the only

thread that decrements the counter, it is able to safely perform the boolean expression

on line 12. Here the producer checks if the number of idle consumers is zero. If so, the

queue info structure is locked and the value of the idlers property is checked again on

line 18 before the producer waits on a conditional variable on line 19. The recheck

prevents a race condition where a consumer may have become idle between the time that

the check was made, at line 12, and the lock was acquired, at line 13. By not locking

the structure initially, the producer thread is able avoid locking the queue info structure

in the common case (i.e. there will almost always be at least one idle consumer) and gain

an increase in performance.

While Apache is able to gain a performance improvement by avoiding a lock ac-

quisition, the resulting implementation may introduce non-determinism that cannot be

replicated by a kernel level redundant execution system. In this example a sequential

region can be added to the function to ensure that a deterministic execution is enforced

and all replicas will arrive at a deterministic result for the boolean expression at line

12 (note that all accesses to this shared variable must be annotated). However, what

is more difficult is determining if in fact this particular section of code must be made

deterministic for successful redundant execution. The difficulty is in determining if a non-

deterministic path will cause a divergence that the redundant execution system cannot

reconcile. Perhaps surprisingly, the global variable queue info does not require annota-

tion for Apache to correctly operate on Replicant. This is because the calling thread will

not cause divergent outputs by waiting.

Narayanasamy et al. term inter-thread communication that occurs outside of a critical

section as a benign data race [41]. Further, they have been able to automatically identify

these race conditions from uninstrumented applications. Manual analysis is also used

to classify these races into five categories which correspond to the situations in which a

programmer was able to increase performance by avoiding locks. The categories outlined

Chapter 4. Architecture 30

in their work map precisely to the cases that we have observed when running applications

on Replicant. The situation described above, and depicted in Figure 4.2, is categorized

as a Double Check in the Narayanasamy et al. classification. Although a check is made

on a global variable without synchronization, the value is checked again after a lock

is acquired. Other categories include, Both Values are Valid, Redundant Writes and

Disjoint Bit Manipulation.

Lastly, correct redundant execution is guaranteed if all accesses to shared memory

are annotated with sequential regions. Because it is difficult to determine if a par-

ticular shared variable requires annotation, finding and annotating all shared memory

accesses is the preferred method for porting large multi-threaded applications to execute

on Replicant. Annotations can be removed if they are discovered to be unnecessary.

Automatically inferring the placement of sequential regions will be discussed in depth in

Section 5.4.

Chapter 4. Architecture 31

1 struct queu e i n f o t {
2 ap r u i n t 32 t i d l e r s ;
3 apr thread mutex t ∗ i d l e r s mutex ;
4 apr thr ead cond t ∗ i d l e r s c o nd ;
5 } ;
6
7 int q u e u e i n f o w a i t f o r i d l e r (qu eu e i n f o t ∗ queue in f o)
8 {
9 int rv ;

10
11 /∗ Block i f the count o f i d l e workers i s zero ∗/
12 i f (queue in fo−> i d l e r s == 0) {
13 rv = pthread mutex lock (queue in fo−>i d l e r s mutex) ;
14 i f (rv != 0) {
15 return rv ;
16 }
17
18 i f (queue in fo−> i d l e r s == 0) {
19 rv = pthread cond wait (queue in fo−>i d l e r s c ond ,
20 queue in fo−>i d l e r s mutex) ;
21 i f (rv != 0) {
22 int rv2 ;
23 rv2 = pthread mutex unlock (
24 queue in fo−>i d l e r s mutex) ;
25 i f (rv2 != 0) {
26 return rv2 ;
27 }
28 return rv ;
29 }
30 }
31
32 rv = pthread mutex unlock (queue in fo−>i d l e r s mutex) ;
33 i f (rv != 0) {
34 return rv ;
35 }
36 }
37
38 /∗ Atomica l ly decrement the i d l e worker count ∗/
39 atomic dec (&(queue in fo−> i d l e r s)) ;
40
41 return rv ;
42 }

Figure 4.2: Non-locking Shared Memory Access. A thread that accesses shared memory
without locking. Simplified snippet modified from Apache 2.2.3 in fdqueue.c.

Chapter 5

Prototype Implementation

Our determinism infrastructure is built as a component to a complete redundant exe-

cution system called Replicant. This chapter will describe the details of the in kernel

implementation that was required to enforce deterministic redundant execution of shared

memory workloads, and will outline our support for automatically annotating user space

applications. The system calls that have been added to the Linux kernel to support

shared memory workloads are briefly outlined in Table 5.1 and an annotated sample

application is depicted in Appendix A.

5.1 Domains

Replicant guarantees that replicas enter and exit sequential regions in the same order.

However, an application typically only requires a partial order to be enforced among its

sequential regions. As illustrated in Chapter 4, sequential regions heuristically map onto

critical sections protected by locks. Just as threads can execute critical sections protected

by different locks concurrently, no ordering is required for sequential regions that map to

different locks. However, an order for sequential regions mapping to the same lock must

be enforced. To define partial orders for sequential regions, Replicant allows the developer

to create an arbitrary number of sequential region domains. Replicant enforces the order

32

Chapter 5. Prototype Implementation 33

System Call Description

init dom(label) Initializes a domain identified by label.

destroy dom(label) Deallocates domain identified by label.

alias dom(label, alias) Associates an alternate domain label alias to label.

begin seq(label) Enters sequential region in domain label.

end seq(label) Exits sequential region in domain label.

Table 5.1: System Call Annotations. Annotations added to an application, either by
directly modifying the source code, or by using an automated method, will translate into
the system calls described here.

Structure Name Description

Domain domain t Domain specific state (linked list node).

Sub Damain domain sub t Replica specific per-domain state.

Task Order domain tsk t Per-domain thread ordering (linked list node).

Table 5.2: Data Structures Summary. Brief summary of the data structure described in
Figure 5.4.

that threads pass through sequential regions that belong to the same domain, but does

not enforce any order between sequential regions associated with different domains. As

described in the previous chapter, there is a one-to-one mapping between locks in an

application and sequential region domains in the kernel and each critical section that is

protected by a certain lock maps to a sequential region in the corresponding domain.

Figure 5.1 depicts the organization of the kernel level data structures added in support

of our sequential regions implementation, where domains are represented as large white

boxes. The domain structure holds data specific to each domain, such as the thread

ordering that is to be enforced (shown in the figure as the tasks list). Each domain

will also have one sub-domain for each replica. Sub-domains are shown as small hashed

boxes in Figure 5.1 and are responsible for maintaining per-replica data. In a 2-replica

system, there are always 2 sub-domains for each domain. Replica specific data includes

Chapter 5. Prototype Implementation 34

Figure 5.1: Sequential Region Domain Design. The structures that implement our se-
quential region domains infrastructure.

a queue for threads waiting to access the domain, a busy flag that also indicates the

PID of the task currently executing in a sequential region belonging to the domain and a

nesting count to support recursive locks. Most importantly, each sub-domain maintains a

per-replica label that is used by the application annotations to identify a specific domain.

Figure 5.1 shows the sub-domains corresponding to domain #2 and their label values in

the middle of the hashed box. Corresponding sub-domains do not require equal labels

values. However, domain labels must not be duplicated within each replica in order to

have uniquely identifiable domains. A summary of the data structures added to the

Linux kernel in support of our sequential regions implementation is shown in Table 5.2.

Each structure is also written out explicitly in Figure 5.4.

To create a domain, the application executes the init dom system call, and passes a

domain identifier of type long as the only argument, which will be used as the domain

label. Resources allocated in the kernel to track a specific domain are released by a

corresponding destroy dom system call, which also takes the domain label as its only

argument. When a domain is created a domain t structure is allocated in the kernel

and added to a linked list in the Process Control Block (PCB), which is shared across

Chapter 5. Prototype Implementation 35

all replicas. In Linux, the PCB is implemented as the task struct structure and linked

lists are often implemented with the list head structure and associated macros [5]. The

list of domains must be shared between any threads that share writable memory pages.

This includes threads that share their entire address space, as well as processes that share

memory pages through the System V API call to shmget.

To promote the use of our system with legacy applications, one of the design goals

described in Section 4.1 was to allow a convenient mapping of lock structures in user space

to our kernel implementation. In order to promote executing unmodified applications,

which will be discussed in Section 5.4, our system is able to use the address of a lock

data structure in user space, typically the pthread mutex t data structure, as the label

for a domain. Since Replicant is targeted toward security applications, the base heap

address will normally differ across replicas, using ASLR. Since locks are usually designed

as a member of a structure allocated in heap space, the address of a particular lock in

user space will often differ between replicas. To easily map locks present in user space to

domains in the kernel we must support domains that are referenced with different labels,

depending on the replica. This means that domains initialized by each replica cannot be

associated based on the label identifier. Instead, our design relies on initialization order

to match up domains created by each replica. Unfortunately, this means that the order

of lock initialization must also be enforced between threads in an application. To fulfil

this requirement, a domain of label 0 (zero) has special significance. This label cannot be

initialized by the application and is instead preinitialized by the kernel for each process.

It solves the chicken-and-egg problem where domains created with randomly different

labels across replicas must themselves be ordered deterministically. In this case, domain

initializations are placed inside a sequential region belonging to the domain label 0. The

same result can be achieved if the application first creates a domain during a non-threaded

section of execution and uses this domain for further domain creation in parallel sections.

The domain label 0 is simply added for porting convenience.

Chapter 5. Prototype Implementation 36

In order to support applications with a very large number of domains, our system

maintains a most recently used (MRU) list in parallel with the default list that remains

allocation ordered, as shown in Figure 5.1. Linked list semantics require linear search,

so the mru list is used to exploit temporal locality by moving any accessed domain to

the front of the list. The performance benefit of the mru list relies on the assumption

that recently accessed domains are likely to be referenced again in the near future. Most

of the applications we experimented with had little overhead in searching a small list

of domains. However, as will be discussed further in Chapter 6, MySQL allocates over

40,000 domains, most of which remain unused, on startup. This can lead to excessively

long search times and thus motivated the use of an MRU list. In actuality, both list and

mru data structures, depicted in Figure 5.1, form two circular, doubly-linked lists. The

motivation for a linked list implementation was primarily based on development efficiency

and to promote experimentation. There is no fundamental reason for using a list data

structure. Section 9.1 will discuss improvements to this design, including removing the

linear search aspect, and Section 9.2 will describe how these data structures can best be

generalized to n-replica.

5.2 Sequential Regions

Sequential regions cover a section of code, and so one system call is required to inform

Replicant when an application enters the region and another is used to inform Replicant

when it exits the region. This is accomplished by the begin seq and end seq system

calls that we have added to the Linux kernel. The developer also passes the domain

identifier, or label, discussed in the previous section, to each begin seq and end seq

system call. A sequence of begin seq calls will define the order in which threads cross

the sequential regions in a domain and Replicant will enforce that threads in all replicas

cross these sequential regions in the same order.

Chapter 5. Prototype Implementation 37

As described in the previous section, the kernel maintains a list of domains, and each

domain itself contains it own list that records the order in which threads pass through

the sequential regions in the domain. To make the order in which threads traverse the

sequential regions well defined, Replicant ensures that multiple sequential regions in the

same domain cannot execute concurrently. If a thread in a replica calls begin seq while

another thread in the same replica is in a sequential region from the same domain, it is

stalled until the first thread calls end seq. While this may appear to reduce opportunities

for concurrency, it does not in practice because sequential regions are usually aligned

with critical sections that are already mutually exclusive. begin seq calls on unrelated

domains are unaffected and may proceed.

We demonstrate how sequential regions affect thread executions with an example

illustrated in Figure 5.2. In our example, there are three threads executing code across

four sequential regions, all within the same domain. As shown in the figure, the first

replica to have a thread call begin seq in a domain is designated the master replica

of the domain, and the other replica is designated the follower replica for that domain.

Each domain may have different master and follower replicas. The master replica defines

the order that sequential regions must be traversed, as illustrated by the solid arrows

between the grey boxes and numbers in the grey boxes. The follower replica must also

pass through the sequential regions in the order set by the master. Each grey box

is preceded by a begin seq, which marks the beginning of a sequential region in the

application code. The end seq system calls are not shown in the figure, but are executed

right after each grey box to mark the end of each sequential region.

When a thread in the master replica enters a sequential region, a lookup is made to

find the domain’s order list, and an identifier is enqueued onto the list. When a thread in

the follower enters a sequential region, Replicant checks the domain’s order list to see if

the next thread to enter the sequential region in the master was its peer thread. If it was,

then the thread proceeds into the sequential region. Otherwise, the thread must block

Chapter 5. Prototype Implementation 38

until all threads before it in the order list have passed through their sequential regions.

In the example, T1 executes its second sequential region before T2 does, and is forced to

block until T2 passes through sequential region #2. When T2 executes end seq, it finds

that the next thread in the order T1, is currently blocked, so it wakes up T1. Similarly,

T3 executes begin seq before T1’s second sequential region, and must also wait for its

turn. When there are no more outstanding sequential regions, the next replica to execute

a begin seq becomes the master replica and will define the ordering of sequential regions

in the domain.

The domain’s order list is shown in Figure 5.4 as the member tasks. It represents

a linked list of domain tsk t structures which define the order of allowed threads in the

domain. When a following task attempts to enter a sequential region of a particular

domain, it will only be permitted if it is the next task on the domain’s tasks list. We

use a separate structure, rather than another list head in the task struct, because

any task may be next on an arbitrary number of domains. In fact, the same task may be

referenced in the tasks list an arbitrary number of times, depending on how far ahead

the master replica is executing relative to the follower replica.

Threads that attempt to enter a sequential region may be required to wait, as the

example above described. The waiters list in each sub-domain will have a different

meaning depending on whether a replica acting as the master or follower replica. A task

belonging to the master replica will wait on the waiters queue if another task in the

same replica is currently executing in a sequential region belonging to the same domain.

If this is the case, the busy flag will be set in the domain sub t structure. When the

task that is currently holding the domain exits its sequential region, any waiting task

may be dequeued from the waiters queue. A task belonging to the following replica

will also be enqueued on the waiters queue of its sub-domain if the current domain is

flagged as busy. However, a following task may also wait when an attempt is made to

enter a sequential region out of turn. As a result, dequeuing a task from the followers

Chapter 5. Prototype Implementation 39

waiters queue is more complex then that of the master. First, tasks are either dequeued

in the correct order, as defined by the tasks list in the domain, or not at all. Dequeuing

a task out of order will only cause it to wait again and introduces unnecessary context

switching. Secondly, the followers waiters queue must be checked for waiting tasks by

the master replica on exit of a sequential region. This is because a following task may

be enqueued as a waiter without having another task in the same replica occupy the

domain.

Figure 5.1 depicts both the tasks list and the waiters lists and their relationship to

sequential region domains in the kernel. The tasks list is associated with the domain t

because one order list is needed for each domain. There is one waiters lists for each sub-

domain, defined by the domain sub t structure, because replicas operate on an individual

domain independently. That is, if a thread has entered a sequential region of a specific

domain in one replica and marked it as busy, a thread in another replica may still enter

a sequential region of the same domain provided that another thread in the same replica

has not marked the domain busy.

Because threads in the follower replica must pass through all the sequential regions

in the same order as threads in the master replica, the developer must ensure that

applications do not invoke any sequential regions that occur in one replica but not the

other. If this does happen, then the follower replica will not be able to enter any sequential

regions after the missing region and will not be able to make forward progress. The

developer can prevent spurious sequential regions by ensuring that any variables that

can determine whether a sequential region should be executed are themselves protected

by sequential regions.

Chapter 5. Prototype Implementation 40

T1 T2 T3

1
begin_seq

2
begin_seq

3
begin_seq

4
begin_seq

T1 T2 T3

1
begin_seq begin_seq

4

2
begin_seq

3

(blocked)
(blocked)

Master Replica Follower Replica

begin_seq

Ti
m

e
Figure 5.2: Enforcing Thread Ordering. Replicant ensures that peer threads pass through
sequential regions (shown as grey boxes) in the same order regardless of what order they
call begin seq in the follower replica.

5.3 GNU/Linux POSIX Support

Sequential regions often form a one-to-one mapping to lock and unlock API calls in user

space. However, conditional variables in the POSIX standard, which are synchronization

calls, can have implicit lock/unlock semantics. As a result conditional variables require

special consideration, specifically due to their current implementation on a GNU/Linux

system. This section will describe the the mechanisms that we have established to support

conditional variables without modifying the GNU C Library, glibc. Modifying glibc

directly is complex and will be discussed further toward the end of this section.

Conditional variables allow threads to wait for events without entering a busy wait.

When a thread reaches a point in execution where it cannot continue until a particular

condition is true, it can wait on a conditional variable. A conditional variable can only

be entered while holding a lock. On entry that lock is released, and the thread is removed

from the operating system’s runnable tasks list and placed on a queue of waiting tasks. If

another thread changes the condition to the true state, it may also wake up one waiting

thread, called a signal, or wake up all waiting threads, called a broadcast. The prototypes

Chapter 5. Prototype Implementation 41

Figure 5.3: Conditional Variable Execution. Conditional variable waiting causes implicit
calls to underlying mutex lock and unlock operations, which are unannotated.

used for conditional variables in a Pthreads application are shown in Figure 2.1, prefixed

by “pthread cond”. An example of a thread waiting on a conditional variable is depicted

in Appendix A.

Based on the description of sequential regions thus far, a begin seq call is placed

before lock operations and an end seq call is placed after unlock operations. Locking

synchronization primitives are used to direct the placement of these annotations so that

any access to shared memory occurs inside a sequential region. Figure 5.3 illustrates the

sequence of calls made in a typical conditional variable wait operation and also highlights

the type of code being executed. Dark grey lines are code executed in the kernel, while

light grey lines are executed in a library between the application and the kernel. Any code

that is not highlighted is implemented directly in the application. When the sys futex

Chapter 5. Prototype Implementation 42

call is made with a parameter of FUTEX WAIT, the kernel will block the calling thread

until a corresponding call is made to wake up the same futex value (passed as the second

argument in this example). Since the mutex unlock remains unannotated in the library

call, the kernel will wait in futex wait without exiting the sequential region that was

acquired before locking the mutex. Any threads that require access to the same area of

shared memory will then be blocked waiting for the sequential region to become free,

and as a result, the thread waiting in sys futex may never be woken up. Note that the

IMPLICIT MUTEX LOCK and IMPLICIT MUTEX UNLOCK macros may also call sys futex as

well. However, these implicit operations may not trap to the kernel and so cannot be

relied on for interposition by the kernel.

An implicit lock release in a library between the application and the kernel may

cause a deadlock. We can solve this problem by implicitly exiting the sequential region

in the kernel when the sys futex call is made. The sequential region can then be

implicitly entered again before the application returns to user space. The issue is further

complicated, however, because the kernel does not know which sequential region to exit.

A thread may hold an arbitrary number of locks, and the POSIX standard does not

specify that conditional waits can only unlock the most recently acquired lock. Any held

lock in user space will also map to a busy sequential region domain and the kernel does

not have enough semantic information to correctly identify the domain to be released.

To decide on which domain to release, we could heuristically exit the most recently

entered sequential region when a call is made to the kernel to wait. However, this solution

is not general. Instead, we bridge the gap with the use of an additional system call that

allows the developer to associate the conditional variable with the mutex in the form of

an alias. The user space application calls the alias dom system call with the address of

the pthread mutex t structure as the label and the address of the futex member of the

pthread cond t structure as the alias. This system call will associate an alias label to

the specified domain which can then be used interchangeably with the real label. Ideally,

Chapter 5. Prototype Implementation 43

an arbitrary number of aliases could be applied to any label. However, we have not had

the need for more than one, and so our system limits the number of aliases that a domain

may have to one at any given time. If another alias dom call is made with the same

label, the first alias is overwritten. With this infrastructure the kernel is then able to

determine if the futex address observed is the alias of a specific sequential region domain

and the appropriate sequential region can be exited. Whenever the kernel is asked to wait

on a futex address, it checks if the calling process is currently executing in a sequential

region with domain label, or alias, equal to the value of the futex address. If this is case,

the sequential region is implicitly exited before waiting and re-entered before the thread

exits the system call. This means that in Figure 5.3 when sys futex is called to wait

on &cond->futex, the kernel will recognize the address of the futex as being an alias for

the domain with label &mutex and will implicitly call end seq(&mutex).

It is important to note that domain aliasing is not a fundamental requirement for a

sequential regions implementation, but rather an artifact of adding annotations around

the POSIX Threads API. If the glibc source code is modified directly, below the Pthreads

API, domain aliases are not required. Although this is not a fundamental component of

our approach, it is necessary if the application source code uses the glibc libraries on

a Linux 2.6 kernel and annotations are made around the Pthreads API. We discuss our

experience in directly annotating glibc in Section 9.3.1.

5.4 Automatic Annotations

To ease the porting of existing multi-threaded applications to Replicant, we have created

a library that interposes between the application and calls that are made to Pthread

functions. The goal of this library is to promote as few modifications as possible to the

original application.

The interposition library is compiled as a shared object and dynamically loaded at

Chapter 5. Prototype Implementation 44

run time via the LD PRELOAD environment variable. The dynamic linker in UNIX-like

operating systems, will automatically load the libraries specified by LD PRELOAD. This

allows our library to replace symbols to Pthread functions with our own implementation.

Our functions are used to make system calls to initialize sequential region domains, assign

aliases, enter sequential regions, and so on. The Pthread calls are then forwarded on to

the original glibc implementation using dlsym and dlvsym, which allow us to find the

address of the real Pthread functions compiled into libpthread.

When our interposition library is loaded, each call to pthread mutex init, made by

the application, will result in a corresponding init dom where the label is set to the

address of the pthread mutex t structure. This effectively creates a domain for every

lock variable. Lock initializations are ordered by placing them in sequential regions

of the default domain, label 0, that is initialized at application startup by the kernel.

Each time the application locks or unlocks the mutex, the interposition library makes a

begin seq or end seq call respectively, again passing the address of the mutex variable as

the domain label. In the case of a read-write lock, where more than one thread can hold

a read lock at a time, the interposition library only places a sequential region around the

lock acquisition to permit concurrency. As described in the previous section, conditional

variables require special attention. Although only required once, a call to alias dom is

placed before each invocation of pthread cond wait, however, no annotation is required

for signal and broadcast operations. Many of the Pthread calls outlined in Figure 2.1 are

intercepted annotated and forwarded on to the underlying glibc implementation.

As discussed in Section 4.4, some annotations cannot be inferred through the use of

locks and the method described here cannot be used to automatically annotate shared

memory access outside of a critical section. Automatically annotating accesses to shared

memory made outside of a critical section is left as interesting future work, and discussed

further in Section 9.3.2.

Chapter 5. Prototype Implementation 45

1 /∗ These are the s t r u c t s t ha t implement s e q u en t i a l reg ion
2 domains . Linked l i s t s are the primary data s t r u c t u r e . ∗/
3
4 typedef struct seq domain sub {
5 wa i t queue head t wa i t e r s ; /∗ t a s k s wa i t ing to acqu i re ∗/
6 long l a b e l ; /∗ l a b e l (e . g . address o f l o c k) ∗/
7 long a l i a s ; /∗ a l t e rna t e , e q u i v a l e n t l a b e l ∗/
8 int busy ; /∗ t a s k p id in the domain ∗/
9 int destroyed ; /∗ i n d i c a t e s no longer used ∗/

10 int ne s t ing ; /∗ nes t i n g oh the seq reg ion ∗/
11 void ∗ pr i va t e ; /∗ po in t e r to my domain s t r u c t ∗/
12 } domain sub t ;
13
14 typedef struct seq domain tsk {
15 struct l i s t h e a d l i s t ; /∗ order o f a l l owed t a s k s ∗/
16 struct t a s k s t r u c t ∗ task ; /∗ corresponding t a s k ∗/
17 } domain tsk t ;
18
19 typedef struct seq domain {
20 struct l i s t h e a d l i s t ; /∗ domains by i n i t ’ ing ∗/
21 struct l i s t h e a d mru ; /∗ domains by most recen t used ∗/
22 struct l i s t h e a d ta sk s ; /∗ t a s k order on t h i s domain ∗/
23 unsigned long count ; /∗ order o f i n i t ’ ing ∗/
24 domain sub t sub [2] ; /∗ per r e p l i c a data ∗/
25 int master ; /∗ r e p l i c a i d e n t i f i e r ∗/
26 } domain t ;
27
28 /∗ The Linux PCB, s t r u c t t a s k s t r u c t , i s modi f ied to add s e v e r a l
29 members t ha t implement the s e quenc i a l reg ion domains . ∗/
30
31 typedef struct t a s k s t r u c t {
32 /∗ . . . ∗/
33
34 s p i n l o c k t ∗dom lock ; /∗ b i g l o c k f o r the whole t h ing ∗/
35 atomic t ∗dom count ; /∗ r e f e r ence count ∗/
36
37 struct l i s t h e a d ∗ dom l i s t ; /∗ domains by i n i t ’ ing ∗/
38 struct l i s t h e a d ∗dom mru ; /∗ domains by most recen t used ∗/
39 struct l i s t h e a d ∗dom next ; /∗ next domain to be i n i t ’ d ∗/
40
41 domain t ∗dom cache ; /∗ avoid search ing ∗/
42 }

Figure 5.4: Sequential Region Data Structures. The data structures that have been
defined in our modified Linux kernel in support of sequential regions.

Chapter 6

Applications

In order to evaluate the feasibility of Replicant with realistic multi-threaded workloads,

we have chosen four threaded applications that benefit from multi-core hardware and

use shared memory for inter-thread communication. In this chapter we describe each of

these applications and our efforts to port them to Replicant.

6.1 Overview

As described in Section 3.3, Replicant is a unique redundant execution system that allows

replicas to diverge in their execution and only commits outputs that have been agreed

upon by the majority. Unfortunately, applications that communicate through shared

memory often have divergent outputs that are not the cause of a security compromise

or fault. As a result, an application that wishes to be replicated that uses shared mem-

ory communication may require annotations that reveal inter-thread communication to

Replicant. Making all inter-thread communication explicit to Replicant, using the se-

quential region infrastructure described in the previous sections, will yield replicas that

will always have deterministically identical executions. However, since sequential regions

reduce opportunities for concurrency, the developer may also try to increase performance

by only annotating communication where necessary – when it can directly affect sys-

46

Chapter 6. Applications 47

tem calls with externally visible output. The difficulty of this task is dependent the

complexity of the inter-thread communication and the size of the application.

In general, application threads communicate with each other via two methods. They

may communicate by reading and writing to variables in their shared address space or

they may use OS primitives such as signals. In an application where accesses to shared

memory are always protected by locks, creating a sequential region domain for each

lock variable, preceding every lock with a begin seq and following every unlock with a

end seq, will make all shared memory communication deterministic. In general, signal

events need to be ordered deterministically relative to other inter-thread communication

events as well.

While signals are a common interprocess communication construct in process-based

server applications, applications that have been optimized to use shared memory rarely

communicate through signals. Signals that are sent from the external environment to

a Replicant peer group are replicated to all members in the group. We have observed

very few internal signals, sent from one thread to another, in the applications that have

been ported to date. Most of the signals that have been observed were handled, without

any explicit effort, through Replicant’s ability to handle out of order system calls. In

one case, deterministic signal delivery was required. However, this signal was received

from a sigtimedwait system call and could easily be made deterministic with the use

of sequential regions. Although sequential regions were successfully used to synchronize

signal delivery in this case, we have not studied the general applicability of this method.

Sequential regions make shared memory communication deterministic for use in redun-

dant execution and further uses, such as deterministic signal delivery, are left as potential

future work.

To allow for accelerated porting of applications, we use the automatic instrumenta-

tion that is described in Section 5.4. However, in all large applications that we have

ported to date, the developers take advantage of opportunities to increase performance

Chapter 6. Applications 48

Application Lines of Code Variables Calls Extra Manual Effort

Apache 224,195 34 144 2 2 days

Squid 111,061 1 12 3 14 days

MySQL 1,126,283 131 1,436 11 1,447 weeks

Table 6.1: Lock and Sequential Region Statistics. We give the number of lines of code in
the application [58], the number of lock variables that are declared as well as the number
of lock and unlock operations that appear in the source code. Finally, we indicate the
number of “extra” sequential regions we had to add after the interception library had
been applied, how many sequential regions a fully manual annotation required, and an
approximation of how much time was needed to port the application.

by accessing shared variables without first acquiring a lock. In every case, these accesses

are safe because of the semantics of the application, but they introduce non-determinism.

Thus, while our interposition library provided much of the annotation automatically, a

reasonable amount of effort was required to find and annotate shared variable accesses

that were not protected by locks. We describe our experiences porting several applica-

tions below. In each case, we started by using the interception library to automatically

annotate every lock in the application and then manually annotated any shared variable

accesses that were not protected by locks. We then attempted to minimize the number

of sequential regions by manually studying the application and placing annotation only

where they were needed.

6.2 Apache HTTP Server

We have ported the Apache HTTP Server [62], which can be configured to use worker

threads to handle client requests, rather than the default process forking model. In

Apache, the listening socket that clients connect to is bound by the main Apache process,

that runs as root. This process must run as root, because it may be required to bind

to a port number between 0-1023. The bound socket is inherited by each forked child.

Chapter 6. Applications 49

Children of the main process run as a non-root user, because they interact directly with

input from the network. In the worker configuration, each forked Apache process contains

a single listener thread that is responsible for calling accept on the listening socket. Each

forked process also contains a configurable number of worker threads. When the listener

thread returns from the accept system call, it creates a work item linked to the new

connection. This work item is placed as an element on a linked list and dequeued by one

of the waiting worker threads. The worker thread then interacts directly with the client

through the socket.

When we applied the interposition library to Apache, we found a shared variable that

was accessed without a lock. While non-deterministic accesses to this shared variable has

no effect on the output of Apache, the operation caused Apache to non-deterministically

acquire a lock. Since the interception library annotates all locked regions with a sequential

region, this caused a spurious begin seq to occur in one replica and not the other. As

mentioned in Section 5.2, spurious sequential regions will eventually prevent the following

replica from making forward progress.

In order to prevent the spurious sequential region that was caused by an unsynchro-

nized access to shared memory, we could have simply annotated the operation with a

sequential region. However, a more optimal solution was to remove the sequential region

annotations from the variable that was being locked spuriously. The only inter-thread

communication in Apache that can affect external outputs consists of enqueue and de-

queue operations on the shared work queue described above. As a result, we could leave

all other locks unannotated and only annotate two sequential regions in Apache – one

when the listener thread enqueues requests, and one where each worker thread dequeues

requests. This scenario is described in detail in Section 4.4.

Chapter 6. Applications 50

6.3 Squid Web Proxy Cache

The Squid Web Proxy implements a high performance web caching proxy [59]. It has

an event driven design and can be configured with an I/O thread pool, which prevents

Squid from blocking on disk accesses. Squid’s main event loop handles most of the server’s

processing. It accepts connections, proxies the request and handles each connected socket.

The I/O threads are only used for creating, fetching and removing files from the on-disk

cache.

Squid was straightforward to port with the aid of the interception library. We found

two variables that were accessed without locks and would result in non-deterministic

divergences in the application’s output. Once access to these variables were placed in

their own sequential region, Squid produced correctly confirmed outputs.

6.4 MySQL Database Server

Threads in MySQL database server (InnoDB storage engine) [40] concurrently access

many shared data structures such as database tables, work queues, in-memory caches

and various logging mechanisms. As a result, the communication patterns in MySQL are

much more complex than in the other applications. When we applied the interception

library, we found that there were many instances where MySQL accesses shared variables

without locks. We instrumented these shared variables with sequential regions to make

accesses to them deterministic under Replicant.

As an example, the InnoDB storage engine has a looping server thread that checks

several fields in a global log data structure periodically. If the number of unflushed

writes to the log exceeds a preset threshold, the server thread flushes the in-memory log

file to disk – an operation that will acquire a lock on the log data structure. On every

transaction, worker threads update the log data structure fields after each write to the

log. Since it does not matter whether a worker’s log updates are flushed in this period

Chapter 6. Applications 51

or the next, the server thread can safely read the shared variables in the log structure

without locking. However, if these reads are not done deterministically under Replicant,

one replica’s server thread might decide to flush the log to disk while its peer might not,

resulting in a spurious acquisition of the log data structure’s lock, and hence a spurious

sequential region.

We found other events in MySQL interesting. MySQL includes a salt (a random

string) in its server hello message so that the client can use it to hash its password.

The string is derived using randomness from sources such as heap addresses. Because

Replicant randomizes the addresses in each replica and because memory allocation is non-

deterministic, the random string is different across replicas. To make this string identical

in all replicas, we modified MySQL to obtain its randomness from the /dev/urandom

facility provided by the OS kernel instead. Since this is a read from an external input,

the Replicant matcher automatically replicates the random value to all replicas. In

summary, applications running under Replicant must derive their randomness through

the kernel so that it can be reproduced across replicas. Generally, applications should not

rely on address layout for seeding random numbers and this practice adds no additional

security.

Acquiring a good understanding of the communication that occurs between threads

in a program is crucial to being able to come up with an optimal set of sequential regions

for an application. MySQL’s large code base and the many data structures it uses

to synchronize and protect access to the shared database made MySQL more difficult

to port than our other applications. The MySQL source code contains over 100 lock

variables and over 1400 lock operations on those variables. At run time, we noted that

MySQL initializes more than 40,000 locks during startup alone. We see our success with

MySQL as an indication that once the hurdle of understanding an application’s inter-

thread communication has been overcome, adding sequential regions to the application

can allow deterministic shared memory redundant execution.

Chapter 6. Applications 52

6.5 Firefox

We have also made some preliminary progress in porting the Firefox web browser [63],

which has also turned up an interesting scenario. Firefox allocates packet buffers that it

sends to the X server, but does not necessarily initialize all fields in the packet, depending

on type of packet being sent. Because memory allocation is non-deterministically ordered,

the stale values in uninitialized fields in an allocated data structure may differ across

replicas, resulting in a spurious divergence when this structure is written to the network.

The error described here is actually in The GIMP Toolkit (GTK) library used by Firefox

to communicated to the X server. The GTK library understands the packet format used

in communication and may leave some fields blank when it is known that they have no

effect.

Aside from manually finding and correcting all cases where this error occurs in the

source code, another option is to replace all calls to malloc with calls to calloc using

our interposition library, so that newly allocated heap space is automatically filled with

zeros. If structures are allocated on the stack we would need to use a compiler option

to automatically zero-out any buffers allocated on the stack (unfortunately, this option

does not always exist).

Sending out uninitialized data is dangerous as it may leak confidential information to

a potential attacker who exploits this side channel to attain information held by Firefox.

Previous work classifies this type of behaviour as a vulnerability, and claims that it should

be removed from applications [10, 11].

6.6 Discussion

Our experiences with porting applications have shown that some applications can be

ported in several days with minimal effort, such as Apache and Squid. On the other

hand, complex applications, such as MySQL, require an order of magnitude more effort.

Chapter 6. Applications 53

To develop a heuristic for determining what applications are difficult to port, we examine

statistics on the application source code to ascertain the application locking behaviour

as shown in Table 6.1. As we can see, the number of locks and the size of the application

are indicative of the memory communication complexity of the application.

While it is the number of accesses to variables that are not accompanied by locks

that is problematic, not the number of locks themselves, the statistics are telling – the

greater the number of locks, the greater the number of independent shared variables. The

availability of many shared variables leads to more opportunity for optimizations that

can avoid the use of locks, which means that these optimizations need to be understood

and properly annotated for Replicant. Complex communication patterns also make it

difficult to recognize which locks do not need annotations, making the performance of

the application under Replicant difficult to optimize.

Qualitatively, we have found that inserting sequential regions is as difficult, and very

similar in process, to inserting locks to parallelize an application. The developer must

have a good understanding of the sharing patterns, as well as opportunity for races and

concurrency. While the proper use of locks is certainly not trivial, they are in common

use in concurrent applications today. Therefore, we feel that if done at the time of

development, the addition of Replicant sequential regions will not be an overly heavy

burden on the application developer.

Chapter 7

Evaluation

In this chapter we evaluate the performance of applications described in the previous

chapter on Replicant when compared to running the same applications on an unmodi-

fied system and to a projected estimate performance. We then evaluate correctness of

the outputs produced by each application. Finally, We evaluate the portability of our

annotation infrastructure to another kernel level redundant execution system.

7.1 Performance

In this section we discuss our benchmarking methodology and provide a performance

analysis of the ported applications.

7.1.1 Methodology

Since we are not aware of any existing redundant execution systems that can support

threaded workloads on multiprocessor hardware, we develop a projected estimate of the

overhead of a kernel level redundant execution system, against which we can measure

performance of Replicant. Our projected estimate is computed by measuring the ratio

between the time an application spends executing user space code, and the time the

54

Chapter 7. Evaluation 55

application spends in the kernel. Any kernel level n-replica redundant execution system

will have to execute the user space portion n times, and ideally only execute the kernel

space portion once. Thus, to compute the projected performance for a particular appli-

cation, we use the following method: in a run of an unmodified (vanilla) application on

an unmodified kernel, suppose the amount of time spent in user space is u, the amount

of time spent in the kernel is s, and the total execution time requires t seconds. Thus, in

the case where all processors are fully utilized by the application, the projected execution

time t′ for the same application on a n-replica system can be estimated as:

t′ =
n · u + s

u + s
× t (7.1)

Where n = 2 in our 2-replica prototype of Replicant. By comparing Replicant against this

estimated performance, we gain an understanding of the extra overhead Replicant adds

with the additional bookkeeping associated with the harness, as well as lost concurrency

due to the sequential regions.

All benchmarks were performed on an Intel Core 2 Duo 2.13GHz machine with 1GB

of memory running Fedora Core 5. All applications were run over a gigabit LAN unless

otherwise stated. The working set of all benchmarks fit in memory and the number of

threads was increased until the vanilla benchmark could no longer utilize any more CPU

time. We note that this does not mean that applications were necessarily able to utilize

both CPUs to their maximum utilization. We then compare the performance of Replicant

against a vanilla application with only 1 CPU enabled, both CPUs enabled and our

projected estimate, derived from our dual processor runs, as described in Equation 7.1.

The comparison against the vanilla application running on a single CPU is indicative of

the case where the vanilla application is not able to use all the cores available to it. This

is a reasonable scenario considering that future processors are projected to have over 80

cores [29].

Chapter 7. Evaluation 56

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

MySQLSquidApache

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Vanilla-1P
Vanilla-2P
Projected
Replicant

Figure 7.1: Replicant Application Overhead. Comparison of execution time of applica-
tions ported to Replicant, normalized to the single processor case.

7.1.2 Results

We will now present and analyze the performance of our application benchmarks on

Replicant. Our results are summarized in Table 7.1 and compared in Figure 7.1.

We evaluated Apache 2.2.3 with the worker Multi-Process Module (MPM) enabled.

Apache was configured with 2 processes and a maximum of 128 clients (64 worker threads

per process), which is the default maximum. We configured Webstone [66] with its

standard file distribution test and 40 clients, which allowed Apache to reach its maximum

throughput. Table 7.1 gives the average over 5 runs in seconds per kilobit transferred.

This result was converted from the throughput that is reported by Webstone.

Apache has very good performance when running on Replicant for two main reasons.

First, the stalls incurred due to sequential region ordering are hidden by other threads

in the follower replica thanks to the large amount of parallelism available in Apache. In

addition, Apache spends much of its time in the kernel, which means that very little

computation needs to be repeated. This is evident in the modest 33% slowdown that

Chapter 7. Evaluation 57

Application Vanilla Projected Replicant

(units) 1P 2P

Apache (s/kb) 3.16 (±0.01) 1.93 (±0.01) 2.19 (±0.01) 2.56 (±0.01)

Squid (s/kb) 4.23 (±0.02) 3.14 (±0.40) 3.85 (±0.41) 5.37 (±0.02)

MySQL (s) 11.36 (±0.03) 8.04 (±0.13) 12.93 (±0.24) 18.18 (±0.81)

Table 7.1: Performance of Replicant on three representative multi-threaded application
workloads. We also provide measurements of the unmodified application on both one
processor and two processor hardware, as well as an estimate of the projected performance
of Replicant. The numbers in the brackets indicate standard deviation.

Apache experiences against the two processor vanilla run.

We also evaluated the Squid 2.3.STABLE9 web proxy with the asynchronous I/O

option enabled, which spawns a pool of 16 threads to handle disk operations. Squid

also functions as a web cache in this configuration. Webstone was configured with 80

clients, which we found allowed Squid to reach its maximum throughput. The standard

Webstone test was modified to increase the number of unique files but still maintain the

same file size distribution. This was necessary so that the working set of files would not

fit in Squid’s in-memory file cache, forcing it to exercise the I/O thread pool for disk

accesses. Note, that the new file set still fit in the kernel’s buffer cache such that no

I/O was actually made to disk during test runs. As in the case of Apache, we averaged

the results over 5 runs and converted throughput into seconds per kilobit transferred,

as shown in Table 7.1. The high variance exhibited on dual processor Squid runs was

attributed to a Linux kernel helper thread, ksoftirqd, which inconsistently affected

throughput. According to its man page:

ksoftirqd is a per-cpu kernel thread that runs when the machine is under

heavy soft-interrupt load. Soft interrupts are normally serviced on return

from a hard interrupt, but it’s possible for soft interrupts to be triggered

more quickly than they can be serviced. If a soft interrupt is triggered for a

Chapter 7. Evaluation 58

second time while soft interrupts are being handled, the ksoftirq daemon

is triggered to handle the soft interrupts in process context. If ksoftirqd is

taking more than a tiny percentage of CPU time, this indicates the machine

is under heavy soft interrupt load.

This thread was not able to acquire significant CPU cycles in any of the other Squid

benchmarks.

Squid’s main thread is an event-driven processing loop, which handles all connections

and only uses its thread pool for I/O requests to disk. As a result, Squid has poor

load balancing between its threads. In our tests the main thread became the bottleneck

on the dual processor, leaving Squid unable to make good use of the second processor.

Unfortunately, Replicant is also unable to take full advantage of the free CPU cycles,

as the main thread in both replicas are tightly coupled to the socket input. This result

leads us to believe that event driven design is not ideal for replication on multiprocessor

systems. Performance could be improved by adding more parallelism to Squids main

processing loop.

We evaluated MySQL 5.0.25 (InnoDB storage engine) with the SysBench v0.4.6 OLTP

benchmark [61] over the loopback interface. SysBench generated a load of 100,000 read-

only queries using 16 threads to the MySQL server which was running a database with

500,000 entries. The average execution time over 5 runs are reported in Table 7.1. The

primary source of overhead in MySQL was the large number of sequential regions invoked.

Each sequential region causes a trap into the kernel, and may also cause stalls in the

follower replica as threads are forced to wait for their turn into the sequential region. We

feel that MySQL’s pervasive use of shared memory throughout the application presents

a worst-case for our sequential region infrastructure.

Chapter 7. Evaluation 59

7.1.3 Output Correctness

We tested each of our ported applications to confirm that the outputs produced by

Replicant were correct. Tests for correctness were performed as follows. To test Apache

and Squid, we used the Webstone [66] benchmark, which tests the static performance

of web servers using a standard file size distribution. Webstone checks the correctness

of all results returned from the web server and reports any errors it encounters. For

MySQL, we used SysBench [61] to generate load on the database. We then checked the

consistency of the database produced after executing queries on a Replicant run. The

database was not found to be corrupt after any of these test runs. Finally, we have also

directed our web browsers to use the Squid web proxy running on Replicant for everyday

web browsing. Squid served both dynamic and static content through its proxy interface

and used its on disk cache whenever possible. There was never any perceivable delay over

that experienced when Replicant was disabled and multiple simultaneous connections,

from several distinct clients, were handled without error.

7.1.4 Discussion

We find that there are three major application-dependent factors in Replicant perfor-

mance on multi-threaded shared memory workloads. The first is how well the appli-

cation balances load among threads. Squid has poor load balance and exhibits poor

performance, while Apache, a very similar application, has good load balance and en-

joys good performance. The second is the number of sequential regions that need to

be invoked. MySQL has many sequential regions, which we were not able to remove.

Sequential regions reduce opportunities for concurrency. Finally, the last factor is the

ratio of user space to kernel space execution. Applications that spend much of their time

in the kernel will experience less overhead.

Chapter 7. Evaluation 60

7.2 General Applicability

In order to evaluate the general applicability of our shared memory determinism annota-

tion system, we have attempted a port of sections of our code to a well known kernel level

redundant execution system which does not have support for shared memory workloads,

such as those that were evaluated in the previous section.

The N-Variant system [14] is a redundant execution system that can be used to detect

attacks on application integrity by executing n instances of an application and varying

either the instruction set encoding or using disjoint address spaces for each instance. Each

of these forms of diversity allow applications running above N-Variant to be protected

form specific attack vectors. (1) Disjoint address spaces among replicas protects an

application from attacks that attempt to jump to an absolute address, such as return to

libc attacks. (2) By varying the instruction set encoding for each replica, code injection

attacks are mitigated. N-Variant was implemented by modifying the Linux 2.6.16 kernel,

for which the source code has been made available [13].

We have added 1250 lines of C code [58] to the N-Variant 2.6.16 kernel, including

additional support for 4 system calls that were previously disabled as well as bug fixes

in sys poll. The additional system calls are sys set tid address, sys socketcall

(recvmsg), sys epoll create and sys epoll ctrl. These system calls were disabled

with the use of wrapper macros, where invocation caused the kernel to return an error

value of ENOSYS.

Apache 2.2.3 was successfully run on our modified N-Variant kernel in a uniprocessor

virtual machine. Apache was manually annotated with one sequential region on a shared

work queue, which is the same modification that was made for our evaluation on the

Replicant kernel discussed in the previous section. Apache was also configured with 2

processes and a maximum of 128 threads. Webstone was again used to generate system

load with 40 client threads from a remote machine over a 100 Mbps switch. The virtual

machine was hosted in Fedora Core 5, using VMware Workstation 5 [64].

Chapter 8

Related Work

This thesis draws on a large set of prior work from research in the areas of intrusion

detection systems, fault-tolerance and application replay. In this chapter, we highlight

those areas which influenced the design and implementation of the sequential region

mechanism and our redundant execution system, Replicant, as a whole.

A preliminary description of Replicant can be found in [48] and the details of its

replication internals are described in [67].

8.1 Intrusion Detection

Intrusion detection has been an active area of research for many years. Many systems and

methods have been proposed that attempt to identify malicious behaviour. These are

often divided into two groups, signature detection and anomaly detection [21]. In signa-

ture detection, a known pattern is matched to signal intrusion. In this case, it is assumed

that the malicious behaviour has been previously observed and future occurrences can

be identified. Anomaly detection takes the opposite approach. Here, we presume that

malicious behaviour is unknown and that deviation from normal behaviour will signal an

intrusion.

The concepts of signature and anomaly detection have been applied to both net-

61

Chapter 8. Related Work 62

work [8] and host [21, 51, 65] based systems. Each provides advantages and disadvan-

tages over the other. Host based systems tend to have greater visibility of the attack

vector and allow a closer examination of the vulnerability. However, these systems may

expose vulnerable applications to greater risk if the attack is not contained and also use

up valuable system resources such as memory and processing cycles.

Host based intrusion detection systems often use the concept of system call introspec-

tion to detect anomalous behaviour, as was demonstrated in early work by Forest and

Longstaff [21]. These detection systems are able to intercept calls made to the operating

system kernel by a potentially vulnerable process. System calls can be sanitized, verified

and authorized before execution. Identifying a valid sequence of system call invocations

can be a powerful mechanism for identifying processes that have been compromised. The

two main approaches to this end are dynamic analysis and static code analysis.

Replicant shares many similarities with system call introspection intrusion detection

systems of the past. While most systems use either static or dynamic methods to differ-

entiate between valid and invalid system call traces, Replicant relies on running multiple

concurrent instances of the same application binary. The valid sequence of system calls is

determined by consensus among replicas, which are diverse enough to prevent a determin-

istic response to malicious input. Since system call traces are used for comparison, strict

determinism is often required. Multi-threaded, shared memory applications are inher-

ently non-deterministic, and our sequential region infrastructure provides the necessary

mechanism that allows deterministic replication of shared memory operations.

8.1.1 Static Analysis

Wagner and Dean demonstrated how static code analysis can be used to model typical

application behaviour [65]. This approach verifies that the application system call trace

is consistent with what is expected from the source code. While this static analysis has

no false positives and does not require training data, it suffers from several drawbacks.

Chapter 8. Related Work 63

Firstly, application code is required to perform the analysis, which may not be available

in all cases. Secondly, achieving thorough coverage of all code paths can be very diffi-

cult, if not impossible for reasonably large programs. This is further complicated when

considering system calls made my libraries that are dynamically linked in and due to the

large state space.

8.1.2 Dynamic Analysis

Dynamic analysis is an alternative which gathers data through a runtime training period.

Sekar et al. use this training data to produce a finite state automaton (FSA) that

represent normal behaviour [51]. This FSA is used at runtime to validate the sequences

of system calls made by the program being monitored. Using dynamically generated

training data still suffers from the potential of poor coverage, because all runtime paths

must be exercised in order to have a complete FSA. This is not trivial considering that

there are typically several paths which are not commonly exercised. Other approaches

such as VtPath [18] uses call stack information to improve on the accuracy.

Training data used in system call sequence validation, can be generated statically or

dynamically. Generally these systems tend to tradeoff performance and accuracy. This

area has been a hot topic in recent years and several pieces of work such as [44, 25, 19]

have looked toward improving this tradeoff. [23] tries to bring the static and dynamic

approaches together.

8.2 Program Isolation

Replicant guarantees that, although an application may be compromised by a mali-

cious attack, attempts to modify system state by a compromised application will remain

isolated. This is similar to other isolation techniques, such as FreeBSD Jail [30] and

chroot, which, at a minimum, isolate the file system name space available to an appli-

Chapter 8. Related Work 64

cation. Replicant is able to enforce isolation without limiting an applicant’s view of the

file system, at the cost of maintaining block level Copy-on-Write (COW) metadata.

Systems that interpose on system calls to isolate untrusted processes are referred to

as sandboxes. They limit an application’s ability to interact with the operating system

by sanitizing and verifying system calls. A sandbox may also provide a private view of

system resources such as the work by Liang and Sekar has shown [36]. In their Alcatraz

system, file operations are redirected to a modification cache and only committed once

modification have been verified. This prevents malicious file modification by an untrusted

process. This is very similar to Replicant’s harness. The harness is responsible for

providing each replica with its own private view of the operating system, allowing them

to execute independently without being aware that outputs are being buffered.

8.3 Redundant Execution

Replicant is a kernel level redundant execution system. It allows mostly unmodified,

modern applications to be replicated by the operating system to enforce security guar-

antees. Many redundant execution systems have been implemented in the past, with

varying goals and motivations. The most relevant redundant execution systems to our

work stem from the areas of fault-tolerance and diversity.

8.3.1 Fault-Tolerance

Fault-tolerance in distributed systems has long been an area of intense research focus.

The Byzantine Generals Problem [34] outlined the difficulty in achieving consensus among

a set of independent, potentially malicious, modules. Byzantine fault tolerance is an area

of research which explores algorithms for mitigating failed components in a system that

may continue interacting and exchanging messages inconsistently [31, 39, 7]. This is

similar to Replicant’s consensus among replicas in some respects. However, the problem

Chapter 8. Related Work 65

is simplified, because replicas are not distributed and do not rely on messages passed

between one another, but rather use the omnipotent kernel to arbitrate on decisions.

Algorithms designed for consensus among replicas for fault tolerance generally assume

very simple applications. For example, the Paxos algorithm for implementing fault-

tolerant distributed systems is a simple state machine voting algorithm [33]. It assumes

that there are several replicas that can be modelled as deterministic finite state machines

(FSM). The applications we have studied do not generally have deterministic states.

The sequential region mechanism described in this thesis could be extended to provide

deterministic shared memory access across remote hosts. Such a mechanism would be

needed to ensure deterministic execution of a distributed set of replicas.

Hardware redundancy has enjoyed a long history of use to improve system reliabil-

ity and availability. Complex hardware systems have long since promoted redundancy

for mission critical tasks [1]. For example, HP’s NonStop architecture has its roots in

systems designed in 1974 by Tandem Corp. [4], and IBM’s S390 Microprocessor also

featured redundant hardware functional units [57]. More recently, commodity hardware

trends toward simultaneously threaded and multi-core processors have renewed interest

in hardware-based redundant execution systems, such as SRT [50] and SlicK [46]. Be-

cause of the better visibility into the hardware that these solutions have, they are better

able deal with the non-determinism that occurs between replicas. Unfortunately, they

are at the wrong semantic level to be able to correlate system calls among replicas that

are slightly different, as is needed to detect security violations. It will also be difficult

for virtual machine monitor-based (VMM) solutions to compare replica outputs due to

the semantic gap that exists between the VMM and the OS [9, 38, 12].

Rx attempts to recover from software faults through the use of a checkpoint rollback

system [49]. Rather than executing the replicas simultaneously, Rx repeatedly detects

a system crash and re-executes the application in a slightly different environment until

one of the re-executions does not crash. Rx solves a different problem than the one

Chapter 8. Related Work 66

Replicant solves since Rx is trying to allow crashed applications to continue executing,

while Replicant is trying to detect and eliminate malicious or erroneous activity from a

group of replicas. However, Rx and Replicant are similar in that they both attempt to

add diversity into re-execution. Future work in Replicant may explore Rx-like diversity

in redundant execution, such as varying the version of glibc.

8.3.2 Security and Diversity

The idea of application-level redundancy for reliability was introduced in 1977 by Avizie-

nis et al. with N-version programming [2] and recently there have been a plethora of

projects that introduce diversity into replicas for the purposes of increasing security and

reliability. The N-Variant [14] framework aims to provide highly secure systems by in-

troducing differences between replicas such that it becomes very hard for an attacker to

compromise them all with the same input. On the other hand, TightLip [68] provides one

replica with access to sensitive data, while providing the other replica with “scrubbed”

data. If the outputs of the replicas diverge, then the kernel can detect that the applica-

tion may be leaking sensitive data and take appropriate action. Similarly, Doppelganger

uses two web browsers with different cookie jar contents to detect which cookies need to

be stored and which can be safely discarded [54].

An important short coming of previous work in this area is the inability to deter-

ministically replicate shared memory accesses. Our work focused on filling in this gap,

in a way that would allow shared memory workloads to be replicated on multiprocessor

systems.

8.4 Replay Debugging

Because Replicant intercepts, records and replays system call inputs, it is also related

to systems that support deterministic replay. For example, both LibLog [24] and Flash-

Chapter 8. Related Work 67

back [60], record system calls from within an OS kernel, and ReVirt [17] supports replay

for an entire virtual machine. ReVirt can replay asynchronous interrupts by recording

the instruction pointer and branch taken counter, thus allowing ReVirt to replay the

scheduling of processes precisely. Unfortunately, as the ReVirt authors point out, this

technique does not enable deterministic replay on a multiprocessor.

The DieHard project randomizes heap usage across several replicas to detect mem-

ory safety violations [3]. Replicant can provide similar guarantees, but does so from the

operating system kernel rather than in user space. This allows Replicant to be used for

security applications. Also, DieHard cannot deterministically replicate shared memory

workloads and only supports very limited applications. A similar project, Extermina-

tor [43], uses the DieHard memory randomization engine, but is able to automatically

generate a patch when an error occurs. One of Exterminator’s modes of operation uses

replication to compare multiple heap layouts when performing its analysis. However, Ex-

terminator’s replication determinism is limited to application that do not communicate

through shared memory.

Finally, our work is most closely related to previous work by LeBlanc et al. and

their efforts in debugging parallel programs [35]. With Instant Replay, the authors were

able record the relative ordering of significant events and use that order during replay to

ensure that processes accessing shared recourses would do so in a deterministic ordering.

This also included the order in which shared memory regions were accessed. However,

Instant Replay benefited from many simplifying assumptions. The applications supported

for replay did not receive any non-deterministic input from the operating system on

successive runs, such that no input buffering was required. Also, Instant Replay is simply

an event log suitable for replay of simple applications. Our sequential region approach

has been demonstrated to effectively replicate access ordering to shared memory on large

scale, modern applications in real-time. Further our infrastructure is implemented in the

operating system kernel, allowing it to be suitable for security sensitive applications.

Chapter 9

Future Work

The methods outlined in this thesis have identified the feasibility of annotating applica-

tion source code in order to support redundant execution of shared memory workloads

on multiprocessor systems. While our prototype implementation achieves the goals we

set out in Section 4.1, several important improvements warrant discussion: performance,

n-replica generalization and automatic annotation.

9.1 Performance Improvements

There are two inefficiencies that were described in our implementation that deserve special

consideration. (1) We have to search for the correct domain structure in the kernel when

starting or ending a sequential region. Although caching is used to eliminate much of

the searching, an application is often required to perform a linear search with the added

benefit of a most recently used (MRU) optimization. (2) Applications will experience

slowdown due to out of turn waiting.

Although linear search performs well on applications with a small number of sequential

regions at any given time, such as Apache and Squid, applications with many sequen-

tial regions will suffer drastic performance degradation when searching. While the MRU

optimization is sufficient for our test environment, a more robust and complete implemen-

68

Chapter 9. Future Work 69

tation should consider a data structure that facilitates scalable search while maintaining

efficiency in insertion and deletion. Two potential data structures that would serve our

purpose are hash tables and trees.

A hash table could provide O(1) lookup, but would require some static amount of

memory to be allocated upfront. A hash table implementation would also likely use

chaining to handle collisions, which has the potential to degrade to the performance

of the chain data structure, such as a linked list or a tree. A better solution may be

to use a balanced tree data structure, such as a red-black tree [27]. A red-black tree

is a self balancing binary search tree that is already widely used in the Linux kernel,

particularly in the virtual memory management subsystem. This solution would have no

memory preallocation requirement, which is better suited to the typically small number

of sequential region domains that we have observed. Also, because of the binary search

property, lookup is performed in O(log n) time. For an application such as MySQL, which

initializes slightly more than 40,000 sequential region domains in our test configuration,

a red-black tree lookup would require only slightly more than 10 node traversals in the

worst case.

To reduce out of turn waiting, applications should use as few sequential regions as

possible, and sequential regions that do exist should be distributed over fine grained

domains. This mantra maps well to existing lock practice. However, applications that

experience slowdown due to out of turn waiting can also benefit from more intelligent

scheduling. An intelligent, or sequential region aware, scheduler may be able to help

avoid out of turn waiting by only scheduling an application that is next to acquire a

sequential region. Unfortunately, the scheduler does not have a priori knowledge of

when an application will attempt to enter a sequential region. However, if the scheduler

could detect when a sequential region domain has a backup of waiting threads, it could

attempt to prioritize the known next task. The main disadvantage of implementing an

intelligent scheduler would be the potential for task starvation, or priority inversion [52].

Chapter 9. Future Work 70

9.2 N-replica Generalization

Extending the current implementation to n-replica is conceptually straight forward. Each

domain structure, depicted in Figure 5.4, currently contains 2 sub-domains. The purpose

of the sub-domain is to maintain replica specific data, such as the current task holding

a domain busy and a list of waiters. In order to support any number of replicas, n, we

first extend the domain structure to contain n sub-domains.

A generalized solution would still require one replica to act as master on a per-domain

bases. As in the 2-replica case, the replica acting as master would be dynamically assigned

to the replica that is currently executing furthest ahead. All other replicas would then

follow the ordering specified by the master replica. Our current implementation maintains

the ordering task list as a member of the domain structure. It is possible to maintain

this property in a n-replica implementation, however, it would require that each replica

maintain its progress in the tasks list. Alternatively, the tasks list can be moved into each

sub-domain, which would require more allocation, but result in a simplified algorithm.

The only other added complexity introduced by generalizing to a n-replica design would

be storing the order for each replica and correctly waking up waiting threads from each

replica. Each of these requirements may be implemented independently and would only

require a modest engineering effort above what is currently implemented.

Our system currently maintains one list of domains per replicated application. The list

has two sortings where one is maintained in initialized order and the other is maintained

in most recently used order. It would be more efficient to maintain a data structure of

existing domains per-replica. If the searching performance improvements described in

the previous section are implemented, we could have a tree data structure linking each

of the sub-domains of a particular replica. This would allow each replica to search the

list of domains efficiently while still allowing arbitrarily different label values to identify

a sequential region domain across replicas.

Chapter 9. Future Work 71

9.3 Automatic Annotations

Our current heuristic is to map POSIX Threads API calls to sequential regions in the ap-

plication. Although this method seems logical, it has several drawbacks in practice. First,

we require constructs such as domain aliasing to bridge the gap between the application

source code and our in kernel implementation. Secondly, many shared memory accesses

are performed outside of critical sections protected by locks. This section outlines two

potential alternative approaches to automatically insert sequential region annotations.

9.3.1 glibc Integration

While annotating an application around the POSIX Threads library API provides a

portable and intuitive solution, it is not able to take advantage of the underlying im-

plementation of the GNU C Library, glibc. This is exemplified by the requirement of

domain aliasing described in Section 5.3. By directly instrumenting the glibc library,

we can remove the gap that exists between application level annotations and our kernel

level support. This does not provide a method for annotating code segments that access

shared memory outside of locks, but does allow for a cleaner interface than that described

in Section 5.4.

As a first attempt at annotating the glibc library, we have compiled version 2.4-4

with sequential regions in all of the low level lock macros, as well as the macros used

for atomic operations. Our annotations have focused only on the i386 architecture.

These macros are used throughout the glibc source code to support mutual exclusion.

For example, a call to the stdio library function printf will result in a low level lock

operation on the file stream for standard output. This prevents multiple threads from

mangling their output when writing to the same file descriptor. The low level lock facility

in glibc is also used in the NPTL implementation of the POSIX Threads standard. By

annotating the low level lock macros and those used for atomic operations, the kernel is

Chapter 9. Future Work 72

able to interpose on most of the explicit shared memory access made by glibc.

Unfortunately, all of our added sequential regions currently belong to be same domain.

This is due to the lack of an internal lock initialization interface in glibc. Any internal

function needing mutual exclusion support can initialize a lock statically with the value

LLL MUTEX LOCK INITIALIZER, or simply set the value to zero. Locks are often members

of a structure, which become initialized when the structure is zeroed out with a memset-

like operation. A significant engineering effort would be required to locate all of the

lock initializations and in turn insert the initialization of a sequential region domain. An

alternative solution would be to automatically infer a new domain in the kernel on the

first observation of a new domain identifier. We have not explored this approach and it

remains as an interesting future work.

If glibc is annotated with extra calls to the kernel on every shared memory ac-

cess, then it would also be desirable to enable the sequential region annotations at run-

time, depending on the needs of the application. The pthread create function takes

a pthread attr t pointer as an argument that can be used to specify attributes to be

applied to the new thread. Several of the available attributes are platform specific and

are denoted with a trailing NP, indicating that these options are not portable. Some

attributes include error checking enforcement, PTHREAD MUTEX ERRORCHECK NP, and also

allowing recursive calls to locking and unlocking functions (recursive calls are typically

not defined under the POSIX standard), PTHREAD MUTEX RECURSIVE NP. A similar option

could be added for redundant execution support, e.g. PTHREAD MUTEX REPLICATABLE NP.

By enabling this attribute, the glibc implementation could set a flag in the per-thread

state that indicates that sequential region calls must be made to the kernel on shared

memory accesses.

There remain many cases in the glibc source code where hand written assembly files

use atomic operations, such as compare-and-exchange, which fall outside of our instru-

mentation. In order to have a completely annotated library, all of these cases must be

Chapter 9. Future Work 73

located. Unfortunately, this requires significant engineering effort due to locating target

code sections and understanding the semantics well enough to place efficient instrumenta-

tion. However, it is important to note that, because Replicant allows replicas to execute

independently, strict determinism in glibc is not required, and we have not had the need

to locate these remaining unannotated regions. The following section describes a poten-

tial method for inferring the complete placement of sequential regions based on source

code analysis.

9.3.2 Static Analysis

In general, the use of locks as a mechanism for determining sections of code that access

shared memory has proved inadequate. This is best demonstrated by the effort required

to port applications for redundant execution on Replicant in Table 6.1. A potentially

promising alternative may be to perform static analysis on the application source code

to determine all instructions that operate on shared memory. In this effort, a source-to-

source transformation tool, such as CIL, could be used to insert the required annotations

for sequential region initialization, entry and exit points, and so on [42].

There are several drawbacks to this approach. First, the translation tool would need

to understand all language constructs that are used in manipulation of shared memory,

including inline assembly code. The tool would also need to understand how annotations

should be placed for efficiency (e.g. fine grained sequential regions). Second, it would re-

quire a very intelligent source code analysis tool to identify the minimum set of sequential

regions that are needed for replication on Replicant. Recall that Replicant only requires

shared memory accesses that effect the value of external outputs to be annotated. A

formal description of this class of sequential region has not been identified that would be

suitable for use in source code analysis.

Chapter 10

Conclusion

We feel the recent trend toward multiprocessors on commodity architectures will facilitate

the use of redundant execution as an inherently parallelizable application for under-

utilized processing cores. Previous work has shown that kernel level redundant execution

can be successfully applied to security applications [14, 68]. However, these systems have

been unable to support redundant execution of shared memory workloads. This is an

important class of application because multi-threading is commonly used to parallelize

applications, where shared memory is used for inter-thread communication and message

passing. As multiprocessors become more prevalent on commodity hardware, the use of

multi-threading will increase in an effort to effectively utilize processing cycles.

Multi-threaded applications are non-deterministic because the scheduling of individ-

ual threads will depend on many non-deterministic factors, such as the amount of time

spent waiting for device input. If a thread is able to acquire a lock without waiting

in one run of a multi-threaded application, there is no guarantee that the same thread

will deterministically acquire the same lock at the same time on successive runs of that

application. In order to make shared memory access deterministic, we record the order of

threads that access each area of shared memory and enforce that this order is replicated

in each instance of the application. Since access to shared memory is not made explicit

74

Chapter 10. Conclusion 75

to the operating system kernel by user space threads, we use source code annotations to

inform the kernel before and after shared memory access is made. While manual anno-

tation can be a burden on the application developer, we have found that, for the most

part, annotations can be inferred from the use of locks already present in an application.

Further, when a threading library, such as libpthread, is used, access to application

source code is not required. This is because the use of synchronization primitives are

typically made through library calls, which can be intercepted and annotated at runtime.

Multi-threaded applications normally protect shared memory access with synchro-

nization primitives. Our system uses synchronization primitives, such as lock and unlock

operations, to automatically infer the placement of annotations. However, we have found

that there are cases where developers are able to increase performance by avoiding syn-

chronization. Narayanasamy et al. define this behaviour as as benign data races and

have shown how to automatically classify these races into five descriptive categories [41].

Our system cannot currently detect these races, and manual effort is required to find

and properly annotate their use. Automatically annotating benign data races remains

interesting future work.

Kernel level redundant execution is an attractive use for the spare processing cycles

that are predicted on future commodity multiprocessors. While redundant execution is

complicated by non-deterministic multi-threaded applications, our work demonstrates,

as proof-of-concept, that deterministically scheduling threads over shared memory op-

erations is a feasible approach for enforcing the required determinism with acceptable

overheads.

Appendix A

Example Annotated Application

A section of a medium sized application, depicted below, has been annotated with our

added system calls so that it may now be deterministically replicated. The application

is slightly simplified for clarity, error checking has been removed, and only details the

consumer thread function.

In actuality, the placement of annotations are entirely inferred automatically from

the use of pthread functions.

1 struct queue {
2 pthread cond t not empty ;
3 pthread mutex t l ock ;
4 int count ; /∗ number o f i tems ∗/
5 struct node ∗head ;
6 } ;
7
8 void ∗ consumer (void ∗ arg)
9 {

10 struct queue ∗queue = (struct queue ∗) arg ;
11 struct node ∗node ;
12 int id = g e t t i d () ; /∗ l i n u x only , not p o r t a b l e . ∗/
13
14 while (1) {
15 /∗ beg in the c r i t i c a l s e c t i on ∗/
16 beg in s eq (&queue−>l o ck) ;
17 pthread mutex lock(&queue−>l o ck) ;

76

Appendix A. Example Annotated Application 77

18
19 /∗ i f the queue i s empty , then we must wai t f o r
20 the producer to f e ed us something . ∗/
21 i f (queue−>count == 0) {
22 pthread cond wait (&queue−>not empty ,
23 &queue−>l o ck) ;
24
25 i f (queue−>count == 0)
26 goto out unlock ;
27 }
28
29 node = dequeue (queue) ;
30
31 /∗ end the c r i t i c a l s e c t i on ∗/
32 pthread mutex unlock(&queue−>l o ck) ;
33 end seq(&queue−>l o ck) ;
34
35 p r i n t f (‘ ‘−− thread %d consumed %d\n ’ ’ , id ,
36 node−>value) ;
37 f r e e (node) ;
38 }
39 out :
40 return NULL;
41 out unlock :
42 pthread mutex unlock(&queue−>l o ck) ;
43 end seq(&queue−>l o ck) ;
44 goto out ;
45 }
46
47 int main (int argc , char ∗∗ argv)
48 {
49 struct queue queue ;
50 pthread t p , c ;
51
52 /∗ i n i t i a l i z e the mutex and the c ond i t i ona l ∗/
53 pthread mutex in i t (&queue . lock , NULL) ;
54 p th r ead cond in i t (&queue . not empty , NULL) ;
55
56 i n i t s e q (&queue . l o ck) ;
57 a l i a s s e q (&queue . lock , &(queue . not empty) . da ta . f u t e x)
58
59 /∗ c r ea t e the consumer ∗/
60 pth r ead c r ea t e (&c , NULL, consumer , &queue) ;
61 . . .

Bibliography

[1] The National Aeronautics and Space Administration (NASA). Report on a Technical

Comparison of the Apollo Spacecraft Guidance Computer with a Proposed New

Design, July 1963. 8.3.1

[2] Algirdas Avizienis and Liming Chen. On the Implementation of N-Version Program-

ming for Software Fault Tolerance During Execution. In Proceedings of the 1977

IEEE International Computer Software & Applications Conferencen (COMPSAC),

pages 149–155, November 1977. 8.3.2

[3] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic Memory Safety

for Unsafe Languages. In Proceedings of the 2006 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 158–168, June

2006. 1, 8.4

[4] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine, Jim

Klecka, and Jim Smullen. NonStop Advanced Architecture. In International Con-

ference on Dependable Systems and Networks (DSN), pages 12–21, June 2005. 1,

2.1, 8.3.1

[5] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly Media,

Inc., November 2005. 1, 5.1

[6] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based Fault-tolerance. ACM

Transactions on Computer Systems (TOCS), 14(1):80–107, February 1996. 2.1, 3.2

78

Bibliography 79

[7] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and Proac-

tive Recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461,

November 2002. 8.3.1

[8] Brian Caswell, Jay Beale, James C. Foster, and Jeremey Faircloth. Snort 2.0 Intru-

sion Detection. Syngress, February 2003. 8.1

[9] Peter M. Chen and Brian D. Noble. When Virtual Is Better Than Real. In Proceed-

ings of the 8th Usenix Workshop on Hot Topics in Operating Systems (HOTOS),

May 2001. 8.3.1

[10] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum.

Understanding Data Lifetime via Whole System Simulation. In Proceedings of the

13th USENIX Security Symposium, pages 321–336, August 2004. 6.5

[11] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding Your

Garbage: Reducing Data Lifetime. In Proceedings of the 14th USENIX Security

Symposium, pages 331–346, August 2005. 6.5

[12] Alan L. Cox, Kartik Mohanram, and Scott Rixner. Dependable 6= Unaffordable.

In Proceedings of the Workshop on Architectural and System Support for Improving

Software Dependability, pages 58–62, October 2006. 8.3.1

[13] Benjamin Cox. Using the N-Variant System Framework, 2007.

http://www.cs.virginia.edu/ btc4w/software/nvariant/ (Last accessed:

2007/07/30). 7.2

[14] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack

Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-Variant Systems:

A Secretless Framework for Security through Diversity. In Proceedings of the 15th

USENIX Security Symposium, pages 105–120, August 2006. 1, 2.1, 4.1, 7.2, 8.3.2,

10

Bibliography 80

[15] Edsger W. Dijkstra. Hierarchical Ordering of Sequential Processes. In Acta Infor-

matica, pages 115–138, June 1971. 2.2.1

[16] Ulrich Drepper and Ingo Molnar. The Native POSIX Thread Library for Linux,

February 2005. http://people.redhat.com/drepper/nptl-design.pdf (Last ac-

cessed: 2007/08/11). 2.2.2

[17] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.

Chen. ReVirt: Enabling Intrusion Analysis Through Virtual-Machine Logging and

Replay. In Proceedings of the 5th Symposium on Operating Systems Design and

Implementation (OSDI), pages 211–224, December 2002. 3.1, 3.2, 8.4

[18] Henry Hanping Feng et al. Anomaly Detection Using Call Stack Information. In

Proceedings of the 2003 IEEE Symposium on Security and Privacy, May 2003. 8.1.2

[19] Henry Hanping Feng, Jonathon T. Giffin, Yong Huang, Somesh Jha, Wenke Lee, and

Barton P. Miller. Formalizing Sensitivity in Static Analysis for Intrusion Detection.

In Proceedings of the 2004 IEEE Symposium on Security and Privacy, May 2004.

8.1.2

[20] Michael J. Fischer and Alan Michael. Sacrificing Serializability to Attain High Avail-

ability of Data in an Unreliable Network. In Proceedings of the 1982 Symposium on

Principles of Database Systems, pages 70–75, 1982. 2.1

[21] Stephanie Forrest and Thomas A. Longstaff. A Sense of Self for Unix Processes. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, May 1996. 8.1

[22] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss, Futexes and Fur-

wocks: Fast Userlevel Locking in Linux. In Proceedings of the Ottawa Linux Sym-

posium, June 2002. 2.2.3

Bibliography 81

[23] Debin Gao, Michael K. Reiter, and Dawn Song. On Gray-Box Program Tracking for

Anomaly Detection. In Proceedings of the 2004 Usenix Security Symposium, August

2004. 8.1.2

[24] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay Debugging

for Distributed Applications. In Proceedings of the 2006 Annual Usenix Technical

Conference, pages 189–195, June 2006. 8.4

[25] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Efficient Context-Sensitive

Intrusion Detection. In Proceedings of the 11th Network and Distributed System

Security Symposium, February 2004. 8.1.2

[26] The Open Group. IEEE Std 1003.1: pthreads.h, 2004.

http://www.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html

(Last accessed: 2007/06/14). 2.2.1

[27] Leo J. Guibas and Robert Sedgewick. A Dichromatic Framework for Balanced Trees.

In Proceeding of the 19th IEEE Symposium on Foundations of Computer Science,

pages 8–21, 1978. 9.1

[28] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software

Transactional Memory for Dynamic-Sized Data Structures. In Proceedings of the

22nd Symposium on Principles of Distributed Computing (PODC), pages 92–101,

July 2003. 2.2

[29] Intel Corp. Teraflops Research Chip, 2007.

http://www.intel.com/research/platform/

terascale/teraflops.htm (Last accessed: 2007/07/30). 4.1, 7.1.1

[30] Poul-Henning Kamp and Robert N.M. Watson. Jails: Confining the omnipotent

root. In Proceedings of the 2nd International System Administration and Networking

Conference (SANE), May 2000. 8.2

Bibliography 82

[31] Kim Potter Kihlstrom, L.E. Moser, and P.M Melliar-Smith. The SecureRing Proto-

cols for Securing Group Communication. In Proceedings of the Thirty-First Annual

Hawaii International Conference on System Sciences, January 1998. 8.3.1

[32] Rivka Ladin, Barbara Liskov, and Sanjay Ghemawat. Providing High Availability

Using Lazy Replication. ACM Transactmns on Computer Systems, 10(4):360–391,

November 1992. 2.1

[33] Leslie Lamport. Paxos Made Simple. ACM SIGACT News (Distributed Computing

Column), 32(4):18–25, December 2001. 2.1, 8.3.1

[34] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Prob-

lem. ACM Transactions on Programming Languages and Systems, 4(3):382–401,

July 1982. 2.1, 8.3.1

[35] Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging Parallel Programs

with Instant Replay. IEEE Transactions on Computers, 36(4):471–482, April 1987.

8.4

[36] Zhenkai Liang, V.N. Venkatakrishnan, and R. Sekar. Isolated Program Execution:

An Application Transparent Approach for Executing Untrusted Programs. In Pro-

ceedings of the 19th Annual Computer Security Applications Conference (ACSAC),

December 2003. 8.2

[37] Inc. Linux Kernel Organization. The Linux Kernel Archives, 2007.

http://kernel.org/ (Last accessed: 2007/07/30). 1

[38] Dominic Lucchetti, Steven K. Reinhardt, and Peter M. Chen. ExtraVirt: Detect-

ing and Recovering from Transient Processor Faults. In Work-in-progress, ACM

Symposium on Operating Systems Principles (SOSP), October 2005. 8.3.1

Bibliography 83

[39] Dahlia Malkhi and Michael K. Reiter. Secure and Scalable Replication in Phalanx. In

Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems (SRDS),

1998. 8.3.1

[40] MySQL AB, 2007. http://www.mysql.com/ (Last accessed: 2007/08/11). 6.4

[41] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad

Calder. Automatically Classifying Benign and Harmful Data Races Using Replay

Analysis. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), June 2007. 4.4, 10

[42] George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer. CIL: Inter-

mediate Language and Tools for Analysis and Transformation of C Programs. In

Proceedings of the 2002 Conference on Compiler Construction, pages 213–228, 2002.

9.3.2

[43] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Exterminator: Automati-

cally Correcting Memory Errors with High Probability. In Proceedings of the 2007

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), pages 1–11, June 2007. 1, 8.4

[44] Yoshihiro Oyama, Koichi Onoue, and Akinori Yonezawa. Speculative Security

Checks in Sandboxing Systems. In Proceedings of the IEEE International Paral-

lel and Distributed Processing Symposium, April 2005. 8.1.2

[45] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An Efficient and

Portable Web Server. In Proceedings of the 1999 Usenix Annual Technical Con-

ference, pages 199–212, June 1999. 2.2

[46] Angshuman Parashar, Anand Sivasubramaniam, and Sudhanva Gurumurthi. SlicK:

Slice-based Locality Exploitation for Efficient Redundant Multithreading. In Pro-

Bibliography 84

ceedings of the 12th International Conference Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 95–105, October 2006. 8.3.1

[47] The PaX Team, 2007. http://pax.grsecurity.net (Last accessed: 2007/08/11).

2.1

[48] Jesse Pool, Ian Sin Kwok Wong, and David Lie. Relaxed Determinism: Making Re-

dundant Execution on Multiprocessors Practical. In Proceedings of the 11th Usenix

Workshop on Hot Topics in Operating Systems (HOTOS), May 2007. 1, 2.1, 3.3, 8

[49] Feng Qin, Joe Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: Treating

Bugs as Allergies – A Safe Method to Survive Software Failure. In Proceedings of

the 20th ACM Symposium on Operating Systems Principles (SOSP), pages 235–248,

Oct 2005. 8.3.1

[50] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient Fault Detection via

Simultaneous Multithreading. In Proceedings of the 27th International Symposium

on Computer Architecture (ISCA), pages 25–36, June 2000. 8.3.1

[51] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-Based

Method for Detecting Anomalous Program Behaviors. In Proceedings of the 2001

IEEE Symposium on Security and Privacy, May 2001. 8.1, 8.1.2

[52] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Pro-

tocols: An Approach to Real-Time Synchronization. IEEE Transactions on Com-

puters, 39(9):1175–1185, September 1990. 9.1

[53] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. On the Effectiveness of Address-Space Randomization. In Proceedings

of the 11th ACM Conference on Computer and Communications Security (CCS),

pages 298–307, October 2004. 2.1

Bibliography 85

[54] Umesh Shankar and Chris Karlof. Doppelganger: Better Browser Privacy Without

the Bother. In Proceedings of the 13th ACM Conference on Computer and Commu-

nications Security (CCS), pages 154–167, October 2006. 8.3.2

[55] Nir Shavit and Dan Touitou. Software Transactional Memory. Distributed Comput-

ing, Special Issue, 10:99–116, 1997. 2.2

[56] Vikram Shukla. Linux threading models com-

pared: LinuxThreads and NPTL, July 2006.

http://www-128.ibm.com/developerworks/linux/library/l-threading.html?

ca=dgr-lnxw07LinuxThreadsAndNPTL (Last accessed: 2007/06/14). 2.2.2

[57] Timoethy J. Slegel, Robert M. Averill III, Mark A. Check, Bruce C. Gaimei,

Barry W. Krumm, Christopher A. Krygowski, Wen H. Li, John S. Liptay, John D.

MacDougall, Thomas J. McPherson, Jennifer A. Navarro, Eric M. Schwarz, Kevin

Shum, and Charles F. Webb. IBM’s S/390 G5 Microprocessor design. IEEE Micro,

19(2):12–23, March 1999. 8.3.1

[58] SLOCCount: Counting Physical Source Lines of Code, 2007.

http://www.dwheeler.com/sloccount/ (Last accessed: 2007/08/11). 6.1,

7.2

[59] Squid Web Proxy Cache, 2007. http://www.squid-cache.org/ (Last accessed:

2007/08/11). 6.3

[60] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and

Yuanyuan Zhou. Flashback: A Lightweight Extension for Rollback and Determin-

istic Replay for Software Debugging. In Proceedings of the 2004 Annual Usenix

Technical Conference, pages 29–44, June 2004. 3.1, 8.4

Bibliography 86

[61] SysBench: A System Performance Benchmark, 2007.

http://sysbench.sourceforge.net/ (Last accessed: 2007/08/11). 7.1.2,

7.1.3

[62] The Apache HTTP Server Project, 2007. http://httpd.apache.org/ (Last ac-

cessed: 2007/08/11). 6.2

[63] The Firefox Web Browser, 2007. http://www.mozilla.com/firefox/ (Last ac-

cessed: 2007/08/11). 6.5

[64] VMware, Inc., 2007. http://www.vmware.com (Last accessed: 2007/08/11). 7.2

[65] David Wagner and Drew Dean. Intrusion Detection via Static Analysis. In Pro-

ceedings of the 2001 IEEE Symposium on Security and Privacy, May 2001. 8.1,

8.1.1

[66] Webstone: The Benchmark for Web Servers, 2007.

http://www.mindcraft.com/benchmarks/webstone/ (Last accessed: 2007/08/11).

7.1.2, 7.1.3

[67] Ian J. Sin Kwok Wong. Kernel Support for Redundant Execution on Multiprocessor

Systems, July 2007. 1, 2.1, 3.3, 8

[68] Aydan Yumerefendi, Benjamin Mickle, and Landon Cox. TightLip: Keeping Appli-

cations from Spilling the Beans. In 4th Symposium on Networked Systems Design

and Implementation (NSDI), April 2007. 1, 2.1, 4.1, 8.3.2, 10

	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Background
	2.1 Redundant Execution
	2.2 Programming Concurrency
	2.2.1 Concurrency, Shared Memory and Locking
	2.2.2 Native POSIX Thread Library
	2.2.3 Fast Userspace Mutex

	2.3 Multiprocessor Systems

	3 Overview
	3.1 Problem Description
	3.2 Argument for Annotations
	3.3 Replicant

	4 Architecture
	4.1 Design Considerations
	4.2 Source Code Annotations
	4.3 Guarantees
	4.4 Discussion

	5 Prototype Implementation
	5.1 Domains
	5.2 Sequential Regions
	5.3 GNU/Linux POSIX Support
	5.4 Automatic Annotations

	6 Applications
	6.1 Overview
	6.2 Apache HTTP Server
	6.3 Squid Web Proxy Cache
	6.4 MySQL Database Server
	6.5 Firefox
	6.6 Discussion

	7 Evaluation
	7.1 Performance
	7.1.1 Methodology
	7.1.2 Results
	7.1.3 Output Correctness
	7.1.4 Discussion

	7.2 General Applicability

	8 Related Work
	8.1 Intrusion Detection
	8.1.1 Static Analysis
	8.1.2 Dynamic Analysis

	8.2 Program Isolation
	8.3 Redundant Execution
	8.3.1 Fault-Tolerance
	8.3.2 Security and Diversity

	8.4 Replay Debugging

	9 Future Work
	9.1 Performance Improvements
	9.2 N-replica Generalization
	9.3 Automatic Annotations
	9.3.1 glibc Integration
	9.3.2 Static Analysis

	10 Conclusion
	A Example Annotated Application
	Bibliography

