Manitou: A Layer-Below Approach to Fighting Malware

Lionel Litty
Department of Computer Science
University of Toronto

llitty@cs.toronto.edu

ABSTRACT

Unbeknownst to many computer users, their machines are
running malware. Others are aware that strange software
inhabits their machine, but cannot get rid of it. In this pa-
per, we present Manitou, a system that provides users with
the ability to assign, track and revoke execution privileges
for code, regardless of the integrity and type of operating
system the machine is using.

Manitou is implemented within a hypervisor and uses the
per-page permission bits to ensure that any code contained
in an executable page corresponds to authorized code. Man-
itou authenticates code by taking a cryptographic hash of
the content of a page right before executing code contained
in that page. Our system guarantees that only authorized
code can be run on the system.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms

Security, Human Factors

Keywords

Manitou, malware removal, malware protection, security ar-
chitecture

1. INTRODUCTION

In recent years, many computer users have had to increas-
ingly deal with undesirable software installed on their home
or even work computers. This software, referred to as mal-
ware, performs a variety of nefarious deeds: it can leak cre-
dentials or private information, pester the user with ads, or
use the computer’s resources in a botnet. These botnets are
then used to further disrupt the Internet by sending spam

(© ACM, (2006). This is the author’s version of the work. It isgped here
by permission of ACM for your personal use. Not for redisitibn. The

definitive version was published B®SID’06 (October 21, 2006, San Jose,

California, USA). http://doi.acm.org/10.1145/118130881311.

David Lie
Department of Electrical and Computer
Engineering
University of Toronto

lie@eecg.toronto.edu

or performing distributed denial-of-service (DDoS) attacks.
To make matters worse, the quality of malware code is often
low, impacting the reliability of the whole system. Alarm-
ingly, recent data has shown that millions of computers are
now running some form of malware [7].

While some malware installs itself by exploiting vulner-
abilities in applications or the operating system, in many
cases, the malware comes bundled with enticing software
such as games or screensavers, and is unwittingly installed
by users themselves [8]. Unfortunately, once malware infects
a system, it can be difficult to remove. A senior Microsoft
employee has even acknowledged that in some cases removal
is impossible and advises customers to reinstall their ma-
chines from scratch [9].

We believe that operating systems currently fail users by
not giving them adequate control over what software is run
on their computer. They rely on the unreasonable assump-
tion that users do not make mistakes. Thus, when users do
make mistakes, they provide no mechanism to revoke the
execution of undesirable code, and as a result offer little
recourse for users who were tricked into installing software
they did not really want. In addition, because most operat-
ing systems allow code to be loaded in the kernel, malware
is able to modify the privileged code base, wedging itself
deeper into the system and defeating malware detection and
removal tools. We feel that it is malware that deliberately
targets the privileged code in the kernel, which represents
the gravest danger to users.

In this paper, we present a mechanism that enables users
to reliably identify the code running on their machine, as
well as always be able to revoke execution privileges for any
application, even if their machine has been infected by mal-
ware. Motivated by the observation that malware is able
to tamper with the operating system, we advocate an OS-
independent approach to controlling the software that runs
on a system. We show that this goal is not unrealistic by
outlining a system called Manitou, which runs on current
commodity hardware and operating systems.

Manitou utilizes per-page permission bits, which are avail-
able on current commodity hardware. Manitou is located in
a hypervisor and uses these bits to ensure that any code
contained in an executable page corresponds to authorized
code. An application becomes authorized when the user
adds hashes of its code pages to a list that represents all
authorized code for the system. By restricting the execu-
tion of code to that which is present in the list authorized
by the user, Manitou can guarantee that only binary code
explicitly blessed by the user can run. In addition, Manitou

permits the user to revoke or suspend an application’s ex-
ecution rights at any time by removing its hashes from the
list. The user maintains this list via a channel with Manitou,
which installed software cannot tamper with.

We begin by outlining the mechanisms we use to identify
and enforce program execution control in Sections 2 and 3.
Then, we discuss how users can install new software on their
machines in Section 4. We outline preliminary results in
Section 5. We examine the current limitations of our work
in Section 6 and we finish with related work and conclusions
in Sections 7 and 8.

2. IDENTIFYING CODE

Ideally, computer systems should make decisions about
which programs are allowed to execute based on the actions
each program will take. Unfortunately, any policy based on
such a requirement is untenable because trying to determine
if a program will perform malicious actions is a generally un-
decidable problem®. Thus, a more practical alternative is to
use the instructions that make up the program to authen-
ticate it. This method is in common use — for years, cryp-
tographic hashes have been used to protect the integrity of
program images from corruption and tampering.

The key challenge Manitou addresses is to use this sim-
ple mechanism to ensure that no code can ever be exe-
cuted without first having had a hash of its image authenti-
cated. By identifying programs just before execution, Man-
itou avoids several problems with identifying programs by
examining their file system image. For example, once the
malware is resident in memory, it can remove any evidence
of itself from the file system by deleting images of its exe-
cutable or undoing any modifications it has made to other
programs. By doing this, one might think that such mal-
ware could simply be removed by a reboot. However, such
malware typically re-installs itself on the file system again
right before system shutdown, after all security software has
been turned off by the OS, and thus survives the reboot [6].
Such malware will evade detection techniques that rely on
periodic checking of integrity.

In other cases, malware operates by injecting code into
other running programs. By exploiting code injection bugs
or abusing privileges that enable them to load code into a
kernel, malware can execute by piggy-backing on programs
whose file system images were authenticated as correct when
they were loaded in memory. In contrast, Manitou avoids
all these problems by validating code just before execution.
Regardless of how the attacker tries to hide the presence of
their malware, Manitou will always be able to detect the
presence of malware if and when it is executed.

3. ENFORCEMENT MECHANISM

Aside from being able to enforce control over the execution
of code on the machine, we also want to make Manitou in-
dependent of the OS; both in the sense that Manitou should
not depend on the OS functioning correctly, since malware
frequently targets the OS kernel, and that Manitou should
work regardless of what OS the user has installed. To illus-
trate how Manitou is able to do this, we first assume the ex-
istence of a list of hashes that corresponds to authenticated
executable code. In this section, we describe how Manitou

!Note that this problem in its most general form is equiva-
lent to the halting problem.

efficiently prevents code that is not on this list from run-
ning. We defer the discussion on how Manitou constructs
and maintains this list to the next section.

To efficiently identify and authenticate code just before
execution, Manitou leverages two features currently found
on commodity hardware: paged memory, and per-page ex-
ecutable and writable bits. These features are present on
most major processor architectures, including Intel and AMD
processors, for which per-page executable bits have recently
been added. Manitou verifies each code page of a program
individually instead of verifying the entire executable file.
This means that Manitou does not have to be aware of the
semantics of the file system the OS is using. As a result,
Manitou can be implemented in a hypervisor, which is a
software layer implemented between the operating system
and the processor hardware. Hypervisors have long been
an attractive tool for implementing system security because
of the narrow interface they export and their simple imple-
mentation, which makes them less likely to contain vulner-
abilities [4]. Because Manitou operates below the OS, its
operation is independent of the OS, eliminating the need for
OS support or modifications. The hypervisor also isolates
Manitou from the OS, making it impervious to OS bugs and
misconfigurations, and providing it with secure storage that
is not accessible to the OS.

Manitou retains control of the page tables used by the
hardware to translate virtual addresses generated by the OS
and programs into physical addresses. Per-page executable
bits in these page tables are set by Manitou to indicate to the
processor which pages in memory may contain executable
code. If any program (including the OS) tries to execute
code from a page that Manitou has not marked executable,
the processor will notify Manitou with a page fault. At this
point, Manitou computes a hash of the page that caused
the fault and searches for it in its list of authorized hashes.
If the hash is found, the executable bit for the page is set,
and the code is allowed to execute. Otherwise, an illegal-
instruction exception is forwarded to the OS, causing it to
terminate the unauthorized program.

To make sure that code is not modified once it has been
allowed to run, Manitou enforces a simple rule across all vir-
tual mappings of a physical page: a physical page can either
be executable or writable, but never both. To do this, Man-
itou clears the per-page writable bits on all executable pages
to detect when they are being modified. If the OS or some
application tries to modify a page that contains executable
code, Manitou removes the executable-bit from any page ta-
ble entry that maps this physical page, effectively revoking
execute permissions for that page, and then sets the writable
bit on the page. If the program later tries to execute code
on the modified page, Manitou will compute a hash of the
new contents of the page, and revalidate it against its list of
hashes. This enables Manitou to support instances of self-
modifying code where the modified version of the program’s
code can be known a priori. For example, the Linux 2.6 ker-
nel optimizes specific sections of the kernel code depending
on the type of underlying processor. Manitou can handle
this special case correctly because it is aware of both the
original and optimized code page contents. Note that this
technique is only applicable when hashes of modified pages
can be pre-computed.

Since Manitou overrides the OS’s page access bits, Mani-
tou must determine on every page access violation whether

the violation was of Manitou’s page access policy, or whether
the violation was of the OS’s page access policy. To do this,
Manitou maintains shadow bits that hold the policy that the
OS intended for every physical page. Manitou’s policy is al-
ways more restrictive than the OS’s policy, so Manitou will
only handle faults that would have normally passed under
the OS’s policy, but occurred because of restrictions it intro-
duced. Manitou forwards all other faults to be handled by
the OS, thus giving the OS the illusion that its page access
policy is in place.

A clever attacker may attempt to modify executable code
by asking Manitou to map a physical page as writable at
one virtual address, and as executable at a different virtual
address. To prevent such a situation from occurring, Mani-
tou needs to ensure that no writable mappings of a physical
page exist before creating an executable mapping of that
page. Similarly, it needs to ensure that no executable map-
ping of a physical page exists whenever it allows a writable
mapping.

A naive solution would be to examine all page table entries
every time a page becomes executable or an executable page
becomes writable. However, this will make changing page
executable bits an expensive operation as Manitou would
have to traverse the page tables of every process in the sys-
tem each time the executable bit is modified. Instead, our
implementation maintains a frame map. The frame map
consists of one entry per physical page. Each entry records
the type of the page, as well as the number of mappings of
that page with that type. The type of a physical page can be
either “Writable”, “Executable”, or “None” and these types
are mutually exclusive. The frame map contains enough in-
formation to know whether another writable or executable
mapping of a page exists. Therefore, Manitou can avoid the
cost of validating the page tables of all processes in the com-
mon case and only performs this examination when another
mapping exists.

While Manitou relies on features of the underlying pro-
cessor, it is OS-agnostic. As a result, it does not need to
rely on assumptions about the OS implementation for cor-
rectness and only the hashes in Manitou’s list need to be
updated when the user upgrades or patches their OS. Be-
cause Manitou verifies the authenticity of kernel code just
like any other program, malware that tries to hide itself by
loading itself into the kernel will be detected by Manitou.
Manitou is a small addition to the hypervisor, ensuring that
the hypervisor remains lean and simple — our current proof
of concept consists of less than 1500 lines of code added to
the Xen hypervisor [1].

4. SOFTWARE INSTALLATION AND US-
AGE

This list of authorized code hashes needs to be managed
and protected by Manitou to prevent corruption by an ad-
versary. Because Manitou interposes on all access to hard-
ware resources by the operating system kernel, Manitou is
able to protect this list from modification by any malware
inside the OS kernel or user programs. On the other hand,
users will want the ability to install and run new programs.
To allow this, Manitou exposes an interface to modify the list
of hashes. When the user installs a new application, hashes
of the code pages of that application need to be added to
Manitou’s list of authorized hashes. We describe two com-

plementary approaches to do this.

The first approach consists of requiring new applications
to submit a signed list of code page hashes to Manitou.
Manitou maintains a list of valid signing certificates and
the list of hashes will only be accepted if the signature is
valid. While this would ensure that only authorized code is
permitted to run, this approach unfortunately requires the
establishment of a Public Key Infrastructure (PKI) to cer-
tify and distribute signing keys. Such a centralized method
for global software distribution is not acceptable as it would
severely hamper small software developers, as well as open-
source software that is distributed by source code and com-
piled individually by users. Thus, we believe the applica-
bility of this approach is limited primarily to environments
where a single entity is responsible for determining what
software can be installed on all machines, such as organiza-
tions with centralized I'T management, or to environments
allowing automatic software updates from trusted entities
to be applied to machines for individual users.

The second approach allows individual users to determine
what hashes should be added to Manitou. Hashes are added
via a trusted path between the user and Manitou that does
not involve the monitored OS. As a result, a malicious OS
or application cannot add hashes of its own. Besides, when
adding a set of hashes for a new application, the user is
asked to provide a name for that set. This name will then
help identify the application should the user later decide to
neutralize it. The details of how the set of hashes is provided
by the user to Manitou are beyond the scope of this work.
Our current solution involves mounting the file system of the
monitored OS in a distinct virtual machine and generating
the hashes from the on-disk binaries of the application.

While this second approach appears to leave Manitou vul-
nerable to the same social engineering attacks that currently
allow attackers to trick users into installing malware, Mani-
tou provides an ability that will help users get rid of installed
malware. The key is that Manitou will allow users to give
execution privileges to software by adding hashes to its list,
but guarantees that users will always be able to revoke those
privileges by removing the hashes from the list, should they
later find that the application is malicious. While the appli-
cation’s code will remain on the system, revoking its execu-
tion right has neutralized it. As a result, any software that
does not come signed by an organization the user trusts can
have its hashes installed temporarily, much the same way
that a user that is not completely trusted may be granted a
temporary and limited “guest account” on a system. Mani-
tou is not a jail, as it does not rely on a temporary sandbox.
Instead, possibly malicious applications are allowed to run
on the machine itself, with Manitou providing the guaran-
tee that such software will always be removable. We feel
that this guarantee, combined with a simpler usage model
and more compact mechanism are a desirable alternative to
complex and heavy-weight jails.

Since Manitou must verify the code pages of any program
before it executes, it also provides other useful abilities to
the user. Manitou is able to inform the user whenever a pro-
gram is executing. This can aid a user in identifying mal-
ware by informing her whenever a program executes without
her knowledge — a typical behavior for many kinds of mal-
ware. It is possible that the malware came bundled with
a seeemingly innocuous application. Manitou will help the
user make the connection between this application and the

| OS | Code (MB) | Hashes | Storage (MB) |
Win XP a 1466 | 379,184 13.02
Win XP b 1506 | 388,496 13.34
FC4 Linux 949 | 239,408 8.22

Table 1: Hash list size estimation for two popular
operating systems. The Code column indicates the
amount of executable code in megabytes, found in
those operating systems. The Hash column gives
the number of hashes this translates to, and finally
the Storage column indicates the amount of memory
in megabytes required to store the entire hash list,
assuming each hash is 256 bits 4+ 32 bits of metadata.

suspicious behavior he observes on his computer. In ad-
dition, before removing a piece of software she suspects is
malware, a user can monitor when it is being executed to
see if revoking its execution rights will break dependencies
with other software. In the case where malware came bun-
dled with another application, neutralizing the malware will
mean disabling the application as well. Finally, when a user
is about to perform a sensitive operation, she can use Man-
itou to temporarily disable the execution of software that
the user does not trust, but does not want to remove per-
manently from her system. If such software is currently ex-
ecuting, Manitou injects code into a program’s instruction
flow to make it execute a sleep system call, causing the op-
erating system to suspend the process. Later, execution of
that program can be resumed and no local program state
will have been lost.

5. PRELIMINARY RESULTS

Initially, one of our concerns was that computing hashes
of every page of executable code instead of computing a sin-
gle hash for every executable file would lead to an extremely
large list of hashes. The performance of applications may be
adversely affected due to the time required to do a lookup
into this large list of hashes, particularly if the lookup re-
sults in disk accesses because the hash list does not fit in
memory. Conventional wisdom dictates that security mech-
anisms that impact the usability of a system will eventually
be disabled by users themselves.

Thus, we began by trying to estimate the size of hash
lists for some common commodity OS installations. Table 1
shows the amount of binary code we measured on two Win-
dows XP systems currently being used by the authors and a
complete Fedora Core 4 Linux distribution with all packages
installed. We also show the number of hashes this results
in and the amount of memory required to store the hashes
in Manitou. From these results, we realized that the stor-
age overheads for such a hash list would be quite modest.
For comparison, we have observed that a common anti-virus
utility in use at the University of Toronto typically consumes
about 20 MB of memory. Given the large amounts of mem-
ory available on current machines, it is realistic to assume
that the hash list could be cached completely in memory.

To further investigate the feasibility of Manitou, we have
implemented a proof of concept system on top of the Xen
hypervisor system running Linux as our commodity OS. Our
system runs on an Intel Pentium 4 processor (version 630),
which supports per-page executable bits. In our experi-
ments, we found that since code page authentication occurs

when a page is executed for the first time, this event always
happens right after a page fault to disk because OS kernels
lazily load pages from disk when they are accessed. Mani-
tou only causes a small amount of performance degradation
since a page authentication operation consists only of a hash
calculation and a lookup into the hash list, whose time can
be made logarithmic by sorting the hash list. Both the hash
calculation and lookup occur in memory and are thus much
faster than the disk access required to fault in a page. Once
the page has been authenticated by Manitou, it does not
have to be checked again, so the authentication cost is only
incurred once per page fault. In addition, since code pages
are frequently shared read-only across many processes, all
pages in those processes only need to be checked once, fur-
ther reducing the frequency of page authentications. As a
result, we find that Manitou adds almost no overhead.

6. LIMITATIONS AND FUTURE WORK

Manitou deals solely with binary code. As such, it cannot
control malicious interpreted code, such as Javascripts or
shell scripts. While malware can be and has been written in
interpreted code, operating system kernels do not include in-
terpreters, so any code running in supervisor mode is binary
code. This means that malware that does not contain binary
code will not be able to modify the OS kernel itself and can
be easily removed by conventional methods. In addition, in-
terpreters could implement mechanisms similar to Manitou
to further protect the user. For example, the Java Virtual
Machine could hash application bytecode before translating
it.

Another current limitation of our system pertains to re-
voking execution rights for an application. This will result
in a set of hashes being removed from the list of code that
is allowed to execute and in an illegal instruction error if
that code tries to execute again, crashing the application
that tried to execute that code. If the malware has modified
code crucial to the execution of the system, e.g., by over-
writing a core system library, the system will no longer be
functional. While Manitou allows the user to identify the
culprit, an unusable system is far from ideal. We are cur-
rently working on solutions to allow system recovery in the
face of insidious malware.

In addition, our current work centers around authenticat-
ing dynamically generated code and providing a light-weight
trusted path mechanism. Programs supporting virtual exe-
cution environments, such as Java just-in-time (JIT) com-
pilers and VMware, dynamically generate and execute code.
Because this code is created by a program during run-time,
and may even be recompiled and optimized while being ex-
ecuted, the hash of the code page will not be present in
Manitou’s hash list. As a result, we must enlist the aid of
the dynamic code generation program to sandbox the appli-
cation and inform Manitou of what code it is generating.

Finally, we are also working on providing a trusted path
between Manitou and the user to make sure that malware
cannot spoof interaction with Manitou. While using a sepa-
rate channel is a viable solution, we think that we can pro-
vide a more user-friendly solution by leveraging Manitou’s
ability to dynamically restrict what code is allowed to run
on the machine.

7. RELATED WORK

There exists a number of systems that try to detect illegal
modification of binaries. One of the earliest and simplest is
Tripwire [5], which maintains cryptographic hashes of exe-
cutables on the file system, and checks these periodically.
More recently, there have been several projects using secure
coprocessors to scan parts of kernel memory and ensure that
they have not been tampered with [10, 13]. Livewire is an-
other project that implements kernel memory scanning in
a Virtual Machine Monitor (VMM) [3]. Manitou provides
stronger guarantees than these systems by verifying the in-
tegrity of all binary code on the system instead of just the
kernel or selected binaries, and is able to do so continuously
instead of just checking periodically.

Attestation tries to prove to a remote party what code is
executing on a machine, typically by computing hashes of
executables loaded in memory and then signing these hashes
with a secret signing key. One proposal is to use special-
ized hardware to compute hashes of the operating system
and low-level software, and then have the operating system
compute hashes of all applications as they are loaded [11].
The Terra Trusted VMM [2] computes and signs hashes of
virtual machine images as they are loaded, and can then at-
test for them to a remote party. All attestation techniques
suffer from a common weakness, which is that they can only
make guarantees about the state of the machine when the
measurement is taken. Manitou’s combination of measure-
ment using hashes with executable bits in the page tables
allows Manitou to guarantee that the measurements it takes
will be valid at all times.

A plethora of work exists on jailing applications to prevent
them from damaging the system. For example, SEE [12] pro-
vides one-way isolation, where the application can read data
from the system and is given the illusion that it can mod-
ify data. Later, the user can choose to commit the changes
the application believes it made to the system. The user
now faces a complex decision: commit early and risk per-
manently installing some malware, or commit late and have
a hard time reconciling several views of the system. We
feel that this “many worlds” paradigm is too complex for
the average user. Rather, Manitou sacrifices data integrity
but provides a simple, guaranteed way for users to uninstall
software, preventing it from further damaging their system.
Revocation of execution privileges can be performed even
months after the software was installed, and regardless of
where the software has hidden itself on the file system.

8. CONCLUSIONS

To combat malware, we must provide users with systems
that will prevent the execution of unauthorized code, and
let users know exactly what code is executing on their ma-
chines. In this paper, we argue that such systems are feasible
with today’s hardware and operating systems. We outline
a system we are currently building called Manitou, which
provides users with the ability to assign, as well as revoke
execution privileges to programs based on the hashes of their
code pages. In addition, users can also be notified whenever
software on their system is executed, helping them identify
potentially malicious programs and ascertain dependencies
between applications. Manitou provides these abilities re-
gardless of the integrity of the OS or the type of OS the
user is using. We believe that a simple usage model such as

this could be easily adopted by users, and help them combat
malware by making it easier to detect and recover from a
malware infection of their system.

9. ACKNOWLEDGMENTS

We would like to thank Tom Hart, Jesse Pool, Ian Sin
and Richard Ta-Min for their comments, which helped im-
prove this paper. The research presented in this paper was
supported in part by an NSERC Discovery Grant and a MI-
TACS Seed Grant.

10. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, 1. Pratt, and

A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP 2003), pages 164-177, Oct.
2003.

[2] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform
for trusted computing. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP 2003), Oct. 2003.

[3] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Proceedings of the 10th Annual
Symposium on Network and Distributed System
Security (NDSS 2003), Feb. 2003.

[4] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H.
Mason, and C. E. Kahn. A retrospective on the VAX
VMM security kernel. IEEE Transactions on Software
Engineering, 17(11):1147-1165, 1991.

[5] G. H. Kim and E. H. Spafford. The design and
implementation of Tripwire: A file system integrity
checker. In ACM Conference on Computer and
Communications Security, pages 18-29, 1994.

[6] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski,
H. J. Wang, and J. R. Lorch. Subvirt: Implementing
malware with virtual machines. In Proceedings of the
2006 IEEE Symposium on Security and Privacy, May
2006.

[7] Microsoft Antimalware Team. The Windows malicious
software removal tool: Progress made, trends
observed. Technical report, Microsoft, June 2006.

[8] A. Moshchuk, T. Bragin, S. D. Gribble, and H. Levy.
A crawler-based study of spyware in the web. In
Proceedings of the 13th Annual Symposium on
Network and Distributed System Security (NDSS
2006), Feb. 2006.

[9] R. Naraine. Microsoft says recovery from malware
becoming impossible, 2006.
http://www.eweek.com/art-
icle2/0,1895,1945808,00.asp.

[10] N. L. Petroni Jr., T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot — a coprocessor-based kernel runtime
integrity monitor. In Proceedings of the 13th USENIX
Security Symposium, pages 179-194, Aug. 2004.

[11] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the 13th
USENIX Security Symposium, pages 223-238, Aug.
2004.

[12] W. Sun, Z. Liang, R. Sekar, and V. Venkatakrishnan.
One-way isolation: An effective approach for realizing
safe execution environments. In Proceedings of the
12th Annual Symposium on Network and Distributed
System Security (NDSS 2005), Feb. 2002.

[13] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and
R. Sailer. Secure coprocessor-based intrusion
detection. In Proceedings of the 10th ACM SIGOPS
European Workshop, Sept. 2002.

