
Techniques and Tools for
De-bloating Containers

SomeshJha1, Tom Reps1,2, Sibin Mohan3, Rakesh Bobba4, David Lie5, Eric Schulte2

1 University of Wisconsin-Madison, 2 Grammatech, 3 University of Illinois at Urbana-Champaign,
4 Oregon State University, 5 University of Toronto

June 22, 2018 Debloating Containers

1

Containers in a nutshell

ÅPack resources and
configuration with
application

ÅLightweight
virtualization solution

ÅShared OS kernel

ÅPortable, easy to use

Increasingly popular

June 22, 2018 Debloating Containers 2

OS Bloat

Å¢ƻŘŀȅΩǎ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳǎ Ą abundance of services/code

3
June 22, 2018 Debloating Containers

OS Bloat
Å¢ƻŘŀȅΩǎ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳǎ Ą abundance of services/code
ÅIncreases potential attack surfaces

ÅReduces performance

ÅTens of millions of lines of code

ÅPoor isolation of kernel & applications from privileged code

ÅOnce attacker has control of OS Ą can abuse any application

ÅAll modules & services

Ånot necessary for the specialized/debloatedcontainers

ÅOur goal: Reduce the size/complexity of operating systems

4
June 22, 2018 Debloating Containers

Main Thrusts

ÅFundamental Techniques
ÅPartial Evaluation

ÅDynamic+StaticAnalyses

ÅSymbolic Analysis

ÅΧ.

ÅApplications
ÅApplication specialization

ÅDe-bloating containers

ÅKernel specialization

June 22, 2018 Debloating Containers

5

End-to-End System

June 22, 2018 Debloating Containers

6

Container

Cimplifier

άCimplifiedέ
Containers

Code
Specialization/

Exec Slicing
tools

Reduced
Containers (CAF)

Commodity
OS

C
a

p
tu

re
N

e
ce

ss
a

ry

S
ys

te
m

 C
a

lls

Further System
Call Info

Necessary Kernel
Services required
by Reduced Containers

Necessary Kernel
Services required
by Container

Other Kernel
Services

Other
Kernel
Services

Reduced
Applications

+ Kernels

Interface to
other Kernel
Services

Partial Evaluation for
Binaries

June 22, 2018 Debloating Containers

7

End-to-End System

June 22, 2018 Debloating Containers

8

1. Partial Evaluation
2. Compiler-assisted Specialization

Partial Evaluation

ÅFramework for
specializing and
optimizing
programs

ÅPerforms common
optimizations implicitly Partial Evaluator

int power(int x, int y, int n) {
int a = 1;
while (n--) {
a *= (x + y);

}
return a;

}

int powery = 1, n = 2(int x) {
int a = 1;
a *= (x + 1);
a *= (x + 1);
return a;

}

[y m 1, n m 2]

Residual
Program

June 22, 2018

Initial
Partial
State

Machine-Code Partial Evaluation:
Potential Applications

June 22, 2018 Debloating Containers

10

ÅDebloating& attack-surface reduction
ī Partial evaluator emits specialized versions of procedures
ī Excludes paths that are non-executable for a given input

ī Provides a way to remove program features

Machine-Code-Partial-Evaluation Goal:
Disable and Remove Static Apache Modules

June 22, 2018 Debloating Containers

11

HTTPD

cgi env

log_config ConfigFiles

mime

mime

log_config

HTTPD

Configuration values
incorporated into
program logic

Machine-Code Partial Evaluation:
Potential Applications

June 22, 2018 Debloating Containers

12

ÅDebloating& attack-surface reduction
ī Partial evaluator emits specialized versions of procedures
ī Excludes paths that are non-executable for a given input

ī Provides a way to remove program features

ÅLayer collapsing & attack-surface modification
ī In-lining intermingles the caller and callee
ī Consolidates layers of the system
ī Changes which attacks succeed

Machine-Code-Partial-Evaluation Goal:
Layer Collapsing

June 22, 2018

13

Application

Library 1

Library 2

FuncA

FuncB

FuncC

FuncD

FuncE

Application

FuncA

FuncB

FuncC

Basic Blocks Specialized on States

June 22, 2018 Debloating Containers

14

B

Partial Evaluation

<B,„1>

<B,„2>

Challenge: Tracking
state/block pairs.

<B,„3>
<B,„4>

State Tracking via Incremental Rabin Fingerprints

June 22, 2018 Debloating Containers

15

P1 P2 P3 P4

Pages

Old Hash: H

New Hash:
IΩ Ґ ƛƴŎƻǊǇƻǊŀǘŜόIΣ 4‏ ,1‏)

/ƻƳǇǳǘŜ IΩ ǳǎƛƴƎ ƻƴƭȅ IΣ
4‏ and,1‏

tмΩ P2 P3 tпΩ

Memory Writes1‏ 4‏

With:
4 GiBaddress space
~1M basic blocks
128-bit fingerprint:

Probability of a collision ς

Status and Future Work

June 22, 2018 DebloatingContainers

16

ÅCurrent status of x86 partial evaluator
ī Pre-‌stage: works on micro-benchmarks

ÅFuture work
ī Scaling up x86 partial evaluator
ÅSuccess on larger hand-crafted benchmarks
ÅCoreutils
ÅApache modules

ī New partial-evaluation algorithm tailored for feature removal

Compiler-assisted
Specialization

June 22, 2018 Debloating Containers

17

Compiler-assisted Specialization

ÅA program is always run with some fixed inputs

ÅDevelop a light-weightǘŜŎƘƴƛǉǳŜ ǘƘŀǘ άpartially
evaluatesέ ǘƘŜ ǇǊƻƎǊŀƳ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƘƻǎŜ ŦƛȄŜŘ
inputs

ÅExpose information about the fixed inputs to the
compiler
ÅFor example, by making some variables constant

ÅLet the compiler perform optimizations, including
removing dead code

June 22, 2018 Debloating Containers

18

Example

ÅImageMagickprovides handling of several image
formats and multiple transformations on images

June 22, 2018 Debloating Containers

19

June 22, 2018 Debloating Containers

20

Example

ÅImageMagickprovides handling of several image
formats and multiple transformations on images

ÅIn a specific deployment, we need only a some
formats and some transformations

ÅWe can specialize ImageMagickand remove all the
unnecessary code for this deployment

ÅReduces the attack surface due to ImageMagick

June 22, 2018 Debloating Containers

21

Approach

ÅRun the program until a specific point

ÅWhatever variables can be made constant based on
fixed inputs, make them so

ÅCompile again with optimizations turned on

June 22, 2018 Debloating Containers

22

Example: Exponentiation

Exponentiation ị Square

argv [1] is fixed to be 2

June 22, 2018 Debloating Containers

23

Example: Exponentiation

Made variables constant

June 22, 2018 Debloating Containers

24

Example: Exponentiation

After compiler optimizations

June 22, 2018 Debloating Containers

25

Determining Constantification
Candidates
ÅSeveral ways to run the program
ÅTaint analysis
ÅMark non-fixed inputs tainted

ÅMay need to handle issues with control dependences on
tainted variables

ÅDifferential fuzzing
ÅFuzz non-fixed inputs

ÅTrack constant portions of program memory across runs

ÅSymbolic execution
ÅMake non-fixed inputs symbolic, fixed inputs concrete

ÅTrack concrete portions of program memory

June 22, 2018 Debloating Containers

26

Status and Future Work

ÅWe use KLEE for symbolic execution

ÅThe results from KLEE are used to modify the LLVM
IR of the program

ÅThe IR is then optimized by standard LLVM passes

ÅWorking on small programs such as exponentiation

ÅNext step: get system working on GNU coreutils

June 22, 2018 Debloating Containers

27

DebloatingContainers

June 22, 2018 Debloating Containers

28

End-to-End System

June 22, 2018 Debloating Containers

29

1. Cimplifier: runtime analysis
2. Symbolic execution

Container Images

ÅBuilt layer-upon-layer

ÅE.g., the MySQL image
builds over debian:jessie

ÅKeeps all files from
debian:jessieeven if
they are not necessary

ÅSome containers even
pack more than one
application ςnot how
containers should work

June 22, 2018 Debloating Containers 30

Cimplifier

ÅA tool to de-bloat and partition containers

ÅFinds and remove unneeded resources

ÅPartition containers based on user-defined policy
ÅMight even need to create separate customized kernels

ÅAutomatically creates complying partitions that
function together like the original container

June 22, 2018 Debloating Containers

31

Container Size (MB) Analysis Time
(s)

Result Size
(MB)

Size Reduction

nginx 133 5.5 6 95%

redis 151 5.5 12 92%

mongo 317 14.0 46 85%

python 119 5.3 30 75%

registry 33 2.9 28 15%

haproxy 137 4.3 10 93%

mediawiki 576 16.8 244 58%

wordpress 602 16.2 207 66%

ELK stack 985 26.1 251 75%

Evaluation: Processing Containers

June 22, 2018 Debloating Containers

32

Further Directions: Symbolic Execution

Å Cimplifieruses straceto identify required system resources
Å Dynamic analysis leads to incomplete code coverage
Å Integrate symbolic execution with Cimplifier
Å increase code coverage

Å Tried a variety of tools:
Å Klee, Driller

Å Other tools had limits (limited to C, limits to testcasegeneration, etc.)

Å We finally settled on: Angr

33
June 22, 2018 Debloating Containers

Angr*

Å Analyzes binaries Ą both static and dynamic symbolic ("concolic") analysis
Å Works on multi-architecture binaries

Å We use it to analyze container binaries to get the list of syscalls

Å avoids testcasegeneration

Å Con: path explosion

* ShoshitaishviliŜǘ ŀƭΦ ά{hYΥ ό{ǘŀǘŜ ƻŦύ ¢ƘŜ !Ǌǘ ƻŦ ²ŀǊΥ hŦŦŜƴǎƛǾŜ ¢ŜŎƘƴƛǉǳŜǎ ƛƴ .ƛƴŀǊȅ !ƴŀƭȅǎƛǎέΣ L999 {ϧt нлмсΦ

34
June 22, 2018 Debloating Containers

How we use Angr

ÅTo identify system resources required by a dockercontainer
Å trace syscallsstarting from docker-containerdprocess Ą strace

Å Possibility of variation in inputs
Å ƻƴƭȅ ǿƛǘƘ ǘƘŜ άŎƻǊŜ ŀǇǇƭƛŎŀǘƛƻƴǎέ ŜȄŜŎǳǘŜŘ ōȅ ǘƘŜ ŎƻƴǘŀƛƴŜǊ

Å core applications Ą either from developer/Cimplifier
Å ŀƴŀƭȅȊŜ ƻƴƭȅ ǘƘŜǎŜ άŎƻǊŜ ŀǇǇƭƛŎŀǘƛƻƴέ ōƛƴŀǊƛŜǎ ǳǎƛƴƎ angr

Å Get list of additional syscallsused by the container using Angr

Å Combine the syscallslists from straceand angr

Å This list is useful for:
1. Container debloatingby Cimplifier

2. Kernel debloating

35
June 22, 2018 Debloating Containers

Binary Analysis using AngrςPrelim Results

ÅCode coverage =

Ȣ

Ȣ * 100

Å Achieve 100% code coverage
by exploring all states in
symbolic execution

Å Issue -> Path explosion

Containers Binaries
analyzed
by Angr

100% Code
Coverage by

Angr

nginx nginx YES

eugeneware
/docker-

wordpress-
nginx

nginx YES

php5-fpm NO

mysqld NO

redis redis-
server

NO

mongo mongod NO

python python NO

registry registry NO

36
June 22, 2018

Future Work in Cimplifier+Symbolic
Execution

ÅStrategies for binaries where 100% code coverage not
possible due to path explosion:

1. Setting timeouts
Å get code coverage as close as possible to 100%

2. Tweaking exploration strategies used by angr
Å to reduce path explosion

ÅIntegration with Cimplifier
Å more aggressive Container reduction/slicing

37
June 22, 2018 Debloating Containers

Debloating OS Kernels

June 22, 2018 Debloating Containers

38

End-to-End System

June 22, 2018 Debloating Containers

39

1. Splitting into trusted/untrusted kernels
2. Kernel Reduction Approach

Specialize OS for Containers

1. Proxos-based Kernel Debloating

2. Other Kernel Reduction Approaches
ÅCall graph analysis

ÅInstrumentation/dynamic techniques

ÅCode rewriting

ÅUnikernels

Åetc.

June 22, 2018 Debloating Containers

40

Proxos-based Debloating
[OSDI 2006]

Commodity OS VM

Hypervisor

Private VM

Private OS

Commodity OS Kernel

Other

Applications

Proxos

Security-

Sensitive

Application

Host Process

Private

Application
Sensitive Data

ÅProxos Ą isolation of private/privileged application

ÅSystem calls to sensitive resources Ą private VM

Å!ǇǇƭƛŎŀǘƛƻƴ ŘƻŜǎƴΩǘ ƪƴƻǿ ƛǘ ƛǎ ōŜƛƴƎ ƛǎƻƭŀǘŜŘ

June 22, 2018 Debloating Containers

41

Proxos Example | SSH Server
ÅApps have access to commodity OS
ÅBut sensitive resources can be isolated

ÅE.g.: SSH Server
Åuser passwords, host key, etc. Ą private OS

ÅAll network packets decrypted in private app before cmdshell

June 22, 2018 Debloating Containers

42

Commodity OS VMPrivate VM

SSH

Server
Private OS

Linux Kernel

Host Process

Proxos

Passwords

Host Keys

Command Shell
Network

Encrypt

Pipe

Unikernels
ÅSpecialized, single-address-space machine images
Åconstructed by using library operating systems

ÅPros:
Åshrink the attack surface
Åresource footprint naturally

ÅCons:
Åimpoverished library ecosystem
Ålimited debugging
Åporting existing applications takes too much effort

June 22, 2018 Debloating Containers

43

Exploration of Linux Kernel Reduction

44
June 22, 2018 Debloating Containers

Linux Kernel Configuration

ÅKernel configurations are generic
Åbuilt to run more than one application and devices

Åhence not tuned for a specific (set of) application

ÅKernel configuration system
Å~3000 configuration options

ÅExtremely complex, many hidden dependencies

ÅCompiling minimal kernel currently involves
ÅGaining lots of domain-specific knowledge about Linux kernel

ÅDeep understanding of OS requirements of application

ÅAd-hoc trial and error, add/remove build config options until
application seems to work

June 22, 2018 Debloating Containers

45

Tinyconfig: a better starting point?

Unselect all optional configs, only enable configs that reduce size

ÅIt is hard to customize everything for an application
Åoptional feature configs e.g. ASLR, debugging functionality
Åno knowledge of the underlying hardware e.g. network card vendor

ÅGoal is to find a minimal set of configs for a given application
ÅSystem call list of target application gives hints
Å!ŘŘ ǊŜǉǳƛǊŜŘ ŦŜŀǘǳǊŜǎ ǘƻ έtinyconfigedέ ƪŜǊƴŜƭ

June 22, 2018 Debloating Containers

46

Tinyconfig+DeveloperOptions:
NGINX
Options Selected: tinyconfig+
o Network Stack
o Initramfssupport
o Virtualization
o Executable file formats support for ELF binaries
o #! scripts

Binary Size
(compressed)

Binary Size # Sourcefiles
in binary

Sourcefiles
used in trace

Configuration
Options

defconfig 7.5MB 30MB 3162 N/A 1256

custom
config

837KB 1.9MB 1030 637 326

June 22, 2018 Debloating Containers

47

Syscall-based Reduction
1.Identify the system call list used by application and kernel
ÅDynamic tracing: strace
ÅSymbolic execution [klee/angr]

2.Remove unused system calls
ÅEvery syscallis an entry point in the control flow graph of kernel
ÅRemoving syscallcode can, potentially, mark more unused callees
Åe.g. do_mprotest_pkeybecomes unused if SyS_mprotect&

SyS_pkey_mprotectare removed

June 22, 2018 Debloating Containers

48

