
Techniques and Tools for
De-bloating Containers

Somesh Jha1, Tom Reps1,2, Sibin Mohan3, Rakesh Bobba4, David Lie5, Eric Schulte2

1 University of Wisconsin-Madison, 2 Grammatech, 3 University of Illinois at Urbana-Champaign,
4 Oregon State University, 5 University of Toronto

June 22, 2018 Debloating Containers

1

Containers in a nutshell

• Pack resources and
configuration with
application

• Lightweight
virtualization solution

• Shared OS kernel

• Portable, easy to use

Increasingly popular

June 22, 2018 Debloating Containers 2

OS Bloat

• Today’s operating systems → abundance of services/code

3
June 22, 2018 Debloating Containers

OS Bloat
• Today’s operating systems → abundance of services/code

• Increases potential attack surfaces

• Reduces performance

• Tens of millions of lines of code

• Poor isolation of kernel & applications from privileged code

• Once attacker has control of OS → can abuse any application

• All modules & services

• not necessary for the specialized/debloated containers

• Our goal: Reduce the size/complexity of operating systems

4
June 22, 2018 Debloating Containers

Main Thrusts

• Fundamental Techniques
• Partial Evaluation

• Dynamic+Static Analyses

• Symbolic Analysis

• ….

• Applications
• Application specialization

• De-bloating containers

• Kernel specialization

June 22, 2018 Debloating Containers

5

End-to-End System

June 22, 2018 Debloating Containers

6

Container

Cimplifier

“Cimplified”
Containers

Code
Specialization/

Exec Slicing
tools

Reduced
Containers (CAF)

Commodity
OS

C
ap

tu
re

N
ec

es
sa

ry

Sy
st

em
 C

al
ls

Further System
Call Info

Necessary Kernel
Services required
by Reduced Containers

Necessary Kernel
Services required
by Container

Other Kernel
Services

Other
Kernel
Services

Reduced
Applications

+ Kernels

Interface to
other Kernel
Services

Partial Evaluation for
Binaries

June 22, 2018 Debloating Containers

7

End-to-End System

June 22, 2018 Debloating Containers

8

1. Partial Evaluation
2. Compiler-assisted Specialization

Partial Evaluation

• Framework for
specializing and
optimizing
programs

• Performs common
optimizations implicitly Partial Evaluator

int power(int x, int y, int n) {
int a = 1;
while (n--) {

a *= (x + y);
}
return a;

}

int powery = 1, n = 2(int x) {
int a = 1;
a *= (x + 1);
a *= (x + 1);
return a;

}

[y ↦ 1, n ↦ 2]

Residual
Program

June 22, 2018

Initial
Partial
State

Machine-Code Partial Evaluation:
Potential Applications

June 22, 2018 Debloating Containers

10

• Debloating & attack-surface reduction
− Partial evaluator emits specialized versions of procedures

− Excludes paths that are non-executable for a given input
− Provides a way to remove program features

Machine-Code-Partial-Evaluation Goal:
Disable and Remove Static Apache Modules

June 22, 2018 Debloating Containers

11

HTTPD

cgi env

log_config Config Files

mime

mime

log_config

HTTPD

Configuration values
incorporated into
program logic

Machine-Code Partial Evaluation:
Potential Applications

June 22, 2018 Debloating Containers

12

• Debloating & attack-surface reduction
− Partial evaluator emits specialized versions of procedures

− Excludes paths that are non-executable for a given input
− Provides a way to remove program features

• Layer collapsing & attack-surface modification
− In-lining intermingles the caller and callee
− Consolidates layers of the system
− Changes which attacks succeed

Machine-Code-Partial-Evaluation Goal:
Layer Collapsing

June 22, 2018

13

Application

Library 1

Library 2

Func A

Func B

Func C

Func D

Func E

Application

Func A

Func B

Func C

Basic Blocks Specialized on States

June 22, 2018 Debloating Containers

14

B

Partial Evaluation

<B,𝜎1>

<B,𝜎2>

Challenge: Tracking
state/block pairs.

<B,𝜎3>
<B,𝜎4>

State Tracking via Incremental Rabin Fingerprints

June 22, 2018 Debloating Containers

15

P1 P2 P3 P4

Pages

Old Hash: H

New Hash:
H’ = incorporate(H, 𝛿1, 𝛿4)

Compute H’ using only H,
𝛿1,and 𝛿4

P1’ P2 P3 P4’

Memory Writes𝛿1 𝛿4

With:
4 GiB address space
~1M basic blocks
128-bit fingerprint:

Probability of a collision < 2−56

Status and Future Work

June 22, 2018 Debloating Containers

16

• Current status of x86 partial evaluator
− Pre-𝛼 stage: works on micro-benchmarks

• Future work
− Scaling up x86 partial evaluator

• Success on larger hand-crafted benchmarks
• Coreutils
• Apache modules

− New partial-evaluation algorithm tailored for feature removal

Compiler-assisted
Specialization

June 22, 2018 Debloating Containers

17

Compiler-assisted Specialization

• A program is always run with some fixed inputs

• Develop a light-weight technique that “partially
evaluates” the program with respect to those fixed
inputs

• Expose information about the fixed inputs to the
compiler
• For example, by making some variables constant

• Let the compiler perform optimizations, including
removing dead code

June 22, 2018 Debloating Containers

18

Example

• ImageMagick provides handling of several image
formats and multiple transformations on images

June 22, 2018 Debloating Containers

19

June 22, 2018 Debloating Containers

20

Example

• ImageMagick provides handling of several image
formats and multiple transformations on images

• In a specific deployment, we need only a some
formats and some transformations

• We can specialize ImageMagick and remove all the
unnecessary code for this deployment

• Reduces the attack surface due to ImageMagick

June 22, 2018 Debloating Containers

21

Approach

• Run the program until a specific point

• Whatever variables can be made constant based on
fixed inputs, make them so

• Compile again with optimizations turned on

June 22, 2018 Debloating Containers

22

Example: Exponentiation

Exponentiation ➞ Square

argv[1] is fixed to be 2

June 22, 2018 Debloating Containers

23

Example: Exponentiation

Made variables constant

June 22, 2018 Debloating Containers

24

Example: Exponentiation

After compiler optimizations

June 22, 2018 Debloating Containers

25

Determining Constantification
Candidates
• Several ways to run the program

• Taint analysis
• Mark non-fixed inputs tainted

• May need to handle issues with control dependences on
tainted variables

• Differential fuzzing
• Fuzz non-fixed inputs

• Track constant portions of program memory across runs

• Symbolic execution
• Make non-fixed inputs symbolic, fixed inputs concrete

• Track concrete portions of program memory

June 22, 2018 Debloating Containers

26

Status and Future Work

• We use KLEE for symbolic execution

• The results from KLEE are used to modify the LLVM
IR of the program

• The IR is then optimized by standard LLVM passes

• Working on small programs such as exponentiation

• Next step: get system working on GNU coreutils

June 22, 2018 Debloating Containers

27

Debloating Containers

June 22, 2018 Debloating Containers

28

End-to-End System

June 22, 2018 Debloating Containers

29

1. Cimplifier: runtime analysis
2. Symbolic execution

Container Images

• Built layer-upon-layer

• E.g., the MySQL image
builds over debian:jessie

• Keeps all files from
debian:jessie even if
they are not necessary

• Some containers even
pack more than one
application – not how
containers should work

June 22, 2018 Debloating Containers 30

Cimplifier

• A tool to de-bloat and partition containers

• Finds and remove unneeded resources

• Partition containers based on user-defined policy
• Might even need to create separate customized kernels

• Automatically creates complying partitions that
function together like the original container

June 22, 2018 Debloating Containers

31

Container Size (MB) Analysis Time
(s)

Result Size
(MB)

Size Reduction

nginx 133 5.5 6 95%

redis 151 5.5 12 92%

mongo 317 14.0 46 85%

python 119 5.3 30 75%

registry 33 2.9 28 15%

haproxy 137 4.3 10 93%

mediawiki 576 16.8 244 58%

wordpress 602 16.2 207 66%

ELK stack 985 26.1 251 75%

Evaluation: Processing Containers

June 22, 2018 Debloating Containers

32

Further Directions: Symbolic Execution

• Cimplifier uses strace to identify required system resources
• Dynamic analysis leads to incomplete code coverage
• Integrate symbolic execution with Cimplifier

• increase code coverage

• Tried a variety of tools:
• Klee, Driller

• Other tools had limits (limited to C, limits to testcase generation, etc.)

• We finally settled on: Angr

33
June 22, 2018 Debloating Containers

Angr*

• Analyzes binaries → both static and dynamic symbolic ("concolic") analysis
• Works on multi-architecture binaries

• We use it to analyze container binaries to get the list of syscalls

• avoids testcase generation

• Con: path explosion

* Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis”, IEEE S&P 2016.

34
June 22, 2018 Debloating Containers

How we use Angr

• To identify system resources required by a docker container
• trace syscalls starting from docker-containerd process → strace

• Possibility of variation in inputs
• only with the “core applications” executed by the container

• core applications → either from developer/Cimplifier
• analyze only these “core application” binaries using angr

• Get list of additional syscalls used by the container using Angr

• Combine the syscalls lists from strace and angr

• This list is useful for:
1. Container debloating by Cimplifier

2. Kernel debloating

35
June 22, 2018 Debloating Containers

Binary Analysis using Angr – Prelim Results

• Code coverage =

𝑁𝑜.𝑜𝑓 𝐵𝑎𝑠𝑖𝑐 𝑏𝑙𝑜𝑐𝑘𝑠
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔

𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑏𝑎𝑠𝑖𝑐 𝑏𝑙𝑜𝑐𝑘𝑠

𝑖𝑛 𝐶𝐹𝐺 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦

* 100

• Achieve 100% code coverage
by exploring all states in
symbolic execution

• Issue -> Path explosion

Containers Binaries
analyzed
by Angr

100% Code
Coverage by

Angr

nginx nginx YES

eugeneware
/docker-

wordpress-
nginx

nginx YES

php5-fpm NO

mysqld NO

redis redis-
server

NO

mongo mongod NO

python python NO

registry registry NO

36
June 22, 2018

Future Work in Cimplifier+Symbolic
Execution

• Strategies for binaries where 100% code coverage not
possible due to path explosion:

1. Setting timeouts
• get code coverage as close as possible to 100%

2. Tweaking exploration strategies used by angr
• to reduce path explosion

• Integration with Cimplifier
• more aggressive Container reduction/slicing

37
June 22, 2018 Debloating Containers

Debloating OS Kernels

June 22, 2018 Debloating Containers

38

End-to-End System

June 22, 2018 Debloating Containers

39

1. Splitting into trusted/untrusted kernels
2. Kernel Reduction Approach

Specialize OS for Containers

1. Proxos-based Kernel Debloating

2. Other Kernel Reduction Approaches
• Call graph analysis

• Instrumentation/dynamic techniques

• Code rewriting

• Unikernels

• etc.

June 22, 2018 Debloating Containers

40

Proxos-based Debloating
[OSDI 2006]

Commodity OS VM

Hypervisor

Private VM

Private OS

Commodity OS Kernel

Other

Applications

Proxos

Security-

Sensitive

Application

Host Process

Private

Application
Sensitive Data

• Proxos → isolation of private/privileged application

• System calls to sensitive resources → private VM

• Application doesn’t know it is being isolated

June 22, 2018 Debloating Containers

41

Proxos Example | SSH Server
• Apps have access to commodity OS

• But sensitive resources can be isolated

• E.g.: SSH Server
• user passwords, host key, etc. → private OS

• All network packets decrypted in private app before cmd shell

June 22, 2018 Debloating Containers

42

Commodity OS VMPrivate VM

SSH

Server
Private OS

Linux Kernel

Host Process

Proxos

Passwords

Host Keys

Command Shell
Network

Encrypt

Pipe

Unikernels
• Specialized, single-address-space machine images

• constructed by using library operating systems

• Pros:
• shrink the attack surface
• resource footprint naturally

• Cons:
• impoverished library ecosystem
• limited debugging
• porting existing applications takes too much effort

June 22, 2018 Debloating Containers

43

Exploration of Linux Kernel Reduction

44
June 22, 2018 Debloating Containers

Linux Kernel Configuration

• Kernel configurations are generic
• built to run more than one application and devices

• hence not tuned for a specific (set of) application

• Kernel configuration system
• ~3000 configuration options

• Extremely complex, many hidden dependencies

• Compiling minimal kernel currently involves
• Gaining lots of domain-specific knowledge about Linux kernel

• Deep understanding of OS requirements of application

• Ad-hoc trial and error, add/remove build config options until
application seems to work

June 22, 2018 Debloating Containers

45

Tinyconfig: a better starting point?

Unselect all optional configs, only enable configs that reduce size

• It is hard to customize everything for an application
• optional feature configs e.g. ASLR, debugging functionality
• no knowledge of the underlying hardware e.g. network card vendor

• Goal is to find a minimal set of configs for a given application
• System call list of target application gives hints
• Add required features to ”tinyconfiged” kernel

June 22, 2018 Debloating Containers

46

Tinyconfig+Developer Options:
NGINX
Options Selected: tinyconfig +
o Network Stack
o Initramfs support
o Virtualization
o Executable file formats support for ELF binaries
o #! scripts

Binary Size
(compressed)

Binary Size # Source files
in binary

Source files
used in trace

Configuration
Options

defconfig 7.5MB 30MB 3162 N/A 1256

custom
config

837KB 1.9MB 1030 637 326

June 22, 2018 Debloating Containers

47

Syscall-based Reduction
1.Identify the system call list used by application and kernel

• Dynamic tracing: strace
• Symbolic execution [klee/angr]

2.Remove unused system calls
• Every syscall is an entry point in the control flow graph of kernel
• Removing syscall code can, potentially, mark more unused callees
• e.g. do_mprotest_pkey becomes unused if SyS_mprotect &

SyS_pkey_mprotect are removed

June 22, 2018 Debloating Containers

48

Results: Syscall-Based Reduction

June 22, 2018 Debloating Containers

49

Application Return1 Hello World
ImageMagic-

identify

x86_64_def 54.1 MB

tinyconfig 1.4072 MB

debloat 1.1058 MB 1.1143 MB 1.1359 MB

Application Integration

• Fine-grained information of application ➔ customization
• complete system call list
• system call arguments

• Above information extracted with
• our static analysis
• Specialization for specific kernel modules
• etc.

June 22, 2018 Debloating Containers

50

Kernel Debloat Future Work
1. Automate application-centric kernel customization

o Configuration-based

o Static & Dynamic analyses [e.g. Syscall and Kernel-CFG-based]

o Binary Rewriting
o E.g. slicing/program specialization

2. Supporting multiple “reduced” containers
o Multiple specialized kernels

o Proxos-style private+community kernel shared across containers

3. Runtime management for reduced kernels+containers
o Scheduling multiple custom kernels

o Routing (hypercall-facilitated) communication between kernels

June 22, 2018 Debloating Containers

51

Thanks!

June 22, 2018 Debloating Containers

52

BACK-UP

June 22, 2018 Debloating Containers

53

OS/Kernel De-bloat
• Use a combination of techniques developed from

• Cimplifier
• Proxos
• Other kernel reduction techniques

• Create specialized kernels for reduced container apps

• Proxos-C

• Cimplifer debloats containers into multiple, smaller ones
• Main application → isolated into one, “critical” container
• Other applications → other, potentially multiple, containers

June 22, 2018 Debloating Containers

54

Proxos-C | Debloated Container-
Aware Proxos

• Developer annotates critical application with ‘private’ OS calls

• Use Cimplifier-style analyses
• to identify necessary kernel resources

• Package ‘private’ kernel resources separately (as kernel modules)
• OS will route calls from critical de-bloated container to this module
• All calls from other containers routed to another module

• rest of OS services

• Initial step: manual process

• We intend to automate the following:
• Identifying the critical (container-relevant) system calls
• Identifying kernel resources that must be ‘private’ and carving them out

June 22, 2018 Debloating Containers

55

Proxos-C [contd.]

• In this model,
• Our (potentially debloated) application container → private

application in Proxos

• Hence, all system calls from critical container → ‘private’

• Our solution: Use combinations of static and dynamic analyses
• To identify required kernel resources for this critical container

• compile-time analysis, symbolic execution, runtime monitoring, etc.

• Challenge: identifying arguments of system calls

• Package the identified system calls separately
• Calls to other resources, if needed, will re-routed by OS/hypervisor

June 22, 2018 Debloating Containers

56

Future | Kernel
Reduction/Specialization
• Beyond Proxos-C

• Look for kernel reduction techniques that gets rid of
unnecessary services

• Specialize the OS for the containers

• Currently studying other methods that can reduce
kernel bloat
• Call graph analysis
• kprobes/ftrace
• Code rewriting
• Unikernels
• Micro hypervisors

June 22, 2018 Debloating Containers

57

Bloated Container Images

• Size: Containerized versions of even simple
applications come close to or above a GB

Storage and network transfer costs

• More files in container => more vulnerabilities
Many vulnerabilities, like Shellshock and
ImageTragick, avoided simply by removing files.

58
June 22, 2018 Debloating Containers

Example: ImageMagick

ImageMagick

June 22, 2018 Debloating Containers 59

Example: ImageMagick

ImageMagick
• Contains many

extraneous programs
and filesbash

curl

wget

June 22, 2018 Debloating Containers 60

De-bloating

ImageMagick

• Remove extraneous
programs and files

• Reduces impact of
vulnerabilities

• Remote code execution
vulnerabilities of
ImageTragick rendered
harmless

bash

curl

wget

June 22, 2018 Debloating Containers 61

Issues with monolithic containers

• Multiple apps in a single image -> compromising
one app leads to compromising others

• Separating each app in its own image significantly
reduce the attack surface

• When apps are partitioned, lateral attacks become
significantly more difficult!

June 22, 2018 Debloating Containers 62

Example: Mediawiki

• All components
together can affect
each other

HTTPD
MediaWiki

ImageMagick

MySQL Server

Initial Configuration
Script

June 22, 2018 Debloating Containers 63

Partition

• Isolate components

• E.g., ImageMagick now
minimally affects other
components

HTTPD
MediaWiki

ImageMagick

MySQL Server

Initial Configuration
Script

June 22, 2018 Debloating Containers 64

Architecture

Resource
Identification

Container
Partitioning

Glue Insertion

HTTPD
MediaWiki

ImageMagick

MySQL Server

Initial Configuration
Script

HTTPD
MediaWiki

ImageMagick

MySQL Server

Initial Configuration
Script

Input Container Output Containers

Syscall
Logs

User
Constraints

June 22, 2018 Debloating Containers

65

Resource Identification

• Based on dynamic analysis

• Collect system call logs from test runs

• Identify resources and operations performed on
them for each thread of execution

• Ensures necessary resources are not removed

June 22, 2018 Debloating Containers

66

Container Partitioning

• Associate threads with executables

• Form a ”call graph” at an executable level

• Associate resources with executables

• Place executables in different partitions according
to policy

• Policy specifies both negative and positive
constraints, identifying which executables must not
be or should be together

June 22, 2018 Debloating Containers

67

Evaluation: Processing Containers

• Examined six one-application containers and 3
multi-application ones

• Produces functional, de-bloated partitions

• Size reduction in containers ranged from 15% to
95% (reduction > 50% for all but one case)

• Given system call logs, containers can be processed
with good performance, in under 30 second in our
tests

June 22, 2018 Debloating Containers

68

Glue Insertion:
Remote Process Execution
• Partitions must interact

to perform the original
function

• We automatically
transfer execution of a
process from one
container to another

• Low overhead

• Uses the fact that
containers run on
shared kernel

June 22, 2018 Debloating Containers 69

Glue Insertion:
Remote Process Execution - II

• Suppose MediaWiki needs to execute ImageMagick

• …but ImageMagick has been moved to a different
container

• Our approach generates a stub for ImageMagick
which connects to the RPE server in the ImageMagick
container

• RPE works transparently to the applications – no
application modifications required

June 22, 2018 Debloating Containers 70

Evaluation: Runtime Overhead

• Containers run original code, so no overhead

• Only overhead is due to glue insertion

• Running time overhead per-execution is 1-4 ms,
easily amortized over application runs

• Memory overhead is about 1 MB per partition

June 22, 2018 Debloating Containers

71

Symbolic Execution – Tools explored

1. Klee
• symbolic execution tool
• works on source code written in C
• [Cadar et al 2008]

Limitations - 1. Limited to C
2. Source code required for analysis
3. Code coverage vs path explosion – choosing

symbolic inputs so as to increase code
coverage and decrease path explosion

72

Symbolic Execution – Tools explored
2. Driller

• uses combination of fuzzing (AFL) and symbolic execution (angr)
• to generate test cases

• To get list of syscalls,
• first generate possible testcases for container applications

• then run strace on container with generated testcases

• [Stephens et al 2016]

1. Works on multi-
architecture
binaries

2. Reduces path
explosion by
using fuzzing

1. Container apps take inputs from various sources (e.g.
network and config files)
• This makes testcase generation tedious

2. Container apps may run multiple binaries

• so strace must be run on all combinations of
testcases for the various binaries

Pros Cons

73

Proxos | Routing System Calls

• System calls routed to commodity OS using RPC’s:
• Shared memory region between the commodity OS and Proxos

• Created at Startup

Xen VMM

Commodity OS VMPrivate VM

Private

Application

Proxos

Interrupt

Handler

Host

Process

Linux

Kernel

Shared Buffer

Args
Return

Value

June 22, 2018 Debloating Containers

74

Linux Kernel Configuration[contd.]

• Requirements to build a custom/reduced kernel
• Knowledge of the configuration system

• Knowledge of the application

• Awareness of application independent configurations
ex: Security improvements

• Current state of affairs
• Ad-hoc process, trial and error

• Try a set of configurations derived by the developer

• If the app runs, remove a bunch of configs and repeat

• If the app fails, try a bigger set of configs and repeat

June 22, 2018 Debloating Containers

75

Linux Compilation

1.Configure
a.make config by parsing Kconfigs to combine into a single .config file
b.`make defconfig` to configure the kernel base on the current

architecture.
c. most configs are drivers which are unnecessary to execute a program
d.default configuration make a bloated kernel

i. 54.1MB (x86_defconfig) vs 1.4MB (tinyconfig) on the file size of
vmlinux in bytes

2.Compile
a.Check the .config file to include the wanted features

June 22, 2018 Debloating Containers

76

