
DREM: ARCHITECTURAL SUPPORT FOR
DETERMINISTIC REDUNDANT EXECUTION OF

MULTITHREADED PROGRAMS

by

Stan Kvasov

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2009 by Stan Kvasov

Abstract

DREM: ARCHITECTURAL SUPPORT FOR DETERMINISTIC REDUNDANT

EXECUTION OF MULTITHREADED PROGRAMS

Stan Kvasov

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2009

Recently there have been several proposals to use redundant execution of diverse repli-

cas to defend against attempts to exploit memory corruption vulnerabilities. However,

redundant execution relies on the premise that the replicas behave deterministically, so

that if inputs are replicated to both replicas, any divergences in their outputs can only be

the result of an attack. Unfortunately, this assumption does not hold for multithreaded

programs, which are becoming increasingly prevalent – the non-deterministic interleaving

of threads can also cause divergences in the replicas.

This thesis presents a method to eliminate concurrency related non-determinism be-

tween replicas. We introduce changes to the existing cache coherence hardware used

in multicores to support deterministic redundant execution. We demonstrate that our

solution requires moderate hardware changes and shows modest overhead in scientific

applications.

ii

Acknowledgements

First, I would like to thank Professor David Lie for his countless contributions, guidance,

and support for this project. His encouragement and expertise helped formulate many

of the ideas found in this work.

I would like to thank the Natural Sciences and Engineering Research Council of

Canada (NSERC) and the University of Toronto for providing continued funding for my

degree.

I would also like to thank my fellow graduate students: Lionel Litty, Tom Hart, James

Huang, and Lee Chew. I would also like to thank members of the Security Reading

Group(SRG) and Professor Ashvin Goel for their comments and constructive criticisms

of my work.

Finally, I want to thank my parents, Olga and Alexei, and my girlfriend, Annie Jekova,

for their advice, support, and inspiration.

iii

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis structure . 3

2 Background 4

2.1 Memory Corruption Vulnerabilities . 4

2.2 Redundant execution applications . 5

2.3 Cache coherence . 7

2.4 Memory consistency . 9

3 Deterministic Redundant Execution for Security 11

3.1 Deterministic execution . 11

3.2 Security guarantees . 13

4 Architecture 15

4.1 Single-threaded applications . 15

4.2 Multithreaded applications with infinite caches 17

4.2.1 Recording dependencies . 18

4.2.2 Replaying dependencies . 21

4.3 Supporting finite caches . 22

4.3.1 Recording dependencies with evictions 22

iv

4.3.2 Replaying dependencies . 25

5 Implementation 26

5.1 Redundant processes . 26

5.1.1 Address space initialization . 27

5.1.2 Process and thread management 27

5.2 Single threaded redundant execution . 28

5.2.1 Backend . 29

5.2.2 Frontend . 29

5.3 Simulating multiple redundant threads 30

5.4 Race-recording and replay . 31

5.4.1 Instruction counters . 31

5.4.2 Cache tags . 33

5.4.3 Cache evictions . 34

5.4.4 Processor-cache interface . 34

5.4.5 Snooping-cache interface . 35

6 Evaluation 37

6.1 Experimental setup . 37

6.2 Redundant execution overhead . 41

6.3 Race recording and replay overhead . 44

7 Related work 48

7.1 Transient fault detection . 48

7.2 Race recorders . 49

7.3 Software redundant execution . 50

7.4 Hardware information flow tracking . 51

7.5 Deterministic multithreading . 52

v

8 Conclusion 53

Bibliography 54

vi

List of Tables

4.1 Summary of hardware structures required to support deterministic redun-

dant execution . 16

6.1 Simulation parameters . 39

6.2 Benchmark inputs . 41

6.3 Miss rates and memory bandwidth for 16 leader cores 42

6.4 Dependency Replay Costs for 16 Leader Cores 47

vii

List of Figures

2.1 Redundant execution race example . 7

2.2 MESI state machine . 8

3.1 DREM 2-leader, 2-follower example . 12

3.2 Attack example . 13

4.1 DREM hardware . 17

4.2 RAW recording . 19

4.3 Loose dependency . 20

4.4 Rendezvous example . 24

5.1 Retirement checks . 29

5.2 System call LVQ . 32

5.3 Cache tags example . 33

5.4 Cache evictions . 33

5.5 Cache evictions . 36

6.1 Redundant execution overhead . 40

6.2 Shared cache miss rates . 42

6.3 Relative overhead . 45

viii

Chapter 1

Introduction

Despite growing awareness and concern about security compromises, software developers

continue to produce programs with vulnerabilities, which Internet miscreants continue

to exploit. The most severe vulnerabilities allow an attacker to arbitrarily overwrite and

corrupt memory locations in a program’s address space. The most prominent example of

such an attack is the buffer overflow [2]. According to the Common Vulnerabilities and

Exposures (CVE) database1 there were over 600 buffer overflow vulnerabilities reported

in 2008 and 71 have been reported in the first 3 months of 2009 alone. Each of these

vulnerabilities can potentially allow an attacker to hijack a program and usurp privileges

that she should not have.

There have been many attempts to eliminate the presence of memory corruption

vulnerabilities or mitigate their effects [9, 13, 31]. One of the more promising attempts

is address space layout randomization (ASLR) [6, 15]. Traditional memory corruption

vulnerability exploits rely on the attacker knowing the addresses of sensitive objects

in memory. ASLR makes these addresses random, thus providing vulnerable programs

with probabilistic protection against attacks. ASLR does not require source code and

poses essentially no run time overhead. Unfortunately, Shacham et al. [29] demonstrated

1http://cve.mitre.org/

1

Chapter 1. Introduction 2

that because of constraints on the placement of objects in a process’ address space,

there is not enough diversity to stop an attacker from exhaustively guessing the address

space layout. To make ASLR protection immune to guessing, N-Variant [11] redundantly

executes two replicas with different address space layouts and compares their behavior.

However, N-Variant does not support multithreaded programs. Since N-Variant does not

impose any constraints on the interleaving of threads in the replicas, the non-deterministic

interleaving of threads can cause replicas to diverge even when no attack is occurring.

While there have been attempts to remove concurrency related non-determinism

through software methods, this can result in performance slowdowns as high as 800%,

which are too great to be usable in practice [14]. Similarly, lockstep execution of pro-

cessors in hardware can provide deterministic redundant execution, but also carries a

performance penalty as stalls in one processor force stalls to occur in the other proces-

sor [5]. Instead, we propose Deterministic Redundant Execution on Multicores (DREM),

which is able to remove concurrency related non-determinism with only 23% run time

overhead. DREM allows cores in both replicas to execute independently and only con-

strains execution on inter-thread communication events. DREM records the order of

inter-thread communication in one replica, called the leader and replays it in the other

replica, called the follower. To record inter-thread communication efficiently, DREM

leverages the cache coherence protocol, and thus only requires a small amount of new

hardware to be added to a multicore processor.

1.1 Contributions

DREM is the first system to support redundant execution of diversified multithreaded

applications on multicores by extending the baseline cache coherence protocol. All previ-

ous approaches do not support multithreaded workloads or rely on developer annotations

to outline the sequential regions in applications. In addition, DREM shows additional

Chapter 1. Introduction 3

use cases for existing work in multithreaded debugging. Previous work only focused on

race-recording and offline replay. DREM combines the two techniques to record races

in one application context and simultaneously replays them in another diversified con-

text. Finally, we are the second researchers to publish the overheads of replaying races

using the deterministic debugging techniques. Previous work focused on the overheads

of race-recording and only one work evaluated the overheads of replay [20].

1.2 Thesis structure

The structure of this thesis is as follows. Chapter 2 provides the relevant background for

the reader. Chapter 3 gives high-level overview of DREM and establishes the security

guarantees that DREM can provide. Chapter 4 describes the race-recording and replay

hardware and Chapter 5 outlines the implementation details of DREM in cycle-accurate

MIPS simulator. Chapter 6 evaluates DREM using the SPLASH-2 [34] scientific ap-

plication suite. Finally, related work is introduced in Chapter 7 and we conclude in

Chapter 8.

Chapter 2

Background

This chapter gives an overview of the vulnerabilities that DREM gives protection against

using a technique called redundant execution. Later in the chapter we describe memory

coherence and consistency which are necessary to grasp DREM’s redundant execution

technique.

2.1 Memory Corruption Vulnerabilities

Memory corruption vulnerabilities constitute a general class of vulnerabilities that can

allow an attacker to corrupt sensitive application data or give an attacker the ability

to execute arbitrary code. DREM leverages address space diversification to provide

protection against the latter type of attacks. In this section, we show how an attacker

can use memory corruption vulnerabilities to execute arbitrary code.

Attackers exploit memory corruption vulnerabilities to make controlled modifications

to locations in a program’s address space. Two steps must be taken by an attacker to

exploit an application. First, the attacker must find a vulnerability in an application

that allows her to overwrite a code pointer. The ability to alter a code pointer allows

the attacker to divert normal control flow of an application to achieve the attacker’s

goal. There are numerous programming flaws that allow code pointer overwrites. The

4

Chapter 2. Background 5

most common type is the buffer overflow. Buffer overflow vulnerabilities occur when a

program, written in a non-type safe language such as C, copies an input buffer from an

untrusted source into a target buffer without checking that the target is large enough to

hold all the contents of the input buffer. If the input buffer contains data that is indeed

longer, the copy will ”overflow” the end of the target buffer and overwrite whatever

data is located after the buffer. Another common way an attacker can overwrite an

arbitrary location in memory is by using a format string vulnerability. These types of

vulnerabilities arise when an application lets an attacker specify a format string used by

string and I/O functions in C [10]. By cleverly specifying format tokens, an attacker can

overwrite any location in memory with an arbitrary value.

Second, the attacker must provide malicious code that the overwritten code pointer in

step one will point to. The attacker has two options - either find a buffer in an application

that can store the malicious code or find existing code in the application which can serve

the attacker’s purpose [7]. When the vulnerable application dereferences the changed

code pointer, the control flow is transferred to the malicious code. Typically, it spawns

a shell and gives the attacker control of a machine with the privileges of the vulnerable

application.

2.2 Redundant execution applications

Redundant execution is a technique that involves running an application in multiple

contexts by executing each instruction multiple times. If the inputs to the application

are deterministic and constant across all contexts, then the outputs are guaranteed to

be the same. Using this assumption, redundant execution can provide fault-tolerance

against transient hardware faults in a processor. Transient faults occur when a cosmic

ray strikes and alters voltage levels that represent data values [33]. A transient hardware

fault that affects some, but not all, contexts is detected since it causes a divergence in the

Chapter 2. Background 6

outputs. The divergence causes the hardware to roll-back and re-execute the violating

instruction across all contexts.

Redundant execution can also be used to provide security to applications. Diversity

can be introduced to the application contexts in such a way that an attacker cannot

successfully exploit all contexts. The most recent work in this area is N-Variant [11]

and Replicant [25]. These systems use address space diversification across application

contexts to give protection against memory corruption attacks. For an attacker to exploit

a memory corruption vulnerability she must be able to change the value of a pointer to an

object or instruction of her choosing. These systems make this impossible by executing

two or more replicas of the program with different address space layouts. This means

that every corresponding instruction will be located at a different address in the replicas.

Since the same malicious input is sent to all replicas, it is impossible for the attacker to

change the pointer to point to the same corresponding instruction in all replicas – while

the corresponding instructions will be located at different addresses, the pointer will be

overwritten by the same value in both replicas. As a result, execution will be directed

to different instructions in the replicas resulting in a divergence in instructions being

executed. This divergence is detected and the application is shut down.

The previous approaches in redundant execution for security largely ignore multi-

threaded software. Multithreaded applications pose a challenge for such systems because

inter-thread communication is inherently non-deterministic. The non-determinism arises

because threads execute at arbitrary rates and make racy shared memory accesses. We

illustrate this form of non-determinism with an example. As shown in Figure 2.1, sup-

pose we are executing two application threads redundantly. In one execution context,

thread #0 acquires a lock first, increments a shared variable, and prints its thread id and

the value of the shared variable. Thread #1 acquires the lock afterwards and performs

the same actions. In a redundant execution context, since the threads can execute at

arbitrary rates, thread #1 arrives at the lock first. The different order of arrivals in the

Chapter 2. Background 7

Initial state:

v=0

tid=local variable set to thread id

……….

Lock(A)

v++;

print(tid, v);

……….

Thread #0 Thread #1

T
im

e

Context #0

Program output:

0,1

1,2

……….

Lock(A)

v++;

print(tid, v);

……….

……….

Lock(A)

v++;

print(tid, v);

……….

Thread #0 Thread #1

T
im

e
Context #1

Program output:

1,1

0,2

……….

Lock(A)

v++;

print(tid, v);

……….

Figure 2.1: Redundant execution race example

two contexts causes a difference in the program output. Under DREM, this divergence

gets labeled as an attack. To eliminate this form of non-determinism the outcomes of all

racy shared memory accesses must resolve identically across all application contexts.

DREM’s contribution is a hardware extension to a processor’s cache coherency hard-

ware that records the outcome of racy shared memory accesses in one execution context

and replays the outcome of races in the redundant execution context.

2.3 Cache coherence

Current multicores are connected by a shared bus and utilize multilevel memory hi-

erarchies with private and shared caches to increase locality and reduce their memory

bandwidth requirements [17]. Private caches introduce a problem of coherence since they

Chapter 2. Background 8

allow shared data to be replicated. If a single core decides to change shared data that is

loaded in multiple caches, then a mechanism must exist for other caches to receive the

newer updated value. Otherwise, the other cores will observe the old value in their cache.

EM

SI

Rd/BusRd, Shared

Rd/BusRd

Rd,Wr/- Rd/-

BusRd

BusWr

BusWr

BusRd

Wr/BusWr

Wr/BusWr

Wr/BusWr

Rd/-

Figure 2.2: MESI state machine

To address the coherence problem outlined above, multiprocessors and multicores use

hardware cache coherence. There are two main classes of coherence protocols: directory

and snooping. Directory coherence uses a global directory to keep track of which proces-

sors are caching data and the state of that data. Directory coherence is generally used

in large scale multiprocessors and not inside multicores. Moving to directory coherence

has disadvantages since it requires more hardware and increases the chip’s complexity.

Snooping coherence utilizes a shared bus between cores that is used to broadcast updates

to global shared data. Each core snoops on the shared bus to see whether it has cached

a shared block and whether it needs to perform any action to ensure coherence. Today’s

Chapter 2. Background 9

multicores rely on bus-based snooping-coherence. Since DREM is aimed towards today’s

multicores, we assume the same type of coherence.

A common snooping protocol used in multicores is a four state (MESI) write-back in-

validation protocol. DREM uses the messages sent by MESI coherence to record memory

dependencies between cores. Hence, to understand DREM’s design, we outline the MESI

protocol. MESI uses cache line granularity to tag each cache line with a state. The four

possible MESI states signify whether the cache line is shared by one or more cores (S),

whether a line is dirty (M), whether it belongs exclusively to one core (E), or whether

the line is invalid (I). The state transitions are initiated by bus messages, read and write,

and each core’s memory reads and writes. A simplified state machine for MESI is shown

in Figure 2.2. The signals Rd and Wr are local reads and writes performed by a core.

The signals BusRd and BusWr are broadcast on the shared bus. The filled line represents

state transitions that are performed by a core initiating a memory access. The dashed

lines represent state transitions in response to broadcast bus messages.

Note that MESI minimizes memory accesses by performing cache-to-cache transfers

whenever possible. Since caches are built from faster SRAM memory, and memory from

DRAM, the caches can supply data more quickly [12]. DREM utilizes cache-to-cache

transfers to propagate some dependency information as will be shown later.

2.4 Memory consistency

A memory consistency model formally specifies how shared memory appears to a pro-

grammer [1]. For example, memory consistency places restrictions on what values read

returns with respect to writes. There are numerous models ranging from the restrictive

sequential consistency to more permissive release consistency. These models differ in how

much pipelining and buffering of shared memory reads and writes they allow [16]. For

example, sequentially consistent execution appears to all cores as some interleaving of

Chapter 2. Background 10

execution of processes in program order. This model is restrictive but it is convenient for

use with race recorders because it guarantees that the observed order of memory accesses

during record and replay is identical. As a result, DREM’s race recorder assumes se-

quential consistency. Other models, like release consistency, relax the ordering between

reads and writes to different memory locations. This memory model requires special

instructions such as acquire and release to synchronize between cores [1]. We note that

DREM has a limitation since it does not support current multicores which use weaker

memory models such Total Store Order. DREM can be extended to support weaker

memory models by recording all memory re-ordering or by moving to a memory model

which appears sequentially consistent but executes at release consistency speeds [8].

Chapter 3

Deterministic Redundant Execution

for Security

The previous chapter described the challenges involved in redundantly executing multi-

threaded applications. Here, we give a high level overview of DREM and describe how it

eliminates non-determinism related to multithreading applications. Later in the chapter

we describe what type of attacks this form of redundant execution can prevent.

3.1 Deterministic execution

Multithreaded applications running on multicores introduce non-determinism since each

thread makes shared memory accesses and creates data dependencies with other running

threads. The non-deterministic data dependencies are called memory races because they

are not constrained by program execution to occur in a predefined order. To enable

redundant execution on multicores, we must ensure that all races resolve identically

across all execution contexts.

DREM supports redundant deterministic execution by recording all cross-node data

dependencies between cores in one execution context and replays these dependencies on

a diversified execution context. DREM chooses one application context as the leader and

11

Chapter 3. Deterministic Redundant Execution for Security 12

Leader

core

Follower

core

L1 $ L1 $

Shared L2 $

R
ec

o
rd

in
g

H
ar

d
w

ar
e

Snoop

Replay

Leader

core

Follower

core

L1 $ L1 $

R
ec

o
rd

in
g

H
ar

d
w

ar
e

Snoop

Replay

Thread #0 Thread #1

Bus interconnect

Figure 3.1: DREM 2-leader, 2-follower example

allows it to run ahead of a trailing context. The leader context is run on a set of cores

called the leaders and the trailing context is run on a set of follower cores. Corresponding

threads from each context are scheduled by the operating system on adjacent leader and

follower cores.

By letting one context run first, DREM is able to monitor the bus interconnect for

MESI coherence messages that expose almost all cross-node data dependencies. The

dependencies not exposed by MESI are captured using transitive reductions and a slight

modification to MESI as described in the next chapter. These data dependencies are

stored in small hardware buffers that are fed to the follower cores. As the followers

execute, they closely trail the leader cores in the instruction streams and schedule all

memory accesses to comply with the recorded data dependencies. This scheme forces

all memory races to resolve identically in both execution contexts eliminating all the

multithreading related non-determinism. The high level diagram of redundant execution

of two threads on two leaders and followers is shown in Figure 3.1.

Chapter 3. Deterministic Redundant Execution for Security 13

Address Data

0xb000000 str[0]

…. …

0xb000007 str[7]

0xb000008 Frame pointer

0xb00000b Return Address =

0x12345678

Memory layout #1 – Before Attack Memory layout #2 – Before Attack

Address Data

0xb000000 Exploit code

…. Exploit code

0xb000007 Exploit code

0xb000008 Exploit code

0xb00000b Return Address =

0xb000000

Address Data

0xb100000 Exploit code

…. Exploit code

0xb100007 Exploit code

0xb100008 Exploit code

0xb10000b Return Address =

0xb000000

Memory layout #1 – After Attack Memory layout #2 – After Attack

Address Data

0xb100000 str[0]

…. …

0xb100007 str[7]

0xb100008 Frame pointer

0xb10000b Return Address =

0x12345678

Figure 3.2: Attack example

3.2 Security guarantees

For an attacker to exploit a memory corruption vulnerability she must be able to change

the value of a pointer to an object or instruction of her choosing. DREM makes this

impossible by executing two replicas of the program with different address space layouts.

The address spaces are diversified by shifting the locations of stacks, heap, globals, text,

etc. As the leaders and followers execute, each follower checks to ensure that the in-

struction addresses of the executed instructions maintain the fixed text offset which is

specified at program initialization.

The address space diversification protects against memory corruption attacks because

Chapter 3. Deterministic Redundant Execution for Security 14

every corresponding instruction will be located at a different address in the replicas.

Since the same malicious input is sent to both replicas, it is impossible for the attacker

to change the pointer to point to the same corresponding instruction in both contexts–

while the corresponding instructions will be located at different addresses, the pointer

will be overwritten by the same value in both replicas. As a result, execution will be

directed to different instructions in the replicas resulting in a divergence in instructions

being executed.

An example of a buffer attack detection is show in Figure 3.2. In this scenario, two

contexts are initialized with a fixed offset between the stacks of 0x100000. The addresses

and values of the relevant stack regions are shown at the top of the figure. A malicious

user injects malicious code into the stack region and overwrites the return address to

point to the start of the exploit code in one of the layouts. When that function returns,

it dereferences the return address and jumps to that location. Since in both contexts,

the return address was overwritten by the same value, it breaks the fixed offset specified

for the text regions. When the offset change is detected, the exploited application is shut

down.

A weakness in this detection mechanism arises because the offset must maintain

alignment restrictions set by the operating system and architecture of the machine. For

example, an offset applied to a cache aligned address must result in another cache aligned

address. These restrictions give the attacker room to change the lower order bits of an

address not protected by the offset without detection. For example, if a code pointer in

two contexts contains values 0xAAA000 and 0xBBB000 with an offset 0x111000, then

any of the 12 low order bits are not protected by the offset. The attacker can overwrite

these values in both contexts without detection. This is a known problem of redundant

execution [11] and has not been addressed in this thesis.

Chapter 4

Architecture

The following section describes how DREM enables redundant execution with diversified

address spaces on multicore processors with snoopy MESI coherence. First, we describe

how a pair of cores work together to achieve redundant execution of a single application

thread. Then, we demonstrate how these multiple core pairs integrate together to provide

deterministic redundant execution of multiple threads on idealized hardware with infinite

caches. Finally, we remove the infinite cache assumption and show how DREM behaves

on realistic hardware. Table 4.1 summarizes the hardware that DREM adds to the

processor and Table 6.1 gives the sizes of these hardware structures.

4.1 Single-threaded applications

To enable DREM, an operating system initializes two address space diversified application

instances. The instances differ in the locations of shared libraries, stack, heap, global, and

text segments. After initialization, the operating system simultaneously schedules the

two instances on a pair of cores called the leader and the follower. The operating system

supports redundant execution by buffering the results of system calls in the leader threads

and feeds the identical results to the follower threads [11, 25]. This removes divergences

that would normally result from the replicas executing system calls that return time-

15

Chapter 4. Architecture 16

Hardware Structures Section

I-FIFO 4.1

IC Register 4.2

IC cache tags, M-FIFO, previously-modified cache bit 4.2.1

LIC, RIC 4.2.2

Read Bloom Filter, Write Bloom Filter 4.3

Rendezvous IC register 4.3.1

Table 4.1: Summary of hardware structures required to support deterministic redundant

execution

dependent or random results such as gettimeofday or reading from /dev/rand.

To support redundant execution, the leader and follower cores are coupled together

with an instruction FIFO (I-FIFO) as shown in Figure 4.1. The leader runs ahead of the

follower and enqueues the address of every committed instruction onto the I-FIFO. The

follower’s text segment location differs from the leader’s by a fixed offset, which is set and

written into a special register by the OS prior to execution. To detect a divergence, the

follower core dequeues an instruction address from the I-FIFO during commit, applies the

offset to that address, and compares it against its own committed instruction address. If

the addresses do not match, the instruction stream in the two replicas has diverged and

an exception is raised.

Because of events such as cache misses and bus arbitration delays, corresponding

threads in the leader and follower may execute at different rates. To tolerate these

differences, DREM’s I-FIFO has 512 entries allowing the follower to lag by up to 512

instructions.

Chapter 4. Architecture 17

Leader core Follower core

L1 $

M-FIFO Replay

Thread #0

I-FIFO

Bus interconnect

R/W filters

L1 $
Evict

Snoop

Figure 4.1: DREM hardware

4.2 Multithreaded applications with infinite caches

Multithreaded programs contain races, which if allowed to resolve differently on leader

and follower, may lead to concurrency related divergences in the replicas. To support

redundant execution, DREM records shared memory dependencies between the leader

cores and replays them on the follower cores. We define a dependency as the closest

pair of memory accesses executed on two different cores that access the same location in

memory where at least one memory access is a write.

Our race recorder assumes a sequentially consistent memory model, so that all mem-

ory accesses performed by threads create a total order and each thread’s memory accesses

match its program order. Since each thread’s accesses match its program order, we use

an upward counting memory instruction counter (IC) in each core as a Lamport times-

tamp [19] to create a partial ordering between dependent memory accesses. The IC is

implemented as a 32-bit register that is incremented every time a memory request is

issued.

Chapter 4. Architecture 18

4.2.1 Recording dependencies

Dependencies are recorded as a pair of tuples, where each tuple contains a IC value and a

core ID. Together, these allow a tuple to identify a particular dynamic memory instruction

on a particular core. The pair of memory accesses that constitute a dependency are called

the source and destination. The source precedes the destination in the total order.

To record memory dependencies, the MESI cache coherence hardware needs to be

augmented with three new components. First, an IC tag is added to each cache line in

the private caches of each core. The IC tag records the memory instruction count of

the last read or write to the line. Under our infinite cache assumption, no cache lines

are evicted due to conflict and capacity misses. This relieves us from having to worry

about losing IC information about the last access to a cache line. Since no cache lines

are evicted, all memory dependencies are revealed by cache coherency messages. When a

core makes a memory request that depends on the value stored in another cache, a cache

coherency exchange is made to synchronize the cache line between the pair of cores. The

IC and core ID from the source are piggy-backed to the destination on this exchange.

The core making the memory request (the destination) records the IC of its own memory

request and associates it with the core ID and IC of the source, which it gets from the

piggy-backed message.

When a core assembles an IC pair and a core ID of a dependency, it records the

dependency on the second piece of hardware DREM adds – a FIFO buffer called the

M-FIFO. The M-FIFO connects each leader-follower pair in the same fashion as the

I-FIFO.

Since DREM requires at least one operation to be write, DREM only records read-

after-write (RAW), write-after-write (WAW) and write-after-read (WAR) dependencies.

We illustrate an example how DREM records a RAW dependency in Figure 4.2. In

this scenario, core #0 issues a write with IC 50 to line X denoted by W(X,IC=50). Later,

core #2 issues a read R(X,IC=25). It places a read for line X onto the snooping bus

Chapter 4. Architecture 19

Private L1

Line State IC

X M 50

Private L1

Line State IC

X I

312

Step 1: Core #2 issues read, R(X,IC=25)

Step 2: Core #0 responds with a cache-to-cache transfer and its core ID and cache line IC

Step 3: Core #2 records its IC and core ID and IC of Core #0

Leader core #2Leader core #0

Figure 4.2: RAW recording

and waits for an acknowledgment. Core #0 snoops in its cache, sees that it has the line

and sends an acknowledgment to core #2 along with its IC(50) and core ID(0). Core #2

then records its own IC(25) and the response core ID(0) and IC(50).

The DREM requires a third piece of hardware to be added to the processor – a per-

cache line “previously-modified” bit. To see why this bit is needed, consider what happens

in the previous example when a third core #4 attempts to read line X. To correctly make

a RAW dependency from core #0 to core #4, core #0 must “remember” that it has

previously modified the line since the cache coherence state of its line is now shared.

To record that core #0 had modified the line at one time, DREM sets the previously-

modified bit whenever a line transitions from M to S state, and clears it when the line is

invalidated. When a read request on the snooping bus matches a line in a core’s private

cache, the core will form a dependency with the reader if the previously-modified bit is

set, even if the current state of the line is shared.

When the first core in a WAW dependency performs its store, it sets the cache line

state to modified (M). In an infinite cache, there can be no evictions due to conflict

and capacity misses, the cache line maintains its M state until another core writes to

Chapter 4. Architecture 20

an address backed by this line. When that occurs, the cache with the modified line will

perform a cache-to-cache transfer to the writer and piggy-back the line’s IC and its core

ID.

The starting scenario for a WAR dependency is either one core with a cache line in

exclusive (E) or modified (M) state or multiple cores with the line in shared (S) state.

When the write occurs, it has to record dependencies to all the cores that cache the line.

All the cores that observe the write signal initiated by the writer respond with their core

IDs and respective cache line ICs.

We note that our recording algorithm can lose precision but still record a sufficient

set of dependencies. For example, as shown in Figure 4.3, suppose a core performs a

write and updates the cache line IC with the value 5. If it later reads from that line, it

will update the IC of the cache line with the value of the read and leave it in M state.

When another core makes a RAW dependency, the source IC of the dependency will be

equal to the IC of the read and not the write. This type of dependency, which we call a

loose dependency, still guarantees deterministic replay because R(X,IC=10) will always

occur after W(X,IC=5) due to the sequential consistency property.

Core #0 Core #2

W(X,IC=5)

R(X,IC=10)

R(X,IC=200)

ti
m
e

Figure 4.3: Loose dependency

Chapter 4. Architecture 21

4.2.2 Replaying dependencies

Each follower core also maintains an IC that starts at the same initial value as the

leader’s counter. Before issuing a memory request, each follower core checks the top of

the M-FIFO to see if the upcoming memory access has any dependencies. If the follower

request IC matches an IC in the M-FIFO then a dependency exists and the follower must

check whether the dependency has been met. If it has not, the core must stall until the

dependency has been met (i.e. the source core has passed the IC in the dependency).

Note that if a memory operation has multiple dependencies, the follower has to ensure

that all the dependencies have been satisfied.

To enable this, two additional hardware structures are added to each follower core

to replay dependencies in DREM, a vector of last observed ICs (LIC) and a vector of

response ICs (RIC). Each vector contains an entry for each follower core. All the cores

snoop on the bus for IC updates and update their respective LIC. This happens whenever

a core places its IC on a bus, for example when piggy backing ICs on coherence mes-

sages, or when broadcasting IC requests and callbacks, which we discuss below. Because

the entries in the LIC are only updated opportunistically, it is possible for them to be

inconsistent with the IC value of the actual core whose LIC they are caching.

Suppose a follower core K dequeues a dependency from its M-FIFO that indicates

that the current instruction has a dependency with a follower core P at ICP . In the

simple case, if LIC[P] ≥ ICP , then the dependency has already been satisfied and the

follower can proceed.

If LIC[P] < ICP , then K does not know if P has passed ICP or not. K stalls and

sends a request to P for a callback when IC[P] ≥ ICP . When P receives such a request,

it checks to see if IC[P] ≥ ICP . That condition could be true because K has potentially

outdated information stored in its LIC. If IC[P] ≥ ICP , P responds immediately and

wakes up K. We call this type of stall a soft-stall because the dependency was satisfied

but the core had to momentarily wait because it had outdated IC information. If IC[P] <

Chapter 4. Architecture 22

ICP , then P has not passed the source of the dependency yet. P records ICP in a response

IC vector (RIC), RIC[K]. As P continues to execute, it scans the RIC to see whether

it can issue the callback. When P eventually executes ICP (i.e. RIC[K] < IC), it

resets RIC[K] and broadcast its IC on the shared bus. K receives this broadcast and

continues execution. This type of stall is called a hard-stall because the dependency was

not satisfied initially and K had to wait until P caught up and executed ICP .

Follower cores broadcast their updated IC whenever they request a callback and

when they issue callbacks. Cores broadcast their ICs for callback requests to eliminate

deadlocks that can occur when two cores have mutual dependencies and both stall waiting

for each other because they have outdated LIC information. Sending an IC on callbacks

notifies the stalled core that its dependency has been fulfilled.

4.3 Supporting finite caches

In this section, we extend DREM to support finite caches. Finite caches pose a difficulty

to the previously described recording algorithm because the caches lose the last access

information when cache blocks are evicted. This can cause the recorder to miss some

dependencies. For example, suppose core #0 writes to a cache line, which is then evicted

due to a capacity miss. If core #2 later reads from the same address, core #0 will not

respond with the IC of its write since the IC has been evicted with the cache line. As a

result, no dependency between core #0 and core #2 will be recorded.

4.3.1 Recording dependencies with evictions

To capture the dependencies that are lost due to evictions, we add a read and write

bloom filter for each core. The filters are indexed by the address of the cache line. If a

cache line is evicted in M state or in previously-modified state, we add it to the write

bloom filter. All other evictions are added to the read bloom filter. We use two separate

Chapter 4. Architecture 23

bloom filters to ignore read-after-read (RAR) dependencies.

In addition to snooping in its L1 for cache coherence, each core checks its read and

write bloom filter for dependencies. If a core observes a read, it only searches its write

bloom filter. For writes, the cores search in both read and write bloom filters. If there is a

hit, then a potential dependency exists between the core performing the request and the

core with the bloom filter hit. Since bloom filters can have false positives the dependency

created could be unnecessary. Such dependencies impose extra constraints during replay,

reducing the amount of concurrency. However, we note that this only hurts performance,

and does not affect correctness.

Rather than record dependencies on evicted cache lines pairwise as we did in the

previous section, dependencies with evicted lines are recorded using a rendezvous point

between all cores. A rendezvous point is recorded by the leader cores by noting their

current position in the instruction stream and replayed like a barrier on the follower cores

thus ensuring that the evicted memory access happens before the rendezvous and the new

request after the rendezvous. The rendezvous also transitively reduces all dependencies

that start prior to the rendezvous and end after it. The transitive reduction allows us to

flush the bloom filters of all cores and ignore all future dependencies that originate prior

to the flush.

To record a rendezvous, every core records their current last committed IC in the M-

FIFO. This IC will be used to re-synchronize all the cores during replay. In addition, each

core will store the last committed IC in a special rendezvous IC register. The saved IC

is used to transitively reduce dependencies that cross the rendezvous. If a core receives a

request for a cache line with an IC less than the IC of the last rendezvous, no dependency

will be recorded.

We demonstrate how a rendezvous allows us to record dependencies between evicted

cache blocks and how it transitively reduces dependencies by an example shown in Fig-

ure 4.4. Suppose core #0 performs a write to addresses X and Y. Eventually, the cache

Chapter 4. Architecture 24

Core #0 Core #2

W(X,IC=5)

W(Y,IC=6)

Evict(X,IC=5) Rendezvous

R(X,IC=200)

R(Y,IC=201)
ti
m
e

Figure 4.4: Rendezvous example

line backing X is evicted. Later, core #2 issues a read on address X and places the

request on the bus. Core #0 observes the read and searches its write bloom filter. It has

a hit because it previously evicted X and recorded this eviction. Core #0 notifies #2 of

the hit and both cores create a rendezvous by recording their last committed IC. Then,

both cores flush the filters and record the IC of the rendezvous. When core #2 issues a

read for Y, even though there is a cache coherency exchange between the two cores, we

do not record this dependency because it is transitively reduced by the rendezvous.

Note that applications typically make dependencies between data that is stored in the

private caches. Data that has been evicted rarely causes dependencies to be created. As

a result, most bloom filter hits are caused by false positives and not actual dependencies.

This observation motivates our bloom filter clear policy. Instead of tolerating multiple

bloom filter hits, we choose to create a rendezvous point on the first hit and clear the

filters. An alternate strategy is to tolerate several bloom filter hits and then create the

rendezvous point. We studied this policy and noted that tolerating more hits in the

bloom filters creates excessive false positives which removes any advantage in reducing

the number rendezvous points. The false positives arise since tolerating more hits in-

creases the occupancy of each bloom filter thereby increasing each filter’s false positve

rate. The extra dependencies also arise due to WAW and RAW dependencies becoming

ambiguous. Suppose that that a core performs a write and hits in the write bloom filters

of two cores. There is no information about the ordering of the two evicted writes - it

Chapter 4. Architecture 25

is ambiguous which write was performed first. To be conservative the new write has to

create dependencies with both cores.

4.3.2 Replaying dependencies

Follower cores look at the head of the M-FIFO to see if their current IC matches the IC

of a rendezvous. If it does, the follower core does not issue the current memory request.

Instead, it broadcasts that it reached a rendezvous point to all the other cores. All

cores keep track of the number of such broadcasts and wait until the number of such

broadcasts equals the number of follower cores. When the last follower core arrives at

the rendezvous, it broadcasts its arrival, and all the cores simultaneously wake up and

resume execution.

Chapter 5

Implementation

The following chapter discusses how DREM was simulated using an academic cycle-

accurate multicore simulator SESC [27]. First, we discuss how SESC was extended to

support simulation of two identical processes. Second, we outline the I-FIFO imple-

mentation and redundant execution of single-threaded applications. Third, we describe

how SESC was modified to support simulation of pairs of redundant execution threads.

Finally, we describe the memory subsystem changes required for the race-recorder and

replayer.

5.1 Redundant processes

SESC is designed to simulate one application instance at a time. Since DREM requires

two diversified instances of an application running in tandem, SESC has to be extended

to provide this support. These modifications are akin to the changes that need to be

made to an operating system for redundant execution. First, SESC has to correctly

initialize redundant contexts. Second, all the process and thread management system

calls that trap into SESC have to correctly handle redundant contexts.

26

Chapter 5. Implementation 27

5.1.1 Address space initialization

SESC’s initialization routine creates one virtual and one physical address space for the

main program context. To support redundant execution, SESC needs to create another

set of virtual and physical address spaces.

All the regions of the virtual address space(heap, stack, text, etc) for the follower

context are initialized with the same values as the leader context. Note that the virtual

address space of the redundant context has to be diversified for security. Since the goal of

this thesis is to study the performance implications of redundant execution, the virtual

address space of the redundant context was not diversified. The performance results

of redundant execution are not affected by whether the contexts are diversified or not.

However, it does simplify the implementation since it allows us to use load value queues

to aid in simulation. The details of these queues are described later in this chapter. Once

the virtual address space for the follower context is created, it is initialized to point to

the redundant context’s physical memory.

The physical address space is allocated inside SESC. After the main application con-

text is initialized, the follower context is allocated with identical contents. For the pur-

poses of performance simulation, the virtual address spaces were not shifted, thus allowing

us to copy the physical contents of the initial context verbatim. If the text segments were

shifted, the absolute references in the executables have to be modified respectively.

5.1.2 Process and thread management

All the SESC system calls that are exposed to applications that deal with thread man-

agement have to be aware of redundant contexts. The systems calls include operations

such as process and thread creation and synchronization via wait.

Process creation has to take care of setting up identical initial state for both pro-

gram contexts. When the redundant process is created, environment variables, program

Chapter 5. Implementation 28

parameters, and registers are initialized identically across the two contexts.

The thread creation system calls are modified to create follower threads when a leader

thread is created. Once the two threads are created, they are linked by reference and

pinned on adjacent leader and follower cores.

Finally, the semantics of wait in SESC have to be changed for redundant execution.

The original semantics of wait in SESC specify that the wait system calls suspends the

waiting thread if any of the child threads have not exited. If all threads have exited

before the wait system call is invoked, the thread is not suspended. A problem arises

if the leader and follower contexts behave differently at the wait system call. If only

one of the contexts is suspended, a divergence in the instruction stream arises because

the sleep call executes extra instructions. To eliminate this spurious divergence, SESC

was modified to force both leader and follower contexts to suspend if any of the leader

and follower child threads have not exited when the leader wait is called. If all threads

have exited when the leader calls wait, then the leader and follower parent threads are

guaranteed to not wait. Note that this change only pertains to how SESC accounts for

executed instructions and it would not be necessary when making OS related changes to

support DREM.

5.2 Single threaded redundant execution

To support redundant execution of single-threaded applications, only an I-FIFO is re-

quired. The I-FIFO structure is implemented using a simple STL queue. It connects the

frontend and backend of the leader core and to the frontend and backend of the follower

core.

Chapter 5. Implementation 29

1 i f (i sLeader ()) {
2 instFIFO−>enqueue (ret ireVAddr) ;
3 }
4 i f (i sFo l l owe r ()) {
5 a s s e r t (instFIFO−>dequeue () == retireVAddr) ;
6 }

Figure 5.1: Pseudo-code of the retirement checks made in the ROB

5.2.1 Backend

At the retirement stage of the leader core, all the non-speculative instructions are com-

mitted in the re-order buffer(ROB) and enqueued onto the pipelined I-FIFO. Since the

leader core executes several hundred instructions ahead of the follower core, we assume

that the latency of enqueuing and dequeueing the same element onto the I-FIFO will

be overlapped by the time it takes the follower core to catch up. As the follower core

commits its instructions, it dequeues an address from the I-FIFO and compares it against

its own committed address. The cost of dequeuing was not accounted in the simulations

because the I-FIFO is only empty upon initialization. The initialization period of the

I-FIFO is short with respect to the entire simulation run. When the I-FIFO is non-empty,

we assume that there is enough time to propagate the instruction address. In case of

a divergence, the simulation is halted. The pseudo-code of the checks in the ROB are

shown in Figure 5.1.

5.2.2 Frontend

The frontend of the leader core has to be modified to peek into the I-FIFO to check to

ensure that it has enough room to enqueue additional instructions. If the I-FIFO is full,

the front-end of the leader core stalls and does not issue any additional instructions.

Similarly, the front-end of the follower core performs a check to ensure that the current

I-FIFO size is greater than the number of instructions in the pipeline. If that is the case,

Chapter 5. Implementation 30

the instruction is issued. Otherwise, the follower core stalls. These changes were added to

Processor::advanceClock which is responsible for driving each stage of the SESC pipeline.

5.3 Simulating multiple redundant threads

Before implementing the race recorder in SESC, the simulator itself needs to be changed

to support redundant execution of multithreaded applications. When running a SESC

simulation, the simulator functionally executes instructions as it fetches them. Functional

execution during fetch allows SESC to know apriori whether the branch predictor is

correct, what address the instruction will potentially access, etc. After functionally

executing an instruction, SESC creates a dynamic instruction object and specifies all the

parameters in the object that it needs for simulation. An example of that is whether

the dynamic instruction is speculative or not. The dynamic instruction is used for the

timing simulation and hence it is passed through the simulator pipeline.

The race-recorder described in the next section modifies the timing simulation of

SESC and leaves the functional simulation intact. As a result, the functional simulation

itself can create spurious divergences. If the race-recorder enforces a certain order of

memory accesses in the follower cores, it does not preclude the functional simulator of

SESC to execute instructions in a different order when creating the dynamic instruction

objects.

To accurately model the timing aspect of the race-recorder and eliminate the diver-

gences resulting in the functional simulation, we used load value queues(LVQ) inside

SESC to pass load values from leader threads to the follower threads and suppress all

stores in the followers during functional simulation. The functional simulation of stores

did not change the process memory in SESC but were still modeled accurately in the tim-

ing phase of the simulation. The LVQs eliminate all divergences in the follower threads

since they guarantee that the view of memory is identical for the functional simulation

Chapter 5. Implementation 31

while still allowing arbitrary re-ordering during the timing simulation.

Divergences can also occur due to system calls returning different results to a leader

and a follower thread. We used similar load value queues to save the results of system

calls that are written to registers from the leader threads to pass to the follower threads.

The results that are written to memory are automatically forwarded using the LVQs for

load instructions. Similarly, all the system calls that change system state do not perform

any action for the follower threads. An example of modification to the read system call

is shown in Figure 5.2.

5.4 Race-recording and replay

The DREM race-recorder requires addition of instruction counters, bloom filters, and

changes to both the processor and the bus side interface of the caches, and cache tags.

The following subsections detail the implementation of DREM in SESC.

5.4.1 Instruction counters

Each processor maintains a monotonically increasing memory IC. The counter was added

to the Processor class. Whenever an instruction is decoded and verified to be a mem-

ory instruction, the IC is incremented. The processor maintains a committed memory

instruction counter that is incremented whenever a memory instruction is committed.

In addition to the two counters, each dynamic instance of a memory instruction has

the current value of the processor IC counter assigned to it. This dynamic IC value is

propagated with the instruction until the memory operation is issued. Prior to scheduling

the memory access, the dynamic IC is checked against the corresponding entry in the

LIC vector.

Chapter 5. Implementation 32

1 #define LVQ(VAR,EXPR) \
2 i f (pthread−>l e ade r) { \
3 VAR = EXPR; \
4 lvq [thePid] . push (VAR) ; \
5 lvq [thePid] . push (errno) ; \
6 } \
7 else { \
8 VAR = lvq [thePid −1] . f r on t () ; \
9 lvq [thePid −1] . pop () ; \

10 errno = lvq [thePid −1] . f r on t () ; \
11 lvq [thePid −1] . pop () ; \
12 }
13
14 OP(mint read)
15 {
16 Pid t thePid=pthread−>getPid () ;
17 i n t 3 2 t r4 , r5 , r6 ;
18 i n t 3 2 t e r r ;
19
20 r4 = pthread−>getIntArg1 () ;
21 VAddr buf = pthread−>getIntArg2 () ;
22 r6 = pthread−>getIntArg3 () ;
23
24 LVQ(err , read (r4 , (void ∗) (pthread−>v i r t 2 r e a l (buf)) , r6)) ;
25 pthread−>setRetVal (e r r) ;
26 i f (e r r == −1)
27 pthread−>s e tpe r rno (errno) ;
28
29 // Return from the c a l l (and check f o r con t ex t sw i t ch)
30 I (pthread−>getPid()==thePid) ;
31 return pthread−>getRetIcode () ;
32 }

Figure 5.2: Example of LVQ usage in the read system call

Chapter 5. Implementation 33

1 Line ∗ l = cache−>wr i teL ine (addr) ;
2
3 i f (l && l−>canBeWritten ()) {
4 l−>instrCount = mreq−>getDInst()−> instrCount ;
5 l−>modi f i ed = true ;
6
7 wr i t eHi t . i nc () ;
8 . . .
9 return ;

10 }
11 . . .

Figure 5.3: Example of updating the IC and the previously-modified bit

5.4.2 Cache tags

Caches require two additional tags. One tag is necessary to store the IC value of the

last memory operation to access the cache line and another tag to store the previously-

modified bit. The updates to the cache tag IC are done in SMPCache::doWrite and

SMPCache::doRead. An example of the update during writes is shown in Figure 5.3. We

assume that the updates to the tags can be overlapped with the actual write operation

and do not increase the critical path of the cache access.

1 PAddr r p l t a g = calcTag (rp l addr) ;
2 // only f i l l up the bloom f i l t e r s f o r the l e a d e r s
3 i f (IS LEADER(l−>cpuId)) {
4 i f (l−>i sD i r t y () | | l−>modi f i ed) {
5 e v i c t d i r t y . i n s e r t (r p l t a g) ;
6 } else {
7 e v i c t c l e a n . i n s e r t (r p l t a g) ;
8 }
9 }

Figure 5.4: Example of updating the bloom filters

Chapter 5. Implementation 34

5.4.3 Cache evictions

Whenever a cache line is evicted from the private L1 caches, the cache address needs to

be inserted into a bloom filter to ensure that no dependencies escape the race-recorder.

When a new cache line is allocated in SMPCache::allocateLine an older cache line gets

evicted. We insert the addresses of the evicted dirty and modified lines into the write

bloom filter. All other evictions are inserted into the read bloom filter. The addition

shown in Figure 5.4 was added to the cache line allocation procedure in SESC.

5.4.4 Processor-cache interface

The processor-cache interface on the follower cores has to perform two checks. First,

the core must check whether the upcoming memory operation has satisfied all the nec-

essary memory dependencies. Second, the core must check whether it has a pending

acknowledgment that it must service.

Checking dependencies requires a lookup into the M-FIFO to check whether the IC

of the upcoming memory operation matches the IC of a dependency in the FIFO. If the

source of the dependency is less than the LIC[P], the core sends a broadcast and is put

to sleep. A dependency on the M-FIFO could also signify rendezvous point. In that case,

the core allows the memory operation to complete that marks the rendezvous point and

stalls on the next memory operation.

In our implementation, we assume the M-FIFO has a similar structure to the I-FIFO

- it’s pipelined and the head of the FIFO is ready to be read when the memory operation

is about to be scheduled. However, we do model the latency of bus accesses and bus

contention when sending these broadcasts. Bus accesses in SESC are modeled with slots.

If the upcoming bus slot has been filled by another request, a newer bus access will have

to wait for the next available slot.

Checking for pending acknowledgments requires a parallel lookup in the RIC instruc-

Chapter 5. Implementation 35

tion vector and a comparison to an IC. The RIC has an entry for all the follower cores.

Hence, for a 32 core processor, each follower core will have 15 RIC entries. We assume

that the lookup in this structure can be overlapped with the lookup into the M-FIFO. If

an entry in the RIC is less than the currently scheduled memory operation IC, the core

sends a broadcast to wake up any sleeping cores and resets the RIC vector.

5.4.5 Snooping-cache interface

The snooping interface on the leader cores is responsible for replying to MESI broadcast

messages. In addition to that, DREM extends the logic at that interface to perform

two additional tasks: replying with IC and core ID to incoming coherence requests and

lookups in bloom filters to find dependencies with evicted cache blocks.

When an incoming coherence request arrives at the snooping interface of a leader

cache, the cache performs a tag-lookup to find whether a matching address is loaded in

the private cache. If there is a hit and a reply is due, the IC that is stored in the cache tag

and the core ID are piggybacked in the coherence reply. Sending additional information

in the reply is modeled by utilizing an additional bus slot. Note that not all incoming

coherence messages generate replies with piggy-backed IC information. For example, if

the tag IC is less than the IC of the last bloom filter clear, then the dependency has been

transitively reduced and no reply is necessary.

In addition to the tag lookup, DREM requires a parallel lookup in a 4096-bit bloom fil-

ter. We assumed that the bloom filter lookup can be overlapped with the tag lookup(which

is 8-way associative). If there is a hit, the bloom filters are set to be cleared and a broad-

cast is made to all cores to record the synchronization point.

A simplified version of what each core does on a read miss is shown in Figure 5.5.

Similar actions are performed on invalidate and write misses.

Chapter 5. Implementation 36

1 void MESIProtocol : : readMissHandler (SMPMemRequest ∗ s r eq)
2 {
3 PAddr addr = sreq−>getPAddr () ;
4 Line ∗ l = pCache−>getL ine (addr) ;
5 PAddr tag = pCache−>calcTag (addr) ;
6 int r e adF i l t e rH i t = f a l s e ;
7 int wr i t eF i l t e rH i t = f a l s e ;
8 GProcessor∗ attachedCPU =
9 osSim−>id2GProcessor (pCache−>getCpuId ()) ;

10 const MemRequest∗ depRequest = sreq−>getOr ig ina lReques t () ;
11
12 SMPCache∗ r e c e i v e r = pCache ;
13 SMPCache∗ sender = (SMPCache∗) sreq−>getRequestor () ;
14
15 i f (l && ! l−>i sLocked ()) {
16 i f (l−>ge tSta t e () == MESI MODIFIED | | l−>modi f i ed) {
17 i f (attachedCPU−>i sLeader () &&
18 l−>instrCount > pCache−>getLastClear ()) {
19 sreq−>addSourceDep (l−>cpuId , l−>instrCount ,
20 l−>memop == MemRead) ;
21 }
22 }
23 combineResponses (sreq , (MESIState t) l−>ge tSta t e ()) ;
24 changeState (l , MESI SHARED) ;
25 sendReadMissAck (s r eq) ;
26 return ;
27 }
28
29 i f (IS LEADER(sender−>getCpuId ())
30 && IS LEADER(r e c e i v e r−>getCpuId ())) {
31 w r i t eF i l t e rH i t = pCache−>e v i c t d i r t y . s earch (tag) ;
32 r e adF i l t e rH i t = pCache−>e v i c t c l e a n . pas s iveSearch (tag) ;
33 }
34
35 i f (pCache−>e v i c t d i r t y . atCapacity ()) {
36 sreq−>s e t F i l t e r F u l l () ;
37 pCache−>e v i c t c l e a n . c l e a r () ;
38 pCache−>e v i c t d i r t y . c l e a r () ;
39 } else i f (r e adF i l t e rH i t) {
40 sreq−>s e t S t a t e (MESI SHARED) ;
41 }
42
43 sendReadMissAck (s r eq) ;
44 }

Figure 5.5: Example of updating the bloom filters

Chapter 6

Evaluation

6.1 Experimental setup

To evaluate DREM we used SESC, a cycle-accurate multicore simulator for the MIPS

architecture. We modified SESC to model an in-order execution DREM multicore pro-

cessor with up to 32 cores with 16 KB private L1 caches and a 512 KB shared L2 cache.

MESI snooping coherence is used on a 50 GB/s inter-processor bus that connects the L1

caches and the shared L2. The second L2 port is connected to a 10 GB/s memory bus.

All the relevant architectural parameters are listed in Table 6.1.

The L1 cache is sized to accommodate the most important working sets in almost all

SPLASH-2 applications. Selecting a larger L1 cache size would absorb a larger portion

of the working set and keep the miss rates low. Since the rendezvous point frequency

is sensitive to the miss rate, the chosen L1 size allows us to study some applications

that exhibit higher miss rates. Similarly, the shared L2 cache is sized to be smaller than

the total working set size of the SPLASH-2 applications. A larger L2 cache size would

encapsulate most of the working set and not stress the memory bandwidth sufficiently.

The I-FIFO and M-FIFO sizes were sized conservatively. We varied the size of both

structure to determine at which point increasing the size of the structure had no signif-

37

Chapter 6. Evaluation 38

icant overhead on redundant execution. Smaller I-FIFO and M-FIFO sizes resulted in

more frequent stalls when the FIFOs became full.

The bandwidth of the interprocessor-bus and the memory bus is chosen to match the

bandwidth provided by today’s multicores.

To support the race recording algorithm, we need support for the sequentially con-

sistent memory model. SESC is modified to support sequential consistency by enabling

in-order execution, disabling load-forwarding, and disabling load-bypassing. To evaluate

the performance impact of DREM, we ran benchmarks from the SPLASH-2 suite. These

applications were chosen since they produce many shared memory accesses thus allow-

ing us to stress test the recording and replay of DREM. The parameters used for the

benchmarks are listed in Table 6.2.

DREM is able to detect and prevent memory corruption attacks through redundant

execution of replicas with address diversity. DREM provides the same level of security

as other redundant execution systems, such as N-Variant, whose ability to detect attacks

has already been evaluated in the literature [11]. As a result, we focus on evaluating

the performance penalty DREM imposes. DREM’s performance overhead has two com-

ponents: overhead due to redundant execution and overhead from race recording and

replay. Redundant execution overhead is caused by additional resource requirements due

to running a redundant replica, which increases pressure on the processor interconnect,

shared cache, and memory bandwidth. In addition, the I-FIFO and M-FIFO can stall

leader and followers when they are empty or full, respectively. Race recording and replay

overhead is a result of stalls and additional bus messages required to record memory

dependencies, and stalls imposed during replay to satisfy those dependencies.

By evaluating the cost of redundant execution independently from the cost of record

and replay we are able to separately measure the cost that any redundant execution such

as N-Variant [11] or Replicant [25] system must pay and the additional overhead DREM

imposes to support redundant execution of multithreaded workloads.

Chapter 6. Evaluation 39

Frequency 5 GHz

Issue 4-way

DL1 16 kb/4-way/32b block

Hit/miss latency 2/2 cycles

Read bloom filter size 4096 bits

Write bloom filter size 4096 bits

I-FIFO size 512 (2 kb)

M-FIFO size 128 (768 bytes)

LIC/RIC size 16 entries (64 bytes)

IL1 32 kb/2-way/32b block

Hit/miss latency 1/1 cycles

Shared L2 512 kb/8-way/32b block

Hit/miss latency 10/14 cycles

Coherence MESI

Shared bus latency 10 cycles

Shared bus bandwidth 50 GB/s

Memory bus latency 15 cycles

Memory bus bandwidth 10 GB/s

Memory latency 470 cycles

Table 6.1: Simulation parameters

Chapter 6. Evaluation 40

0

10

20

30

40

50

1 2 4 8 16

%
 o

v
er

h
ea

d

cores

fft radix ocean raytrace

0

2

4

6

8

10

12

14

16

1 2 4 8 16

%
 o
v
er
h
ea
d

cores

barnes radiosity water-nsq lu fmm

Figure 6.1: Redundant execution overhead

Chapter 6. Evaluation 41

Barnes 16K particles

FFT 64K points

FMM 16K particles

LU 512x512 matrix, 16x16 blocks

Ocean 258x258 ocean

Radiosity Room, -ae 5000.0 -en 0.050 -bf -.10

Radix 1M integers, radix 1024

Raytrace Car

Water-nsq 512 molecules

Table 6.2: Benchmark inputs

6.2 Redundant execution overhead

To study the overheads for the SPLASH-2 applications without a race recorder, we mod-

ified the functional simulation of SESC to forward load values from the leader to the

follower threads. This effectively removes all races without any overhead while accu-

rately simulating the timing of the follower cores. We then compare the runtime of the

SPLASH-2 benchmarks run redundantly on this modified processor against a single in-

stance running on a vanilla processor. Figure 6.1 shows the overhead as we scale the

number of cores. The top graph shows the overhead for benchmarks with higher memory

bandwidth requirements and benchmarks with lower memory requirements are shown

in the bottom graph. As we can see, memory bandwidth is the limiting resource for

redundant execution as benchmarks with higher bandwidth demands also suffer higher

performance overhead. Across these applications the average observed overhead is 22%.

To understand the effect of memory bandwidth pressure on the performance, refer to

Table 6.3, which gives the miss rates for L1 and L2 under vanilla and redundant execu-

tion and the measured memory bandwidth utilization of vanilla. The memory increment

Chapter 6. Evaluation 42

0

10

20

30

40

50

60

1 2 4 8 16

%
 s

h
a
re

d
 c

a
ch

e
m

is
s

ra
te

cores

barnes_redundant barnes_vanilla raytrace_redundant

raytrace_vanilla watern_redundant watern_vanilla

Figure 6.2: Shared cache miss rates

App Both Vanilla Redundant Mem

L1 L2 Mem L2 MemP inc.

Fft 4.2 98 6397 99 13434 2.1

Ocean 10.6 93 6092 96 13402 2.2

Radix 7.2 64 4078 78 11418 2.8

Raytrace 3.9 40 2392 68 8133 3.4

Barnes 2.2 16 786 30 3065 3.9

Fmm 0.4 57 834 78 2252 2.7

Lu 0.3 78 808 93 1858 2.3

Water-nsq 1.5 38 578 52 1792 3.1

Radiosity 0.6 48 456 55 1048 2.3

Table 6.3: Miss rates and memory bandwidth for 16 leader cores

Chapter 6. Evaluation 43

(Mem inc.) column gives the predicted increase in memory bandwidth requirement which

is given by 2× L2MissRateredundant/L2MissRatevanilla. This ratio accounts for two ef-

fects of the doubled number of cores that redundant execution uses on memory bandwidth

consumption: more capacity misses due to higher cache pressure and doubled number

of requests going to the shared cache. Note that L1 miss rates stay the same because

each added follower core in redundant execution also has its own private L1 cache. The

MemP column gives the predicted memory increase given by multiplying the vanilla mem-

ory bandwidth with Meminc (hence some of the columns are larger than 10 GB/s). As

we can see, the predicted memory bandwidth gives a fairly good indication of what the

performance impact will be – for example it predicts the larger performance overhead of

Barnes despite having a modest memory bandwidth requirement under vanilla.

Both scaling the number of threads in the application and using redundant execution

utilizes more cores, thus increasing the shared L2 miss rate. Increasing the number of

cores used by the application causes a larger portion of the working set to be loaded

into the L2 cache. Similarly, with redundant execution, the working set size is doubled

because a copy is made for the leaders and another for the followers. This increases the

competition for the shared cache and increases the miss rates. Figure 6.2 shows that the

difference in miss rates between vanilla and redundant execution increases as more cores

are added.

The effects of increased shared bus pressure and I-FIFO stalls are minor. We measured

an overall 31% increase in bus arbitration time for the SPLASH-2 suite and the overhead

of the I-FIFO was less than 2%. This is consistent with the overhead observed by other

systems, such as SRT [26], that couple leader and follower cores with similar FIFOs. Both

the I-FIFO and the M-FIFO were sized to provide the best trade off between performance

and area.

Chapter 6. Evaluation 44

6.3 Race recording and replay overhead

DREM introduces a very modest overhead to record and replay multithreaded races. The

cost of recording dependencies are extra processor interconnect messages and the cost of

replay comes from rendezvous points and stalls to satisfy un-met dependencies.

The number of recorded dependencies as a fraction of all shared memory accesses is

very small. In fact, most dependencies are not recorded because they are transitively

reduced by periodically occurring rendezvous points. Since dependencies cannot cross

rendezvous, the recorded dependencies only arise between pairs of memory accesses that

occur close to each other in time.

Rendezvous points introduce overhead during recording because the leader cores must

perform a barrier-like synchronization. Rendezvous increase in frequency with higher L1

miss rates since this usually is also accompanied by an increased number of evictions into

the bloom filters. In the workloads we tested, important working sets fit in the L1 cache,

which keeps the number of rendezvous points low.

During replay, dependent pairs of memory accesses can randomly occur in the opposite

order than was recorded in the leaders. Since this introduces a race, the destination of a

dependency hard-stalls until the dependent memory accesses completes. Hard-stalls do

not occur for all dependencies, only those that can be re-ordered during replay.

We note that two types of memory accesses generally result in dependency related

stalls – those used to implement synchronization primitives such as locks and barriers,

and those used to access shared data. Synchronization dependencies naturally occur in

sections of code that are likely to be executed concurrently. The order in which cores

acquire locks or pass through barriers is highly non-deterministic. As a result, as shown

in Table 6.4, they usually cause a larger percentage of stalls over dependencies recorded

when compared to the stalls due to shared data. In fact, over all SPLASH-2 applications,

66% percent of lock and 65% of barrier dependencies require stalls during replay and only

19% of data dependencies require stalls.

Chapter 6. Evaluation 45

0

0.2

0.4

0.6

0.8

1

1.2

%
o
v
er
h
ea
d

Figure 6.3: Relative overhead

In terms of average cost per stall, barriers have a higher cost associated than locks.

In SPLASH-2, barriers make dependencies with all the cores and individual lock are

typically shared by a subset of the cores. During barrier replay, a single core lagging

behind causes all the remaining cores to wait and pay the stall penalty. Replay of locks

that are shared by a subset of the cores causes fewer cores to be linked by dependencies

and results in a lower probability of a core being ’late’.

The rest of the shared data communication has stalls during replay because of soft-

stalls, loosely made dependencies, false sharing. In this suite, 53% of stalls are due to

soft stalls, 26% are caused by loose dependencies and the rest are caused by false shared

dependencies.

Rendezvous points are the most expensive to replay because they are dependencies

between all cores unlike the previous types of dependencies which are made between pairs

of cores.

The overall cost of race record-replay compared to redundant execution is negligible

Chapter 6. Evaluation 46

as shown in Figure 6.3. Raytrace exhibits the highest overhead due to its frequent

rendezvous points and a high number of locks. Radix has the most frequent and costly

rendezvous points. The average overhead over the tested SPLASH-2 applications is

0.43%.

Chapter 6. Evaluation 47

A
p
p

L
o
ck

s
B

ar
ri

er
s

S
h
ar

ed
d
at

a
R

en
d
ez

vo
u
s

#
D

ep
s

S
ta

ll
s

D
el

ay
#

D
ep

s
S
ta

ll
s

D
el

ay
D

ep
s

S
ta

ll
s

D
el

ay
#

D
el

ay
/1

M
/1

M
/1

M
/1

M
/1

M
/1

M
/1

M

B
ar

n
es

69
09

5
13

57
93

3
30

1
17

2
1

18
93

88
16

64
1

33
66

7

F
ft

16
19

1
13

7
66

2
7

11
5

68
64

9
16

8
72

30
2

34
86

0

F
m

m
46

01
0

47
37

82
34

4
2

17
70

66
24

13
4

6
91

0

L
u

16
2

1
59

5
67

10
6

20
5

25
9

40
64

1
83

2

O
ce

an
33

28
43

5
31

0
37

0
90

0
10

88
71

0
13

90
81

59
12

16
23

7
11

7
10

24

R
ad

io
si

ty
23

00
52

19
68

95
2

17
5

10
2

1
30

6
51

64
14

14
62

8
6

46
7

R
ad

ix
19

8
37

25
51

8
11

25
18

85
8

28
0

24
31

9
12

0
23

03

R
ay

tr
ac

e
36

63
94

32
43

24
16

26
6

1
0

0
30

36
56

63
0

12
8

78
12

72

W
at

er
n

18
70

4
28

8
18

4
57

1
20

14
9

11
70

16
73

34
2

14
2

2
18

50

T
ab

le
6.

4:
D

ep
en

d
en

cy
R

ep
la

y
C

os
ts

fo
r

16
L

ea
d
er

C
or

es

Chapter 7

Related work

DREM builds on a large body of work from the areas of fault tolerance, race recorders for

multithreaded debugging, and software redundant execution. In this chapter, we outline

which aspects of this related work influenced the design and implementation of DREM.

In addition, we cover another popular hardware technique to protect against memory

corruption vulnerabilities.

7.1 Transient fault detection

Fault tolerance work provides protection against soft errors by running two identical

copies of a program with replicated inputs on pairs of cores [3, 30] or threads on SMT

architectures [26]. Faults are detected when the two programs diverge.

SRT [26] proposes using simultaneously and redundantly threaded processors to detect

soft errors. In SRT architecture, one hardware thread runs ahead and saves the results

of all load operations in a load value queue(LVQ). The trailing thread does not perform

any memory accesses itself since it reads values from the LVQ. The LVQ serves a two-

fold purpose in SRT. First, it removes any multithreaded related non-determinism in

the trailing thread. If the trailing thread performed the load values itself, it could get a

different view of memory. Second, the LVQ keeps the memory bandwidth requirements

48

Chapter 7. Related work 49

unchanged.

DREM differs from SRT and similar work which use queues for input replication

because the the leader and follower have a different view of memory. The differences

arise because pointers, which are also stored in memory, are changed by the address

space diversification. As a result, DREM has to perform every memory operation again

in the follower threads. This introduces multithreaded related non-determinism which

DREM solves with its race-recording and replay hardware.

DREM borrows on the ideas of result-queues from this work to propagate information

from leader to follower core and verifying the results of computation at the follower core.

DREM feeds the follower cores the addresses of committed instructions which the follower

cores use to verify against their own committed addresses.

7.2 Race recorders

DREM builds on techniques found in race recorders [18, 20, 22, 36, 37]. DREM uses

instruction counts and cache line tagging used in FDR [36] to label cache lines with

last access information. DREM records data races for realtime replay on the followers

unlike FDR which records races on persistent storage to replay them later to diagnose

multithreading bugs. DREM does not use the Netzer’s [23] transitive reductions for point-

to-point dependencies implemented in FDR since transitively reducible dependencies do

not affect replay speed. Also, DREM works with snooping coherence whereas FDR

requires directory coherence. Directory coherence simplifies race recording since it stores

last access information for evicted cache lines. However, current multicore processors use

snooping coherence.

Strata [22] is another race recorder that uses rendezvous points to record RAW and

WAW dependencies and offline post processing to reconstruct WAR dependencies. Ren-

dezvous points minimize the recorded race log size because they transitively reduce any

Chapter 7. Related work 50

dependencies that cross these points. Since rendezvous points are expensive to replay,

DREM minimizes their use in favor of faster replay and relies on point to point de-

pendencies. Both DREM and Strata used bloom filters to keep track of evicted cache

lines.

DeLorean [20] uses techniques in transactional memory and speculative multithread-

ing that provide sequential consistency at release consistency speeds. DeLorean relaxes

sequential consistency assumptions of previous race recorders by grouping blocks of in-

structions into chunks that commit atomically. This allows DeLorean to record and

replay execution at speeds close to release consistency. In later work, Capo [21] uses

DeLorean hardware to build a prototype of a full system recorder and replayer using

Linux.

7.3 Software redundant execution

There are numerous recent projects that attempt to provide similar security guarantees

to DREM with software-only solutions. They do however have limitations when it comes

to supporting multithreaded applications.

DieHard [4] runs several replicas each with a randomized memory manager. The

memory manager randomizes the position of heap objects in each replica. The random-

ized allocation provides probabilistic protection against memory corruption attacks since

buffer overflows are likely to overwrite different areas in each replica. To detect an attack,

DieHard compares the output from each replica to ensure that all replicas agree on their

output. In case of a disagreement, an attack is signaled. DREM differs from DieHard

since the amount of diversification in DREM is limited to address space diversification

because DREM uses instructions for comparing replicas rather than program outputs.

DREM however supports deterministic execution of multithreaded workloads.

N-Variant [11] provides a secretless framework for security through diversity by run-

Chapter 7. Related work 51

ning multiple redundant replicas with diversifications that include address space layout

and instruction sets. To detect memory corruption vulnerabilities, N-Variant runs two

variants with disjoint address spaces. If an attack overwrites a code pointer with an

absolute address, that address cannot be dereferenced in both replicas since the address

spaces are disjoint. N-Variant suffers from the same drawback as DREM because it can-

not detect partial pointer overwrites which allow a valid pointer to be constructed in

both variants. The drawback of N-Variant is the lack of any support for multithreaded

applications.

Orchestra [28] uses redundant execution in a multi-variant execution environment.

Orchestra distinguishes itself from the previous work by requiring no kernel modifications.

Under orchestra, all the variants are driven by a user-space process using the Linux

kernel’s debugging facilities. Orchestra detects stack-based overflow attacks by running

two variants - one which grows the stack up and another which grows it down. Orchestra

has the same limitation as N-Variant - it does not support multithreaded applications.

Replicant [25] is the only solution known to us that supports some form of redun-

dant execution of multithreaded workloads. Replicant provides support for threading by

requiring sequential annotations around areas of code that introduce thread-related non-

determinism. The annotations guarantee that replicas enter and exit sequential regions

in the exact same order. The annotation that Replicant requires are a major problem

to its adoption - they are difficult to insert since they require a deep understanding

of the application’s sharing patterns. DREM solves the annotation problem since our

race-recorder can replay all shared memory accesses without developer hints.

7.4 Hardware information flow tracking

Other hardware techniques exist to provide security against memory corruption attacks

using pointer tainting [13, 32, 35]. Pointer tainting taints unsafe inputs such as data

Chapter 7. Related work 52

received on a network socket and propagates it through the system by tagging every byte

of memory and registers with taint bits. If tainted data is ever used as an instruction, a

pointer, or a jump address then a memory corruption attack is detected.

These approaches have much smaller runtime costs than DREM but suffer from false

positives. A problem with pointer tainting arises when applications use input-derived

data safely. Hardware tainting recognizes such uses and attempts to detect whenever

tainted data is used safely by looking at instructions that do bounds checking on tainted

data. When bounds checking is applied to tainted data, the pointer tainting policy

clears the taint bits. Problems arise when tainted data is used safely without a bounds

check. Detecting such uses at runtime is impossible and requires compiler annotations to

tag binaries with bounds information. Removing such false positives is still an ongoing

research problem.

7.5 Deterministic multithreading

An alternate way of achieving determinism in multithreaded applications is to enforce

determinism in the interleaving of shared memory accesses. Kendo [24] enforces determin-

istic acquisition of locks in multithreaded applications. If all application communication

is protected by locks then Kendo guarantees that every run of an application will pro-

duce deterministic outputs. If, however, an application performs racy shared memory

access then Kendo will produce non-deterministic results. DREM has the advantage

that it records and replays all shared memory communication regardless of whether it

is protected by locks and enforces determinism in all cases. Also, Kendo’s deterministic

interleaving creates higher overheads since all threads must acquire locks in a predefined

order. Under DREM, the recording phase does not constrain threads to enter locks in

any predefined order.

Chapter 8

Conclusion

We find that by adding a modest amount of hardware and leveraging state tracked by

the cache coherence protocol DREM can efficiently record and replay races, enabling

redundant execution for security to be applied to multithreaded workloads. DREM

imposes almost no additional performance penalty over a baseline redundant execution.

This is due to two factors. First, out of all the memory accesses that an application

performs, every few result in recorded dependencies. The majority of shared memory

accesses have their dependencies transitively reduced by rendezvous points. Second,

even when a dependency results in a stall, the stalls are relatively short and last several

hundred cycles on average. In addition, most of the dependencies that actually result in

stalls occur at synchronization points. These factors allow DREM to impose less than 1%

execution overhead over a base overhead of 22% for executing two replicas redundantly.

53

Bibliography

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A

tutorial. Computer, 29(12):66–76, 1996.

[2] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 7(49), 1996.

[3] Todd M. Austin. Diva: a reliable substrate for deep submicron microarchitecture

design. In Proceedings of the 32nd Annual ACM/IEEE International Symposium on

Microarchitecture (MICRO), pages 196–207, November 1999.

[4] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory safety for

unsafe languages. SIGPLAN Not., 41(6):158–168, 2006.

[5] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine, Jim

Klecka, and Jim Smullen. NonStop advanced architecture. In Proceedings of the

International Conference on Dependable Systems and Networks (DSN), pages 12–

21, June 2005.

[6] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for

comprehensive protection from memory error exploits. In Proceedings of the 14th

USENIX Security Symposium, pages 271–286, August 2005.

[7] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good

instructions go bad: generalizing return-oriented programming to risc. In CCS ’08:

54

BIBLIOGRAPHY 55

Proceedings of the 15th ACM conference on Computer and communications security,

pages 27–38, New York, NY, USA, 2008. ACM.

[8] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. Bulksc: bulk enforce-

ment of sequential consistency. In Proceedings of the 34th International Symposium

on Computer Architecture (ISCA), pages 278–289, June 2007.

[9] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve

Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard:

Automatic adaptive detection and prevention of buffer-overflow attacks. In Proceed-

ings of the 7th USENIX Security Symposium, pages 63–78, January 1998.

[10] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike

Frantzen, and Jamie Lokier. Formatguard: automatic protection from printf format

string vulnerabilities. In SSYM’01: Proceedings of the 10th conference on USENIX

Security Symposium, pages 15–15, Berkeley, CA, USA, 2001. USENIX Association.

[11] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack

Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-Variant systems:

A secretless framework for security through diversity. In Proceedings of the 15th

USENIX Security Symposium, pages 105–120, August 2006.

[12] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architecture: A

Hardware/Software Approach (The Morgan Kaufmann Series in Computer Archi-

tecture and Design). Morgan Kaufmann, August 1998.

[13] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexible informa-

tion flow architecture for software security. In Proceedings of the 34th International

Symposium on Computer Architecture (ISCA), pages 482–493, June 2007.

[14] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M.

Chen. Execution replay of multiprocessor virtual machines. In Proceedings of the

BIBLIOGRAPHY 56

4th International Conference on Virtual Execution Environments (VEE), pages 121–

130, March 2007.

[15] Stephanie Forrest, Anil Somayaji, and David H. Ackley. Building diverse computer

systems. In Proceedings of the 6th USENIX Workshop on Hot Topics in Operating

Systems (HotOS), pages 67–72, May 1997.

[16] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance evaluation

of memory consistency models for shared-memory multiprocessors. SIGOPS Oper.

Syst. Rev., 25(Special Issue):245–257, 1991.

[17] John Hennessy and David Patterson. Computer Architecture - A Quantitative Ap-

proach. Morgan Kaufmann, 2003.

[18] Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes for lightweight

memory race recording. In Proceedings of the 35th International Symposium on

Computer Architecture (ISCA), pages 265–276, June 2008.

[19] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, July 1978.

[20] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording and deter-

ministically replaying shared-memory multiprocessor execution efficiently. In Pro-

ceedings of the 35th International Symposium on Computer Architecture (ISCA),

pages 289–300, June 2008.

[21] Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep Torrellas. Capo:

a software-hardware interface for practical deterministic multiprocessor replay. In

Proceedings of the 15th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), pages 73–84, March 2009.

BIBLIOGRAPHY 57

[22] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared mem-

ory dependencies using strata. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating Systems (AS-

PLOS), pages 229–240, December 2006.

[23] Robert H. B. Netzer. Optimal tracing and replay for debugging shared-memory

parallel programs. In PADD ’93: Proceedings of the 1993 ACM/ONR workshop on

Parallel and distributed debugging, pages 1–11. ACM, 1993.

[24] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient determin-

istic multithreading in software. In ASPLOS ’09: Proceeding of the 14th interna-

tional conference on Architectural support for programming languages and operating

systems, pages 97–108. ACM, 2009.

[25] Jesse Pool, Ian Sin Kwok Wong, and David Lie. Relaxed determinism: making re-

dundant execution on multiprocessors practical. In Proceedings of the 11th USENIX

Workshop on Hot Topics in Operating Systems (HotOS), pages 25–30, May 2007.

[26] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via

simultaneous multithreading. In Proceedings of the 27th International Symposium

on Computer Architecture (ISCA), pages 25–36, June 2000.

[27] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis Ceze,

Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos. SESC simulator,

January 2005. http://sesc.sourceforge.net.

[28] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Orchestra: in-

trusion detection using parallel execution and monitoring of program variants in

user-space. In EuroSys ’09: Proceedings of the fourth ACM european conference on

Computer systems, pages 33–46, New York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 58

[29] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. On the effectiveness of address-space randomization. In Proceedings

of the 11th ACM Conference on Computer and Communications Security (CCS),

pages 298–307, October 2004.

[30] Jared C. Smolens, Brian T. Gold, Babak Falsafi, and James C. Hoe. Reunion:

Complexity-effective multicore redundancy. In Proceedings of the 39th Annual

ACM/IEEE International Symposium on Microarchitecture (MICRO), pages 223–

234, December 2006.

[31] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program

execution via dynamic information flow tracking. In Proceedings of the 11th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 85–96, October 2004.

[32] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. Flexi-

taint: A programmable accelerator for dynamic taint propagation. In Proceedings

of the 14th International Symposium on High Performance Computer Architecture

(HPCA 2008), pages 173–184, February 2008.

[33] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault recovery using

simultaneous multithreading. In Proceedings of the 29th International Symposium

on Computer Architecture (ISCA), pages 87–98. IEEE Computer Society, 2002.

[34] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of the 22th In-

ternational Symposium on Computer Architecture (ISCA), pages 24–36, 1995.

[35] Jun Xu and Nithin Nakka. Defeating memory corruption attacks via pointer taint-

edness detection. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN), pages 378–387. IEEE Computer Society, June 2005.

BIBLIOGRAPHY 59

[36] Min Xu, Rastislav Bodik, and Mark D. Hill. A ”flight data recorder” for enabling full-

system multiprocessor deterministic replay. In Proceedings of the 30th International

Symposium on Computer Architecture (ISCA), pages 122–135, June 2003.

[37] Min Xu, Mark D. Hill, and Rastislav Bodik. A regulated transitive reduction (rtr)

for longer memory race recording. In Proceedings of the 12th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 49–60, 2006.

	Introduction
	Contributions
	Thesis structure

	Background
	Memory Corruption Vulnerabilities
	Redundant execution applications
	Cache coherence
	Memory consistency

	Deterministic Redundant Execution for Security
	Deterministic execution
	Security guarantees

	Architecture
	Single-threaded applications
	Multithreaded applications with infinite caches
	Recording dependencies
	Replaying dependencies

	Supporting finite caches
	Recording dependencies with evictions
	Replaying dependencies

	Implementation
	Redundant processes
	Address space initialization
	Process and thread management

	Single threaded redundant execution
	Backend
	Frontend

	Simulating multiple redundant threads
	Race-recording and replay
	Instruction counters
	Cache tags
	Cache evictions
	Processor-cache interface
	Snooping-cache interface

	Evaluation
	Experimental setup
	Redundant execution overhead
	Race recording and replay overhead

	Related work
	Transient fault detection
	Race recorders
	Software redundant execution
	Hardware information flow tracking
	Deterministic multithreading

	Conclusion
	Bibliography

