
Unity: Secure and Durable Personal Cloud Storage

Beom Heyn Kim
Computer Science

University of Toronto
Toronto, Canada

bhkim@toronto.edu

Wei Huang
Electrical and Computer

Engineering
University of Toronto

Toronto, Canada
wh.huang@mail.utoronto.ca

David Lie
Electrical and Computer

Engineering
University of Toronto

Toronto, Canada
lie@eecg.toronto.edu

ABSTRACT
Unity provides secure and durable storage for personal data
that does not depend on the security or availability of a cen-
tral service. Instead, Unity exploits the trend towards users
having more personal computing devices and the increasing
amounts of storage available on those devices. This moti-
vates the design of Unity, which does not store data on the
cloud provider at all, but instead leverages the availability
of the cloud provider to mount a coordination service that
enables a user’s devices to provide durable storage for the
user’s data themselves.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; D.4.5
[Reliability]: Backup procedures

General Terms
Design, Security

Keywords
Cloud, Storage, Replication, Unity

1. INTRODUCTION
People today have more personal data in digital formats

than ever before – every year, the average person accumu-
lates gigabytes of digital photos, bills, receipts, e-mails and
documents into their personal “digital repository”. In addi-
tion, due to the increasing number of devices people own,
they want the ability to access a single, consistent reposi-
tory of data from any of their devices, such as their personal
computer (PC), smartphone or tablet. As a result, both in-
cumbent and startup companies, such as Dropbox, Google
Drive, Microsoft SkyDrive, and SugarSync have moved to
fill this need by offering both free and paid online storage in
the cloud. By storing their digital repository in the cloud, a
user can ensure that the repository is always available and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1665-1/12/10 ...$15.00.

that any device with Internet connectivity will have access
to their digital repository anytime they need it. Another
benefit to cloud storage is durability. Cloud providers store
user data on highly reliable systems, which protects the data
against both failures in the cloud provider and failures of the
user’s devices.

However, one critical property that all personal cloud stor-
age solutions currently lack is security from a malicious or
compromised cloud provider. Cloud providers or their em-
ployees may be malicious or negligent, or the cloud provider
may be compromised by a third party. Finally, depending
on the jurisdiction the cloud provider is located in, the cloud
provider may be compelled by law enforcement to turn over
user data against the user’s wishes. Security is at odds with
the current cloud provider model, where user data is stored
by the cloud provider on the cloud provider’s machines. In
one high profile case, it was found that while Dropbox uses
encryption to protect data in transit, Dropbox must keep
data unencrypted on their servers so that they can dedupli-
cate user data to save costs. This “feature” was discovered
by Christopher Soghoian to result a side channel that can
allow attackers to guess the contents of a user’s data repos-
itory [12]. Due to the questionable security of cloud storage
services, organizations such as IBM have outlawed the use
of Dropbox by their employees.

A number of research projects have shown how to detect
or mitigate malicious file servers [4, 6, 8]. In addition, some
cloud storage providers, such as SpiderOak, have also started
to address security concerns by offering encryption with a
key known only to the user. However, if malicious behavior
is detected, these systems offer no way for a user to recover
their data or change to another service provider. While cur-
rent cloud storage services may eagerly replicate data on
clients, meaning that some or all of a user’s repository may
also be replicated on the user’s devices, the primary purpose
of this replication is to reduce file access latency, not to en-
able recovery. As a result, if the cloud provider is found to
be malicious, the user has no guarantee that such eagerly
replicated data is consistent or fresh, and thus cannot rely
on it as a means to recover their data. Another alternative
is to replcate the data on more than one cloud provider so
that the user may still recover data in the event that a cloud
provider is found to be malicious [3]. However, this increases
the cost to the user as they must use and pay for more than
one service.

To address the need for a secure personal repository that
retains the desirable properties of availability and durability,
we propose Unity, which aims to provide a cloud-based per-

1

sonal repository service that detects malicious behavior by
the cloud provider and enables users to recover their data in
such an event. Unity is motivated by the observation that
the trend towards more numerous computing devices and
more storage on those devices means that users will have no
problem storing redundant copies of their data across their
devices, but instead will need the cloud provider primarily
for its reliability and availability. Unity redivides responsi-
bilities between the user and cloud provider so that the user
is responsible for providing storage, while the cloud provider
maintains a highly available and reliable coordination service
for the devices.

Two salient features distinguish Unity from previous work.
First, the Unity protocol ensures that in the event of a cloud
provider failure, the Unity clients will always be able to re-
cover back to a consistent snapshot of the user’s data reposi-
tory. We treat a malicious cloud provider the same way as we
treat a failed cloud provider – in both cases, we assume that
the user can no longer safely access the provider. Second,
to achieve recovery, the clients coordinate with each other
to ensure that every object in the repository is replicated
in order to tolerate both cloud provider and client failures.
However, Unity is not purely a peer-to-peer protocol. The
Unity clients utilize the cloud provider’s high-availability to
improve performance and object lookup, but do so in a way
such that they do not need to trust the integrity of the cloud
provider.

We begin by reviewing related work from the literature
and then describe our Unity design. We then follow up with
discussion and a brief description of our Unity prototype.

2. RELATED WORK
The problem of implementing secure storage on top of in-

secure components has been explored by several systems in
the literature. One category of such systems aim to imple-
ment secure storage with potentially malicious file server.
SUNDR [8] protects the integrity of data stored on an un-
trusted server and uses versioning to ensure that the order of
updates to blocks of data stored on the server is preserved.
However, SUNDR only provides a guarantee of “fork consis-
tency” to the clients, which means that a malicious server
can lie to clients about the contents of files so long as it lies
consistently to each client. In this attack, the server essen-
tially “forks” the view of the file system and maintains dif-
ferent views for different clients. This is possible in SUNDR
because the clients do not communicate with each other.
Plutus [6] enhances the ideas behind SUNDR to also pro-
vide confidentiality and controlled sharing among different
clients using cryptographic primitives. However, the cost of
encryption as opposed to just signing means that Plutus has
significantly higher overheads than SUNDR. Finally, while
both Plutus and SUNDR require special servers, Sirius [4]
implements an encrypting and signing file system on top
of a generic, insecure file server. Unity improves on these
systems by providing durability for user data if the server
becomes unavailable, either due to a crash or if the server is
discovered to be malicious so it can no longer be used.

A key difference between Unity and central server systems
is that Unity clients work together to replicate user data so
that if the server fails or acts maliciously, the user’s data can
be recovered by the clients themselves. In this way, Unity
bears many similarities to peer-to-peer file systems. A num-
ber of secure peer-to-peer file systems, such as Farsite [1]

and OceanStore [11] use byzantine fault tolerance to pro-
tect against malicious peers corrupting data stored on the
file system. However, using byzantine algorithms and hav-
ing an entirely distributed design means that such systems
will only provide reasonable performance when all clients
are connected by low-latency network such as a LAN, in the
case of Farsite, or incur a 3x performance penalty in the
case of OceanStore. Unity combines a centralized directory
server with eager replication to provide reasonable perfor-
mance even across a WAN.

Systems such as HAIL replicate data cross several cloud
providers for resilience against attack [3]. Unity uses the
same idea of replication to protect against failure and mali-
cious attack, but is able to be simpler and more efficient by
using the user’s own devices as replicas, which allows Unity
to place greater trust in systems replicating data.

Finally, orthogonal but related to Unity are systems that
implement proofs of retrievability (POR) and provable data
possession (PDP) for cloud storage [2, 5]. These systems
allow a cloud provider to prove to users that it is faithfully
storing the users’ data without having to send the entire data
to users. Unity provides essentially the same guarantee that
the user’s data is stored in a durable way.

3. THE UNITY SYSTEM
We begin by describing our assumptions about the en-

vironment that Unity will operate in. Then we describe a
basic system that is functional but is neither durable nor
secure. We then enhance the basic system to provide both
durability and security.

3.1 Assumptions
Unity makes several assumptions about the environment

that the Unity clients operate in. First, Unity is designed
to store personal data across a set of clients running on de-
vices that are owned and administered by the same user, so
we assume that all the clients trust each other and execute
the Unity protocol correctly. Without this assumption, ma-
licious clients could lie about replicating information, thus
undermining durability, or leak user data, undermining con-
fidentiality. This assumption also allows Unity to use sym-
metric keys for cryptographic operations such as encryption
and signing. Second, since the clients all have a single user
Unity assumes that concurrent writes are rare, thus allowing
the use of pessimistic locking to ensure consistency. Unity
relies on this strict consistency during operation to guar-
antee the existence of consistent snapshots for it to recover
back to. Finally, Unity assumes that clients will be available
most of the time, giving them ample time to replicate user
data for durability, but does not require any one client to be
online all of the time.

3.2 A Basic System
Unity uses a fixed-size data block as the primary unit of

storage and replication and builds file systems on top of
these blocks. Data blocks in Unity are grouped into sets
called data entities or DEs for brevity. Unity keeps track
of versions for each block. Each time a block is modified,
the version number for that block is incremented and Unity
permits several versions of a block to simultaneously exist
across clients. The mapping of DEs to higher-level abstrac-
tions such as files is arbitrary and Unity allows application-
specific mapping of a single file, a group of files or even an

2

entire file system to a single DE. This mapping has impli-
cations on the consistency guarantees provided by Unity as
described below.

Since files may be accessed by different devices, Unity uses
a conservative form of consistency control to prevent con-
flicts. Clients who wish to modify a DE must request and
acquire a lease on the DE, meaning that only one client may
modify the DE at a time. This ensures that modifications
to a DE are always linearizable. Unity guarantees that DEs
are recoverable back to a consistent snapshot, but does not
guarantee consistency across DEs. For example, if there are
three DEs a, b, and c, which are modified in order a, b and c,
Unity may recover back to a state where writes to a and c are
recovered but the write to b is lost. However, Unity guar-
antees that such inconsistencies cannot happen for blocks
within a DE after recovery.

Unity uses a directory server provided by the cloud service
provider, which is assumed to be highly available under nor-
mal circumstances, but may become unavailable or tamper
with data stored on the server if it becomes malicious. To
ensure that data can be recovered if the server is malicious,
clients running on each of the user’s devices coordinate with
each other via the server to replicate each block up to a pre-
determined replication level n. The primary purpose of the
server is to provide a central, online directory of the locations
of each block so that clients may quickly locate and request
a block they need. When a lease-holder modifies a block, it
asynchronously notifies the directory server of the creation
of a new version for that block. When a client needs to read
a particular version of a block from a DE, the client queries
the server, which returns a list of clients who currently hold
copies of that block-version. The requesting client then re-
quests the block directly from one of those clients. Thus,
the directory server itself does not store any of the block
contents, just metadata about the location of each block.
To reduce read latency, clients may eagerly replicate blocks
according to a client-specific policy based on factors such as
the likelihood that the client will be used to access a par-
ticular DE, the network bandwidth available to the client,
battery life and the availability of storage on the client [10].
When a client replicates a block, it notifies the server so
that the server can update its directory of block locations to
indicate that the block is now available on the new client.

The directory server also participates in assigning and re-
voking leases to the clients and records the identity of the
current lease-holder for each DE, thus making it easy for
a client to determine which peer to request the lease from.
When a client wishes to modify one or more blocks within
a DE, it requests the lease from the directory server, which
then contacts the current lease-holder with a message indi-
cating that the lease should be revoked and passed to the
requester. The current lease-holder then sends a message
to the requesting client indicating that it is releasing the
lease. Within this message, the current lease-holder also
includes a list of current block-versions for the DE. This
direct communication between the current lease-holder and
the new-lease holder not only reduce the latency for the
lease-holder switch, but also is critical for security against
a malicious server as we will explain below. At the same
time, the current lease-holder also updates the server with
any outstanding block-versions it has. With the message
from the current lease-holder, the new lease-holder now has

a fresh view of the latest blocks in the DE and may fetch
and start modifying blocks within the DE.

4. PROVIDING DURABILITY
Currently, clients only request a block from another peer if

they need to read or modify the block. While some replica-
tion will naturally happen because of this, the basic system
above provides no guarantees for the durability of a partic-
ular block. If no other client reads a block, it will never
be replicated and if the only client that has the block fails,
the block is gone forever. While clients may eagerly repli-
cate some blocks to reduce read latency, the above protocol
only requires them to do this based on a locally determined
policy, which cannot guarantee that all blocks will achieve
the n replication factor that we desire from Unity. Since
Unity does not depend on the cloud provider for durability,
we must place additional constraints on the local replication
policy of each client to ensure that blocks are appropriately
replicated to achieve the desired durability.

To ensure that Unity can recover to a consistent snapshot
for each DE in the face of up to n− 1 client failures, we re-
quire that when eagerly replicating blocks, clients must repli-
cate blocks that do not already have n replicas across the
clients first. Clients can find out the replication level of each
block-version by querying the directory server, which keeps
track of which clients hold of each block-version. When there
are several blocks that need replication, the clients make
randomized local decisions. The use of randomized, local
decision making has been shown to eventually converge to a
near-optimal level of replication across all clients [9].

Requiring that clients replicate blocks but never delete
them would mean that clients would end up exhausting all
their storage on old block-versions that are no longer needed
for recovery. Thus, the server runs a garbage collection al-
gorithm that determines when it is safe to delete old block-
versions while still guaranteeing that the clients can collec-
tively recover back to a consistent snapshot of each DE. To
do this, the server organizes notifications from the clients
into block-version entries, where each entry stores the clients
holding the block-version associated with the entry. An ini-
tial entry with version zero exists for each block in a DE
and new entries are created each time a version of a block
is created due to a modification. For each DE, the server
keeps a log of all block-versions for the DE, sorted by the
creation time of the block-version. The ordering of this log
is well-defined because the file cannot have any concurrent
writes due to the lease-holder policy described above. The
server marks a contiguous region of the log for each DE as
the recovery window for the DE. The recovery window for a
DE is defined by three constraints: i) Each block in the DE
must have exactly one version in the recovery window, ii) If
a block has more than one version, then all versions except
the latest version in the window are garbage-collected and
iii) The window must be a contiguous region of the log and
all non-garbage collected entries in the window must have
at least n replicas. Clients are then free to delete garbage-
collected block-versions from their local storage as they are
no longer needed for durability. The recovery window mech-
anism ensures that when up to n−1 client failures occur, the
remaining clients will collectively be able to recovery back
to a consistent snapshot of the DE right after the latest
block-version in the recovery window.

To illustrate the operation of the recovery window, con-

3

C-0

3 replicas

A-1

3 replicas

B-1

3 replicas

A-2

2 replicas

B-2

2 replicas

Recovery Window
Blocks in DE: A, B, C; n=3

Log Order

Figure 1: Recovery Window example with three
blocks A, B, and C in the DE and n = 3. Block-
version B-2 cannot be added to the recovery window
even if it is replicated 3 times until block-version A-2
is replicated 3 times.

sider the example in Figure 1. Here, block-versions A-1, B-1
and C-0 have reached the required replication level of 3, and
newer block-versions A-2 and B-2 are short one replica. If
block-version A-2 is replicated one more time, rule (iii) above
allows it to be added to the recovery window. Rule (ii) then
dictates that block-version A-1 can be removed from the re-
covery window since a later version of the same block is in
the window. If the n−1 clients were to fail at this point, the
DE would be guaranteed to be recoverable back to a con-
sistent snapshot right after A-2 was created (more block-
versions might be recoverable depending on which clients
failed). Now, suppose that instead of A-2 getting replicated
first, B-2 reaches n replicas first. In this case, the recovery
window does not change because including B-2 in the re-
covery window would also include A-2 (the window must be
contiguous), which does not have n replicas, and this would
violate rule (iii). To see why this is disallowed, consider if
both B-2 and A-2 were added to the recovery window even
though A-2 only has 2 replicas. According to rule (ii), both
A-1 and B-1 can now be removed leaving C-0, A-2 and B-2,
and the system should be recoverable up to a snapshot after
the creation of B-2. However, if the two clients replicated
the block-version A-2 now fail, the clients will be unable to
recover back to a consistent snapshot because the replicas
of both A-1 and B-1 have been garbage collected and all
replicas of A-2 have been lost, violating the guarantee that
the system can recover with up to n − 1 failures. Leaving
B-2 outside of the recovery window prevents A-1 and B-1
from being garbage collected until it is safe to do so.

To detect failed clients, the directory server maintains a
heart-beat with each client. If a client fails to respond to
a heart-beat within a timeout, the server marks the client’s
state as failed, but does not delete the list of blocks that
the client is holding in case the client returns. Clients may
query the server to get a status of each of the other clients.
This allows clients to perform recovery when appropriate, as
well as replicate blocks that the failed client was replicating.

5. PROVIDING SECURITY
At this point, we see that the server plays several impor-

tant roles in Unity that make it a potential threat to the
security of the user’s data repository. We note that confi-
dentiality for the user’s data is trivially satisfied since the
cloud provider’s server only sees directory updates about the
creation of block-versions and their locations, but never sees
the data itself. While side-channel leakage due to the server
being able to observe file access patterns is possible, we leave
that out of scope in our current design. The four main re-
sponsibilities of the server, which are i) recording the exis-
tence and location of block-versions, ii) coordinating lease-
holder switches, iii) garbage collection of old block-versions

and iv) detection of failed clients, give the server four av-
enues with which it may affect the integrity and durability
of the user’s data repository. We now enhance the basic
protocol to provide security and durability in the face of a
malicious directory server.

5.1 Attacks on Block-Version Information
In maintaining the existence and the location of block-

versions, there are essentially two types of attacks a mali-
cious server could mount. First, a malicious server could at-
tempt to forge or tamper with a block-version entry. We ex-
tend Unity to prevent this by having each client sign the no-
tifications they send to the server about new block-versions
or replication of a block-version. Thus, the server cannot
forge a new block-version or create an entry that says a
client has replicated a block-version when it hasn’t.

Second, a malicious server could omit or replay new block-
versions or omit or replay notifications that a block-version
has been replicated. To prevent the former, the lease-holder
includes a sequence number with the notification of each
newly created block-version by the lease-holder, thus pre-
venting a server from selectively omitting or replaying block-
versions. Again, the sequence of block updates in a DE is
well-defined because Unity ensures that updates to a DE are
always linearizable. The server could stop accepting new
block-versions completely, thus truncating the log, but this
attack would be discovered as soon as there is a lease-holder
switch as the old lease-holder forwards the list of block-
versions it has created directly to the new lease-holder. This
direct state-passing during a lease-holder switch is what pre-
vents the “fork-consistency attack” described in SUNDR [8]
as the lease-holders will all eventually gain a consistent view
of the DE even in the presence of a malicious directory
server. The use of sequence numbers places an additional
constraint on a legitimate directory server, which must en-
sure that every client has seen a particular block-version
before deleting it during garbage collection. Otherwise, a
client cannot tell a legitimate directory server that is per-
forming garbage collection from a malicious one that is il-
legally deleting block-versions. This also means that rather
than querying the server about a specific block, clients will
instead query the server for all block-versions since a partic-
ular sequence number.

Rather than omit a particular block-version, a malicious
server could try to omit updates to a block-version when
a client replicates the block. Unfortunately, such omissions
cannot be detected with sequence numbers because replica-
tion is asynchronous across the clients. This attack has two
consequences. First, the replication level for the block will
exceed n as clients will think the block is under-replicated
when it is not. Second, the clients that the server did not
omit will receive more requests for block reads then they
should under normal circumstances. In the worst case, the
server omits all replication updates except for the very first
update from the lease-holder, which it cannot omit because
of the sequence number. In this case, the lease holder would
be burdened with servicing all requests for the block. While
both of these have implications on performance and resource
utilization, we view these as acceptable as they do not im-
pact the security or durability of user data. Replaying a
replication message has no effect since clients only care if
another client has the block or not.

4

5.2 Attacks on Lease-Holder Switching
In coordinating a lease-holder switch, a malicious server

may misbehave in two ways. First, it may not send the
revoke lease message to the current lease-holder. This has
no harm since the requesting lease holder will not assume
it has the lease until it receives a signed notification from
the current lease-holder. It will eventually time out and try
to acquire the lease again. Second, the server could send
a revoke lease message to the lease-holder when no client
actually requested the lease. In this case, the current lease-
holder will send a message to the new lease-holder, but since
the new lease-holder never requested the lease, the malicious
server will be discovered.

5.3 Attacks on Garbage Collection
A malicious server may not execute the garbage collec-

tion algorithm properly. However, because the server can-
not forge or omit block-versions, each client can correctly
re-execute the garbage collection algorithm locally and ver-
ify that the server is implementing it properly. As mentioned
above, a malicious server may cause some blocks not to get
garbage collected by omitting replication notifications, but
this has no impact on security or durability. However, the
malicious server cannot cause blocks to be garbage collect
blocks before their time, which if it could, would undermine
the durability of the data.

5.4 Attacks on Failure Detection and Handling
The directory server is responsible for detecting failed

clients and notifying the other clients. A malicious server
could mark a client as failed when it has not actually failed.
However, since the clients may communicate with each other
directly, when the server does this, each client will verify the
claim by attempting the supposedly failed client directly. We
note that the server incorrectly marking a client as failed is
not necessarily an indicator that the server is malicious as
this could also occur due to a network partition or intermit-
tent unavailability of the clients.

If a client actually does fail, this has little consequence
unless the client is the lease-holder. A failure of a client
that does not hold the lease only results in the other clients
having to replicate the blocks the failed client was replicat-
ing to ensure that the system can still tolerate n − 1 failed
clients. However, failure of a lease-holder means that the re-
maining clients must elect a new lease-holder. They cannot
rely on the server for this operation since a malicious server
may take advantage of the circumstances and cause two or
more lease-holders to be created, resulting in a forked state.
Instead, the clients may either use an entirely distributed
solution, such as the Paxos election protocol [7] and accept
the constraints on timing and liveness that accompany such
protocols, or the clients may rely on an out-of-band solu-
tion, such as having the user designate one of the clients to
be the new lease-holder. All clients must be made aware
of the identity of the new lease-holder so that if the failed
lease-holder returns it will not be treated as a valid lease-
holder. To implement this, whenever a new lease-holder is
created, either due to a regular lease-holder switch from one
client to another, or due to a failed lease-holder, the new
lease-holder will insert a signed message into the log of the
DE indicating that it is now the lease-holder. In this way, all
other clients will be notified of the most recent lease-holder,
including a lease-holder that returns back to the group af-

ter a failure. Similarly, when initializing a group of clients
and there is no initial lease-holder, the clients must select a
single lease-holder without depending on the server as well.

5.5 Recovery from a Malicious Server
If the cloud server fails or is discovered to be malicious

the clients must be able to recover the data in the user’s
repository and initialize a new server to replace the failed
one. Because the clients are already replicating data blocks
to guard against client failure, they can reconstruct a con-
sistent snapshot of the user’s data repository from the repli-
cated blocks. To initialize a new server, the clients must
supply location information about which blocks are repli-
cated at which clients, which they naturally have. Thus, to
move the service to a new server, the clients inform the new
server about which block-versions each of them is caching,
as well as the current sequence number of each DE.

6. DISCUSSION
One major distinction between Unity and current cloud

storage providers is that in Unity, the cloud service provider
is not actually providing any storage or durability at all.
Instead, the user themselves supplies all the storage and is
responsible for supplying enough devices to ensure durabil-
ity. The main value that the cloud provider brings in the
Unity system is a high-availability directory server that co-
ordinates the clients running on the devices of the user. A
valid question might be whether this model where the cloud
provider supplies fewer resources in exchange for security is
a good value proposition for the user.

To answer this question, we observe that two trends in the
user device market. First, user devices have been increas-
ing in capacity without any significant increase in cost to the
user. At the time of writing, the average mobile smartphone
or tablet has anywhere from 16GB to 64GB of flash storage.
This in itself is much larger than the“free” storage that most
cloud storage providers are providing, which is in the range
of 2-7GB. Thus, at no extra cost, users with today’s devices
are able to supply the same amount of free storage that is
available from cloud storage providers today. With, Unity
users may even exceed these free amounts without requir-
ing any extra services from the cloud provider. The other
trend is that users are acquiring more and more devices. A
typical user may have a desktop PC and a laptop, as well
as a smartphone and a tablet. In the future, we expect this
trend to continue as users acquire network-capable set-top
boxes for content delivery and games, home NAS and media
servers, and computing and network capability is added to
appliances and automobiles. Thus, users will have not only
enough storage to store their repository, but also enough
devices to achieve the replication needed for durability.

If a user does not have enough clients or enough storage
across clients to replicate and store their data repository,
they may use the services of an untrusted client provided
by another cloud provider. The untrusted client behaves
exactly like a regular client except that it only replicates
blocks for durability and never requests leases for DEs be-
cause it never writes to the repository. When replicating
data, the clients owned by the user sign and encrypt the
data block contents before sending it to the untrusted client
and add a signed hash to the metadata stored on the direc-
tory server for freshness. So long as the untrusted clients
and directory server do not collude, untrusted clients can

5

effectively provide the necessary storage and redundancy to
ensure durability for the user’s data. It is important that
a user does not use the same cloud provider for both the
directory server and the untrusted client because together,
they can undermine the durability of the user’s data.

7. PROTOTYPE IMPLEMENTATION
We are currently working on a Unity prototype to evalu-

ate the performance overhead of the durability and security
guarantees that Unity provides. Both the directory server
and Unity clients are implemented in about 9.9K lines of
C code. Currently, we have two applications for Unity. In
one application, we use Unity to implement a block device
which can support any commodity local file system. In the
other application, we implement a Unity-specific file system
where each file is mapped to a DE.

Our preliminary results are promising. We conduct an
experiment where we boot a 1.1GB virtual machine (VM)
image on a Xen hypervisor where the virtual disk of the VM
is backed by a block device using Unity. We have two ma-
chines in our experimental setup and initially all the blocks
of the virtual disk are located on the first machine. We then
use a simple workload where we boot and shutdown the VM
on the second machine, causing Unity query the directory
server and fetch all the necessary blocks from the first ma-
chine. Right now, the second machine does not do any eager
replication so all block fetches are performed when the VM
boot requests them. Using the same workload, we compare
the performance of Unity to NFS where the image file is
on an NFS share, to Dropbox where the image file is repli-
cated from the first machine to the second machine through
LAN sync and to the local disk where the image file is local
to the machine running the hypervisor. For Dropbox, the
image is replicated peer-to-peer through the LAN by Drop-
box. We did 5 runs for each case. Unity takes an average
of 32.68 ± 0.284 s while the local disk, NFS and Dropbox
take 20.52 ± 0.224 s, 34.75 ± 0.726 s, and 36.58 ± 3.802 s
respectively. The results suggest that Unity is competitive
with both current cloud storage solutions and file servers.

8. CONCLUSION
Unity proposes a different model for maintaining a cloud-

based personal data repository that is available, durable and
secure. In the Unity paradigm, users have many devices
that do not lack storage capacity, but need a service that
is highly available and reliable to compensate for devices
that are prone to failure, intermittent connectivity, physical
damage or getting lost. By using the cloud provider to im-
plement a directory service that coordinates the replication
of spreading redundant copies across the user’s devices, the
preliminary results of our Unity prototype suggest that this
can be achieved with performance that is comparable to the
best cloud storage services today. The current Unity model
assumes that failures are rare, but this may not be the case
with a large number of cheap devices. In our future work, we
plan to enhance Unity to tolerate failures more efficiently.

Acknowledgements
Funding is provided by the NSERC ISSNet Strategic Net-
work, an NSERC Discovery Grant and an MRI Early Re-
searcher Award.

9. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite:
Federated, available, and reliable storage for an
incompletely trusted environment. In The 5th
Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–14, Dec. 2002.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In The 14th ACM
Conference on Computer and Communications
Security (CCS), pages 598–609, Nov. 2007.

[3] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A
high-availability and integrity layer for cloud storage.
In The 16th ACM Conference on Computer and
Communications Security (CCS), pages 187–198, Nov.
2009.

[4] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh.
Sirius: Securing remote untrusted storage. In The 10th
Symposium on Network and Distributed System
Security (NDSS), Feb. 2003.

[5] A. Juels and B. S. K. Jr. PORs: Proofs of
retrievability for large files. In The 14th ACM
Conference on Computer and Communications
Security (CCS), pages 584–597, Oct. 2007.

[6] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable secure file sharing on
untrusted storage. In The 2nd USENIX Conference on
File and Storage Technologies (FAST), pages 29–42,
Apr. 2003.

[7] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
1998.

[8] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In The 6th
Symposium on Operating Systems Design and
Implementation (OSDI), pages 121–136, Dec. 2004.

[9] D. Ongaro, S. M. Rumble, R. Stutsman, J. K.
Ousterhout, and M. Rosenblum. Fast crash recovery in
RAMCloud. In The 23rd ACM Symposium on
Operating Systems Principles (SOSP), pages 29–41,
Oct. 2011.

[10] D. Peek and J. Flinn. EnsemBlue: Integrating
Distributed Storage and Consumer Electronics. In The
7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 219–232,
November 2006.

[11] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon,
B. Y. Zhao, and J. Kubiatowicz. Pond: The
OceanStore prototype. In The 2nd USENIX
Conference on File and Storage Technologies (FAST),
pages –1–1, 2003.

[12] C. Soghoian. How Dropbox sacrifices user privacy for
cost savings, 2011.
http://paranoia.dubfire.net/2011/04/how-

dropbox-sacrifices-user-privacy-for.html (last
accessed: 07/13/2012).

6

http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html

	Introduction
	Related Work
	The Unity System
	Assumptions
	A Basic System

	Providing Durability
	Providing Security
	Attacks on Block-Version Information
	Attacks on Lease-Holder Switching
	Attacks on Garbage Collection
	Attacks on Failure Detection and Handling
	Recovery from a Malicious Server

	Discussion
	Prototype Implementation
	Conclusion
	References

