
Consistency Oracles: Towards an Interactive and Flexible
Consistency Model Specification

Beom Heyn Kim
University of Toronto

Sukwon Oh
University of Toronto

David Lie
University of Toronto

ABSTRACT
Many modern distributed storage systems emphasize availability
and partition tolerance over consistency, leading to many systems
that provide weak data consistency. However, weak data consis-
tency is difficult for both system designers and users to reason
about. Formal specifications offer precise descriptions of consis-
tency behavior, but they require expertise and specialized tools
to apply to real software systems. In this paper, we propose and
describe consistency oracles, an alternative way of specifying the
consistency model of a system that provides interactive answers,
making them easier and more flexible to use in a variety of ways.
A consistency oracle mimics the interface of a distributed storage
system, but returns all possible values that may be returned under
a given consistency model. This allows consistency oracles to be
directly applied in the testing and verification of both distributed
storage systems and the client software that uses those systems.

CCS CONCEPTS
• Software and its engineering→Consistency; •General and
reference → Verification;

KEYWORDS
Consistency Oracles, Consistency Models, Formal Specification,
Verification, Distributed Systems
ACM Reference format:
Beom Heyn Kim, Sukwon Oh, and David Lie. 2017. Consistency Oracles:
Towards an Interactive and Flexible Consistency Model Specification. In
Proceedings of HotOS ’17, Whistler, BC, Canada, May 08-10, 2017, 6 pages.
https://doi.org/10.1145/3102980.3102994

1 INTRODUCTION
As data storage systems become more and more distributed, they
have increasingly moved towards various weak data consistency
models. As demonstrated by Amazon’s well-known shopping cart
example [26], many of these systems, such as Cassandra, Amazon
S3 and DynamoDB emphasize availability and partition tolerance
over consistency, and thus motivated a departure from strong to
weak consistency. However, weak consistency models, such as
eventual consistency, are not well specified, leading developers of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotOS ’17, May 08-10, 2017, Whistler, BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5068-6/17/05. . . $15.00
https://doi.org/10.1145/3102980.3102994

both storage systems and applications to disagree over what the
correct consistency behavior should be. For example, developers of
Cassandra had a long, complicated discussion on a correct behavior
for Casandra Bug-2494 [6] as described in Section 2.2.

To properly take advantage of weak consistency, developers
using such systems should be able to easily get the answer to two
important questions. First, given the current state of the system and
a read of a value, what possible values could be returned? Second,
if my application uses a weakly consistent system, how should I
handle the stale or inconsistent values it might return? To answer
these questions, we need to know the precise and correct behavior
of various consistency models.

Formal specifications are one well-known way of having a pre-
cise description of what the behavior of a system should be. How-
ever, formal specifications are often only useful when used in con-
junction with formal verification tools, which require specialized
knowledge that is beyond the domain of most software developers.
Even with such tools, the application of a formal specification to
check the correctness of a system often involves manual tuning
and a considerable amount of human effort [17]. As a result, even
if employed, their use is often limited to a specialized subset of
the development team in a large software project. Furthermore,
as formal specifications need to be used with formal verification
tools and typically used to verify the system implementation, they
usually offer little benefit to developers of client applications who
use the verified service.

We propose a more practical alternative to formal specifica-
tions, called a consistency oracle, which addresses these two issues.
Currently, formal specifications exist as descriptions of a system,
usually defining an abstract state machine, invariants and safety
properties of a system. Rather than describing system’s behavior,
consistency oracles provide answers to queries posed to them about
how the system should behave. Specifically, they answer the ques-
tion “given all data and meta-data of a system, what are all the valid
values a system could return to a given query”. We argue that this
format is both easier and more flexible (in that they can be used
in more ways) than current formal specifications. It can be used
to directly answer the first question posed earlier, and combined
with testing, can answer the second by allowing a developer to see
all the implications of the values a weakly consistent system could
return.

Our prototype consistency oracle takes the history of the current
and all previous operations capturing all data and meta-data of the
system and the description of the consistency model that a service
should provide. The consistency oracle then produces an answer
that is the set of all values that could be read as a result of the current
operation. Since the oracle takes essentially the same interface as
the service, users may integrate the consistency oracle with their
testing framework to verify their system’s behaviors. Moreover,

https://doi.org/10.1145/3102980.3102994
https://doi.org/10.1145/3102980.3102994

users do not need specialized knowledge to use the consistency
oracle but just need to properly invoke API calls similar to those of
any data storage system.

We envision two usage scenarios of consistency oracles.
(1) To check storage system servers: Driving servers using ad-

vanced testing tools such as concrete model checker, fuzzer
or concolic execution engine [7], we check if servers would
violate the consistency model by comparing values from
real storage system servers with answers from consistency
oracles.

(2) To check client applications: While driving applications
using the aforementioned tools, we can redirect each I/O
request to consistency oracles instead of storage system
servers. Then, for each write, consistency oracles will pro-
duce an answer that is a set of all valid values to read. From
the answer, a value can be uniformly picked and returned to
applications. Finally, we can check whether values returned
to applications end up breaking any application-specific in-
variant or not.

Furthermore, consistency oracles can contribute towards the
standardization of consistency models. Standardization of generic
consistency models like “eventual consistency” will increase the
portability of the client applications between services, whereas
clients today are often highly tied to the service they interact with,
not only because of the service’s API, but also because of the subtle
differences in consistency behaviors across services. Finally, having
consistency oracles also can help to establish unambiguous service
level agreement (SLA) between service providers and customers.
By exactly specifying the set of values a service may return in any
circumstance via ⟨CM⟩ described in Section 3.1, the SLA can simply
and precisely specify what consistency guarantees the service will
provide.

Section 2 will elaborate on the motivations for consistency or-
acles. Then, we discuss the design of our prototype consistency
oracle in more detail in Section 3. Section 4 will describe what we
are currently working on and planning to do in the future. Finally,
we talk about related work in Section 5 and conclude in Section 6.

2 MOTIVATION
Current consistency model specifications have shortcomings that
consistency oracles can address. We outline them below.

2.1 Lack of specifications
Current distributed storage systems do not precisely specify the
consistency behavior in a way that is easy for users to understand
all the possible values a system may return. This underspecifica-
tion can arise in many ways. We give examples of several that we
have observed in our experience. First, many distributed systems
are highly configurable in the way they handle reads, writes and
replication. For example, the MongoDB documentation [14] states:

You can configure each write to return after success
on the primary, on multiple set members, a majority
of set members, or all members. Reads can be applied
to the primary member, to secondary members if the
primary is unavailable, to specific members exclusively

(for workload isolation), or to the nearest secondary
based on ping distance.

From this we can see there are 4 ways to configure writes and 4
ways to configure reads resulting in 16 combinations! However,
the specification just gives the options without specifying how the
combinations of read and write configurations may interact with
each other. Developers must fill in the missing information them-
selves. Unfortunately, it is often the case that different developers
may come to different conclusions when filling in such information.

Second, descriptions like the MongoDB one above describe how
the system is implemented, but not what the behavior that results
from that implementation will be. For example, the MongoDB con-
figuration options do not describe any behavior such as how stale
the values returned can be or whether values can be observed in
an order different from how they are written. This information is
underspecified and could likely only be gleaned by the user if they
had detailed knowledge of both the code implementation and the
system deployment.

The tendency to have many configuration options and describe
the implementation of the system in the specificationmeans that the
actual behavior of the system is up to the reader of the specification
to interpret. This is because the specifications are neither precise
nor complete. Consistency oracles are by their nature both precise
and complete. For any query, they will return the set of possible
values the system could return.

2.2 Confusion about behavior
Imprecise specification and the lack of a reference model mean that
users and even system developers often cannot agree on what the
expected system behavior should be. A good example is given by
Casandra Bug-2494 [6]. This bug concerns the possibility that a
client may see non-monotonically increasing writes when Cassan-
dra reads are configured to use quorums. The bug report has a total
of 17 messages plus a reference to an e-mail thread with another
10 messages. The bug messages start off with a statement from one
developer stating that the requested level of consistency part of the
specified behavior of Cassandra:

As far as I can tell the consistency being asked for was
never promised by Cassandra is in fact not expected.

Only to be refuted by another developer who believes it is in the
behavioral specification:

I think the guarantee of quorum reads not seeing old
writes once a quorum read sees a new write is very
useful. I suspect most people already think that this
guarantee occurs, including, it seems, Jonathan Ellis1...

Finally, the last comment, which appears 4 years after the patch to
fix the bug was applied, asks the question:

The relevant code in the patch has changed significantly.
Is the monotonic read consistency guarantee still pro-
vided?

This simple example illustrates the problems that arise when
people have to mentally translate complex specification into a men-
tal model of system behavior – it is rare for all people to do it in
the same way once the specification gets suitably complex. Instead
1Jonathan Ellis was the chairman of the Cassandra Project at the time

S
C

C
P

M
R

B
S

R
M

E
C Global

History

Consistency Modules

Final Answer

Select
Consistency
Model

Query/Append

Append
Read/Write

Analyze

U

Figure 1: Consistency Oracle Architecture

of specifying behavior, consistency oracles demonstrate behavior
and thus cannot lead to differences in interpretation.

2.3 Lack of standards
Consistency specifications for deployed systems have subtle and
complex differences between services. For example, Amazon’s S3
service generally provides eventual consistency, but in some cases,
offers slightly more esoteric behavior [1]:

Amazon S3 provides read-after-write consistency for
PUTS of new objects in your S3 bucket in all regions
with one caveat. The caveat is that if you make a HEAD
or GET request to the key name (to find if the object
exists) before creating the object, Amazon S3 provides
eventual consistency for read-after-write.

Such differences make migration from one service to another ser-
vice non-trivial. Even if application developers replace all API calls
from the old service with those of the new one, differences in con-
sistency behavior may lead to subtle and unexpected misbehavior.
As a result, changing underlying storage systems is always a risky
and difficult engineering task.

As the number of cloud services and systems increases, the need
to be able to easily migrate from one system to another will become
increasingly important as users seek to avoid vendor lock-in and
remove bottlenecks as their application usage increases. Consis-
tency oracles can act as a standard to which both services and client
applications can be engineered to meet. Clients and services that
have been successfully tested against the same consistency oracle
will be more likely to be compatible, even if they have never been
used together before.

3 CONSISTENCY ORACLE
3.1 Overview
A consistency oracle is a software artifact with an interface similar
to a generic distributed storage system. Clients interact with the
oracle by submitting read and write operations. However, rather

than trying to store data quickly, efficiently and reliably, the con-
sistency oracle’s only goal is to compute all possible responses to
any operation performed by the client. As a result, the architecture
of a consistency oracle is very different from that of a distributed
storage system.

One major difference is that while a consistency oracle typically
describes consistency behavior for a distributed system, it itself
does not have to be distributed and exists as a monolithic, single-
threaded application. Figure 1 shows architecture overview. Our
current consistency oracle takes a basic read and write operation2.
To interact with the oracle, clients make requests to the oracle like
they would do to a distributed storage system. More formally, our
consistency oracle takes each operation as an ⟨INPUT⟩ tuple:

⟨CID⟩ ⟨KEY⟩ ⟨OP⟩ ⟨VAL⟩ ⟨TS⟩ ⟨USR⟩

where ⟨CID⟩ means client ID, ⟨KEY⟩ is data object ID, ⟨OP⟩ is the
operation type (either read or write), ⟨VAL⟩ means hash of the
data value, ⟨TS⟩ means timestamp, ⟨USR⟩ is user provided tag for
extensibility. Specifically, a consistency oracle provides two types
of interface calls. One is Append(⟨INPUT⟩, ⟨CM⟩) and the other is
Query(⟨INPUT⟩, ⟨CM⟩). The parameter ⟨CM⟩ defines the consistency
model the operation is made under. For Append, ⟨CM⟩ is also passed
in to update session information appropriately. Then, the user can
call Querywith the ⟨CM⟩ to select the consistency model. The Query
also takes ⟨INPUT⟩ as we need to provide a read operation for which
the consistency oracle returns the answer given the global history.

We assume the existence of a global history ⟨GHIST⟩, which is a
totally ordered sequence of ⟨INPUT⟩s. ⟨GHIST⟩ is initially an empty
string and on each request, an ⟨INPUT⟩ is appended to the global
history: ⟨GHIST⟩·⟨INPUT⟩. Because the global history contains every
operation of every client, any consistency model can be supported
as long as the consistency model can be expressed as restrictions
on what values are allowed to be read within this global history.
We currently cannot express concurrent overlapping operations in
⟨GHIST⟩, and discuss how we may extend consistency oracles to
support these in Section 4.2.

Our prototype supports various consistency guarantees: Strong
Consistency, Consistent Prefix, Monotonic Reads, Bounded Stal-
eness, Read-My-Write, and Eventual Consistency, which we will
refer to as SC, CP, MR, BS, RM, or EC, respectively [25]. For instance,
we can specify a consistency model supporting consistent prefix,
monotonic reads and bounded staleness by the set ⟨CM⟩ = [CP, MR,
BS].

Upon receiving a Query, the oracle returns the list of all valid
values from the global history that a system with the specified con-
sistency model could return. The oracle models each consistency
guarantee using the module specific to that guarantee. When re-
ceiving a Query request, the consistency oracle will have each of
the consistency modules read the global history and return the set
of values that can be returned given the restrictions in each respec-
tive module. Then, the final answer is produced by computing the
intersection of the selected consistency modules. Hence, the values
contained in all of sets produced by the selected modules are the
ones satisfying all selected consistency guarantees and therefore
satisfying the consistency model composed of those guarantees.

2We can emulate most other common storage operations such as CRUD (create, read,
update, delete), list, batch operation, lock, etc. using read and write operations.

As an example, suppose we perform the sequence of operations
below at the specified times, and model a system with a consistency
model that includes constants prefix, monotonic reads and bounded
staleness with 5 as the staleness bound (i.e. ⟨CM⟩ = [CP, MR, BS]):
At t=0: write(X, 1)
At t=2: write(Y, 1)
At t=6: write(X, 2)
At t=7: read(): {X=1,Y=1}
At t=8: write(X, 3)
At t=9: write(Y, 2)
At t=12: read(): {X=?,Y=?}

where X and Y are keys for integer values initialized to 0. We query
the consistency oracle for the set of valid return values for the read
at t=12. The consistency oracle computes the partial set of values
that can be returned for each consistency guarantee individually:
[{0,0}, {1,0}, {1,1}, {2,1}, {3,1}, {3,2}] for CP, [{1,1}, {2,1}, {3,1}, {3,2}] for
MR, [{2,1}, {2,2}, {3,1}, {3,2}] for BS with a 5-unit time bound, where
each tuple represents the possible values for {X,Y}. Computing the
intersection gives [{2,1}, {3,1}, {3,2}]. Consistency oracles can be eas-
ily extended to support new consistency models by implementing
and adding a module that models the new consistency model.

3.2 Computing the ordering of operations
The consistency oracle is expected to be used in the testing envi-
ronment where every client and server can be running on a single
machine. Thus, the single clock enables a total order of all opera-
tions to be defined in the global history. This total order is the same
total order that would exist in a distributed system if all servers had
perfectly synchronized clocks and timestamped every operation
they performed in the same way.

Given this total order, the consistency oracle must compute all
possible orders a distributed system with a certain consistency
model may interpret the operations to have occurred. A simple
case is a system that enforces strong consistency, where the only
order of operations that the system can interpret the operations as
having occurred in is the same as the total order specified in the
global history. A more complex case is that of eventual consistency,
where the operations in the total order can be interpreted by the
consistency oracle to have happened in any arbitrary order. In that
case, for a certain query in the global history, the consistency oracle
must return results for all permutations of operations previous to
the current operation in the global history. Finally, for other consis-
tency models that define limited partial orders, such as monotonic
reads or read-my-writes, the consistency oracle must determine
which operations may be interpreted as being unordered by the
consistency model (i.e. there is no happens-before relationship de-
fined for example), and apply conflict resolution as defined by the
consistency model.

3.3 Discussion
Because consistency oracles are assumed to be ground truth in the
same way as formal specifications. As a result, it is important that
they are correct. Since they are very simple to implement, rigorous
unit testing may be enough to have high confidence about the
correctness of consistency oracles themselves. Yet, more cautious
users can construct consistency oracles using formal methods and

Table 1: Size of Prototype Implementation (in LOC)

Component Count
Core (⟨GHIST⟩, Query/Append handling) 109
Data Structure (⟨CM⟩, ⟨INPUT⟩) 43
Bounded Staleness Module 22
Eventual Consistency Module 19
Monotonic Reads Module 26
Read-My-Writes Module 41
Strong Consistency Module 21
Total 281

the same techniques used to produce provably correct systems [12,
13, 17]. Although this may require as much effort as any other
formal specification and verification, consistency oracles can be
constructed once by formal verification experts and used many
times by a number of other average developers who do not have
specialized knowledge and skills on formal verification. Moreover,
because they are simpler than real systems, they are more amenable
to formal methods.

Distributed systems are required to have a mechanism to deal
with various types of failures such as crash or network partition.
Failures cause nodes to have different views on the history of pre-
vious operations, because some nodes may not see the operations
performed on other nodes, and vice versa. Hence, a total order
may not exist initially after a failure. However, distributed systems
usually provide conflict resolutionmechanisms to re-establish a con-
sistent view of the system across components. While consistency
oracles currently do not model failures, and assume that systems
seek to make the values they return agnostic to such failures, this
is not always the case and we may wish to have consistency ora-
cles include failures as yet another type of ⟨INPUT⟩ to the Append
operation. In this case, conflict resolution logic would need to be
added to each module so that consistency oracles can also simulate
what values systems may return after a failure has occurred.

4 CURRENT AND FUTUREWORK
4.1 Current Work
Our current consistency oracle prototype has been constructed
manually. We believe consistency oracles can be generated auto-
matically from formal specifications, and leave this for future work.
Because consistency oracles simulate a distributed system but are
not distributed themselves, and don’t need to be resource efficient
or fast, they can be fairly simple. Table 1 gives the line counts for
our consistency oracle, which is implemented in Java.

We are currently applying our consistency oracle as an invariant
generator for a concrete model checker. We intend to use this model
checker to detect consistency bugs in distributed storage systems
such as ZooKeeper, HBase and Cassandra. To combine the oracle
with the concrete model checker, we interpose on API calls to
the system and record the history of those operations. We then
use the model checker to explore various states the data storage
system can enter, by calling different system APIs and interleaving
asynchronous events. After each sequence of events, a series of API

calls is made that attempts to read each valid value in the storage
system. At the same time, the history of API operations is passed to
the consistency oracle. Then, the value returned by the data storage
system is checked for membership in the set of values returned by
the consistency oracle.

We hope that consistency oracles can prevent the confusion
demonstrated in Cassandra Bug-2494 by providing a reference ex-
ample of how a system that provides Monotonic Reads should
behave. By specifying MR as a consistency guarantee and running
the sequence of operations that demonstrates the issue, they can
compare the behavior of the system with that of the oracle. Using
a model checker would explore all possible interleavings of inter-
nal events and detect if it is possible for the system to violate the
consistency guarantee.

4.2 Future Work
Currently, our consistency oracles only handle read and write op-
erations. In the future, we plan to expand its interface and the
consistency modules to also handle more complex semantics such
as locks and transactions that many real data storage systems sup-
port.

We also plan to explore verifying whether client applications can
correctly handle inconsistent data that can be returned by weakly
consistent systems. To do this, we assume the existence of a test
harness that would be used to test the client application against
the data storage service. To use the consistency oracle, we replace
the data storage system with the consistency oracle and include
an adaptation layer that translates API calls to the data storage
system into the Append and Query operations of the consistency
oracle. For read and write operations, we can append the operation
in the same order that they are invoked. For read operations, the
consistency oracle will pick one of the possible values and return it
to the client operation. Repeated testing will enable the client to
be tested against all possible return values, guaranteeing that the
client will have been tested against obscure or uncommon values,
as well as common ones.

Using consistency oracles to test clients is agnostic to the way
inputs are generated for the client application. As long as the inputs
cover a variety of cases, it does not matter whether the client inputs
are generated using a fuzzer, concolic execution engine or just
manually specified test scripts.

The consistency oracle prototype currently requires the total or-
dering to be determined by the oracle users using the synchronized
clock. In cases where the storage system does not itself determine
a total order, it may not be possible to define such a total order
for the consistency oracle’s global history. We plan to address this
by extending the global history to be a database of operations,
recorded by the start and end time of each operation, thus per-
mitting partially ordered concurrent operations. Each consistency
module would then need to be altered to take this into account.

5 RELATEDWORK
Several previous works devised consistency checking algorithms[2,
4, 5]. Also, there were a few works looking at the consistency from
the security perspective where untrusted storage provider may get
compromised and violate consistency guarantees[16, 20, 22]. Yet,

these systems do not deal with various composable consistency
models.

There have been several consistency benchmarking techniques
developed by researchers[3, 8, 9, 23, 27]. However, these are just
trying to measure how fast the update on data gets converged
across replicas.

There were automation techniques for finding bugs in distributed
systems implementation. Concrete model checkers were studied
for detecting concurrency bugs in distributed systems[10, 11, 15,
18, 21, 24, 28, 29]. None of them checks for the violation of relaxed
consistency model.

Also, there was previous work on providing automation to select
the appropriate consistency level[19]. However, the work does not
support as many consistency models.

6 CONCLUSION
Weak consistency models have gained popularity over the last
decade, as more and more services have been moving to the cloud.
However, many systems and services do not precisely specify the
consistency model that is supported, leaving the consistency behav-
ior open to interpretation. To overcome the limitations of current
state-of-the-art, we propose consistency oracle as a pragmatic in-
stantiation of a formal specification. We plan to develop techniques
using the oracle to help using various consistency models safer and,
therefore, can encourage systems and services to support a larger
range of consistency guarantees from which client application may
benefit.

ACKNOWLEDGEMENTS
We would like to thank Eyal de Lara, Michael Stumm, Michelle
Wong, Zhen Huang and the participants of the HotOS workshop
for their helpful comments on this work. The research in this work
is supported by a Tier 2 Canada Research Chair and an NSERC Dis-
covery Grant. Beom Heyn Kim and Sukwon Oh are both supported
by Bell Graduate Scholarships.

REFERENCES
[1] Amazon. 2017. Amazon S3 Data Consistency Model. (2017). http://docs.aws.

amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel.
[2] Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J. Wylie.

2010. What Consistency Does Your Key-value Store Actually Provide?. In
Proceedings of the Sixth International Conference on Hot Topics in System De-
pendability (HotDep’10). USENIX Association, Berkeley, CA, USA, 1–16. http:
//dl.acm.org/citation.cfm?id=1924908.1924919

[3] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,
and Ion Stoica. 2012. Probabilistically Bounded Staleness for Practical Partial
Quorums. The VLDB Endowment 5, 8 (April 2012), 776–787.

[4] David Bermbach, Sherif Sakr, and Liang Zhao. 2013. Towards Comprehensive
Measurement of Consistency Guarantees for Cloud-Hosted Data Storage Services.
In The 5th TPC Technology Conference on Performance Evaluation & Benchmarking
(TPCTC 2013). Springer, Cham, Switzerland, 32–47.

[5] David Bermbach and Stefan Tai. 2011. Eventual Consistency: How Soon is
Eventual? An Evaluation of Amazon S3’s Consistency Behavior. In Proceedings of
the 6th Workshop on Middleware for Service Oriented Computing (MW4SOC ’11).
ACM, New York, NY, USA, Article 1, 6 pages. https://doi.org/10.1145/2093185.
2093186

[6] Sean Bridges. 2011. Quorum reads are not monotonically consistent. (2011).
https://issues.apache.org/jira/browse/CASSANDRA-2494.

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel
http://dl.acm.org/citation.cfm?id=1924908.1924919
http://dl.acm.org/citation.cfm?id=1924908.1924919
https://doi.org/10.1145/2093185.2093186
https://doi.org/10.1145/2093185.2093186
https://issues.apache.org/jira/browse/CASSANDRA-2494
http://dl.acm.org/citation.cfm?id=1855741.1855756

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada Beom Heyn Kim, Sukwon Oh, and David Lie

[8] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. 2011. Analyzing Consistency
Properties for Fun and Profit. In Proceedings of the 30th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC ’11). ACM, New
York, NY, USA, 197–206. https://doi.org/10.1145/1993806.1993834

[9] Wojciech Golab, Muntasir Raihan Rahman, Alvin Au Young, Kimberly Keeton,
Jay J. Wylie, and Indranil Gupta. 2013. Client-centric Benchmarking of Eventual
Consistency for Cloud Storage Systems. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article 28,
2 pages. https://doi.org/10.1145/2523616.2525935

[10] Rachid Guerraoui and Maysam Yabandeh. 2011. Model Checking a Networked
System Without the Network. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation (NSDI’11). USENIX Association,
Berkeley, CA, USA, 225–238. http://dl.acm.org/citation.cfm?id=1972457.1972481

[11] Huayang Guo, MingWu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao Zhang.
2011. Practical Software Model Checking via Dynamic Interface Reduction. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles
(SOSP ’11). ACM, New York, NY, USA, 265–278. https://doi.org/10.1145/2043556.
2043582

[12] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet: Proving Practical
Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP ’15). ACM, New York, NY, USA, 1–17. https://doi.org/
10.1145/2815400.2815428

[13] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-end Security via
Automated Full-system Verification. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation (OSDI’14). USENIX Association,
Berkeley, CA, USA, 165–181. http://dl.acm.org/citation.cfm?id=2685048.2685062

[14] MongoDB Inc. 2017. MongoDB Documentation - FAQ. (2017). https://www.
mongodb.com/faq.

[15] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. 2007. Life,
Death, and the Critical Transition: Finding Liveness Bugs in Systems Code. In
Proceedings of the 4th USENIX Conference on Networked Systems Design &
Implementation (NSDI’07). USENIX Association, Berkeley, CA, USA, 18–18. http:
//dl.acm.org/citation.cfm?id=1973430.1973448

[16] Beom Heyn Kim and David Lie. 2015. Caelus: Verifying the Consistency of
Cloud Services with Battery-Powered Devices. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy (SP ’15). IEEE Computer Society, Washington,
DC, USA, 880–896. https://doi.org/10.1109/SP.2015.59

[17] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal
Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA, 207–220.
https://doi.org/10.1145/1629575.1629596

[18] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman,
and Haryadi S. Gunawi. 2014. SAMC: Semantic-aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI’14). USENIX
Association, Berkeley, CA, USA, 399–414. http://dl.acm.org/citation.cfm?id=
2685048.2685080

[19] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and
Viktor Vafeiadis. 2014. Automating the Choice of Consistency Levels in Repli-
cated Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA,
281–292. http://dl.acm.org/citation.cfm?id=2643634.2643664

[20] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. 2004. Secure
Untrusted Data Repository (SUNDR). In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6 (OSDI’04).
USENIX Association, Berkeley, CA, USA, 9–9. http://dl.acm.org/citation.cfm?id=
1251254.1251263

[21] Madanlal Musuvathi, David YW Park, Andy Chou, Dawson R Engler, and David L
Dill. 2002. CMC: A pragmatic approach to model checking real code. ACM SIGOPS
Operating Systems Review 36, SI (2002), 75–88.

[22] Raluca Ada Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and Li Zhuang.
2011. Enabling Security in Cloud Storage SLAs with CloudProof. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Confer-
ence (USENIXATC’11). USENIX Association, Berkeley, CA, USA, 31–31. http:
//dl.acm.org/citation.cfm?id=2002181.2002212

[23] Muntasir Raihan Rahman, Wojciech Golab, Alvin AuYoung, Kimberly Keeton,
and Jay J. Wylie. 2012. Toward a Principled Framework for Benchmarking
Consistency. In Proceedings of the Eighth USENIX Conference on Hot Topics in
System Dependability (HotDep’12). USENIX Association, Berkeley, CA, USA, 8–8.
http://dl.acm.org/citation.cfm?id=2387858.2387866

[24] Jiri Simsa, Randy Bryant, and Garth Gibson. 2010. dBug: Systematic Evaluation
of Distributed Systems. In Proceedings of the 5th International Conference on
Systems Software Verification (SSV’10). USENIX Association, Berkeley, CA, USA,

3–3. http://dl.acm.org/citation.cfm?id=1929004.1929007
[25] Doug Terry. 2013. Replicated Data Consistency Explained Through Baseball.

Commun. ACM 56, 12 (Dec. 2013), 82–89. https://doi.org/10.1145/2500500
[26] Werner Vogels. 2008. Eventually Consistent - Revisited. (2008). http://www.

allthingsdistributed.com/2008/12/eventually_consistent.html.
[27] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. 2011. Data

Consistency Properties and the Tradeoffs in Commercial Cloud Storages: the Con-
sumers’ Perspective. In The 5th Biennial Conference on Innovative Data Systems
Research (CIDR). CIDR Conference, Asilomar, California, USA, 134–143.

[28] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak. 2009.
CrystalBall: Predicting and Preventing Inconsistencies in Deployed Distributed
Systems. In Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’09). USENIX Association, Berkeley, CA, USA,
229–244. http://dl.acm.org/citation.cfm?id=1558977.1558993

[29] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:
Transparent Model Checking of Unmodified Distributed Systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’09). USENIX Association, Berkeley, CA, USA, 213–228. http://dl.acm.org/
citation.cfm?id=1558977.1558992

https://doi.org/10.1145/1993806.1993834
https://doi.org/10.1145/2523616.2525935
http://dl.acm.org/citation.cfm?id=1972457.1972481
https://doi.org/10.1145/2043556.2043582
https://doi.org/10.1145/2043556.2043582
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
http://dl.acm.org/citation.cfm?id=2685048.2685062
https://www.mongodb.com/faq
https://www.mongodb.com/faq
http://dl.acm.org/citation.cfm?id=1973430.1973448
http://dl.acm.org/citation.cfm?id=1973430.1973448
https://doi.org/10.1109/SP.2015.59
https://doi.org/10.1145/1629575.1629596
http://dl.acm.org/citation.cfm?id=2685048.2685080
http://dl.acm.org/citation.cfm?id=2685048.2685080
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=1251254.1251263
http://dl.acm.org/citation.cfm?id=1251254.1251263
http://dl.acm.org/citation.cfm?id=2002181.2002212
http://dl.acm.org/citation.cfm?id=2002181.2002212
http://dl.acm.org/citation.cfm?id=2387858.2387866
http://dl.acm.org/citation.cfm?id=1929004.1929007
https://doi.org/10.1145/2500500
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://dl.acm.org/citation.cfm?id=1558977.1558993
http://dl.acm.org/citation.cfm?id=1558977.1558992
http://dl.acm.org/citation.cfm?id=1558977.1558992

	Abstract
	1 Introduction
	2 Motivation
	2.1 Lack of specifications
	2.2 Confusion about behavior
	2.3 Lack of standards

	3 Consistency Oracle
	3.1 Overview
	3.2 Computing the ordering of operations
	3.3 Discussion

	4 Current and Future Work
	4.1 Current Work
	4.2 Future Work

	5 Related Work
	6 Conclusion
	References

