
Caelus: Verifying the Consistency of Cloud
Services with Battery-Powered Devices

Beom Heyn Kim∗ and David Lie†
∗Department of Computer Science

†Department of Electrical and Computer Engineering
University of Toronto

Abstract—
Cloud storage services such as Amazon S3, DropBox, Google

Drive and Microsoft OneDrive have become increasingly pop-
ular. However, users may be reluctant to completely trust a
cloud service. Current proposals in the literature to protect
the confidentiality, integrity and consistency of data stored in
the cloud all have shortcomings when used on battery-powered
devices – they either require devices to be on longer so they can
communicate directly with each other, rely on a trusted service
to relay messages, or cannot provide timely detection of attacks.

We propose Caelus, which addresses these shortcoming. The
key insight that enables Caelus to do this is having the cloud
service declare the timing and order of operations on the cloud
service. This relieves Caelus devices from having to record and
send the timing and order of operations to each other – instead,
they need to only ensure that the timing and order of operations
both conforms to the cloud’s promised consistency model and that
it is perceived identically on all devices. In addition, we show that
Caelus is general enough to support popular consistency models
such as strong, eventual and causal consistency. Our experiments
show that Caelus can detect consistency violations on Amazon’s
S3 service when the desired consistency requirements set by the
user are stricter than what S3 provides. Caelus achieves this
with a roughly 12.6% increase in CPU utilization on clients,
1.3% of network bandwidth overhead and negligible impact on
the battery life of devices.

I. INTRODUCTION

A commonly available type of cloud computing service is
a cloud storage service, which offers persistent and highly-
available storage over the Internet. Such services include basic
object storage services such as Microsoft Azure Storage or
Amazon S3, personal storage services as DropBox, Google
Drive or Microsoft OneDrive, and database services such as
Amazon RDS and DynamoDB and Microsoft Azure SQL
Database. These services are popular because they offer users
many useful attributes, such as backup and versioning for
data, automatic scaling and failure recovery, replication and
access to data across devices and the ability to collaboratively
share data with other users. Industry figures indicate that there
has been rapid increase in the use of such cloud services.
For instance, Google Drive currently boasts over 10 million
users [1].

However, cloud services can be a threat to the security
of their users. While we believe it is unlikely that a cloud
service provider would deliberately attack its customers, using
a cloud service still exposes users to new threat. Cloud services
provide service to multiple, often mutually distrustful, users

on a shared infrastructure. Vulnerabilities in the infrastructure
may allow a malicious user to compromise parts of the cloud
service and attack another user. In addition, cloud services’
employees, as part of their duties, may have privileged access
to parts of the infrastructure or the software that implements
the infrastructure. While good industry practice often means
that no particular employee will have access to the entire
infrastructure, there has been evidence that strategically placed
insiders have been used by certain organizations to attack
cloud users [2]. Thus, while a cloud service on as a whole
might not be malicious, the component that stores and serves
user data can be compromised by both external and internal
attackers, which can threaten the confidentiality and integrity
of the data stored on the cloud service by the user. For brevity,
we will henceforth refer to a cloud service whose data storage
component has been compromised as simply a “malicious
cloud service” even though there could be components of the
service that are not compromised.

Since cloud storage services are implemented as globally
distributed systems designed to provide different devices or
users access (even concurrent access) to the same data, there is
an implicit or explicit assurance of consistent access according
to some consistency model. A consistency model defines
acceptable delays between when the results of an operation
by one device become visible to other devices, as well as
the order in which those operations should become visible.
Applications using the cloud storage service are implemented
based on the consistency model. Therefore, applications will
misbehave when the assumption on the consistency model is
violated. By omitting, reordering, replaying and truncating op-
erations, the malicious attacker can mount subtle consistency
attacks to cause violation of delay and ordering constraints
of the consistency model. Such attacks can seriously damage
applications composed of distributed processes collaboratively
interacting with each other across devices via the cloud storage
service, because the application’s behavior depends on the
ordering and timing of the previous operations. For example,
source code repository such as Git repository may suffer from
truncated operations (fork attack [3]–[5]) which cannot be
resolved by the built-in hash chain mechanism. In addition,
an authorization service may inadvertently reveal sensitive
information to unauthorized users when a revocation request
is maliciously delayed or dropped after the read and update
operations. Such an attack would allow revoked users to access



data they should not have permission to access.
While there have been several recent proposals for pro-

tecting users from such attacks, they suffer from deficiencies
in terms of security, battery-friendliness or timely detection.
For example, a number of approaches use an external service
such as email or instant messaging to enable devices to
exchange messages about data they have stored on the cloud
service [5], [6]. Unfortunately, while this defends against a
malicious cloud service, it relies on the external service being
trusted to reliably deliver messages. Other approaches eschew
an external service in favor of having clients communicate
directly with each other in a peer-to-peer fashion [4], [7] or
they rely on a highly-available device to broadcast information
to all devices [3], [8]. However, such an approach is not
battery-friendly as such devices must be awake all the time
to communicate and a peer-to-peer approach causes devices
to consume more energy due to increased network traffic.
An increasingly large percentage of user devices are battery-
powered, so negative impact on battery life is a serious
drawback. Finally, some approaches such as CloudProof [9]
advocate infrequent intervals where logs of operations will be
collected from all devices at an auditing service. Naturally,
such infrequent intervals preclude timely detection.

Furthermore, all existing proposals can each only check a
single consistency model, but cloud services offer a variety of
consistency models. For example, some proposals only check
strong consistency [3], [7]–[9] or while others only check
causal consistency [4]–[6]. None have been demonstrated to
be general enough to be used to check several consistency
models.

In this paper, we present Caelus, which overcomes these
shortcomings. The key insight that enables Caelus to do this
is having the cloud service declare the timing and order of
operations on the cloud service. This relieves Caelus devices
from having to record and send the timing and order of
operations to each other – instead, they need to only ensure
that the timing and order of operations both conform to the
cloud’s promised consistency model and that it is perceived
identically by all devices. To do this in a secure, battery-
friendly and timely manner, Caelus employs several novel
mechanisms.

First, Caelus detects inconsistencies in near real-time by
having an attestor sign (i.e. attest) the order and timing of
operations declared by the cloud service. These scheduled
attestations are written back to the cloud storage service
every few seconds according to a pre-determined schedule that
is known to all devices. Other devices can then read these
attestations from the cloud service and use them to verify
the consistency of the operations they have performed without
having to directly communicate with each other or the attestor,
thus reducing network usage and battery drain. In addition,
because an attestation for an operation is available within
seconds, devices can perform timely detection of consistency
violations. Moreover, Caelus’ protocol guarantees a malicious
cloud service cannot subvert Caelus by dropping or delaying
attestations and as a result, the storage and distribution of

attestations need not be performed by a trusted service.
Second, in its most basic instantiation, the attestor is a single

device that is actively signing attestations every few seconds,
but this would not be battery-friendly for the attestor. To
reduce the impact on battery life, Caelus introduces attestor-
partitioning which partitions the attestor into a single root
attestor device that must be periodically accessible but can
otherwise sleep to conserve battery and an active attestor that
must be active but whose role should be assigned to a device
already active for other reasons (i.e. it is writing data or the
user is already using it). Caelus ensures that even though the
attestor role may be distributed across several devices who
only communicate via the cloud service, a malicious cloud
service cannot partition the devices into groups that are out of
sync with each other.

Finally, to enable the detection of violations for different
consistency models, Caelus modularizes the task of verifying
that responses from the cloud service into a consistency
verification procedure that can be performed independently by
each device. This allows the same Caelus system to be used to
check different consistency models and therefore Caelus can
verify cloud storage systems that provide strong, causal and
eventual consistency models. In addition, the distribution of
these checks across devices means that no single device will
become a bottleneck as the number of devices increases.
We make the following contributions in this paper:

• We present the design of Caelus, which uses scheduled
attestations for verifying the consistency of a cloud
service. We describe our Caelus prototype that runs on
Amazon’s S3 storage service, and demonstrate that we
can detect consistency violations when we ask Caelus to
bound inconsistency to a period shorter than what S3 can
provide.

• We show that attestor-partitioning can reduce the battery
drain of Caelus on the attestor by about 40× without
reducing the security of the system. Our measurements
show that Caelus increases CPU utilization on clients by
about 12.6% and imposes network bandwidth overhead of
about 1.3%. Under normal, failure-free scenarios with an
honest server, the user should experience no perceptible
overhead or loss of availability as a result of Caelus.

• We provide three consistency verification procedures that
enable individual devices to use Caelus to verify strong,
eventual and causal consistency using a series of logical
checks over a signed log of operations.

We start with a couple of potential but realistic consistency
problems in Section II. Then, we discuss Caelus’ security
model and assumptions as well as the guarantees it provides in
Section III. The various design aspects of Caelus are discussed
in Section IV. Then, we present an analysis of Caelus’ security
properties in Section V. Section VI describes implementation
details of our prototype and the following Section VII gives
evaluation results of our Caelus prototype. We then discuss
related work in the Section VIII and finally conclude in the
Section IX.



II. MOTIVATING SCENARIOS

To motivate the seriousness of consistency attacks, we
describe two common scenarios where a malicious cloud
service can subvert the victim software systems.

Git Repository. In the first example, consider a user or group
of users that use an online Git repository hosted in the cloud
such as Github1. Git repositories should be strongly consistent
– individual commits need not be totally ordered but set of
commits pushed to the Git service should be visible to every
client as soon as the push is completed thus forming a total
order of pushes and enabling consistent conflict resolution.
Git uses hashes to verify the integrity of the commit history.
The hash of each commit depends on the parent commit thus
forming a hash chain. Also, each Git client keeps a complete
history of all commits by all others. Thus, it might initially
appear that Git’s hash chain generated by the Git service and
local copies of the commit history stored by each client prevent
the misbehavior by the Git service.

However, by subverting the timing requirement that all
operations should be made visible to all other requirements
as soon as the operation completes so that some commits
are never made visible, a malicious Git server can corrupt
the source code repository in a way that is not detectable by
individual clients. As a result, a malicious service can hide a
particular push and all future pushes by one or more clients
from a different set of one or more clients. This effectively
partitions or forks the group of clients into two or more sets
that are unaware of each other’s pushes, but are also unable
to tell whether the other group has not committed anything or
whether the server is maliciously dropping commits without
directly communicating or using a trusted service to commu-
nicate.

Authentication Service. A security sensitive operation in
federated identity and authorization services such as OAuth
is credential revocation. OAuth is used in a variety of online
services such as Google and Facebook to authorize untrusted
parties (relying parties in OAuth parlance) to access informa-
tion belonging to the user. In OAuth 2.0, revocation requests
should be processed and propagated to all servers immediately
so that the revocation takes effect as soon as possible [10].
If an OAuth implementation uses a cloud storage service,
it will depend on the cloud service providing consistent
update of revocation requests to all application servers. For
example, consider a user that revokes access to a document
to an untrusted party before adding sensitive information to it.
Since the revocation happens before the addition of sensitive
information, a cloud service that promises strong or causal
consistency should ensure that all servers see the revocation
request before the addition of the sensitive information, i.e., in
the same order. However, a malicious cloud service may break
this promise and replicate the operations in an inconsistent
order. As a result, some nodes may receive the revocation
request after the addition of the sensitive information and

1https://github.com/

reveal the sensitive information to the revoked parties, even
though this contradicts the user’s expectations.

III. SECURITY MODEL AND GUARANTEES

Caelus is designed for any user who owns multiple Internet
devices, some of which are battery-powered devices, such as
tablets, smartphones or laptops, and which may have wireless
network connections that can fail. While Caelus can support
non-battery powered devices that have reliable network con-
nections, Caelus uses special mechanisms to mitigate power
consumption and network failures. We envision that many
devices of the future, such as smart-home devices, smart-cars
and Internet-of-things devices will also have wireless network
connections and be battery-powered. We begin by stating our
security model which describes our assumptions regarding the
behavior and capabilities of clients, the network and the cloud
service. We then state the security guarantees that Caelus
provides.

A. Security model

Clients. Clients are devices that are under the user’s control
and are used to access data stored on the cloud service. For
example, a client can be the individual user’s laptop, tablet,
or other battery-powered device. A client can also be a device
owned by other users with whom the primary user has shared
access to the cloud service. We assume clients can become
malicious or unavailable for a variety of reasons. They can
become malicious due to infection by malware, compromise or
theft. Likewise, they can become unavailable due to software
failure, loss of network connectivity, loss of battery power or
system sleep to conserve power. In cases where impending
unavailability is known beforehand, such as a system sleep
or battery depletion, the client can warn the other devices
allowing them to take actions to mitigate the effect of the
unavailability.

We assume that each client has a public-private key pair
that can be used for digital signatures, and that the public
keys of clients are known to other clients and to the cloud
provider. To protect against man-in-the-middle attacks, we
assume public keys are either distributed using a protected
channel or a PKI exists to certify their authenticity. Each user
also has an encryption key that is used to encrypt the user’s
data to protect it from disclosure to the cloud service. We also
assume a secure key distribution mechanism for the shared
encryption key so that it is only shared with the user’s clients
and the clients that the user is sharing data with.

We assume that clients have reasonably synchronized
clocks. The degree of clock synchronization required depends
on the accuracy at which the user wants to detect a mali-
cious cloud server. While previous work has shown that very
highly synchronized clocks are possible [11], for storage with
personal data, we believe that limiting clock skews to several
milliseconds, such as that which can be achieved using NTP,
should be sufficient.

Network. We assume a network model that provides connec-
tivity between each client and the cloud service, but does not

https://github.com/


provide direct connectivity between clients. In addition, the
network may fail to transmit messages between client and the
cloud service and clients cannot distinguish between a failure
of the network and a failure of the cloud service. Assuming
that all communication between clients must traverse the cloud
service enables clients to communicate even if both are not
online simultaneously [12].

Cloud Service. The cloud service promises a certain consis-
tency model for data stored on the cloud service. An honest
cloud service will respond to requests for data from various
clients according to the promised model. Caelus further as-
sumes that cloud services offer a time bound on consistency
models, which means that operations are guaranteed to become
visible to all clients within some visibility time bound, which
is specified by the cloud service provider in SLA. In practice,
consistency models that are not bounded are less useful be-
cause it is very hard to reason about the data when developing
client software. Furthermore, unbounded consistency models
can result in unresolvable conflicts. As a result, recent work
has shown that in practice, most systems that claim to be
weakly consistent are still bounded [13]. In fact, there are
a number of proposals in the literature that enable users to
measure the time bound that a cloud service offers [14]–[20].
Thus, bounded consistency models are realistic and we believe
cloud service providers may even be motivated to claim shorter
time bounds than their competitors.

In our security model, a malicious cloud service’s goal is
to violate the promised consistency model and trick the user
into unknowingly using inconsistent data, or alternatively, to
claim a consistency model stronger than what they offer and
hope that the user won’t notice the discrepancy. A malicious
cloud service can selectively omit, replay, reorder or delay
the results of operations by clients. In addition, since all
client communication goes through the cloud service, the cloud
service can also selectively fake client failures by preventing
operations made by a client from becoming visible to one
or more other clients. However, we assume that standard
cryptographic assumptions hold – a malicious cloud provider
cannot decrypt data for which it doesn’t know the key, nor
can it forge cryptographic signatures. In other words, we use
the Dolev-Yao attack model for a malicious cloud service.

Similar to clients, we assume that the cloud service has a
public-private key pair and that the public key is well-known
to all clients. Thus, the cloud service’s response signed with
cloud’s private key is non-repudiable.

Collusion. As we will discuss in Section III-B, Caelus makes
security guarantees against both a malicious cloud service
and malicious clients. Caelus assumes that malicious clients
can collude and defends against them. However, if the clients
and cloud provider are both malicious and collude, it would
be difficult to make any guarantees since there are no non-
malicious components left in the system. As a result, we
weaken the security model slightly by assuming that clients
are cloud-secure, meaning that they can be compromised and
act maliciously, but are always secure against compromise by

the cloud service. For example, the cloud-secure assumption
holds if clients are infected with malware or have been stolen,
so long as that malware or the thief is not under the control
of the cloud service.

We believe this assumption is realistic for several reasons.
First, many cloud services provide APIs for developers to
develop their own client software [21]. For example, there
exist a plethora of 3rd party DropBox clients that enable users
to automatically backup their files, synchronize data or use
multiple backup services [22]. As a result, the provenance of
the client software is largely independent of the cloud service
provider.

Second, in cases where the user is using a client provided by
the cloud provider, there can still be independence if the client
software and cloud storage service are hosted on separate
systems. Thus, an attacker who compromises the cloud storage
service does not automatically get the ability to corrupt or
control the client software.

B. Security guarantees
We now state the security guarantees that Caelus provides.

Because our security model allows for both a malicious
cloud service and malicious clients, we separately describe
the guarantees that hold against each of these.

Caelus provides the following security guarantees against a
malicious cloud service:

SRV1:A malicious cloud provider cannot read user data.

SRV2:A malicious cloud provider cannot tamper with user
data without being detected.

SRV3:A malicious cloud provider that responds inconsis-
tent data will be detected within a finite time bound
defined by TCaelus.

Against malicious clients, Caelus provides a different set of
guarantees. Since devices have the ability to read and modify
data, Caelus cannot protect the confidentiality or integrity
of data on the cloud against a malicious device. This could
be somewhat mitigated by access control, but the amount
of protection would still be dependent on the access control
policy so it cannot provide complete protection for data
confidentiality and integrity. We thus leave the integration of
access controls into Caelus for future work.

However, since all operations must be signed, Caelus does
guarantee that operations by clients are non-repudiable. In
addition, a malicious client may attempt to falsely accuse
the cloud provider of violating consistency guarantees. Caelus
guarantees that such false accusations can be invalidated using
an audit procedure. In summary, Caelus provides the follow-
ing guarantees against malicious clients (including multiple
colluding clients):

CLT1:Malicious clients cannot repudiate modifications they
have made to data on the cloud.

CLT2:Malicious clients cannot falsely accuse the cloud
service of violating the promised consistency model.

Caelus does not protect against loss of data against a
malicious cloud provider. A malicious cloud provider can



Distributed 
Key-Value 

Store 

Cloud 
Server 

Cloud 
Server 

History 
Server 

Fig. 1. Caelus architecture.

always drop a user’s request or destroy data after receiving
it. Similarly, a malicious client can overwrite data or refuse to
perform its duties, thus affecting the durability and availability
of user data. However, in the absence of benign failures or
malicious activity, Caelus provides the following guarantee:

AV1: Under normal operation where clients and the cloud
service are free of failures and malicious activity,
Caelus will not cause delays or unavailability of the
cloud service.

Since Guarantee AV1 doesn’t hold if there are any malicious
parties, it should be clear that it is really more of a perfor-
mance guarantee rather than a security guarantee. However, we
believe this guarantee is still important since to be practical,
Caelus’ security guarantees should impose little or no cost
under normal (non-malicious) circumstances.

IV. DESIGN

A. System overview

Caelus is a set of enhancements that can be added to
a cloud service that uses a distributed key-value store. We
select this storage architecture because essentially all cloud
storage services are based on key-value stores at their lowest
level [23]. The architecture of a typical Caelus system is
illustrated in Figure 1. The existing cloud service contains a set
of geographically distributed cloud servers. Clients connect to
a cloud server that is close to them for low latency. Aside from
clients, cloud servers communicate with two components:
an existing globally distributed key-value store that provides
some consistency guarantees and a new centralized history
server that is added by Caelus. Enhancing an existing cloud
service to support Caelus generally entails adding the history
server and modifications to the cloud servers and clients,
but does not require changing the distributed key-value store.
Moreover, deploying the Caelus client to customer devices
can be accomplished by having users install client software
equipped with the Caelus verification scheme. The security of
their data is one of the main concerns cloud users have, and as
a result, we believe cloud service providers may be motivated
to deploy Caelus to convince users that their data is safe, and
to remove legal liability from themselves as Caelus guarantees
hold even if the cloud infrastructure is compromised

Although it is under the control of the cloud service and is
not trusted by the user, the history server plays a crucial role
in Caelus. Instead of having the devices assemble a view of all
operations that have taken place and check the consistency of
each operation, the history server has the cloud service declare
the history of operations it has performed. Then, all the devices
have to do is verify that 1) the declared history conforms to
the promised consistency model and that 2) all the operations
they have performed are reflected in the log. This considerably
simplifies the consistency verification procedure, enables it
to be distributed across devices and eliminates the need for
devices to communicate directly with each other. The main
guarantee that Caelus must provide then is that all devices
perceive the same declared history from the cloud service.

Clients read and write data from the cloud service with Get
and Put operations. Each cloud server forwards the operations
from clients connected to it to the key-value store. The history
server records a log of all operations that have occurred on
the cloud service. Cloud servers forward Gets to the history
server as soon as they are received from clients. However,
the key-value store is globally distributed so there is a delay
between the time that a cloud server accepts a Put from a
client and forwards it to the key-value store and the time that
the result of the Put has been made visible to all other cloud
servers. Thus, Puts are only logged by the history server
when it has been notified by the key-value store that they
have been made globally visible. If the key-value store is not
capable of such notifications, the history server can also log
the Puts on behalf of the key-value store after the visibility
time bound has passed. The order that operations are logged
on the history server is unimportant – instead, clients rely on
embedded timestamps in operations to reconstruct order. The
history server is also responsible for storing control messages
that are sent between clients, such as attestations and selection.

We begin by describing a basic system that uses a single
monolithic attestor and provides all the security guarantees
described in Section III-B. However, the basic protocol is
not battery-friendly so we then describe an enhanced battery-
friendly system that uses attestor-partitioning to enable devices
that are not being actively used to sleep and conserve energy.
Finally, we will discuss some operating parameters of Caelus.

B. Basic system

We describe our basic system in four steps. First, we
describe how Put and Get operations are implemented by
the cloud server. Second, we describe the attestation procedure
Caelus uses to ensure that every client has an identical view of
the history of operations. Third, we describe how each client
verifies that its local view of operations is consistent with the
attested history of operations. Finally, we describe how clients
join and leave the Caelus system. The major elements of the
Caelus protocol are illustrated in Figure 2.

Operations. Each Get and Put operation transmits the
following meta-data in the header: operation type (Get or
Put), key value, client ID, a timestamp, a sequence number
and a hash of the data if it is a Put operation. The entire



Cloud 
Service

SELECT
GET & PUT

READ_ATTEST

Attestor 
(Root 

Attestor) Regular Clients
Active 

Attestor

READ_HISTORY
WRITE_ATTEST

VERIFICATION

READ_HISTORY

WRITE_ATTEST

Select

Fig. 2. The Caelus protocol. The Root Attestor, selects the Active Attestor
using the Select operation. The Active Attestor then reads the history us-
ing Read_History, and signs the history to produce attestations, which are
written back using Write_Attest. When no Active Attestor is available,
the Root Attestor can perform attestation itself (shown in gray). Regular clients
perform Get and Put operations and verify these operations by reading
attestations using Read_Attest and running the verification procedure on
the attested histories.

header is signed with a private key specific to each client,
and whose matching public key is known to all other clients.
The sequence number and hash are used to detect omissions,
replay and tampering of data. The timestamp is used by
clients to reconstruct the order and timing of events. Any
data transmitted in a Put is encrypted by the device to
enforce Guarantee SRV1 and both the header and any data
are signed by the device to enforce Guarantee SRV2 and
Guarantee CLT1.

The cloud servers do not buffer any data; their main purpose
is to provide a single interface to the clients and hide the
details of the key-value store and history server from the
clients. Client Put and Get requests are directly forwarded
to the globally distributed key-value store and the results of
Gets are returned back to clients by the cloud servers. Gets
forwarded to the history server are logged immediately while
Puts are only logged after the key-value store notifies it that
the results of the Put have become globally visible or the
visibility time bound has passed. The history server assigns
global sequence numbers to logged operations, which are only
used as a way for clients to request sections of the log. Puts
that have been received but are not yet logged are not assigned
global sequence numbers and are not yet visible to every
client. While the history server is shown as a single machine
in the Figure 1 it need not be. However, if distributed, one
important caveat is that each operation must be assigned a
unique global sequence number, so the history server must be
at least sequentially consistent. This requirement only holds for
keys that have common clients. If two sets of keys do not have
any clients in common, the assignment of sequence numbers
among those sets need not be sequentially consistent. Violating
this requirement will result in clients detecting consistency

violations, as it will either result in operations with duplicate
sequence numbers. Thus, it is of no benefit for a malicious
cloud service to violate this requirement. In addition, the
history server only stores hashes of data objects instead of
the full data objects, so the amount of data stored is relatively
small.

The log on the history server is intended to act as “proof”
that the cloud service is adhering to its promised consistency
model. Depending on the consistency model, the servers and
key-value store may also include additional information about
each operation to facilitate the verification that the consistency
model is met. We discuss the details of the consistency
verification procedures below.

Attestation. One of user’s devices, acting as the attestor,
periodically performs attestations by fetching a log segment
from the history server. For now, we assume the attestor has
no battery limitations, which we will remove by employing
attestor-partitioning protocol described in section IV-C. There
are two requirements that the attestor must meet. First, the role
of the attestor is permanently assigned to one and only one
device and the identity of the attestor should be known to all
other devices. Second, the attestor should periodically perform
attestation operations on a schedule that is also known to all
devices.

To request a log segment, the attestor uses a
Read_History(GStart, GEnd) operation, which specifies
a section of the log between two global sequence numbers
GStart and GEnd to read. The attestor submits this request
to the server it is connected to, which reads it from the
history server and returns the results to the attestor. All
log segments are signed by the history server to ensure
that a malicious client cannot tamper with them, which
enforces Guarantee CLT2. To create the attestation, the
attestor adds a sequence number and timestamp to the
log segment, signs it and stores it back to the history
server a Write_Attest(GStart, GEnd) operation. Clients
can read attestations from the history server by using a
Read_Attest(GStart, GEnd) operation, which returns
all operations and attestations in the requested range. The
attestor performs attestations at specific time intervals defined
by the parameter TA.

Clients expect to be able to read a new attestation every
TA + ε. ε accounts for variable delays due to network and
processing and must be added any time a client is measuring
the delay between two events on the cloud service. This sched-
uled attestation prevents a malicious service from showing
different log contents to different clients. If a malicious service
tries to tamper with or drop portions of the log, it will be
detected when clients verify the log segments against the
attestations. Replay or omission of log segments or attestations
will be detected by missing sequence numbers in the stream of
attestations. Finally, a malicious service may attempt to drop
all future log segments and attestations (i.e., truncation), but
this will be detected because clients will not be able to read
an attestation at the expected time. Clients cannot distinguish



between this type of malicious cloud service and a failed
attestor, but since the attestor is available most of the time
and assumed to only experience failures for short periods of
time, Caelus clients halt until they are able to read any missed
attestations. If a client continues to miss attestations for an
extended period of time, it can notify the user who can then
examine the state of their attestor device to determine if the
device or the device’s network connection has failed or not.
If neither the device nor its network has actually failed, this
indicates that the cloud service is acting maliciously.

Using scheduled attestations, all clients can safely assume
that all attestations will be eventually made identically visible
to all clients. By extension, this guarantees that all clients will
see the same history of operations and from this, detect if the
cloud service is maliciously trying to omit, reorder or delay
client operations using the verification procedure we describe
next.

Verification. To distribute the verification tasks, each client
is responsible for verifying the consistency of its own oper-
ations. Verification happens asynchronously to Put and Get
operations when clients periodically fetch attestations using
the Read_Attest operation. Caelus verifies that operations
are inconsistent by at most some time bound TCaelus, thus
enforcing Guarantee SRV3.

Clients verify their operations in 3 steps. First, clients
verify the correctness of the fetched log segment against the
accompanying attestation. Second, clients perform a presence
check, where they verify the individual signatures on each
operation in the log to detect tampering, and check that the log
segment does not omit or replay operations using the sequence
numbers embedded in the operations. Finally, clients verify
the consistency of their Put and Get operations. The exact
method that clients use to verify the consistency of Puts and
Gets depends on the consistency model of the cloud service.

Caelus currently supports 3 consistency models: strong
consistency, eventual consistency and causal consistency with
some time bound defined by the visibility time bound TS .
Under strong consistency, all operations appear to execute in a
single global order with every Get receiving the value of the
immediately preceding Put to the same key. In addition, all
Puts should be globally visible as soon as they are acknowl-
edged by the cloud service. This makes the verification of
strong consistency the simplest of all three models. Clients
verify the consistency of Puts by checking that the Put
appears in the next attestation signed by the attestor. This
means that a cloud service could at most delay the effects
of a Put by TA + ε. Clients verify the consistency of Gets
by checking that the value returned matches the value of the
immediately preceding Put in the log.

In the bounded eventual consistency model, the results of
Puts need not be immediately visible to all clients, but may
instead take up to the visibility time bound TS , to become
visible to all clients. This is equivalent to the definition of
bounded consistency used by Pileus [24]. The checks that
clients do to verify consistency are illustrated in Figure 3. To

Attest(a,x1) Put(a,x2) 

tA1 tP2 

Attest(a,x2) 

tA2 

Get(a,x1) Get(a,x2) 

tA2 – tP2 < TS + TA + δ 

tP2 < tG2 + δ tG2 < tA2 + δ  |  
tA‘: tA2<tA‘<tG2={∅ } 4 

5 

1 

tA2 – tG2 < TS+TA+ε 
3 

2 
Get(a,x1|x2) 

tG1 tG2 
tG3 

2 

6 

Fig. 3. Verification of eventual consistency. We denote operations as
operation(key, value). x1|x2 means that the Get may legally return either
x1 or x2.

verify the consistency of Puts, the client will check that 1
the attestation time of all of its Puts are at most TS +TA+ δ
after the corresponding Put has been acknowledged by the
cloud service, where δ accounts for clock skew between clients
when comparing timestamps.

Checking the consistency of Gets is slightly more complex.
At time tA1, the attestor attests a Put with value x1. Then at
time tP2, a client performs a Put with value x2 to the same
key, but because of the consistency model, x2 is not globally
visible and attested until time tA2. The Get at tG1 must
return x1 because x1 has been attested and is thus globally
visible, while the Get at tG3 must return x2 for the same
reason. However, the Get at tG2 may return either x1 or
x2. Thus, to verify the consistency of a Get, 2 the client
first checks whether the value returned by the Get matches
the most recent attested value. If not, it is either a violation
or the Get has read the value of a Put that has yet to be
attested. The client maintains a list of unverified Gets and 3
waits for an attestation for a matching Put to appear within
the timeout period (tA2 − tG2) < TS + TA + ε. Note that
within this time, the client can use the value of the Get as
any violation will be detected within the timeout period. If the
attestation does not appear before the timeout period, either
the cloud service is taking too long to replicate results or the
service returned stale results, both of which are consistency
violations. If an attestation for a Put does appear in time,
then the client checks that 4 the timestamp of the Get is
later than the timestamp of the Put, i.e. tG2 > tP2 − δ. It
must also check that either the Get 5 is before the Put’s
attestation, i.e. tG2 < tA2 + δ or 6 if the Get is after, that
there are no newer attested Puts that the Get should have
read, i.e. t′A : tA2 < t′A < tG2 = {∅}. Check 6 handles
the case where the attestation happens before the Get, but is
not fetched and verified by the client until after the Get. If
the Get passes these checks, then it is verified and removed
from the unverified Get list. Otherwise, the Get remains on
the list and will be checked against other attested Puts until
either it is verified or it times out and becomes a violation.

A cloud service that implements bounded causal consistency
for Caelus enforces causal consistency on the values read



o1:Put(a,0) o2:Put(a,1) 
Client 1 

o3:Put(b,0) 

o7:Get(b,0) o8:Get(a,1) 

o5:Put(a,3) 

Client 2 

Scenario 1: Honest Server 

1 0 2 0 3 0 4 0 

3 1 3 1 

o1:Put(a,0) o2:Put(a,1) 
Client 1 

o3:Put(b,0) 

o7:Get(b,0) o8:Get(a,0) 

o5:Put(a,3) 

Client 2 

Scenario 2: Malicious Server 

1 0 2 0 3 0 4 0 

3 1 3 1 

o6:Put(a,2) 
0 1 

o6:Put(a,2) 
0 1 

Fig. 4. Verification of causal consistency. The vector clock is shown below
each operation as C1 C2 .

by Gets, and will eventually make all Puts visible to all
clients via the history log. Bounded causal consistency is
also referred to as Causal+ consistency [25] in the literature.
Because Puts must be made globally visible in a bounded
amount of time, verifying the consistency of Puts in bounded
causal consistency is the same as verifying Puts in bounded
eventual consistency.

As with eventual consistency, some Gets may see the result
of Put operations before they become globally visible in the
log. Thus, clients perform the same verification steps in causal
consistency as eventual consistency. However, while a Get
in eventual consistency may return either the most recently
attested value or any written but unattested value, Gets in
causal consistency must return the most recent value on which
it is causally dependent. One option for verifying Gets would
be for clients to extract the chain of causal operations it is
dependent on and then verify that the value read matches that
of the most recent Put in the chain. However, if the client
only knows the value that the Get read, it may be ambiguous
which Put it is actually dependent on if there are several
Puts with the same value.

To uniquely identify each operation, we enhance the cloud
servers to attach a vector clock to each operation in the
log [26]. Clients verify the correctness of the vector clocks by
checking that they increase along with the sequence numbers
on operations, which indicate program order. Clients can then
use the vector clocks to verify the freshness of the value
read by checking if there are any newer Puts to the same
key between the vector clock of the Get and its associated
Put. Like in eventual consistency, a client may have to defer
verification for up to TS + TA + ε to ensure all necessary
attestations have occurred.

To illustrate, consider Figure 4. The Get, o8, by client C2
reads the result of the Put, o2, by C1. We denote a vector
clock of an operation using the notation vc(oi). Note that
vector clocks only increase on Put operations. C2 verifies
the consistency of the Get by verifying that there are no Put
operations on the same key with vector clocks greater than o2
and less than o8. In Scenario 1, there is no violation because
all operations between o2 and o8 modify other keys. o1, o5
and o6 modify the same key, a, but since vc(o1) < vc(o2),

vc(o5) ‖ vc(o8) and vc(o6) ‖ vc(o2) (‖ means “incompara-
ble”, the two values have no defined order), their results may
legitimately be invisible to o8. However, in Scenario 2, the
cloud service, either maliciously or erroneously, returns the
result of o1 instead of o2 to o8. In this case, client verification
will fail because it finds that vc(o1) < vc(o2) < vc(o8) and
that o2 is a Put to the same key read by o8. A malicious
cloud service cannot assign o2 a vector clock less than vc(o1)
because the order of the vector clocks must match the sequence
number embedded in the operations. Neither can it omit o2
since the presence check done by clients will detect that the
o2 operation is missing from the log.

For large numbers of clients, vector clocks can be expensive
since the length of the vector is determined by the number of
nodes in the system [25]. However, in Caelus vector clocks do
not need to span users who do not share data. Instead, the size
of the vector only has to accommodate the number of clients
a user has (or is sharing data with), which we expect to be
generally fewer than 10-20.

Client join and leave. When a client joins or rejoins the
system after a period of being asleep, it must verify that
the attestor is available before performing any operations. It
does this by checking that the timestamp of the most recent
attestation posted by the attestor is less than TA+δ old. Once it
establishes that the attestor is available and making attestations
properly, it can proceed to access values on the cloud service.

If the client has been disconnected from the cloud service
for a long period of time, it may have to download a significant
portion of the log to verify the consistency of Gets that read
values written many operations ago. To bound the length of
the log, the attestor can periodically checkpoint the entire key-
value store by performing a Get and Put on every key, attest-
ing to the new key values and having the history server discard
all log entries before the checkpoint. To safely checkpoint
a key, Caelus must ensure that there are no Puts in flight
so that the latest value is checkpointed. If large key-values
are anticipated, Caelus can provide a special Checkpoint
operations that avoid transmitting the value since the value
itself does not change. Checkpointing requires all keys with
conflicting values to be resolved, though data loss can of
course be avoided by assigning conflicting values to new keys.

When clients intentionally leave, for example to go to sleep,
they may have to delay their leaves by up to TS + TA +
ε so that they can verify any operations made just prior to
sleeping. Note that TS is effectively zero in strong consistency
since replication is immediate. Unfortunately, if clients have an
unexpected failure that they cannot delay, a malicious server
can truncate data written in the last TS + TA + ε. However, a
malicious server cannot omit operations since omissions will
be caught by the presence checks done by other clients.

Audits. If a consistency violation is detected, either the cloud
service acted maliciously or a device incorrectly reported a
consistency violation. To differentiate between these two cases
and enforce Guarantee CLT2, an audit procedure is required
to verify that the device is truthfully reporting misbehavior by



the cloud service. The audit procedure is fairly straightforward
as all the information required to perform the verification pro-
cedure is contained in the logs and attestations on the history
server, and thus no information or interaction is required with
the device that is accusing the cloud server. Thus, the user
can perform the audit procedure by repeating the verification
procedure on a device whose integrity is known to be good.
We envision the requirement to do such audits to be rare, so
it is reasonable to assume the user will be willing to expend
some effort to acquire such a device. For example, they may
boot a device from a CD or USB image that is known to
be safe, or use a device capable of verified trusted-boot [27],
[28]. The audit procedure can even be performed publicly if
all signature verification keys are available in case the user
wants to prove to a third party that the cloud service behaved
maliciously.

C. Battery-friendly system

Our basic system described above is secure, but not battery-
friendly because it requires the attestor to continuously pro-
duce attestations. In order to solve this problem, we introduce
attestor-partitioning, which partitions the single attestor into a
root attestor (RA) and an active attestor (AA), each fulfilling
one of the requirements on the single attestor. The device
that fulfills the RA role takes on that role permanently and
its identity as RA is known to all devices. However, once
it selects a device to take on the role of the AA, it can
sleep and conserve battery, and the selected AA will then
actively create attestations every TA. As a result, the role of
the AA is not permanently attached to one device, but can
be changed as necessary to minimize the impact on battery
life. In Section VII, we show that Caelus has minimal battery
impact on a device that is already awake – the main battery
cost of Caelus results from it preventing devices from sleeping.
Thus, the RA should select a device to be the AA that must
be awake for other reasons – for example, the RA could select
devices that the user is actively using or devices awake due to
processing background tasks, such as downloading updates or
synchronizing data. The RA can even select itself as the AA
if it is the only device that is awake. If all devices are asleep,
then no AA needs to be selected because no operations are
being performed if all devices are asleep and thus, there is
nothing to attest – if operations are being performed on the
cloud service, then at least one device must always be awake
to perform them.

While the RA can be any device, we generally envision that
the user may use their smartphone as the RA for their devices.
As of August 2014, there are approximately 4.6 billion cell
phone subscribers worldwide and smartphones represent 65%
of all new phones being sold [29]. As a result, even in instances
where users only own one or a small number of devices, we
can likely assume that at least one of them is a smartphone.
Smartphones also have several other advantages that make
them suitable for use as an RA. First, they have a cellular data
connection, meaning that they are likely to be reachable and
able to respond to network requests. Second, the user generally

has their smartphone with them and so is more able to fix a
failed or disconnected smartphone than a non-portable device.
Finally, a malicious cloud provider could drop messages from
the RA to make it appear that it has failed. However, since the
user usually has the smartphone-RA with them, such an attack
is unlikely to work as the user can easily verify the state of
the smartphone.

The key security invariant that attestor-partitioning protocol
must uphold is that there must not be more than one AA at any
given time, otherwise a malicious cloud service can fork the
AAs into two partitions that are not aware of each other, which
would violate all the consistency models that Caelus tries
to guarantee. Although the attestations are performed by the
AA, the RA still takes an important role for keeping security
guarantees by maintaining only one AA at any given time and
securely handling instances where the AA fails unexpectedly.

The RA selects the AA by writing a selection message to
the history server using a Select operation. After this, the
AA will perform attestations every TA, allowing the RA to
sleep. Selection messages are signed and include a sequence
number just like regular operations, and thus cannot be forged
or replayed. They contain a timestamp and unambiguously
select the client to be the AA. If the AA leaves or fails, the
RA must then select another client to be the AA. Thus, while
an AA is active, the RA must wake up every TR, where TR �
TA, to check for the presence of AA attestations in the log. If
a current attestation exists, then the AA is still present and the
RA renews the selection by writing a new selection message.
This renewal message is important as it serves to tell the AA
and clients that the AA has not been isolated from the RA. If
the AA does not see a renewal at TR+ ε after the last renewal
it must stop acting as the AA and wait until a new AA is
selected.

When a client wants to join the cloud service, it checks
for the presence of an AA by checking if the last selection
message is less than TR + δ old. If selection has expired,
there is no current AA and the client must wake the RA.
To do this, we enable clients to wake the RA by adding a
Wake operation that causes the cloud service to wake the
RA using a push notification. Push notifications are a facility,
universally available in essentially all battery-powered devices
such as phones and tablets, which allow a remote host to send
a message to a mobile device, such as a RA device, and ensure
it is received in a timely manner even if the device is sleeping.
They utilize special hardware that puts the main processor
on the device to sleep while the network interface remains
awake, but allows the network interface to wake the device if
a message arrives. A variety of push notification services exist,
such as Google Cloud Messaging, the Apple Push Notification
Service and the Amazon Simple Notification Service. Before
waking the RA, the client indicates that it is awake by writing a
status message to the history server using a Status operation.
Like all other operations, status messages include a sequence
number and are signed so they cannot be forged or replayed.
After this, the cloud service wakes the RA, which then checks
the status messages on the history server to see which devices



are awake. It then selects an active device to be AA and goes
to sleep for TR.

If the AA intends to leave, it must give up its role as the AA.
Similar to the join procedure, the AA writes a status message
indicating it is going to leave and asks the server to wake the
RA. At that point, the RA can select a different device if there
are other devices awake or go to sleep if there are no other
devices awake.

D. Handling failures

One of the drawbacks of attestor-partitioning is that it can
increase the likelihood of unavailability because if the AA
fails, the system will become unavailable for up to TR + ε
for the RA to wake up, at which time the RA will detect that
the AA is not making attestations. Recall that TR could be
on the order of several minutes. If other clients are awake,
the RA will select a new AA, otherwise it will go to sleep. At
first, it might appear that clients could avoid having to wait by
waking up the RA once they detect the AA has failed (i.e. after
TA+ε has passed without an attestation). However, this is not
safe as neither the RA nor clients can differentiate between
a failed AA and a malicious cloud service who is dropping
AA attestations. If the RA incorrectly assumes the AA has
failed and selects a new AA when in fact the cloud service is
dropping attestations, this will result in two simultaneous AAs.
Without trusted communication channel between clients, the
only way to avoid this is for the RA and all clients to wait
until TR has passed. After this, even if the cloud service is
malicious, the AA will stop acting as an AA unless it sees a
selection renewal from the RA, which the RA will not issue
unless it can see the operations of the AA.

An AA can potentially suffer from a variety of failures,
such as benign failures due to WiFi disconnection, battery
depletion or failed hardware, as well as malicious failures such
as malware infection or remote compromise. Such failed AAs
affect the availability of Caelus as mentioned above. Moreover,
if the failure is malicious, a compromised AA (or any other
compromised client), could falsely accuse the cloud provider,
requiring an audit to be run, which will impact the availability
of Caelus as well. Thus, Caelus should try to minimize the
chance of AA failure as much as possible. Preventing the
compromise of devices by attackers is beyond the scope of
this work, and we encourage readers to refer to the rich
literature on intrusion detection, malware detection and system
hardening. Thus, we will focus on how Caelus can minimize
the chances of benign AA failures.

The easiest way to reduce benign AA failures is to have
more reliable devices and networks. Enterprise-grade devices,
while more expensive than consumer-grade devices, are often
of higher quality, providing more reliable networks and less
failure-prone hardware. Thus, while Caelus is not restricted to
only enterprise settings, it will perform better in such settings
where the probability of failures is low. In lieu of using higher-
cost devices, Caelus can still mitigate failures by managing
and configuring the system more carefully. For instance, when
more than one candidate for AA is available, the RA can

preferentially select an AA that is more reliable by using
attributes such as previous failure history of the devices, the
current battery-level of the device, network signal strength and
error-rate of the device, software patch level and whether the
device is in the physical presence of the user so that failures,
if they do happen, can be more quickly addressed. We leave
the details of an algorithm that correctly balances these and
possibly other attributes for future work.

A malicious push notification service could arbitrarily delay,
drop or forge notifications. Delayed or dropped notifications
will reduce the responsiveness of the system since the RA will
not wake up as intended. Alternatively, forged notifications
will cause the RA to wake up unnecessarily, affecting battery
life. Both of these attacks reduce availability, thus affecting
Guarantee AV1, which is not intended to withstand malicious
activity. However, all other security guarantees hold against a
malicious notification service. Moreover, both of these attacks
are not stealthy and can easily be detected, for example
by having clients detect delayed or dropped notifications by
timing the delay for the RA to respond after a Wake, or having
the RA detect forged or delayed notifications by checking for
a valid Status operation upon receiving a notification.

Guarantee AV1 ensures that Caelus does not increase un-
availability unless the cloud service or devices fail, or there is
malicious activity. The only time Caelus will stop clients from
performing operations is if a scheduled attestation or selection
message is missed, which can occur only when either the AA
or RA fail, the network they are connected to fails or if a
malicious server drops those messages.

E. Operating parameters

Caelus has a number of time-based operating parameters,
some of which are dictated by the cloud service or operating
environment and some of which are set by the user. TS is the
visibility time bound for the cloud service, and is a property
of the distributed key-value store. We expect environmental
parameters ε, which represents network and processing delay,
to be on the order of 10s to 100s of milliseconds (for
connectivity over cellular networks) and δ, which represents
clock skew between devices to be a few milliseconds. Since
the history server should be composed of a single machine or
a set of tightly coupled machines, we expect log, attestation
and select operations to take on the order of ε.

Caelus guarantees that clients cannot unknowingly use data
that is inconsistent by more than TCaelus, where TCaelus =
TS + TA + ε. Caelus may also detect some operations that
violate the shorter TS bound, but its ability to do this is limited
by how short TA is. This is because operations logged by
the history server are only attested every TA, so an operation
that violates TS by some amount φ will evade detection so
long as the time it waits on the history server for the next
attestation cycle is less than TA−φ. Thus, a short TA increases
Caelus’ ability to detect violations, but at a slightly higher
network and computational cost to the AA and clients who
must process attestations more often. Note that to have TA =
0, which implies TCaelus = TS + ε, this would either require



an AA that checks infinitely often or a trusted history server
that implements the AA.

While a RA that is never unavailable can never cause the
system to be unavailable, real devices do become unavailable
so they can cause system unavailability. Attestor-partitioning
mitigates the effects of RA unavailability by allowing the
AA to hide some of the times the RA is unavailable. While
the value of TR does not affect system security, a longer
TR reduces the likelihood that temporary unavailability of
the RA will affect unavailability of the entire system. To
illustrate, consider a RA running on the smartphone with an
availability of 97.81% as found by our informal measurement
study detailed in the Appendix. Modelling the phone as a
random variable with an expected value of 97.81% and is
subject to a trial every TR, it would take about 32 × TR be-
fore the probability that phone unavailability impacts Caelus’
availability increases to 50%. Considering an average period
of unavailability of approximately 94 seconds (again from
the study), partitioning gives the user a 50% chance of
experiencing roughly 7 minutes of unavailability every 24
hours with a TR of 10 minutes, which compares favorably to
the expected 30 minutes of unavailability the same phone is
expected to experience every 24 hours. Moreover, the expected
unavailability decreases exponentially as phone availability
increases. Therefore, we think the smartphone RA can be
reliable and highly available for our target environment.

In general, a longer TR will also improve battery life of the
RA as the device the RA is on can spend a longer proportion
of time sleeping. Mobile push notification services typically
require the device to wake up and send keep-alive messages
every 5-10 minutes. As a result, we generally expect that TR
is set to coincide with these keep-alive periods.

V. SECURITY ANALYSIS

Now that we have presented the design of Caelus we
describe how the individual guarantees that Caelus provides
are upheld by elements in its design. These guarantees hold
when either the cloud service is malicious or clients are
malicious. We further show that even if several malicious
clients collude, they do not gain any abilities beyond those
that a single malicious client has.

A. Analysis of guarantees

SRV1. Since all clients encrypt data before sending it to the
cloud provider and the encryption key is not known to the
cloud service, a malicious cloud provider cannot read user
data.

SRV2. A cryptographic hash of data sent in Puts is computed
and included in the header of the Put. The header is signed
by the device making the update. The same header is returned
by the cloud service to a client performing a Get on the same
key. The client then verifies the signature on the header and
then uses the hash to verify the integrity of the returned data.
Since the cloud service cannot forge the signatures, the data
stored on the cloud is protected from tampering by a malicious
cloud provider.

SRV3. The scheduled attestations produced by the AA in
combination with the consistency model-specific verification
checks guarantee that consistency violations are detected
within TCaelus. Scheduled attestations ensure that all clients
are notified of the history of an operation within TCaelus after
the operation occurs. Since all clients see the same history, one
can view the attested history as a “global history” of all oper-
ations. The verification checks then guarantee two properties:
1) each client’s observed history of operations matches the
attested global history and 2) the global history is consistent
with the promised consistency model. For the second property,
the verification checks verify that all operations are made
visible within the promised time bound by comparing the
timestamps on operations (i.e., no stale data is read) and
that operations are made visible according to the ordering
constraints specified by the promised consistency model (i.e.,
no malicious reordering).

CLT1. Because all key-value updates must be signed by the
client making them, a client cannot later deny that it made the
update. As a result, data modifications are non-repudiable.

CLT2. To falsely accuse the cloud service of a consistency
violation, a client must show that one of the verification checks
has failed even when in reality it hasn’t. This can only happen
in one of two ways: either the accusing client is able to alter
the contents of the attested history so that a check fails, or it
can convince the user that a verification check has failed even
when it hasn’t.

All attested history segments are signed twice, once initially
by the cloud service and then again by the attestor. As a
result, a regular client would have to forge the signatures of
both the cloud service and the attestor to tamper with the
attested history. If either the RA or the AA is malicious, it
could try to tamper with the attested history before signing it.
However, to successfully tamper with it, the malicious attestor
would still need to forge the cloud service’s signature, which
is not possible according to our attack model. As a result, no
malicious client can tamper with the attested history to falsely
accuse an honest cloud service.

The other alternative is for the client to incorrectly evaluate
a verification check and declare that a check has failed.
However, since all consistency violations can be publicly
audited, a malicious client on its own cannot falsely accuse
the cloud service.

AV1. Clients expect the AA to sign an attestation every TA.
If this does not happen, then clients will halt, affecting the
availability of the system. Similarly, a malicious RA can
refuse to select AA and also refuse to sign attestations. If
the cloud service is malicious, it can also affect availability
by simply refusing to respond to requests for clients. Thus a
single malicious client, if it happens to be the AA or RA, or
a malicious cloud service can invalidate Guarantee AV1.

Under normal circumstances, where there are no failures
and all components adhere to the protocol, an attestation is
produced every TA. If all clients are asleep and a new client
joins, it must wake up the RA. Normally, the new client would



have to wait for up to TR for the RA to wake up, thus affecting
availability. However, because Caelus uses push notifications,
this waiting period is shortened to the latency of a push
notification, which is on the order of 1 second. Thus, under
normal circumstances, Caelus does not affect availability.

B. Colluding clients

Multiple colluding clients do not have any capabilities
beyond a single malicious client. Like a single client, they are
only able to corrupt or leak data by virtue of their ability to
access and modify the data. However, both guarantees against
malicious clients, CLT1 and CLT2, hold.

CLT1. Malicious clients could share their signing keys thus
allowing any malicious client to forge signatures that could
have been made by another malicious client. Thus, malicious
actions can no longer be traced to the client that made
them, but only to a member of the group of colluding
malicious clients. While this changes the actual terms of
Guarantee CLT1, it doesn’t change the intent – actions made
by an adversary in control of several clients are still traceable
back to that group of clients. Thus, Guarantee CLT1 still holds
in the face of client collusion.

CLT2. To falsely accuse the cloud service, clients must be
able to forge cloud service signatures. Having more than one
malicious client does not make it any more possible to forge
signatures, so Guarantee CLT2 will also hold against colluding
clients.

In summary, colluding clients, regardless of whether they
are regular clients or include the AA or RA, do not invalidate
any guarantees except Guarantee AV1, which can already be
invalidated by a single malicious client if that client happens
to be an AA or RA.

VI. IMPLEMENTATION

In this section, we describe our Caelus prototype, which
implements the cloud server and history server components in
the cloud service and clients for PCs and Android devices.

A. Cloud service

The cloud server and history server components are im-
plemented in 3K lines of Java and communication between
the server components as well as clients is implemented
using Apache XML-RPC. To implement different consistency
models, our prototype is modular and can use different key-
value store backends. For strong consistency, our prototype
uses a single cloud server with a local key-value store im-
plemented with the LevelDB library [30]. Because all clients
communicate with a single server, the server can make all
client operations atomic, thus providing strong consistency.
To implement eventual consistency, our prototype uses Ama-
zon’s cloud infrastructure. Multiple cloud servers run as EC2
instances and use Amazon’s S3 service as the key-value store
backend. A single history server typically shares one of the
EC2 nodes with a cloud server but could also run on a
dedicated node. We are currently not aware of any open-
source or commercial cloud service that implements a causally

consistency key-value store. As a result, our prototype doesn’t
implement causal consistency at this time. However, if one
were available, we believe it would be fairly straight forward
to integrate it with our prototype as our prototype only assumes
a Put and Get interface.

It is possible to implement Caelus without cloud server
components by having clients communicate directly with the
key-value store and history server. However, having the cloud
server allowed us to easily abstract the different LevelDB and
S3 interfaces from the clients, allowing us to have identical
client code for all experiments.

B. Clients

We implement two different types of clients for our pro-
totype, one for PCs and one for Android devices. Both are
written in Java and consist of about 7K lines of code. To reduce
the number of client-server round trips the server piggy backs
recent attestations on the responses to Puts and Gets.

Each time a client performs a Put, it is enqueued on a
deferred verification list. Occasionally, a Get can be verified
at the time it occurs because it reads the latest attested value,
but other times, it reads a value that has yet to be attested, so
it must also be enqueued on the deferred verification list. Ver-
ification of deferred operations is performed asynchronously
by a verification thread, which periodically wakes up every
TA, processes any new log segments that have been received
and then verifies operations on the deferred verification list.
Operations that remain unverified for longer than TCaelus are
flagged as violations. Any delays between when the AA posts
attestations and when clients process them must be accounted
for in ε. Thus, we synchronize both the period and phase of
the verification thread with that of the AA.

We use the Google Cloud Messaging (GCM) service to
implement push messages on Android clients. GCM generally
takes about 1 second to deliver a message to the phone
because it requires an additional network hop to Google’s
servers. This latency could be reduced by implementing our
own dedicated push service and collocating the notification
server with the cloud server the phone is connected to, but
for the purposes of our prototype, we found the 1 second
latency to be reasonable and perhaps more realistic since most
cloud services would more likely use a third-party notification
service than implement their own. GCM does not use a fixed
period for keep-alive messages, but instead varies their timing
depending on network conditions. Caelus can be modified to
allow for a variable TR by having the phone embed the length
of the current AA selection period in each selection message,
but our prototype does not implement this. As a result, we
currently do not synchronize TR with the GCM heartbeat
period.

VII. EVALUATION

We evaluate four properties of our Caelus prototype. First,
we evaluate Caelus’ effectiveness at detecting consistency vio-
lations. Second, we evaluate the computational costs of Caelus
on clients. Third, we evaluate the battery costs of Caelus on



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.5 1 1.5 2 2.5 3

P
e

rc
e

n
ta

g
e

 o
f 
G
e
t

s
  

TS (seconds) 

Violations

GT-Caelus

GT-Service

Fig. 5. Percentage of Gets with consistency violations on S3 as a function
of TS . GT-Caelus represents the true number of TCaelus violations and GT-
Service represents the true number of TS violations.

the smartphone, as well as the battery savings of attestor-
partitioning. Finally, we evaluate the network bandwidth over-
head of sending and retrieving attestations in Caelus.

A. Detecting consistency violations

We begin by evaluating Caelus’ effectiveness at detecting
consistency violations using our eventual consistency proto-
type on S3. Amazon does not publish a visibility time bound
for S3. Thus, we vary TS and measure the effect on the
number of consistency violations detected by Caelus. Using a
TS smaller than what S3 supports simulates a malicious cloud
provider who tries to claims a shorter visibility time bound
than what they can deliver.

We deploy Caelus on S3 in the US Standard Region, which
automatically replicates data across Amazon data centers in the
USA. We then deploy cloud servers on EC2 in the Oregon data
center on the west coast using a t1.micro instance with 2GHz
Intel Xeon E5-2650 cores and 600MB memory and the North-
ern Virginia data center on the east coast using a m3.2xlarge
instance with an 8-core 2.5GHz Intel Xeon E5-2670 Processor
and 30GB of memory. Four “writer” clients are running on
the Northern Virginia server and repeatedly perform Puts
of non-repeating 1MB values on a key. A “reader” client is
connected to the Oregon server and repeatedly performs Gets
on the same key. The reader client runs on the smaller t1.micro
instance with 2GHz Intel Xeon E5-2650 cores and 600MB of
memory. We set ε to be 100ms, δ to be 5ms, TA = 500ms
and vary TS between 0.5 and 3 seconds, taking the average
over 5 runs. We also log the time of every Put and Get and
perform an offline analysis to extract the ground truth (GT)
number of TCaelus and TS violations. We then plot the results
in Figure 5. As stated by its guarantees, Caelus detects all
TCaelus violations and some but not all TS violations. As the
TS increases, more operations are replicated by S3 in time,
resulting in fewer true and detected violations.

In Figure 6, we hold TS fixed at 0.5 seconds while varying
TA between 0.5 and 3 seconds. The number of true violations
of TS stays the same, but the number of true TCaelus violations
and those detected by Caelus decreases as TA increases,
illustrating how a larger TA decreases Caelus’ ability to detect
TS violations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.5 1 1.5 2 2.5 3

P
e
rc

e
n

ta
g

e
 o

f 
G
e
t

s
 

TA (seconds) 

Violations

GT-Caelus

GT-Service

Fig. 6. Percentage of Gets with consistency violations on S3 as a function
of TA.

TABLE I
CONSISTENCY VERIFICATION PERFORMANCE ON A PC.

Attest Presence Consistency
(µs) (µs) (µs)

Strong-Get 85.7±2.02 399.25±11.64 86.1±13.21
Strong-Put 85.7±2.02 402.38±26.08 9.52±2.19
Eventual-Get 67.5±2.26 392.59±12.57 17.79±2.71
Eventual-Put 67.5±2.26 410.78±8.45 18.47±6.68
Causal-Get 97.6±2.88 307.44±16 595.69±50.43
Causal-Put 97.6±2.88 319.03±8.15 2.7±1.75

B. Client verification costs

Since Caelus verification operations occur asynchronously,
they are not on the critical path of any Put or Get op-
erations and thus do not affect the performance of these
operations. However, Caelus does increase CPU utilization as
both verification and attestation contain cryptographic (2048
bit RSA with SHA256) and logical computations. We evaluate
the computational costs of the different consistency model
verification procedures by running them against our strong
consistency prototype. The strong consistency server never
causes consistency violations and evaluates the worst case
computational costs because operations must pass all tests to
verify correctly while Caelus will not perform any further
checks on an operation once it detects that an operation
violates consistency.

We measure the time to perform verifications on both a PC
with 3.4GHz Intel i7-2600 Processor and 16GB of memory
and on a rooted stock Google Nexus 5 phone with 2.3GHz
processor and a 2300 mAh battery. We run measurements
in our lab to minimize network variability, and therefore
machines are connected to a local Caelus service also in
our lab. We run YCSB [31] with a 50/50 mix of Put and
Get operations with no delay between operations on both
machines, resulting in an applied workload of 26 ops/s. TA

TABLE II
CONSISTENCY VERIFICATION PERFORMANCE ON A SMARTPHONE.

Attest Presence Consistency
(ms) (ms) (ms)

Strong-Get 1.49±0.06 2.24±0.33 0.05±0.03
Strong-Put 1.49±0.06 2.15±0.14 0.01±0.01
Eventual-Get 1.40±0.12 1.91±0.11 0.74±0.22
Eventual-Put 1.40±0.12 2.22±0.11 0.03±0.01
Causal-Get 1.75±0.13 1.79±0.13 2.53±0.39
Causal-Put 1.75±0.13 2.18±0.09 0.022±0.01



TABLE III
BATTERY SAVINGS AND PERCENTAGE TIME SLEEPING COMPARISON

BETWEEN WHEN PHONE ACTS AS AN ATTESTOR AND WHEN
ATTESTOR-PARTITIONING IS USED.

Battery (mAh) Sleeping (%)
Idle 20.85 98.5
Single Attestor (WiFi) 90.2 0
Single Attestor (LTE) 90.29 0
Root Attestor (WiFi) 22.57 98.3
Root Attestor (LTE) 22.57 97.7

is set to 1 second and we take the average over 5 runs.
The per-operation cost of the individual steps in the ver-

ification procedure are tabulated for the PC in Table I and
for the Nexus 5 in Table II. The consistency column records
the cost of all the model-specific consistency checks, which
are generally fast with the exception of Gets under causal
consistency. This check requires an iterative search through
the log to find all operations with vector clocks between the
Get and matching Put. Cryptographic operations are main
source of overhead for Caelus. Out of the three components of
the verification operation, the presence check component dom-
inates the overall cost because there is a public-key signature
verification performed on each operation in the log segment.
These relative trends hold on both the PC and the Nexus 5,
except that the PC is roughly 5-18× faster at cryptographic
operations, which is to be expected. We also evaluate the
cost of performing the signing operations and attestations and
found that they are dominated by the cost of the RSA signature
operation, which takes about 11ms on the PC and 60ms on
the Nexus 5 regardless of the type of operation being signed.

Overall, the cost of Caelus operations is not high and we
find that these operations take about 8.8-16.4% of CPU time
on our test devices. Currently, our Caelus prototype signs and
verifies individual cloud operations and this makes up the bulk
of the CPU overhead. Batching signing cloud operations would
reduce both the number of signatures and verifications and thus
reduce the CPU overhead of Caelus.

C. Phone battery consumption

When regular Caelus client devices have no operations to
perform on the cloud service, they can perform a client leave
and go to sleep, so Caelus imposes no battery cost on normal
client devices. The only devices that have additional duties in
Caelus even if they have no operations to perform is the RA
and the AA. We thus measure the battery impact on the RA
when it could be otherwise idle. In addition, recall that the RA
should select an AA that is already awake, so we also measure
the battery impact of Caelus on an AA that is running other
tasks.

We used the same phone we used for verification cost
measurement. We use battery level readings from the OS and
the percentage of time the phone spends sleeping to measure
the benefits of attestor-partitioning. To get a baseline, we
first perform measurements on an idle phone in its default
configuration with basic services and applications running and
background synchronization disabled. We then compare this

TABLE IV
BATTERY DRAIN AND AVERAGE CPU FREQUENCY OF AN ACTIVE PHONE

WITH AND WITHOUT THE ATTESTOR ROLE.

Battery (mAh) CPU (GHz)
Active Attestor (WiFi) 431.01 1.66
Active Attestor (LTE) 433.87 1.52
No Caelus (WiFi) 366.17 1.64
No Caelus (LTE) 343.66 1.61

TABLE V
NETWORK BANDWIDTH CONSUMED BY CAELUS OPERATIONS.

Operation Cost (Bytes)
Read_History 1411 + 1087× |Puts|+ 695× |Gets|
Write_Attest 756
Read_Attest 2582 + 1087× |Puts|+ 695× |Gets|
Select 1421

to the battery consumption of the phone acting as a single
attestor in the basic system and Root Attestor using attestor-
partitioning. For these experiments, we have clients run a
simulated image browsing and editing workload with a mix
of random 330 Gets and 30 Puts of 1MB values every 30
minutes. TA is set to 1 second and TR is set to 5 min. We
perform measurements when the phone is on a WiFi network
and a cellular LTE network. We run each experiment for at
least 30 minutes, or longer until workload is finished, and
normalize the results to a 30 minute period in Table III. Our
battery consumption measurement tool rounds up to the near-
est percentage of battery capacity (i.e. 23 mAh). The results
show that attestor-partitioning has negligible battery use over
a completely idle phone with only a slight increase in battery
usage and a slight decrease in time spent sleeping. However,
compared to the phone acting as a single attestor, running as
an RA with attestor-partitioning reduces the additional battery
drain over an idle phone by about 40×.

In cases where a device is acting as an AA, the device is
assumed to be running some other workload that prevents it
from sleeping. To evaluate the battery impact on such a device,
we run the same image viewing workload as above on the
phone. To simulate UI events, we use the monkey tool, which
generates random UI events. We compare the battery drain
and average CPU frequency when the phone is acting as an
Active Attestor with when Caelus on the phone is completely
disabled and tabulate the results in Table IV. To isolate the
cost of Caelus components, fetching and verifying attestations
is disabled in all ”No Caelus” cases. The results show that
acting as an attestor on an active phone adds roughly a 17-
26% increase in battery consumption.

D. Network cost

On top of existing Get and Put operations, Caelus adds
operations that fetch log segments, read and write attestations,
as well as assigning the attestor role through select operation
– all of which consume network bandwidth. To measure this
cost, we measure the amount of data before it is encoded
by XML-RPC. Because XML-RPC transmits data in ASCII,
it Base64 encodes encrypted binary data, which adds about
1.5× overhead. Using a binary packet format in our prototype



would have avoided this unnecessary artifact. We note that this
measurement method also doesn’t take into account transport
protocol overhead, but these costs are well understood (usually
about 40-60 bytes per packet).

Table V gives the cost of various Caelus control operations.
Note that the cost of Read_History and Write_History
operations depend on the number of Put and Get opera-
tions that are attested as this affects the size of the history
log segment that is read. For the image browsing workload
in the previous section, the client uses about 1.14MB on
Read_Attest messages, the AA uses about 3.65MB on
Read_History and Write_Attest messages and the
phone uses about 8.33KB on selection messages. When
amortized over the 360MB of data transferred in the workload,
this works out to about 13KB of network bandwidth overhead
per megabyte of transferred data or about 1.3%. While these
costs are fairly small, they are actually smaller in practice
since they only exist if clients are active and using the cloud
service. If the cloud service is not being used, the clients use
no network bandwidth at all.

VIII. RELATED WORK

The most closely related works to Caelus are SUNDR [3],
BFT2F [8], and CloudProof [9]. All of these systems provide
consistency and integrity guarantees for untrusted storage
systems to clients who do not communicate directly with
each other. SUNDR only guarantees fork consistency, while
BFT2F weakens fork consistency to fork*. Other work has
also extending SUNDR’s contribution on fork-linearizability to
computations on untrusted services [32], [33]. Both fork, fork*
and fork-linearizability are weaker than any of the consistency
models that Caelus can guarantee in that they permit some
operations to be forever unknown to some clients. CloudProof
can verify strong consistency, but requires information from
clients to be assembled at an “auditor”. Because the auditor
is not always online, auditing is retroactive instead of in real
time. Caelus uses a smartphone to make auditing real-time and
distributes the auditing work to minimize the impact on the
smartphone battery.

Depot [4], SPORC [5] and Venus [6] provide consistency
guarantees using client-to-client communication. Client-to-
client communication simplifies the problem because clients
may implement their own replication policy and thus enforce a
consistency model independent of the cloud service provider.
However, client-to-client communication is either inefficient
for battery-powered devices, or it requires a trusted service
that can buffer and multicast messages so that clients need
not waste battery on network bandwidth or need not be
simultaneously awake to communicate. Caelus avoids these by
devising a protocol that can use the cloud service to buffer and
multicast messages without having to trust the cloud service.

Timeweave [34] was an early use of attested histories
to verify the actions of an untrusted party. Since then, the
idea of using an attested history has been applied to detect
misbehaving virtual machines [35], misbehaving replicas in
BFT systems [36], [37], as well as to improve the performance

of BFT systems [38], [39]. Recent work has also proposed the
use of trusted platform modules (TPMs) as integrity verifiers
for cloud infrastructure [40]. However, none of these previous
works directly address the problem of consistency verification.

Several cryptographic file systems also guarantee fresh-
ness [41]–[46]. However, they all assume that all operations
are linearizable so that the only need to check that the latest
values are read by a client (i.e. strong consistency). As stated in
the Brewer’s well-known CAP theorem, systems that enforce
strong consistency cannot scale. In contrast, Caelus provides
protection on systems with weaker consistency models such
as eventual and causal consistency, which are more suitable
for globally distributed cloud infrastructure.

Finally, other work has proposed distributing data cross mul-
tiple cloud services to protect the integrity and recoverability
of data [47]–[49], as well as using cryptographic techniques
to probabilistically prove retrievability [50], [51], data posses-
sion [52], or whether data is encrypted properly [53]. However,
these systems do not address the consistency of data and in
the case of the cryptographic techniques, mostly assume static
data. On the other hand, Caelus does not directly address
recoverability or retrievability, making some combination of
these techniques with Caelus interesting future work.

IX. CONCLUSION

From designing and evaluating our Caelus prototype, we
draw two major conclusions. First, Caelus is able to avoid
direct client-to-client communication and use the untrusted
cloud provider for communication by offloading parts of the
monitoring task in a way that doesn’t require trust in the
cloud service provider. Second, the role of the attestor can
be partitioned into two root and active attestor devices that
each fulfill one of the roles required of the single monolithic
attestor. Through careful protocol design, Caelus ensure that
the root and active attestor devices cannot be partitioned by a
malicious cloud service.

Our evaluation shows that Caelus is able to detect consis-
tency violations on Amazon’s S3 storage service in a compute
and battery efficient manner. Attestation-partitioning reduces
the battery impact of the root attestor by about 40× and the
cost in CPU time and network bandwidth overhead is minimal.

ACKNOWLEDGEMENT

We thank our shepherd Alina Oprea, for her wonderful
guidance. We also thank Wei Huang, Afshar Ganjali, Sukwon
Oh, Ding Yuan, Michael Stumm, Ashvin Goel, Eyal de Lara
and Angela Demke-Brown for their helpful comments. This
research was supported by an ORF-RE grant from the Ontario
Ministry of Research and Innovation and by an NSERC
Discovery Grant.

REFERENCES

[1] J. Cook, “Google Drive Now Has 10 Million Users: Available on iOS
and Chrome OS,” http://techcrunch.com/2012/06/28/google-drive-now-
has-10-million-users-available-on-ios-and-chrome-os-offline-editing-
in-docs/.

[2] P. Maass and L. Poitras, “Core Secrets: NSA Saboteurs in China and
Germany,” https://firstlook.org/theintercept/2014/10/10/core-secrets.

http://techcrunch.com/2012/06/28/google-drive-now-has-10-million-users-available-on-ios-and-chrome-os-offline-editing-in-docs/
http://techcrunch.com/2012/06/28/google-drive-now-has-10-million-users-available-on-ios-and-chrome-os-offline-editing-in-docs/
http://techcrunch.com/2012/06/28/google-drive-now-has-10-million-users-available-on-ios-and-chrome-os-offline-editing-in-docs/
https://firstlook.org/theintercept/2014/10/10/core-secrets


[3] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure Untrusted Data
repository (SUNDR),” in The 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2004.

[4] P. Mahajan, S. T. V. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud Storage with Minimal Trust,” in The 9th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Oct. 2010.

[5] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “SPORC:
Group Collaboration using Untrusted Cloud Resources,” in The 9th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Oct. 2010.

[6] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and
D. Shaket, “Venus: Verification for Untrusted Cloud Storage,” in The
2010 ACM Workshop on Cloud Computing Security Workshop (CCSW),
Oct. 2010.

[7] B. H. Kim, W. Huang, and D. Lie, “Unity: Secure and Durable Personal
Cloud Storage,” in The 2012 ACM Workshop on Cloud Computing
Security Workshop (CCSW), Oct. 2012.

[8] J. Li and D. Mazieres, “Beyond one-third faulty replicas in byzantine
fault tolerant systems.” in The 4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Apr. 2007.

[9] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang,
“Enabling Security in Cloud Storage SLAs with CloudProof,” in The
2011 USENIX Annual Technical Conference (ATC), Jun. 2011.

[10] T. Lodderstedt and M. Scurtescu, “OAuth 2.0 Token Revocation,” IETF
RFC 7009, Aug. 2013.

[11] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s Globally-Distributed
Database,” in The 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2012.

[12] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in The 2003 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), Aug.
2003.

[13] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and
I. Stoica, “Probabilistically Bounded Staleness for Practical Partial
Quorums,” The VLDB Endowment, vol. 5, no. 8, pp. 776–787, Apr.
2012.

[14] W. Golab, M. Rahman, A. Auyoung, K. Keeton, and I. Gupta, “Client-
Centric Benchmarking of Eventual Consistency for Cloud Storage Sys-
tems,” in The 34th International Conference on Distributed Computing
Systems (ICDCS), Jun. 2014.

[15] D. Bermbach and S. Tai, “Eventual Consistency: How Soon Is Eventual?
An Evaluation of Amazon S3’s Consistency Behavior,” in The 6th
Workshop on Middleware for Service Oriented Computing (MW4SOC),
Dec. 2011.

[16] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie, “What
Consistency Does Your Key-Value Store Actually Provide?” in The
6th International Conference on Hot Topics in System Dependability
(HotDep), Oct. 2010.

[17] M. R. Rahman, W. Golab, A. AuYoung, K. Keeton, and J. J. Wylie,
“Toward a Principled Framework for Benchmarking Consistency,” in
The 8th USENIX Conference on Hot Topics in System Dependability
(HotDep), Oct. 2012.

[18] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data Consistency
Properties and the Tradeoffs in Commercial Cloud Storages: the Con-
sumers’ Perspective,” in The 5th Biennial Conference on Innovative Data
Systems Research (CIDR), Jan. 2011.

[19] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson,
A. Fuchs, and B. Rinaldi, “YCSB++: Benchmarking and Performance
Debugging Advanced Features in Scalable Table Stores,” in The 2nd
ACM Symposium on Cloud Computing (SOCC), Oct. 2011.

[20] D. Bermbach, S. Sakr, and L. Zhao, “Towards Comprehensive Mea-
surement of Consistency Guarantees for Cloud-Hosted Data Storage
Services,” in The 5th TPC Technology Conference on Performance
Evaluation & Benchmarking (TPCTC 2013), Aug. 2013.

[21] W. Santos, “76 Storage APIs: Box.net, Amazon S3, Drop-
box,” http://www.programmableweb.com/news/76-storage-apis-box.net-
amazon-s3-dropbox/2012/01/31.

[22] B. Voo, “20+ Tools To Supercharge Your Dropbox,” http://www.
hongkiat.com/blog/dropbox-tools/.

[23] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras,
“Inside Dropbox: Understanding Personal Cloud Storage Services,” in
The 2012 ACM conference on Internet measurement conference (IMC),
Nov. 2012.

[24] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-Based Service Level Agreements for
Cloud Storage,” in The 24rd ACM Symposium on Operating Systems
Principles (SOSP), Nov. 2013.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage
with COPS,” in The 23rd ACM Symposium on Operating Systems
Principles (SOSP), Nov. 2011.

[26] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Providing High
Availability Using Lazy Replication,” ACM Transactions on Computer
Systems (TOCS), vol. 10, no. 4, pp. 360–391, Nov. 1992.

[27] M. Mannan, B. H. Kim, A. Ganjali, and D. Lie, “Unicorn: Two-
Factor Attestation for Data Security,” in The 18th ACM Conference on
Computer and Communications Security (CCS), Oct. 2011.

[28] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for TCB Minimization,” SIGOPS
Opering Systems Review, vol. 42, no. 4, pp. 315–328, Apr. 2008.

[29] Ericsson Mobility, “Interim Update: Ericsson Mobility Report,”
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-
august-2014-interim.pdf.

[30] S. Ghemawat and J. Dean, “Leveldb: A Fast and Lightweight Key/Value
Database Library by Google,” https://code.google.com/p/leveldb/.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in The 1st ACM
Symposium on Cloud Computing (SOCC). ACM, 2010, pp. 143–154.

[32] C. Cachin, “Integrity and Consistency for Untrusted Services,” in The
37th International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), Jan. 2011.

[33] C. Cachin and O. Ohrimenko, “Verifying the Consistency of Remote
Untrusted Services with Commutative Operations,” in The 18th Interna-
tional Conference on Principles of Distributed Systems (OPODIS), Dec.
2014.

[34] P. Maniatis and M. Baker, “Secure History Preservation through Time-
line Entanglement,” in The 11th USENIX Security Symposium, Aug.
2002.

[35] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel, “Accountable
Virtual Machines.” in The 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2010.

[36] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical
Accountability for Distributed Systems,” ACM SIGOPS Operating Sys-
tems Review, vol. 41, no. 6, pp. 175–188, Dec. 2007.

[37] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
“Farsite: Federated, Available, and Reliable Storage for an Incompletely
Trusted Environment,” in The 5th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

[38] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
Append-Only Memory: Making Adversaries Stick to their Word,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 189–204, Dec.
2007.

[39] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
Trusted Hardware for Large Distributed Systems,” in The 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
Apr. 2009.

[40] J. Schiffman, Y. Sun, H. Vijayakumar, and T. Jaeger, “Cloud Verifier:
Verifiable Auditing Service for IaaS Clouds,” in 2013 IEEE Ninth World
Congress on Services (SERVICES), Jun. 2013.

[41] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A Scalable
Cloud File System with Efficient Integrity Checks,” in The 28th Annual
Computer Security Applications Conference (ACSAC), Dec. 2012.

[42] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing
Remote Untrusted Storage,” in The 10th Symposium on Network and
Distributed System Security (NDSS), Feb. 2003.

[43] R. L. Rivest, K. Fu, and K. E. Fu, “Group Sharing and Random Access
in Cryptographic Storage File Systems,” Masters Thesis, MIT, Tech.
Rep., Jun. 1999.

[44] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Triandopoulos,
“Athos: Efficient Authentication of Outsourced File Systems,” in The
11th International Conference on Information Security (ISC), Sep. 2008.

http://www.programmableweb.com/news/76-storage-apis-box.net-amazon-s3-dropbox/2012/01/31
http://www.programmableweb.com/news/76-storage-apis-box.net-amazon-s3-dropbox/2012/01/31
http://www.hongkiat.com/blog/dropbox-tools/
http://www.hongkiat.com/blog/dropbox-tools/
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-august-2014-interim.pdf
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-august-2014-interim.pdf
https://code.google.com/p/leveldb/


[45] A. Barsoum and A. Hasan, “Enabling Dynamic Data and Indirect Mutual
Trust for Cloud Computing Storage Systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 12, pp. 2375–2385, Dec
2013.

[46] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolic,
“PoWerStore: Proofs of Writing for Efficient and Robust Storage,” in
The 20th ACM Conference on Computer and Communications Security
(CCS), Nov. 2013.

[47] M. Vrable, S. Savage, and G. M. Voelker, “BlueSky: A Cloud-Backed
File System for the Enterprise,” in The 10th USENIX Conference on
File and Storage Technologies (FAST), Feb. 2012.

[48] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky:
Dependable and Secure Storage in a Cloud-of-Clouds,” ACM Transac-
tions on Storage (TOS), vol. 9, no. 4, p. 12, Nov. 2013.

[49] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability and
Integrity Layer for Cloud Storage,” in The 16th ACM Conference on
Computer and Communications Security (CCS), Nov. 2009.

[50] A. Juels and B. S. K. Jr., “PORs: Proofs of Retrievability for Large
Files,” in The 14th ACM Conference on Computer and Communications
Security (CCS), Oct. 2007.

[51] H. Chen and P. Lee, “Enabling Data Integrity Protection in Regenerating-
Coding-Based Cloud Storage: Theory and Implementation,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, no. 2, pp. 407–416,
Feb 2014.

[52] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” in The
14th ACM Conference on Computer and Communications Security
(CCS), Nov. 2007.

[53] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and
N. Triandopoulos, “Hourglass Schemes: How to Prove that Cloud
Files Are Encrypted,” in The 19th ACM Conference on Computer and
Communications Security (CCS), Oct. 2012.

APPENDIX

[Smartphone Connectivity Study]
While smartphones are designed to be constantly connected

and cellular coverage is available in most populated areas of
the world, momentary gaps in cellular connectivity is still quite
a common occurrence. To better understand this phenomenon,
we performed an informal smartphone connectivity study. We
acknowledge that our study has limitations – the participants
are from the same geographical area so the study is limited
to the 4-5 carriers who service the area. However, given that
cellular coverage will only continue to improve in all parts of
the world, we believe that the results we attain here should be
representative of what most populated areas of the world will
be able to achieve in the near future.

To record the availability of phones, we built a simple
Android application that records the periods when the phone
is not connected to the Internet. The application continually
monitors network connectivity on both cellular and WiFi inter-
faces by registering for network status events. The application
was installed on the phones of 12 participants over a 7 month
period. At the end of the period, we measured the total time
the phones had network connectivity over the total monitored
time to be 97.81%. The average duration of a disconnection
was roughly exponentially distributed, with a mean of 94
seconds and a longest measured period of disconnection to
be 5.7 hours. About 90% of disconnections last for less than
2 minutes suggesting that even if smartphone unavailability is
encountered, it wouldn’t last long enough for a human user to
perceive too much inconvenience. In addition, we found that
most disconnection events tended to be clustered, suggesting
they were related to the user’s physical location. Thus, if the

user is trying to access the cloud service while in an area of
poor reception, they can likely remedy the situation by moving
to a different location.

Various industry measures indicate that smartphone usage is
rising, so intuitively one would believe that cellular networks
have to be fairly reliable to have fostered such heavy use.
Our findings do not contradict this intuition and they suggest
that smartphones do indeed have a high enough level of
connectivity that episodes of connectivity loss are short and
isolated.


	Introduction
	Motivating Scenarios
	Security Model and Guarantees
	Security model
	Security guarantees

	Design
	System overview
	Basic system
	Battery-friendly system
	Handling failures
	Operating parameters

	Security Analysis
	Analysis of guarantees
	Colluding clients

	Implementation
	Cloud service
	Clients

	Evaluation
	Detecting consistency violations
	Client verification costs
	Phone battery consumption
	Network cost

	Related Work
	Conclusion
	References
	Appendix

