
Kivati: Fast Detection and Prevention of Atomicity Violations

Lee Chew David Lie
Department of Electrical and Computer Engineering

University of Toronto

Abstract
Bugs in concurrent programs are extremely difficult to find
and fix during testing. In this paper, we propose Kivati,
which can efficiently detect and prevent atomicity violation
bugs. Kivati imposes an average run-time overhead of 19%,
which makes it practical to deploy on software in production
environments. The key attribute that allows Kivati to impose
this low overhead is its use of hardware watchpoints, which
can be found on most commodity processors. Kivati com-
bines watchpoints with a simple static analysis that anno-
tates regions of codes that likely need to be executed atomi-
cally. The watchpoints are then used to monitor these regions
for interleaving accesses that may lead to an atomicity vio-
lation. When an atomicity violation is detected, Kivati dy-
namically reorders the access to prevent the violation from
occurring. Kivati can be run in prevention mode, which opti-
mizes for performance, or in bug-finding mode, which trades
some performance for an enhanced ability to find bugs.

We implement and evaluate a prototype of Kivati that pro-
tects applications written in C on Linux/x86 platforms. We
find that Kivati is able to detect and prevent atomicity viola-
tion bugs in real applications, and imposes very reasonable
overheads when doing so.

Categories and Subject Descriptors D.4.1 [Process Man-
agement]: Concurrency, Scheduling, Synchronization, Threads;
D.4.5 [Reliability]: Fault-tolerance

General Terms Reliability

Keywords Kivati, Watchpoint, Atomicity Violation

1. Introduction
As the number of cores on a chip continue to increase, pro-
grammers will be further forced to write concurrent pro-
grams to take advantage of the additional cores. Unfortu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

nately, such programs are prone to concurrency bugs, which
are difficult to detect and fix. This is because concurrency
bugs require a combination of two unlikely conditions to
manifest. First, like regular non-threaded bugs, they require
the right set of program inputs, which is exponential in num-
ber. Second, they also require the right thread interleaving,
which is again exponential in number. As a result, concur-
rency bugs are likely to survive testing and remain in soft-
ware when it is shipped to customers. Thus, a solution which
can detect and prevent concurrency bugs with low enough
overhead that can be deployed after testing would enable
programmers to better take advantage of the trends toward
multicore processors.

In this paper, we present Kivati, which detects and pre-
vents atomicity violation bugs. An atomicity violation is an
interleaving of memory accesses such that one memory ac-
cess interleaves between another set of memory accesses that
have to be executed atomically for correctness. Furthermore,
the interleaving must be non-serializable – that is, there is no
equivalent ordering of the accesses such that the set of mem-
ory accesses could have executed atomically. Figure 1 gives
a simplified version of an atomicity violation in the Firefox
browser. Here, the program is checking that shared ptr

is NULL (a read at line 3) before assigning it a new value
(a write at line 4). For correctness, the read and write of
shared ptr must be performed together atomically. Other-
wise, two threads could both pass the check and both assign
a new value to shared ptr, leading to a lost update. The
bug exists because the developer neglected to enforce atom-
icity with a lock. While other classes of concurrency bugs
exist, such as deadlocks or ordering violations, atomicity vi-
olations are a major class of concurrency bug and have been
shown to account for approximately 65% of all concurrency
bugs [14].

Previous proposals have tried to improve the ability of
testing to find concurrency bugs [5, 8, 13, 16, 19, 22, 25].
These systems try to exhaustively explore thread interleav-
ings to increase the likelihood of a concurrency bug man-
ifesting itself. However, they impose an execution slow-
down of 2.2x-72x, which makes them too slow for deploy-
ment on production machines. Other systems can perform
run-time bug prevention more efficiently, but either require

1 void func(void)
2 {
3 if (! shared ptr)
4 shared ptr = another function () ;
5
6 ...

Figure 1. Simplified version of an atomicity violation bug
(#225525) in Firefox.

specialized hardware that does not currently exist on com-
modity processors [15, 26], or are only applicable to dead-
locks [10, 23].

In contrast, Kivati is able to detect and prevent atomic-
ity violations on commodity hardware with low overhead.
Kivati does not rely on programmer annotations. Instead, it
uses static analysis to approximate the set of accesses it be-
lieves should be atomic. These accesses are then checked at
run-time for actual atomicity violations. Kivati also dynam-
ically detects and handles cases where an atomicity viola-
tion is intentional and required for correctness. To reduce
overhead and false positives, Kivati can be configured to
ignore accesses where atomicity is not required. However,
even without this tuning Kivati has an average execution
time overhead of 19% and a worst case overhead of 30%,
which is orders of magnitude smaller than the existing atom-
icity violation detection systems [5, 8, 13, 22, 25] and com-
parable to run-time deadlock avoidance systems [10, 23].

The key to Kivati’s performance is its use of hardware
watchpoints, which can be found on all Intel and AMD x86
processors, as well as other major processor architectures.
The watchpoint hardware allows Kivati to efficiently de-
tect interleaved accesses during regions of code it believes
should be atomic. When such an interleaved access is de-
tected, Kivati prevents the violation by dynamically reorder-
ing the accesses to preserve atomicity. Kivati is implemented
directly in the operating system kernel and the static an-
notator is written using the CIL program analysis frame-
work [17]. This allows Kivati to efficiently protect almost
any application written in C from atomicity violations.

Kivati supports two modes of usage. In prevention mode,
Kivati detects and prevents atomicity violations with as lit-
tle overhead as possible. When an atomicity violation is de-
tected, Kivati records the thread IDs and locations of the ac-
cesses it made atomic, as well as the thread ID and location
of the violating access. This information can be used by the
software developer to determine if the violation is actually a
bug and if necessary, fix it. At the cost of slightly more over-
head, Kivati can also operate in bug-finding mode. In this
mode, Kivati artificially increases the likelihood of an atom-
icity violation occurring by pausing threads when they are
in a section of code Kivati believes should be atomic. Just
as in prevention mode, all atomicity violations are prevented
in bug-finding mode, so the only apparent difference to the

readlocal(A) readlocal(A)
writeremote(A) writeremote(A)

readlocal(A) writelocal(A)
writelocal(A) writelocal(A)

writeremote(A) readremote(A)
readlocal(A) writelocal(A)

Figure 2. Non-serializable interleavings of accesses to the
variable A.

end-user is the reduced performance. A scenario where bug-
finding would be useful is during beta-testing, where users
might be willing to accept reduced performance in order to
help find and report bugs.

We make three contributions in this paper. First, we de-
scribe the design of Kivati, which is the first system we are
aware of to provide fast detection and prevention of atom-
icity violations on commodity hardware. Second, we have
implemented a Kivati prototype for Linux running on x86
processors that is able to protect applications written in C.
Implementing a prototype on the x86 architecture was par-
ticularly challenging because the x86 watchpoint hardware
raises a trap after the violating memory access has com-
pleted, meaning that its effects have been committed to the
architectural state of the machine. Finally, we evaluate Kivati
on a suite of 5 applications, and 11 known bugs in these ap-
plications. Kivati is able to detect and prevent all bugs while
imposing very modest execution time overheads.

We begin by defining the problem Kivati solves and de-
scribing the design of Kivati in Section 2. Section 3 then
provides details on the implementation of our prototype and
we evaluate the ability to detect and prevent atomicity viola-
tions and the performance of our prototype in Section 4. We
compare Kivati against related work in Section 5 and give
our conclusions in Section 6.

2. Overview
2.1 Problem definition
Intuitively, an atomicity violation occurs when one thread
violates the atomicity assumed by another thread. For exam-
ple, if Thread 1 writes 5 to a memory location M and then
immediately reads from M, it expects the value 5. However,
if Thread 2 writes some value to M, say 10, in between these
two accesses, this expectation is broken. More formally, an
atomicity violation occurs when a memory access of one
thread interleaves with several memory accesses of another
thread in a non-serializable way – that is, there exists no se-
rial execution of the accesses that gives the same results. Us-
ing the same example, in the interleaved execution Thread
1 would read 10 (Thread 2’s write). However, in any serial
execution Thread 1 would read 5 (its own write). Since the
results are different, an atomicity violation has occurred. We
call the thread that makes the violating access the remote

1 begin atomic(1,&shared1, ...); /∗ AR 1 starts ∗/
2 tmp1 = shared1; /∗ 1st access to shared1 ∗/
3 begin atomic(2,&shared2, ...); /∗ AR 2 starts ∗/
4 tmp2 = shared2; /∗ 1st access to shared2 ∗/
5 tmp1 = tmp1 + 1;
6 tmp2 = tmp2 − 1;
7 shared1 = tmp1; /∗ 2nd access to shared1 ∗/
8 end atomic(1, ...); /∗ AR 1 ends ∗/
9 shared2 = tmp2; /∗ 2nd access to shared2 ∗/

10 end atomic(2, ...); /∗ AR 2 ends ∗/

Figure 3. Annotation example with overlapping ARs.

thread, and the thread that has its atomicity violated the lo-
cal thread. Kivati aims to detect and prevent atomicity viola-
tions that occur when a remote thread makes a memory ac-
cess to a shared variable that violates the atomicity of a pair
of memory accesses made by the local thread to the same
shared variable. This category of bugs has been the focus of
a number of previous atomicity bug testing systems [13, 19].
Figure 2 lists the four interleavings that are non-serializable.

Atomicity violations can be either required, benign or
buggy. Atomicity violations can be required for correctness,
usually in the cases where inter-thread communication must
happen in a certain order. For example, to communicate in-
formation between threads, a local thread may initialize a
variable (a write), wait for a remote thread to modify it
(another write), and then finally use it in some operation
(a read). Other atomicity violations can be benign, mean-
ing that program correctness is not affected regardless of
whether a violating access occurs. Finally, atomicity viola-
tions are buggy if they lead to incorrect program behaviour.
Buggy atomicity violations result from programming flaws
where the programmer has neglected to enforce atomicity
using synchronization. Whether a particular atomicity viola-
tion is required, benign or buggy depends on the semantics
of the program. If the programmer has used synchronization
to enforce a non-serializable interleaving in a required viola-
tion, Kivati can detect this and does not enforce atomicity on
the violation. However, Kivati cannot differentiate between
benign and buggy violations. Thus, to prevent buggy atomic
violations, Kivati reorders the accesses of all atomic viola-
tions that it cannot identify as required to preserve atomicity.
Since atomicity is only enforced if the violation is buggy or
benign, Kivati never introduces new synchronization errors.
However, Kivati incurs performance overhead from detect-
ing required violations, as well as from unnecessarily en-
forcing atomicity on benign violations. This overhead is not
necessary for Kivati to detect and prevent atomicity viola-
tions, and can be reduced by training Kivati to ignore pairs
of memory accesses that do not need to be executed atomi-
cally.

1 begin atomic(1,&shared, ...) ; /∗ AR 1 starts ∗/
2 if (shared) {
3 begin atomic(2,&shared, ...) ; /∗ AR 2 starts ∗/
4 shared = 0;
5 /∗ AR 1 ends here if shared != 0 ∗/
6 end atomic(1, ...) ;
7 }
8 tmp = shared ;
9 /∗ AR 1 ends here if shared == 0 ∗/

10 end atomic(1, ...) ;
11 /∗ AR 2 ends here , does nothing if shared == 0 ∗/
12 end atomic(2, ...) ;

Figure 4. Annotation example with control flow.

2.2 The main idea
To detect and prevent atomicity violations, Kivati must be
aware of all memory accesses that have the potential to cause
violations. It is unreasonable to assume that programmers
will correctly annotate these accesses, so Kivati must infer
these accesses from the program itself. In addition, these ac-
cesses should be identified offline to minimize the run-time
overhead of Kivati. Previous testing systems have used pro-
filing runs to identify such memory accesses [13, 19]. How-
ever, profiling only exercises a limited set of program paths,
and thus cannot exhaustively categorize all memory accesses
that could occur in production use. As a result, Kivati uses
static analysis on source code to annotate all local memory
access pairs whose atomicity could potentially be violated,
and uses training to eliminate pairs whose atomicity cannot
be violated. This annotated code is then compiled using a
standard compiler. At run-time, Kivati will use the annota-
tions to detect and prevent atomicity violations.

Kivati’s static analysis phase annotates each pair of mem-
ory operations that access the same shared variable. To do
this, Kivati first generates a list of shared variables (LSV).
Since statically identifying shared variables is not precise,
there will be variables in the LSV which are not actually
shared. In turn, this means there will be access pairs whose
atomicity can never be violated, which results in extra per-
formance overhead, but neither affects the correctness of the
program nor the correctness of the atomicity violations that
Kivati reports.

Using the LSV, Kivati performs a standard intra-proc-
edural, path-insensitive data-flow analysis (DFA) to find, for
each shared variable, all consecutive pairs of memory ac-
cesses to it. We call the region of code in between each pair
an atomic region (AR). The pair of accesses that define an
AR are said to be local with respect to that AR, and the ac-
cesses that violate an AR are said to be remote with respect
to that AR. For brevity, accesses will simply be referred to
as local or remote when discussing an AR, except when it is
unclear which AR it refers to. Each AR is associated with a
shared variable, and is given a unique identifier. Kivati an-

Arch Support Number Type
x86 Yes 4 After
SPARC Yes 2 Before
MIPS Yes 1 Before
ARM Yes 2 Depends on inst.
PowerPC Yes 1 After

Table 1. Survey of hardware watchpoint support. The
“type” column indicates whether a trap is delivered before
or after the instruction that accesses the watched address.

notates each AR with a begin atomic annotation right before
the first (local) access to the associated shared variable, and
an end atomic annotation right after the second (local) ac-
cess. The simple example in Figure 3 shows two overlap-
ping ARs to two different shared variables, shared1 and
shared2. The DFA would find one pair of accesses for the
shared variable shared1 (the read on line 2 and the write
on line 7), and one pair of accesses for the shared variable
shared2 (the read on line 4 and the write on line 9). Ki-
vati would then annotate it as shown in the figure. A more
complex example is given in Figure 4. In this case, the DFA
would find three pairs of accesses to shared: a) the read on
line 2 and the write on line 4, b) the write on line 4 and
the read on line 8, and c) the read on line 2 and the read
on line 8. This illustrates how a memory access, such as the
one on line 4, may be both the first access of one AR and
the second access of another AR. In addition, it also demon-
strates the effect of control flow. Depending on the value of
shared, the end atomic on line 12 may be executed without
the begin atomic for AR 2 ever being executed. Similarly,
if we imagine that the program does not have the access at
line 8 outside of the if() block, then Kivati would not place
the end atomic at line 10. In this case, it is also possible for
the begin atomic on line 1 to execute without its accompa-
nying end atomic ever executing. Such incomplete ARs are
handled dynamically by Kivati’s run-time detection and pre-
vention mechanism.

Kivati detects if a remote access actually interleaves with
an annotated local pair in a non-serializable order at run-
time. If an access is remote with respect to one AR but is
the first local access with respect to another AR, then it is
already annotated (because our system would have inserted
a begin atomic before it) and thus easily detected by Ki-
vati. While Kivati could also annotate all remote accesses
that do not start ARs, this will result in unnecessary anno-
tations and extra overhead. Similarly, Kivati could use the
memory management unit to cause traps whenever an ac-
cess is made to a page that contains a shared variable in an
AR, but this will also incur severe performance overhead [3].
Instead, we make novel use of hardware watchpoint support
to detect and prevent violations. When entering an AR with
a begin atomic, Kivati configures a hardware watchpoint to
trap into the operating system if the shared variable the AR is

Local thread Remote thread

1 begin atomic(1,&shared ...) ;
2 shared = 0;
3 flag = 1;
4 /∗ wait for remote ∗/
5 while (flag == 1);
6
7
8
9

10 /∗ read remote value ∗/
11 tmp = ∗shared;
12 end atomic(1, ...) ;

1 /∗ wait for local ∗/
2 while(flag != 1) ;
3 shared = &val;
4 flag = 0;

Figure 5. Example of a required atomicity violation.

associated with is accessed by another thread. Kivati uses the
hardware watchpoint to continuously monitor the variable
until the AR completes with a matching end atomic. Since
the watchpoints are implemented in hardware, they impose
very little or no overhead at all. Hardware watchpoints are
supported on most major processor architectures as shown
in Table 1.

When Kivati detects a remote access, whether via a
watchpoint or a begin atomic, it does not know if an non-
serializable interleaving will occur until the second local
access occurs and the AR terminates. Kivati conservatively
delays all remote accesses that interrupt an AR until after the
AR terminates. To do this, Kivati suspends the remote thread
before it is about to make its remote access and allows the
local thread to execute until the AR completes. Only then
does Kivati allow the remote thread to resume execution and
perform its memory access. If the current AR is overlapped
with another AR, such as AR 1 and AR 2 at line 4 in Fig-
ure 4, then the remote thread remains suspended until the
shared variable it is accessing is not in any AR. If at the
end of the AR, Kivati determines that a non-serializable in-
terleaving has occurred, it records the thread IDs, address
of the shared variable and program counters of the memory
accesses involved in the interleaving.

As shown in the example in Figure 4, it is both possible
for an end atomic to occur without a matching begin atomic
and a begin atomic to occur without a matching end atomic.
In the former case, Kivati simply ignores the end atomic.
The latter case can happen due to two reasons. The first rea-
son is due to control flow, where a begin atomic may be exe-
cuted, but its accompanying end atomic is not executed. The
second is a bit more subtle and is illustrated by the required
atomicity violation in Figure 5. Here, the programmer has
used flag as a synchronization variable to ensure that the
local thread waits until the remote thread sets shared to
a valid value before dereferencing it. Kivati will detect the
non-serializable interleaving and suspend the remote thread
at line 3 until the end atomic at line 12 in the local thread

is executed. Unfortunately, the end atomic can never be ex-
ecuted because the remote thread can never set flag to zero
and release the local thread from its loop. Both these cases
are covered by two mechanisms that Kivati implements. The
first is a timeout on the remote thread, which if it expires,
resumes the remote thread regardless of whether the AR
has completed or not. The second is a clear ar annotation,
which is placed at the end of every subroutine and termi-
nates any outstanding ARs that were started in the context
of the subroutine. In both cases, prematurely terminating an
AR resumes any suspended threads and removes any watch-
points associated with the terminated ARs. If the matching
end atomic eventually executes after the timeout, we still
record the violation, but note that it was not prevented.

Both Intel and AMD x86 processors support four watch-
point registers, the abundance of which allows Kivati to
monitor more ARs simultaneously. However, both AMD and
Intel x86 processors trap after the memory access has oc-
curred, meaning that the shared variable has already been
written to or read from. As a result, to prevent an atomic-
ity violation, Kivati must undo the effects of the instruction
making the memory access in order to move it after the AR
has completed. Processors that trap before the access sim-
plify the implementation of Kivati since the effects of the
memory access do not need to be undone. We will give de-
tails on Kivati’s mechanism for undoing memory accesses in
Section 3.3.

2.3 Prevention mode and bug-finding mode
Up to now, we have described Kivati in prevention mode,
where it detects and prevents buggy atomicity violations. At
the cost of some additional performance overhead, Kivati
can be run in bug-finding mode, which pauses the local
thread when it calls begin atomic at the start of an AR. This
artificially increases the length of the AR and increases the
likelihood that another remote thread will interleave between
the begin atomic and end atomic of the AR. This might, for
example, be used by a software developer during beta-testing
to help find more bugs on realistic workloads.

3. Implementation
In this section we provide details on our Kivati prototype,
which supports the x86 family of processors. We will begin
by describing the implementation of Kivati’s static annota-
tor. Then, we describe Kivati’s prevention engine, which is
implemented as a set of kernel modifications. The x86 hard-
ware watchpoint registers can only be accessed from ring 0,
which means that Kivati’s detection component must be im-
plemented in the operating system kernel. Finally, we outline
several optimizations which improve the performance of Ki-
vati and describe its limitations.

3.1 Static annotator
Our prototype’s static annotator is built using the CIL pro-
gram analysis framework [17]. The static annotator anno-

1st Local
Access

Watch for Writes 2nd Local
Access

Watch for Reads Watch for Writes Watch for Reads and Writes

Read Write

Write
Read

Both depending on
path

Figure 6. Logic for determining what type of remote access
to watch for.

tates a given program in two steps. First, it must build the
list of shared variables (LSV). Then, it performs data-flow
analysis (DFA) to annotate all local pairs of accesses to vari-
ables in the LSV.

Since Kivati only annotates ARs where both local ac-
cesses are in the same subroutine, Kivati constructs an LSV
for each subroutine. Kivati begins by seeding each LSV with
all global variables. To this it adds any arguments passed
in by reference to the subroutine and any pointers returned
from a called subroutine. Then, a DFA is performed that
adds to the LSV any variable that is data-flow dependent on
a shared variable already in the LSV. After the DFA has iter-
ated to a steady state, all variables in the LSV are considered
shared variables for the subroutine. As mentioned in Sec-
tion 2.2, the LSV is an approximation. However, variables
in the LSV which are actually non-shared will only be mon-
itored but will never incur an atomicity violation at run-time.

To annotate local pairs as ARs, Kivati constructs a CFG
of each subroutine and performs a path-insensitive DFA on
the CFG, tracking the program statement and type of each
access to variables in the LSV. At the end of each DFA itera-
tion, it forms intra-procedural local access pairs by matching
each shared variable access with another access to the same
variable that precedes it in the DFA. The operation is con-
ceptually similar to a reaching-definition analysis except that
Kivati considers all preceding accesses, not just definitions
(i.e., it considers preceding reads as well).

Each pair is then labelled with a begin atomic and an
end atomic, which are subroutines that the annotated pro-
gram will call at run-time before it enters an AR and after it
exits an AR respectively. begin atomic takes 5 arguments: a
globally unique AR ID, the address of the shared variable,
the size of the shared variable, the type of remote access to
watch for (read or write) and the type of the first local access.
The AR ID is used to identify which atomic region suffered a
violation as well as to match begin atomics and end atomics.
The next three arguments: the address and size of the shared
variable, and the type of remote access, are used to config-
ure the hardware watchpoint. The type of remote access to
watch for is determined by the type of the two local accesses
as shown in Figure 6. In cases where the first local access is
paired with a second read and a second write along different
paths, Kivati must monitor for both remote reads and remote

writes (bottom right in Figure 6). Kivati records the first ac-
cess type so that in these cases, when an intervening remote
access was detected, it can determine whether the remote ac-
cess actually caused a non-serializable interleaving when it
arrives at the second local access and learns which path was
taken. end atomic takes two parameters: the second local ac-
cess type and an AR ID, which will be the same as its paired
begin atomic. Finally, a call to clear ar is inserted at every
subroutine exit.

3.2 Detecting violations
We will first describe how Kivati detects violations and leave
Kivati’s method for preventing them to Section 3.3. To detect
remote accesses that occur during an AR, Kivati uses hard-
ware watchpoint registers. Both AMD and Intel x86 proces-
sors provide four watchpoints, meaning that Kivati can track
and detect accesses to four different memory words simul-
taneously. The watchpoint registers must be configured with
the address to watch, the size of accesses to watch for (8, 16,
32 or 64 bits), and the type of access to trap on (e.g., writes).

Kivati requires two new data structures to be added to
the kernel. First, Kivati maintains a per-thread AR table that
records the active ARs that a thread is currently executing
in. Second, Kivati maintains hardware watchpoint metadata,
which records which ARs are using each watchpoint, as well
as a list of remote threads that have been suspended as a
result of making accesses to addresses being monitored by
the watchpoints.

Each core has a set of watchpoint registers, which can
only detect violating accesses from the core itself. As a re-
sult, the state of the watchpoint registers must be kept con-
sistent across all cores. While one may implement this using
inter-processor synchronization, it would impose unneces-
sary performance overhead. When a core modifies its hard-
ware watchpoint register state due to a thread calling be-
gin atomic, all other cores must update their watchpoint reg-
isters to match before the first core can enter its AR. Instead
of stalling the first core while other cores update their state,
Kivati sets the hardware register on the first core and then
causes the thread calling the begin atomic to block, allow-
ing the core to run other threads. In addition, rather than in-
terrupt other cores, the thread remains blocked while other
cores opportunistically update their state when dropping into
the kernel due to a system call or interrupt. When all other
cores have updated their registers, the blocked thread is wo-
ken up and can enter its AR.

Both begin atomics and end atomics are implemented as
system calls that trap into the kernel. On a begin atomic, the
kernel component of Kivati first checks if the address is al-
ready being monitored by another AR in the same thread or
not by examining the watchpoint metadata. If so, it checks
the remote access type and size against the watchpoint’s
metadata, updates them if necessary and adds this AR ID to
the list of ARs using the watchpoint. The watchpoint hard-
ware is always set to the most aggressive settings of all ARs

using the watchpoint – i.e., the union of all read and write
requirements and the largest size requirement. The location
and type of access of the begin atomic are also recorded for
later use. If no watchpoint register is monitoring the address
of the begin atomic, then it checks if there is a free watch-
point, and if so, records the AR ID in the watchpoint’s meta-
data and uses it to monitor the address of the begin atomic.
If all watchpoint registers are already used by other threads,
then the system call simply exits and Kivati logs that it was
not able to monitor the AR due to a lack of watchpoint regis-
ters. If Kivati is running in bug-finding mode, begin atomic
also pauses the local thread for a configurable period of time
to increase the likelihood of an atomicity violation occur-
ring.

If a trap occurs due to a watchpoint, Kivati records the
identity of the remote thread making the triggering access
in the watchpoint’s metadata. However, at this point, the re-
mote access is not an atomicity violation until the matching
end atomic of the AR is executed. Thus, Kivati also notes
down whether the triggering access was a read or a write.

When an end atomic is executed, Kivati first checks if the
watchpoint metadata contains an AR with the same ID as the
one passed in by the end atomic. This tells Kivati whether
a corresponding begin atomic has been called. If there is
no configured watchpoint, Kivati simply returns back to the
user program and the end atomic has no effect. If match-
ing AR is found, Kivati checks if there were any watchpoint
traps recorded, and if so, compares the type of remote access
against the types of the two accesses of each AR to see if a
non-serializable interleaving is formed. If so, Kivati logs the
information about the violation mentioned in Section 2.2.
The AR corresponding to the end atomic is removed from
the list of ARs using the watchpoint. If there are no more
ARs using the hardware watchpoint after this, it is disabled
and marked free. Otherwise, the watchpoint is reconfigured
to match the type and size of the remaining ARs using the
watchpoint. A clear ar is similar to an end atomic except
that it causes all ARs allocated within the current subrou-
tine to be removed from all existing watchpoints. All trig-
gering accesses associated with the removed ARs are also
removed. Thus, no atomicity violations can be detected on
ARs removed due to a clear ar.

To improve performance and reduce the number of false
positives, Kivati can be configured to stop monitoring ARs
that have been determined to only have benign atomicity vi-
olations. On application startup, Kivati loads an AR whitelist
from a file that contains a list of benign AR IDs. The contents
of this file are stored in memory and checked on every be-
gin atomic and end atomic. If the AR ID is in the whitelist,
the begin atomic or end atomic simply returns without en-
tering the kernel. The whitelist file is periodically checked
and re-read for updates during execution so that a software
developer can send patches to customers to update whitelists
for long running processes.

3.3 Preventing violations
To prevent atomicity violations, Kivati reorders remote ac-
cesses that cause watchpoint traps to occur after all ARs
on the watchpoint have completed. However, this is com-
plicated by the fact that x86 watchpoint traps occur after the
triggering instruction has completed. As a result, the effects
of the remote access will have been committed to the archi-
tectural state of the processor by the time Kivati is invoked.
To preserve the atomicity of the AR and move the remote
access after the AR, Kivati undoes the effects of the remote
access and re-executes it after the ARs have completed. To
implement prevention, the following actions are added to the
actions required for detection on begin atomics, end atomics
and triggered watchpoints.

When a begin atomic occurs, there are two possibilities.
First, if the address of the begin atomic is being watched by
one or more ARs in another thread then the current thread is
a remote thread that is about to make an access to the same
shared variable of the other thread’s AR. Kivati suspends
the current thread during its begin atomic, thus delaying
the first access of this thread’s AR until the other thread’s
ARs have completed. The other possibility is that no other
thread is watching the address of the begin atomic. Kivati
then enters the AR and monitors the address as described in
the preceding section. In this case, Kivati must record the
value of the shared variable after the first local access so that
it may undo the effects of any interleaving remote accesses.
If the begin atomic precedes a read access, Kivati records
the value of the shared variable as it enters the AR. If it is
a write access, Kivati waits until after the write occurs and
then records the value. This is necessary because undoing
a remote write requires rolling back to the value before it
occurred, which is the value after the first local write of
the AR. This is accomplished by setting the watchpoint to
trigger on a write access and then recording the value of
the shared variable when the local thread’s write triggers the
watchpoint.

If a remote access causes a watchpoint trap, to prevent
the violation, Kivati undoes the effects of the remote access
and then suspends the execution of the remote thread until
the all local ARs have completed. To undo the effects of the
instruction, Kivati moves the program counter back to the
instruction that caused the remote access, and then undoes
any effects on memory. Because x86 instructions are vari-
able length, Kivati cannot simply move the program counter
back a fixed amount. Instead, a pre-processing pass on the
binary is used to identify all instructions that access memory
and thus could cause a remote access. The program coun-
ters of these instructions as well as the program counter of
instructions that immediately follow them are recorded in a
lookup table and used by Kivati at run-time to move the pro-
gram counter back to the instruction that caused the watch-
point triggering remote access. A special case is the subrou-
tine call instruction, which can cause a remote read access

if the argument is an indirect pointer in memory. In this case,
the program counter will not point to the instruction immedi-
ately following the call. To handle this case, we also record
the first instruction of every subroutine in a separate list, and
if the program counter points to one of these after a watch-
point trap, we know the previous instruction was a call in-
struction and can be found by examining the value stored at
the top of the stack and moving back by the size of a call

instruction.
Kivati also undoes any effects the remote access had

on the state of memory. If the remote access is a write,
Kivati undoes the write by changing the value of the shared
variable back to the value that it recorded after the first
local access. If the remote access is a read, then Kivati
first determines whether the shared variable was read into
a register or another memory location by disassembling the
remote access instruction. If it is a register, then we allow
the inconsistent value to remain in the register as it will be
overwritten with the correct value when the remote access
is re-executed after the ARs have completed. However, if
it is another memory location, we must ensure that this
incorrect value is not “leaked” to another thread. Kivati
implements this by configuring another watchpoint register
to watch this location. If there are no hardware watchpoints
left, then Kivati allows the remote thread to continue and
logs that it was unable to reorder this remote access. Finally,
any instruction-dependent side effects are also undone. For
example, instructions such as push, pop or call also affect
the stack register value and this effect is undone accordingly.

After the effects of the remote access have been undone,
Kivati suspends the remote thread until all ARs in the lo-
cal thread complete. However, as mentioned in Section 2.2,
Kivati implements a 10 ms timeout in order to avoid dead-
locks due to an end atomic which never executes. If the
timeout expires before all ARs complete, then the suspended
threads are made runnable again. In addition, all ARs using
the watchpoint register that timed-out are removed and the
watchpoint is freed.

When an end atomic occurs, Kivati will try to restart any
threads that are suspended due to remote accesses. Kivati
checks if there are any remaining active ARs on the watch-
point. If there are none left, the watchpoint is freed as de-
scribed earlier and threads are permitted to proceed. Kivati
preferentially schedules threads that were blocked due to
watchpoint traps before threads that were blocked because
they tried to enter their own AR.

3.4 Optimizations
While using the hardware watchpoint support requires do-
main crossings into the kernel, these crossings are expensive
so we would like to minimize their frequency. Transitions
into the kernel happen on each begin atomic and end atomic
annotation, as well as whenever a watchpoint trap occurs. In
this section, we describe four optimizations we have added

to Kivati that decrease the number of crossings into the ker-
nel.

First, we do as much pre-processing as possible in user
space, and only enter the kernel if we need to modify a hard-
ware watchpoint register. To do this, we replicate both the
AR table and watchpoint register metadata in a user space
library, which begin atomic and end atomic call instead of
directly dropping into the kernel. This allows us to avoid
trips into the kernel on a begin atomic when there are no free
hardware watchpoints, or if there is a hardware watchpoint
already configured with the same address, size and access
type as the current begin atomic. On an end atomic, we can
also avoid trips into the kernel if a matching begin atomic
was not previously executed, or when the hardware watch-
point state doesn’t need to be changed because there are still
active ARs using the watchpoint to monitor for the same size
and types of accesses.

Second, we note that while the remaining trips into be-
gin atomic are necessary to activate the watchpoint moni-
toring, trips into the kernel due to end atomics can be com-
pletely eliminated. When an end atomic removes the last AR
on a watchpoint, the usual procedure is to drop into the ker-
nel and disable the hardware watchpoint. Instead, we sim-
ply let the hardware watchpoint continue to watch the ad-
dress, but note in the user space copy that the watchpoint is
no longer active. If another thread does trigger the watch-
point, we drop into the kernel due to the watchpoint trap,
learn from the user space copy that the hardware watchpoint
should have been freed, and disable the watchpoint at that
time. No violation is logged since Kivati is aware that the AR
should have been terminated already. However, in a signifi-
cant number of times, a thread will execute a begin atomic
before the watchpoint is triggered and the begin atomic will
drop into the kernel anyways. At this point, Kivati will free
the hardware watchpoint and make it consistent with the user
space copy. The same optimization is applied in cases where
an end atomic requires a change to a hardware watchpoint’s
size or access type. Thus, we save a trip into the kernel when-
ever a begin atomic occurs after an end atomic but before
another thread triggers the hardware watchpoint.

The third optimization further reduces the number of
unnecessary trips into the kernel by disabling the hardware
watchpoints during execution of the local thread that owns
the AR using the register. This eliminates the traps that
would have otherwise occurred for each AR due to local
accesses. However, the optimization introduces a problem
for the (local write)-(remote write)-(local read) interleaving.
Recall that we relied on the watchpoint to trap into the kernel
so that Kivati can record the value of the shared variable
after the first local write. With the watchpoint disabled, this
trap will no longer occur. Instead, we use our annotation
pass to replicate the first local write to also save a copy to
a page that is shared between the user space Kivati library
and the Kivati kernel component. If and when a remote write

causes a watchpoint trap, Kivati will use this copy to undo
the remote write.

The fourth and final optimization improves performance
by noting that unnecessary traps into the kernel are caused
by benign atomicity violations. While we cannot statically
identify benign atomicity violations in general, if we as-
sume that the implementation of synchronization functions
are correct (i.e. locks, conditional waits, etc...), atomicity vi-
olations on synchronization variables are always benign or
required. Thus, we can add all synchronization variables to
the whitelist (e.g., lock variables, flags).

3.5 Limitations
Our Kivati prototype has several shortcomings due to limi-
tations of our hardware and static analysis. First, older pro-
cessors (Intel Pentium III or earlier) do not report violations
due to REP MOVS/STOS instructions until the end of the rep-
etition after the repetition in which the access occurred. As
a result, we will not be able to accurately undo and reorder
remote accesses caused by these instructions. In addition, all
Pentium processors do not report data breakpoints for re-
peated INS and OUTS instructions until after the iteration in
which the memory was accessed. These two are I/O instruc-
tions, and thus should not have any impact on our system as
they would not appear in user-level programs.

Second, while x86 processors provide more hardware
watchpoints than other architectures we surveyed, they are
still insufficient to cover every AR. Our evaluation in the
next section shows that Kivati is unable to monitor approx-
imately 5% of ARs for atomicity violations because all of
the available hardware watchpoints were already in use. In-
creasing the number of hardware watchpoints or implement-
ing fine-grained memory protection, such as that proposed in
the Mondrian system [24] would help to alleviate this limi-
tation.

Finally, our prototype uses only simple static analysis in
its annotator. More precise static analysis can help Kivati
detect and prevent more atomicity violations, as well as im-
prove its run-time performance. For example, Kivati could
be enhanced to perform inter-procedural analysis to detect
ARs that span subroutines, allowing it to detect atomicity
violations on such ARs as well. In addition, pointer anal-
ysis could be used to better identify shared variables. Bet-
ter precision in this regard would remove unnecessary be-
gin atomic and end atomic annotations on non-shared vari-
ables, reducing performance overhead, as well as making
better use of the limited number of hardware watchpoints. In
addition, our current analysis only identifies local accesses
as belonging to the same shared variable if they use the same
variable name. Similarly, instead of labelling individual ele-
ments of an array as shared or unshared, we treat an entire
array as shared if any element appears to be shared. Pointer
analysis will allow us to also identify ARs involving local ac-
cesses to the same shared variable that occur due to an alias,
as well as produce finer-grain labelling of shared elements in

Application Workload Description
NSS 3.12.4 (Firefox) Included testsuite Network Security
VLC 1.0.2 Transcoding a video using the x264 codec Multimedia task
Apache 2.2.13 Webstone 2.5 Web server throughput
Apache 2.2.13 & MySQL 5.1.39 TPC-W E-commerce website
SPEC2001 OMP Included inputs Computational workload

Table 2. Applications and workloads.

arrays. We note that eliminating annotations on non-shared
variables does not decrease the number of false positives
produced by Kivati, since non-shared variables cannot cause
violations at run-time. Reducing false positives can only be
reduced by not annotating shared variable accesses whose
atomicity can safely be violated. Our system currently uses
a whitelist generated from two sources of such knowledge:
manual identification of synchronization variables as men-
tioned in Section 3.4, and training runs as discussed later in
Section 4.2. While better static analysis can only improve
the performance and violation detection and prevention abil-
ity of Kivati, our evaluation in the next section shows that
even with the simple static analysis in our prototype, Kivati
has reasonable performance and good bug detection and pre-
vention ability.

4. Evaluation
We evaluate two major characteristics of Kivati. First, we
evaluate the performance overhead Kivati imposes across
a set of threaded workloads. Second, we evaluate how ef-
fective Kivati is at detecting and preventing atomicity vio-
lations. All experiments are performed on a machine with
an Intel 2.13 GHz Core 2 Duo processor, 2 GB of RAM,
a 7200 RPM Serial-ATA disk and a Gigabit Ethernet net-
work card. The system was running Ubuntu 8.10 with an
SMP-enabled Linux kernel (2.6.27) that has been modified
to implement Kivati. The applications and workloads we
used are given in Table 2. These include the NSS module in
the Mozilla Firefox web browser, the VLC media player, the
Apache web server, the MySQL database and the SPEC2001
OpenMP (OMP) benchmark suite. When testing each appli-
cation, both cores were used. TPC-W is a website simulation
that includes both the Apache web server and the MySQL
database. In our performance experiments, we had Kivati si-
multaneously protect both of these applications from atomic-
ity violations. Both server benchmarks, Webstone and TPC-
W, measure throughput.

4.1 Performance
To evaluate the performance we ran the workloads described
in Table 2 and present the results in Table 3. Bug-finding
mode is run with a pause time of 20 ms introduced at ev-
ery begin atomic. Runtime gives the base execution time of
an unmodified application running on a vanilla kernel. The

App Base SyncVars Optimized
NSS 1403 1183 (16%) 821 (41%)
VLC 730 629 (14%) 492 (33%)
Webstone 1114 925 (17%) 608 (45%)
TPC-W 2359 1890 (20%) 1220 (48%)
SPEC OMP 1315 1143 (13%) 788 (40%)

Table 4. Number of domain crossings (begin atomic sys-
tem calls, end atomic system calls and remote traps) in Ki-
vati. All measurements are given in thousands of system
calls per second. A percentage reduction in system calls ver-
sus the base implementation is also given.

App Vanilla Prevention Bug
Webstone 492 525 (6.7%) 538 (9.3%)
TPC-W 1000 1112 (11.2%) 1161 (16.1%)

Table 5. Effect of Kivati on latency of requests to server ap-
plications. All times are given in milliseconds and percent-
age overhead is given relative to vanilla.

remaining columns give both overhead of prevention mode
(first number) and bug-finding mode (second number) ver-
sus the vanilla performance. Base gives overhead of the ba-
sic system where every begin atomic and end atomic results
in a crossing into the kernel. Null syscall gives overhead
with each begin atomic and end atomic modified to return
immediately back to the process. SyncVars gives the per-
formance when synchronization variables are added to the
whitelist. Finally, optimized is overhead with all optimiza-
tions described in Section 3.4 enabled.

The majority of the run-time overhead can be attributed to
entering the kernel during begin atomic and end atomic. The
Null syscall experiment eliminates all other overhead from
tracking state, suspending threads and using the watchpoint
hardware. Yet this only reduces overhead by less than 6% in
most cases. The largest reduction occurs when all optimiza-
tions are applied, which reduces the geometric mean of the
overhead from 30% to 19%. The experiments also show that
bug-finding mode adds an average of 2.5% overhead with
all optimizations enabled. This is due to stalls that threads
experience when they execute a begin atomic.

Application Runtime (s) Base (%) Null syscall (%) SyncVars (%) Optimized (%)
NSS 1298 32.4 35.9 25.3 28.4 28.1 32.0 19.7 22.0
VLC 1510 18.0 19.9 14.3 16.1 15.9 17.3 13.0 14.1
Webstone 3000 27.9 29.1 22.6 25.2 25.3 26.3 16.5 19.1
TPC-W 1800 53.7 58.2 40.9 46.3 43.5 49.5 29.5 34.7
SPEC OMP 4800 30.0 33.5 24.6 27.7 27.5 30.3 19.0 21.9

Table 3. Performance of Kivati in both prevention and bug-finding mode. All percentages refer to overhead over a vanilla
system. The left number in each column is overhead in prevention mode and the right number is overhead in bug-finding mode.

App Bug ID Prev Bug(20ms) Bug(50ms)

Apache
44402 66:59 8:01 8:23
21287 - 13:30 17:20
25520 - 4:49 7:33

NSS

341323 12:25 2:59 2:05
329072 1:40 0:16 0:17
225525 4:41 2:21 3:09
270689 2:00 0:33 0:56
169296 - 10:19 7:40
201134 52:45 9:27 7:33

MySQL 19938 8:53 1:50 1:26
25306 11:15 2:44 3:20

Table 6. Bug detection and prevention in Kivati. Times
are given in minutes and seconds for Kivati to detect and
prevent atomicity violations in prevention and bug-finding
mode with a 20 ms pause and a 50 ms pause. A “-” indicates
that the bug did not manifest after 90 minutes of testing.

Table 4 gives the number of kernel entries in thousands
per second under the three levels of optimization. Kernel en-
tries occur from begin atomic and end atomic system calls
and remote traps, although the system calls account for over
99.9% of all entries. We can see that the optimizations re-
duce the number of kernel entries by an average of 41%.

We also tabulate the increase in latency of requests for the
two server benchmarks, Webstone and TPC-W, in Table 5.
We can see that Kivati increases the latency of each request
slightly. This effect is more pronounced in bug-finding mode
since each thread is stalled for a period of time whenever it
executes a begin atomic.

4.2 Identifying and preventing violations
To evaluate the effectiveness of Kivati at detecting and pre-
venting atomicity violations we constructed a corpus of
atomicity violation bugs by searching the bug databases of
our open source applications. For each bug, we then ran
the application in Kivati and repeatedly applied the inputs
that would trigger the bug. Because we do not control the
interleavings, it would take several attempts for the bug to
manifest. We repeated this for Kivati in prevention mode, as
well as bug-finding mode with both a 20 ms and 50 ms pause
time. The results of this experiment are tabulated in Table 6.

App Prevention Bug-finding
FP Traps/s FP Traps/s

NSS 8 16.5 11 19.1
VLC 4 9.9 5 12.0
Webstone 12 21.1 14 23.5
TPC-W 19 30.0 24 32.7
SPEC OMP 5 5.9 7 7.5

Table 7. Number of false positives and rate of watchpoint
traps per second.

App Base SyncVars
NSS 46.7 (5.7%) 41.8 (5.1%)
VLC 29.4 (6.0%) 25.6 (5.2%)
Webstone 34.8 (5.7%) 29.7 (4.9%)
TPC-W 146.1 (12.0%) 110.9 (9.1%)
SPEC OMP 41.9 (5.3%) 37.7 (4.8%)

Table 8. Thousands of missed ARs per second due to in-
sufficient watchpoint hardware. Also shown is the number
of missed ARs as a percentage of the total number of ARs
executed.

Kivati was able to detect and prevent every bug when it oc-
curred. Bugs were always found faster in bug-finding mode
than in prevention mode, and bug-finding mode was also
able to find bugs that did not manifest in prevention mode af-
ter 90 minutes of testing. Interestingly, increasing the length
of the pause time from 20 ms to 50 ms actually increases
the time required to find the bug in just over half the cases.
This is because while increasing the pause time increases the
likelihood of a violating interleaving, it also slows down the
execution of the application.

We also ran Kivati with the performance workloads and
recorded the number of false positives that Kivati triggers.
The number of false positives is presented in Table 7 along
with the rate of watchpoint traps the workloads experience.
We considered a false positive to be a unique atomic region
that has had at least one violation. This means that even if an
atomic region participated in multiple violations, it would
only be counted as a single false positive. The false posi-
tives are present because Kivati cannot differentiate between

App Number of Registers Available
2 3 4 5 6 7 8 9 10 11 12

NSS 57% 39% 5.7% 3.6% 1.4% 0.32% 0.0007% 0.0001% 0.0001% 0%
VLC 34% 15% 5.2% 1.6% 0.01% 0.0006% 0%
Webstone 51% 29% 4.9% 3.0% 0.58% 0.42% 0.027% 0%
TPC-W 59% 44% 9.1% 6.1% 1.8% 1.0% 0.39% 0.02% 0.001% 0.00008% 0%
SPEC OMP 66% 53% 4.8% 3.5% 1.3% 0.022% 0.001% 0.0006% 0%

Table 9. Percentage of missed ARs depending on the number of hardware watchpoint registers available.

0

5

10

15

20

NSS TPC-W
Prevention Mode

0
5
10
15
20
25
30

NSS TPC-W
Bug-finding Mode

Figure 7. False positives on successive training iterations in
prevention and bug-finding mode.

benign and non-benign atomicity violations. As we can see,
the number of false positives is manageable. The number of
watchpoint traps due a remote access during an AR is also
given. Note that the vast majority of these traps do not result
in atomicity violations, either because they are serializable
or because the end atomic does not occur. However, as com-
pared to the rate of begin atomics and end atomics given in
Table 4, we see that only a very small number of ARs ever
experience a remote access at all. This leads us to believe
that Kivati’s overhead could be further reduced with more
precise identification of shared variables.

Because the x86 processor has only four hardware watch-
points, there are instances where Kivati cannot monitor an
AR because all watchpoints are already used by other active
ARs. As a result, any violation of such an AR will be missed.
Table 8 shows the number of such “missed ARs” as a rate of
thousands per second and as a percentage of ARs executed.
While the absolute number seems high, it is actually a small
percentage of the total number of ARs executed. When we
implement measures that reduce the number of ARs that Ki-
vati must monitor, such as whitelisting synchronization vari-

ables or increasing the precision of our static analysis, the
number of missed ARs decreases. Other optimizations that
reduce the number of transitions into the kernel, but not the
number of ARs, have no effect.

Another factor that affects the number of missed ARs
is the number of hardware watchpoints. We simulate the
number of missed ARs for an arbitrary number of hardware
watchpoints by varying the number of entries in the hard-
ware watchpoint metadata between 2 and 12. Table 9 shows
that a minimum of 4 hardware watchpoints is desirable, as
the number of missed ARs increases rapidly with less than
that. However, an architecture with 8 hardware watchpoints
would be able to monitor all but 1% of all ARs. A long tail in
one of the benchmarks causes the number of required hard-
ware watchpoints to monitor all ARs in our benchmarks to
be 12.

Finally, we evaluated the effect of training on the number
of false positives. We iteratively ran the NSS and TPC-W
workloads. After each iteration, we took the false positives
recorded and added them to the whitelist for the next iter-
ation. Figure 7 compares the results in both prevention and
bug-finding mode. Each bar represents an iteration and its
height represents the number of false positives found dur-
ing that iteration. We see that it took an extra iteration for
TPC-W to reach zero false positives in bug-finding mode,
but overall we converge to a small number of false positives
with very little training. In addition, the results naturally sug-
gest that bug-finding mode should be used for training since
it detects and eliminates more false positives than prevention
mode – 13 vs 9 for NSS and 35 vs 26 for TPC-W.

5. Related Work
A number of systems focus on finding and detecting atomic-
ity violations during testing, so that the software developer
may fix them before releasing the code. Some systems do
not execute the code and just perform static analysis [4, 7].
However, a good majority have some dynamic component.
For example, Atomizer [5], automated type analysis [21] and
Velodrome [8] detect potential atomicity violations by us-
ing Lipton’s theory of reduction [12] or happens-before re-
lations [11]. However, these systems execute with 2.2x-72x
slowdown. In addition, they only provide limited informa-
tion on how the bug manifests, making it difficult for a soft-

ware developer to reproduce the bug and correct it. Kivati is
able to provide a detailed trace with the thread IDs, address
of the shared variable and program counters of the instruc-
tions involved.

Other testing systems are also able to provide exact infor-
mation about the interleaving required to produce a bug. For
example, SVD [25], AVIO [13], CTrigger [19], CHESS [16],
Racefuzzer [22] and FastTrack [6] all execute programs and
check interleavings during execution for violations. The last
three systems focus on data-race errors and not atomicity
violations. However, all of these systems rely on expen-
sive instrumentation to detect atomicity violations, which
cause them to have worst-case overheads of 15x-65x without
the addition of specialized hardware support. Unlike Kivati,
these systems do not prevent the atomicity violation from oc-
curring once detected. In general, Kivati complements con-
currency bug testing systems. If a certain sequence of ac-
cesses has been tested and shown not to have any atomicity
violations, it can be placed in Kivati’s whitelist, which re-
duces the overhead and false positives that Kivati will expe-
rience during run-time. On the other hand, no testing system
will find all bugs, so Kivati can prevent the ones that the test-
ing systems do not catch.

Recently, there have been a number of systems that can
dynamically detect and prevent concurrency bugs. For exam-
ple, Gadara [23] and Dimmunix [10] both detect and prevent
deadlocks, but not atomicity violations. Rx [20] can detect
and prevent a wider range of bugs, but does so probabilisti-
cally by repeatedly executing the buggy section of code until
the bug does not manifest. In contrast, Kivati can prevent ev-
ery atomicity violation it encounters.

Other systems take a different approach and try to con-
strain execution to interleavings that are known to be safe.
Constrained interleaving [26] profiles the application ini-
tially to find a set of “safe” interleavings, and then only al-
lows these interleavings to be executed at run-time. When
implemented without hardware support constrained inter-
leaving has overheads of 100x-200x. Other systems, such as
Kendo [18] and DMP [2] constrain programs to execute ac-
cording to a pre-determined interleaving, thus removing the
non-determinism that makes it difficult to find bugs. DMP
requires specialized hardware but Kendo, which is imple-
mented in software, has overheads comparable to Kivati.
However, Kendo is restricted only to programs that use locks
on all accesses to shared variables. Such programs would not
benefit from Kivati since they are likely to already be free of
atomicity violations.

Finally, other systems that require specialized hardware
support can provide protection similar to Kivati’s with lower
overhead. Atom-Aid [15] requires hardware that supports
bulk execution [1] and can only probabilistically remove
atomicity violations. However, this hardware is not avail-
able on commodity processors. Transactional memory hard-
ware [9] also prevents atomicity violations by ensuring that

all instructions in a transaction execute atomically. How-
ever, this requires that the software developer correctly insert
transactions into their code, while Kivati does not rely on
any programmer annotations. Kivati’s ARs are conceptually
similar to transactions, but much simpler to implement. A
transactional memory system has to monitor every memory
location accessed in a transaction for conflicts, while Kivati
only has to track the address specified by the begin atomic
that starts the AR.

6. Conclusion
Kivati’s application of static analysis to identify ARs, use of
hardware watchpoints to monitor ARs and implementation
in the kernel enable Kivati to detect and prevent atomicity vi-
olations efficiently for applications written in C and executed
on Linux/x86 platforms. The dominant source of overhead
in Kivati are transitions into the kernel, which occur when
Kivati needs to reconfigure the watchpoint hardware. As a
result, optimizations that enable Kivati to avoid trips into the
kernel by performing more processing in a user space library
result in the greatest performance improvements.

Kivati has two complementary modes – prevention mode,
which has low overhead, and bug-finding mode, which im-
poses more overhead, but can find more bugs and find them
in less time. Bug-finding mode is particularly useful during
training, because it is able to find and remove more false pos-
itives. An interesting result is that increasing the pause times
in bug-finding mode does not always result in faster bug de-
tection since it also slows down application execution.

Finally, we note that Kivati could benefit from a more so-
phisticated static analysis than the simplistic one used in our
prototype. A static analysis that can more precisely identify
shared variables will remove ARs for non-shared variables.
A smaller number of ARs benefits Kivati by reducing its per-
formance overhead, reducing the number of false positives,
and reducing the number of instances where it exhausts hard-
ware watchpoint resources. Despite this, we have found that
Kivati’s simple static analysis is still adequate to produce
good performance, good bug detection and prevention, and
a low number of false positives.

Acknowledgements
We would like to thank our shepherd Michael Hohmuth
and the anonymous reviewers for their insightful comments
and guidance. This work also benefited from suggestions by
Ashvin Goel, Michael Stumm, Angela Demke Brown, Stan
Kvasov, and Tom Hart. This work was supported in part by
an NSERC Discovery Grant and a Bell University Grant. Lee
Chew was supported by an Ontario Graduate Scholarship.

References
[1] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: bulk enforcement of

sequential consistency. In Proceedings of the 34th International Symposium on
Computer Architecture (ISCA), pages 278–289, June 2007.

[2] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic shared
memory multiprocessing. In Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 85–96, Mar. 2009.

[3] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution
replay of multiprocessor virtual machines. In Proceedings of the 4th Interna-
tional Conference on Virtual Execution Environments (VEE), pages 121–130,
Mar. 2007.

[4] D. Engler and K. Ashcraft. RacerX: effective, static detection of race conditions
and deadlocks. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), pages 237–252, Oct. 2003.

[5] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for
multithreaded programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 256–267,
Jan. 2004.

[6] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic race
detection. In Proceedings of the 2009 ACM SIGPLAN conference on Program-
ming Language Design and Implementation (PLDI), pages 121–133, June 2009.

[7] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Proceedings of the 2003 ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI), pages 338–349, June 2003.

[8] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In Proceedings of the 2008 ACM
SIGPLAN conference on Programming Language Design and Implementation
(PLDI), pages 293–303, June 2008.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for
lock-free data structures. In Proceedings of the 20th International Symposium
on Computer Architecture (ISCA), pages 289–300, May 1993.

[10] H. Jula, D. M. Tralamazza, C. Zamfir, and G. Candea. Deadlock immunity:
enabling systems to defend against deadlocks. In Proceedings of the 9th
Symposium on Operating Systems Design and Implementation (OSDI), pages
295–308, Dec. 2008.

[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[12] R. J. Lipton. Reduction: a new method of proving properties of systems of
processes. In Proceedings of the 2nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 78–86, Jan. 1975.

[13] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity violations via
access interleaving invariants. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 37–48, Oct. 2006.

[14] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehen-
sive study on real world concurrency bug characteristics. In Proceedings of
the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 329–339, Mar. 2008.

[15] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting and surviv-
ing atomicity violations. In Proceedings of the 35th International Symposium
on Computer Architecture (ISCA), pages 277–288, June 2008.

[16] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu.
Finding and reproducing Heisenbugs in concurrent programs. In Proceedings of
the 9th Symposium on Operating Systems Design and Implementation (OSDI),
pages 267–280, Dec. 2008.

[17] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: intermediate
language and tools for analysis and transformation of C programs. In CC’02:
Proceedings of the 11th International Conference on Compiler Construction,
pages 213–228. Springer-Verlag, 2002.

[18] M. Olszewski, J. Ansel, and S. P. Amarasinghe. Kendo: efficient deterministic
multithreading in software. In Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 97–108, Mar. 2009.

[19] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation bugs
from their hiding places. In Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 25–36, Mar. 2009.

[20] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as allergies
— a safe method to survive software failure. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP), pages 235–248,
Oct. 2005.

[21] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated type-based
analysis of data races and atomicity. In Proceedings of the 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP),
pages 83–94, June 2005.

[22] K. Sen. Race directed random testing of concurrent programs. In Proceedings
of the 2008 ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI), pages 11–21, June 2008.

[23] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke. Gadara: dynamic
deadlock avoidance for multithreaded programs. In Proceedings of the 9th
Symposium on Operating Systems Design and Implementation (OSDI), pages
281–294, Dec. 2008.

[24] E. Witchel, J. Cates, and K. Asanović. Mondrian memory protection. In
Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 304–316.
ACM, 2002.

[25] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector for
shared-memory server programs. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming Language Design and Implementation (PLDI),
pages 1–14, June 2005.

[26] J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-
memory multi-processor. In Proceedings of the 36th International Symposium
on Computer Architecture (ISCA), pages 325–336, July 2009.

	Introduction
	Overview
	Problem definition
	The main idea
	Prevention mode and bug-finding mode

	Implementation
	Static annotator
	Detecting violations
	Preventing violations
	Optimizations
	Limitations

	Evaluation
	Performance
	Identifying and preventing violations

	Related Work
	Conclusion

