
ARCHITECTURAL SUPPORT FOR COPY AND

TAMPER-RESISTANT SOFTWARE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

David J. Lie

December 2003

c© Copyright by David J. Lie 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Dr. Mark Horowitz
(Principal Adviser)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Dr. Dan Boneh

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Dr. Chandramohan A. Thekkath
(Microsoft Research, Silicon Valley)

Approved for the University Committee on Graduate Stud-

ies.

iii

iv

Abstract

Recently, there has been intense interest in the implementation of a trusted computing

platform. Industry projects such as the Trusted Computing Platform Alliance, Microsoft’s

Palladium Project, and Intel’s LaGrand Technologies all aim to embed hardware to support

some amount of protection for applications so that they can be tamper-resistant.

In this work, we propose a new processor architecture called “XOM”, which stands for

eXecute Only Memory. XOM provides copy and tamper-resistance for software by sup-

porting compartments, which protect both the code and data of programs. Compartments

are implemented by a combination of architectural methods, in the form of on-chip access

control tags, and cryptographic methods, in the form of ciphers and hashes that protect data

off-chip. The trust model of the computing system is changed so that applications trust the

hardware, instead of the operating system, to protect their code and data. A XOM processor

was simulated by extending a MIPS-based processor model in the SimOS simulator.

An operating system, XOMOS, was constructed run on the XOM architecture. Because

the applications do not trust the operating system with their data, this presents an interest-

ing challenge for operating system design. This work shows that an untrusted operating

system can be implemented on top of trusted hardware, such that the operating system has

sufficient rights to manage resources, but does not have the rights to read or modify user

application code or data. This is demonstrated by a port of the IRIX 6.5 operating system to

the XOM processor, to create XOMOS. We were able to run some applications on XOMOS

in our simulator and found overheads to be less than 5%.

We used a model checker to verify the security of the XOM processor architecture. A

realistic “actual” processor was modeled along with an adversary, and compared against

a “idealized” model that has no adversary. Inconsistencies between the two models are

v

flagged as failures in the protection guarantees that the processor aims to provide. We

thus demonstrate that the processor is able to provide tamper-resistance, and that the most

difficult attack to defend against is a memory replay attack.

vi

Acknowledgments

This work would not have been possible without the help and support of a large number of

people.

First and foremost, I would like to thank my advisor, Prof. Mark Horowitz. There is

little I can say to add to his already impeccable reputation as a researcher, scientist and

teacher. As my supervisor, he has been patient and kind, and has always encouraged me to

push myself further. It has truly been a privilege to work with him.

Dr. Chandramohan (Chandu) Thekkath has also been a great collaborator. He has

generously donated his time and energy over the last four years. The numerous discussions

we have had have been enjoyable, and I have benefited greatly from his knowledge of

operating systems. I would also like to thank Prof. Dan Boneh, my associate advisor, who

was responsible for sparking my interest in computer security and cryptography, as well

as educating me in those fields. Thanks also go to Prof. John Mitchell, who always made

himself available to proof read papers and help clarify my ideas. Prof. Dawson Engler

and Prof. David Dill first introduced me to the concept of using formal techniques to

check models for correctness, which subsequently proved very useful for my dissertation.

Numerous thanks also go to Prof. Bill Dally, Prof. Mendel Rosenblum, Prof. Monica

Lam, and President John Hennessey for allowing me to draw upon their experiences and

technical knowledge.

This work would not have been possible without the support of Charles Orgish and

Joe Little, who worked tirelessly to maintain a stable computing environment for research

at the Computer Systems Laboratory at Stanford. Of no less importance has been the

administrative support of Terry West, Deborah Harber, Taru Fisher, Penny Chumly, Teresa

Lynn, Darlene Hadding, and Claire Ravi.

vii

I would also like to thank DARPA for their financial support, and Stanford Univer-

sity for providing fantastic facilities and a comfortable and relaxing environment, which

allowed me to focus my attention on my research.

There are too many colleagues and friends to mention all who have made my time

at Stanford memorable. Thus, in the limited space I will mention the graduate students

whom I worked with in the Gates Building at Stanford. Robert Kunz and Jeff Gibson who

worked next door helped show me my way around Stanford, helping me pass quals and

giving me technical advice. They were good companions on the road as well, providing

excellent company at conferences we attended. Andy Chou has also been a great friend

and co-author, and I will always admire his patience and ability to write large amounts of

code quickly, without sacrificing elegance and clarity. I would also like to thank Dean Liu,

Francois Labonte, my office mates Alex Solomatnikov, and Amin Firoozshahian, as well

as all the other members of the Horowitz group for their support and help.

I would like to thank the members of my family, who first encouraged me to apply

and come to Stanford. And finally, words cannot express the gratitude I have for Xiaoli

Liang, who has been my loving and caring companion for nearly all the time I have been

at Stanford. It is impossible to imagine how this thesis would have been possible without

her help and support.

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Overview of this Dissertation. 4

2 Cryptographic Concepts 6

2.1 Compartments. 6

2.2 Symmetric Ciphers. 7

2.3 Asymmetric Ciphers . 8

2.4 Message Authentication Codes. 9

3 The XOM Architecture 10

3.1 The Abstract XOM Machine. 12

3.1.1 Supporting External Memory. 14

3.1.2 Supporting an Operating System. 16

3.1.3 Software Distribution Model. 18

3.1.4 Security. .20

3.2 Virtual Machine Implementation. 22

3.3 A Hardware Implementation of a XOM Machine. 28

3.4 The XOM Hardware Simulator. 37

3.5 Maintenance Issues. .39

3.5.1 Processor Upgrade. 39

ix

3.5.2 Processor Key Recovery. 40

3.6 Related Work. .41

3.6.1 Hardware Approaches. 41

3.6.2 Software Approaches. 42

3.6.3 Trusted Computing. 42

3.7 Summary .44

4 An Operating System for the XOM Architecture 46

4.1 Operating System Design Issues. 47

4.2 XOM Key Table Support. 48

4.2.1 XOM Key Table System Calls. 48

4.2.2 Virtualizing the XOM Key Table. 51

4.3 Dealing with Encrypted Data and MACs. 52

4.3.1 Saving and Restoring Context. 52

4.3.2 Paging Encrypted Memory. 54

4.4 Supporting Traditional Operating System Mechanisms. 56

4.4.1 Shared Libraries. 56

4.4.2 Process Creation. 57

4.4.3 User-defined Signal Handlers. 59

4.5 Costs of Implementing XOMOS. 61

4.5.1 XOMOS Implementation Effort. 63

4.5.2 Operating System Performance Overhead. 64

4.5.3 End-to-end Application Performance Overhead. 67

4.6 Summary .71

5 Security Issues 73

5.1 Attack Model .73

5.2 Hardware Based Attacks. 75

5.3 Software Based Attacks. .76

5.4 Formal Specification and Verification. 79

5.4.1 The Murϕ Model Checker . 80

5.4.2 Abstracting the Instruction Set. 81

x

5.4.3 The Actual Model . 82

5.4.4 The Idealized Model. 87

5.4.5 The Adversary. .89

5.4.6 Combining the Models. 92

5.4.7 Verification Results. 96

5.5 Attacks not Covered by XOM. 99

5.6 Additional Security Issues. .100

5.6.1 Key Revocation. .100

5.6.2 Privacy .101

5.7 Related work .102

5.8 Summary .102

6 Conclusions and Future Work 103

6.1 Future Work. .105

Bibliography 107

xi

List of Tables

3.1 Instructions in the Abstract XOM Machine. 17

3.2 XOM Simulator Parameters. 37

3.3 Simulated XOM Instructions. 38

4.1 Description of Simulated Instructions. 62

4.2 XOMOS Kernel Implementation Effort. 63

4.3 XOMOS User-code Implementation Effort. 63

4.4 Overhead Due to New System Calls in XOMOS. 65

4.5 Micro-benchmark Instruction Overhead of XOMOS vs. IRIX. 66

4.6 Micro-benchmark Cycle Overhead of XOMOS vs. IRIX. 66

5.1 User Instructions. .82

5.2 Privileged Instructions. .83

5.3 Vulnerability from Caching MACs. 97

5.4 Vulnerability from Incremental Hashes. 98

xii

List of Figures

3.1 Compartments. .11

3.2 The Shared Compartment. 14

3.3 Software Distribution in XOM. 19

3.4 The XOM Virtual Machine Monitor (XVMM)] 25

3.5 Memory Support for Secure Store. 28

3.6 Memory Support for Secure Load. 29

3.7 Valid Bits in the Caches. .30

3.8 XOM Key Table Design . 32

3.9 A XOM Machine Implemented in Hardware. 35

4.1 Allocating and Using XOM Key Table entries. 50

4.2 XOMOS Context Switch Code. 54

4.3 Exiting and Entering a Compartment for a Library Call. 58

4.4 User-defined Signal Handler Support. 60

4.5 Performance of XOM-mpeg. 68

4.6 Performance of XOM-RSA. 69

5.1 A Register Spoofing Attack. 77

5.2 A Merkle Tree. .79

xiii

xiv

Chapter 1

Introduction

There are many good reasons for creating tamper-resistant software including combating

software piracy, enabling mobile code to run on untrusted platforms without the risk of

tampering or intellectual property theft, and enabling the deployment of trusted clients in

distributed services such as banking transactions, on-line gaming, electronic voting, and

digital content distribution. Tamper-resistant software is also useful in situations where a

portable device containing sensitive software and data may fall into the hands of adver-

saries, as well as for preventing viruses from modifying legitimate programs. This disser-

tation looks at one approach of providing this capability by modifying the base processor

hardware to support programs that can only be executed, but cannot be read or modified.

However, even without such a high level of tamper-resistance some applications assume it

exists. For example, banking transactions still assume the tamper-resistance of software on

the clients, even though there is no such assurance. While protocols such as Secure Sockets

Layer (SSL), can reliably secure communications across the Internet, the user has no assur-

ance that their web browser or underlying operating system is not maliciously monitoring

or tampering with their transactions. If for example, a banking customer is unknowingly

using a malicious web browser1, the web browser may record all of the customer’s personal

information and use that to impersonate the customer.

In another case, imagine the web browser is legitimate, but the underlying operating

system has been compromised. The operating system may allow the banking customer

1A customer may unknowingly download a modified client — in other words a Trojan Horse.

1

2 CHAPTER 1. INTRODUCTION

to initiate a transaction, but at an opportune time, simply hijack the network session by

extracting the appropriate information from the address space of the web browser. This

example shows that protecting the web browser from tampering is necessary, but not suf-

ficient — it is also necessary to protect the web browser’s execution from observation,

otherwise the identity of the browser can be forged.

Systems can require various levels of tamper-resistance, which range from simply pre-

venting an adversary from reading the instructions of a program, to protecting the instruc-

tions, data and execution of the program entirely. The level of security that an application

requires depends on the sophistication of the adversary the system is intended to withstand.

On the other hand, increased security may also require increased costs in performance

overhead and hardware.

A very simple and cheap form of tamper-resistance can be provided bysoftware obfus-

cation. Software obfuscation requires no hardware support and is implemented by adding

entropy to the instructions of a program. Typically this involves adding extra code and

transforming existing code so that it is difficult for humans or code analysis tools to un-

derstand, but can still be executed to produce results similar to the original program. In

the past, software obfuscation has been explored and implemented, but with limited suc-

cess [9]. Further, there is theoretical evidence that a general software obfuscation scheme

does not exist [6]. As a result, software obfuscation is only effective against an unsophisti-

cated adversary. Given enough time and resources, a reasonable adversary will be able to

de-obfuscate the program by brute-force analysis — the reason being that if there exists a

machine that can execute the code, then there likely exists another machine, possibly more

complex, that can decode its operation.

A stronger way of obfuscating software is to encrypt the executable with a computation-

ally strong cipher that will thwart a brute-force attack. Some proposals do this by placing

cryptographic functions in the memory controller hardware [21, 22]. However, such sys-

tems are prone to software-based attacks — because the execution of the program is not

protected, an attacker may examine the dynamic state of a program using a debugger or

other such tool, and surmise the instructions that are being executed. While this requires

slightly more intelligence on the part of the adversary, it is not a major hurdle for attack-

ers. Such systems fail because there is no concept ofisolationbetween different programs

3

running on the processor.

The simplest way to provide isolation is to simply execute the tamper-resistant code

on another processor. Systems described in [59, 62] support security through the use of

secure coprocessors. These coprocessors are used to execute tamper-resistant portions of

programs and are placed in physically hardened packages to prevent tampering by an adver-

sary. The limited programming interface protects programs against software-based attacks

while the physical packaging defends against hardware-based attacks. However, these co-

processors typically run much slower than the rest of the system and must be provided with

their own memory and I/O interfaces. As a result, this security comes at the cost of both

decreased performance and additional hardware.

The performance and hardware cost can be reduced by incorporating the features of

the secure coprocessor into the main processor. Systems such as these combine architec-

tural methods such as access control tags to protect code and data while it is on the main

processor, and cryptographic techniques to protect code and data while it is in memory or

on disk [35, 39]. The modifications are generally restricted to the main processor. The

physical security relies on the hardening of the main processor package, but does not trust

anything out of that package.

To support copy and tamper-resistant software, we propose a set of processor exten-

sions, which are called “XOM”, pronounced “zom”, an acronym for eXecute-Only Mem-

ory. We create a mechanism, where code stored on disk or other media can be made so that

it can only be executed, but cannot be read or modified, making it tamper-resistant. Such

code, which is referred to as “XOM code” will only execute on certain hardware. In other

words, the codeauthenticatesthe hardware it is running on. This authentication, combined

with the fact that the code cannot be read, makes it copy-resistant.

The design of such systems must address issues with security, performance and flexi-

bility. First and foremost, the system must meet its security requirements. This dissertation

assumes a sophisticated adversary who has a wide variety of software and hardware tools

available to her. She can execute code in privileged mode as the operating system. She can

also use hardware techniques to modify and observe values in memory. The XOM hard-

ware must be able to defend against all such attacks. Second, XOM must also operate at a

4 CHAPTER 1. INTRODUCTION

reasonable level of performance. It is difficult to quantify what performance cost is reason-

able for such a high level of security, so this work aims to keep the cost as low as possible

without compromising the security of the system. Finally, XOM must provide flexibility.

Facilities must be provided for programs to perform operations that they would be able

to perform in a regular system without XOM, so long as those operations are compatible

with the security requirements of the system. In other words, XOM should not impose any

unnecessary restriction on software the utilizes its tamper-resistant support.

In this dissertation, we find that highly tamper-resistant software that can even defend

against a compromised operating system, requires that some amount of specialized hard-

ware be added to the processor. We will show that such hardware is modest in size and

has a modest impact on performance. We do this by proposing a hardware architecture and

studying its performance via a simulator, and its security via formal verification methods.

1.1 Overview of this Dissertation

This dissertation comprises six chapters. This chapter introduced the problem and gave

a brief overview of the design space. Chapter2 will introduce some of the concepts dis-

cussed in this dissertation. It will talk about the cryptographic mechanisms that are used, as

well ascompartments, which are logical containers in which we place our tamper-resistant

software. They are what provides theisolation that allows programs to execute free from

unauthorized observation or modification.

We then proceed to present the hardware we need to support copy and tamper-resistant

software. The XOM processor bases its security in hardware, so we discuss the hardware

mechanisms that we use to extend a standard processor to enable it to support compart-

ments. These involve a combination of the cryptographic methods discussed in Chapter2,

and architectural methods such as tags and caching. In Chapter3, we discuss the func-

tionality required by defining an abstract XOM machine. We then discuss implementation

alternatives, as well as a cycle accurate simulator that was constructed.

Operating systems inevitably have errors in them that make them vulnerable to attack.

Under XOM, applications trust the processor to protect their data and execution, but do not

trust the operating system. However, sharing hardware resources among multiple users is

1.1. OVERVIEW OF THIS DISSERTATION 5

a difficult task, often requiring complex policy decisions. Thus, resource management is

most naturally done in software by anoperating system. Chapter4 discusses the imple-

mentation of an untrusted operating system on the XOM architecture. Using the simulator

discussed in Chapter3, this chapter also presents the performance results for our modified

operating system running a set of test applications.

However, while the implementation and performance may be reasonable, the XOM

architecture is off little worth unless its security can be justified. In Chapter5, we discuss

the attack model XOM defends against, and discuss the mechanisms XOM uses to defend

against an adversary. The security is analyzed usingformal verificationtechniques in the

form of a model checker.

Finally, we make our conclusions in Chapter6 and propose future work that may be of

interest.

Chapter 2

Cryptographic Concepts

This chapter discusses some cryptographic concepts that are used in this dissertation. XOM

protects programs by controlling access to the program code and data. Access Control

Lists, the natural data structure for performing this task, are well understood. However,

XOM uses a slightly different abstraction, called acompartment[53]. The origin and mo-

tivation behind using compartments will be discussed in Section2.1. XOM uses standard

architectural tags to implement compartments for values in the trusted hardware of the pro-

cessor. To extend this control into untrusted storage such as memory or disk, XOM uses

cryptographic techniques, specifically symmetric ciphers, asymmetric ciphers and message

authentication codes. These will be discussed in turn in the following sections.

2.1 Compartments

The purpose of XOM is to control access to data and code such that a program with the

appropriate rights can access the code for execution, as well as the static and dynamic

data the code requires. At the same time, XOM should both hide the value of that code

and data from adversaries, and prevent such an adversary from modifying those values.

Normally, access control refers to guarding data, but in this case, XOM is protecting an

active principal such as a program together with its data. This kind of access control is more

appropriately calledisolation. In [53], Saltzer and Schroeder definecomplete isolationas:

6

2.2. SYMMETRIC CIPHERS 7

Complete Isolation: A protection system that separates principals into com-
partments between which no flow of information or control is possible.

The operations XOM performs to protect programs provide isolation by implementing

these compartments. When data is in a compartment, we say that the compartmentowns

that data. Since programs are active principals inside a compartment, we may also say that

the program owns the compartment (and by extension, all the data inside the compartment).

One should note thatcompleteisolation means thatno flow of information is possible. For

practical systems, this is too restrictive since even programs thatwantto share information

would not be able to. To implement a more pragmatic form of isolation, XOM provides

a shared compartmentthat acts as a common medium available to all programs for in-

formation sharing. In contrast, all other compartments are calledprivate compartments.

Programs must explicitly move information between their private compartments and the

shared compartment. Thus, private compartments are isolated from the shared compart-

ment, but not vice-versa. If two programs wish to communicate information securely, they

may do so by negotiating a shared secret key and treating the shared compartment as an

insecure channel.

2.2 Symmetric Ciphers

Ciphers are algorithms that are used to obscure information in a way that only a principal

who knows a certain value, called akey, can recover the original message. Information in

its plain form is calledplain text. The act of obscuring this information is calledencryption

and producescipher text. The strength of modern ciphers is grounded on principles that are

beyond the scope of this dissertation. Instead, we make common cryptographic assertion

that the strength of ciphers is based on the length and secrecy of the keys.

Symmetric ciphers are a class of ciphers that use the same key for encryption and de-

cryption. The sender uses the key to encrypt a message and send it to the receiver. The

receiver then uses the key to decrypt and recover the original message. An adversary eaves-

dropping on the conversation will not be able to understand the message because she does

not know the key that the sender and receiver share. Some common examples of symmetric

ciphers are 3DES [5] and Rijndael [13].

8 CHAPTER 2. CRYPTOGRAPHIC CONCEPTS

Symmetric ciphers typically operate by permuting elements within the message, and

by non-linear substitutions with the use of lookup tables. As a result, efficient hardware

implementations of symmetric ciphers are possible. However, the draw back is that en-

cryption and decryption are performed with the same key. This means that these ciphers

can only be used if the sender and the receiver already share a secret key.Key distribution

becomes a problem that is often solved by asymmetric ciphers, which are discussed in the

next section.

2.3 Asymmetric Ciphers

Asymmetric Ciphers use a different key for encryption and decryption. The encrypting

key is called apublic keywhile the decrypting key is called aprivate key. The private and

public key pair are randomly created during akey generationphase and then are stored for

use after that. The principal that will receive the protected data (receiver) will generate one

such pair and distribute the public key. Everyone, including the sender of the protected data

(sender) and the adversary know the value of the public key, but not the private key. For this

reason, asymmetric ciphers are also commonly referred to as public key ciphers. If a sender

wants to send a message, she takes the public key of the intended recipient and uses it to

encrypt the message. The receiver keeps the private key secret to herself and thus will be

the only principal who will be able to recover the original message. An important property

of asymmetric ciphers is that the public key reveals no information about the private key.

Asymmetric ciphers rely on a type of mathematical function called a “one-way trap

door function.” What this means is that once the function is applied, it is difficult to undo

it unless there is knowledge of a special “trap door.” In this case the trap door is the private

key that the receiver has. For example, the El Gamal cipher [16], uses discrete logarithms

as a trap door function, while RSA [50] is based on factoring. These types of functions do

not lend themselves well to efficient hardware implementations, and as a result, asymmetric

ciphers are orders of magnitude slower to compute than symmetric ciphers.

Typically, asymmetric ciphers and symmetric ciphers are used together to compensate

for each other’s short comings. A random symmetric key is chosen and the fast symmetric

cipher is used to encrypt the message that is to be sent. The short key is then encrypted

2.4. MESSAGE AUTHENTICATION CODES 9

with the public key using the slow asymmetric cipher. The message is usually much longer

than the symmetric key, and the asymmetric cipher is only used to encrypt the symmetric

key for the message. As a result, for messages of sufficient length the symmetric cipher

will dominate the cost of encrypting the message.

2.4 Message Authentication Codes

Using a cipher only prevents the adversary from learning the contents of a message. In

other words, it prevents observation, but does not prevent or detect modification. Consider

a scenario where an adversary substitutes some random cipher text in place of the actual

cipher text in transit between a sender and a receiver. Even though the adversary cannot

predict what plain text the receiver will recover when she decrypts the cipher text, the

receiver will not be able to verify that the cipher text has been altered and may possibly use

the incorrect data.

One could use one of the ciphers discussed in the previous sections to solve this prob-

lem. The sender cansignthe message by encrypting it with a key known only to the sender

and the receiver, and then sending both the plain text and cipher text to the receiver (note

that we are not concerned about secrecy in this example, though secrecy could be acheived

by encrypting with yet another key). The receiver can then verify that the plain text and

cipher text match. Since only the sender knows the secret key required to create the cipher

text, this prevents an adversary fromforging the message. In this way, we provide a form

of authenticationfor the message. A similar solution can be made using an asymmetric

cipher instead of a symmetric one. The problem with either solution is that it is inefficient.

Essentially, the message will have to double in length to include both the plain text and

cipher text.

To create an efficient solution, we calculate a shorter hash of the message, and encrypt

the hash of instead of the entire message. The receiver simply calculates the hash of the

plain text and verifies that against the encrypted hash. A keyed hash of this type is com-

monly referred to as amessage authentication codeor MAC [34]. MACs are used by XOM

to detect tampering of values in memory and disk.

Chapter 3

The XOM Architecture

XOM uses hardware methods to provide tamper-resistance for software. The goal is to al-

low multiple programs, to co-exist on the same hardware, but at the same time, to provide

strong guarantees that they cannot violate each other’s compartments as illustrated in Fig-

ure3.1. Though the operating system has the ability to manage resources, it is untrusted,

and thus should not be able to circumvent the protection provided by the compartments.

The XOM hardware architecture implements the primitives necessary to support com-

partments. These primitives exist as a set of extensions that can be added to any general

processor architecture. However, these extensions do not fundamentally alter the overall

operation of a the system, and for the most part, the processor operates in a fashion that is

very similar to the original. Regular applications will continue to be able to execute on a

XOM processor unmodified. To become copy and tamper-resistant though, they must be

altered to make use of the XOM extensions.

This chapter looks at the hardware and performance overheads that compartments cre-

ate. It starts by describing the essential operations that a XOM machine must perform:

creating, utilizing, and ultimately destroying a compartment, and protecting the compart-

ment’s memory and register data. These operations will use both asymmetric and sym-

metric ciphers for efficiency. We will also discuss protection in external memory, as well

as implementation issues for operating systems, and effects on the distribution model for

software. To better understand what is required to protect the compartments, this chapter

will briefly preview the types of attacks the machine needs to protect against — but detailed

10

11

Figure 3.1: Compartments. The XOM Machine keeps each program in its own compart-
ment. The compartments isolate the programs from each other, preventing the flow of
information between them.

discussion of attacks will be deferred to Chapter5.

The hardware required to implement this machine can be quite small, since most of

the functionality can be provided by a trusted virtual machine monitor to create a virtual

XOM machine. Unfortunately, this simple machine needs to encrypt/decrypt data on each

memory operation. The chapter then describes how this overhead can be greatly reduced

by adding tags to both the registers and the on-chip cache memory, as well as the use of

hardware accelerators for cryptographic operations.

To study hardware implementation issues, we created a XOM hardware simulator. The

simulator is built on top of the SimOS [28] using an architecture based on a MIPS R10000

processor [27]. We then go on to discuss issues on maintaining XOM systems, such as

upgrading hardware to which software has been tied, as well as recovering software from

a hardware failure. Finally, this chapter finishes with a discussion of related work that

supports copy and tamper-resistance.

12 CHAPTER 3. THE XOM ARCHITECTURE

3.1 The Abstract XOM Machine

We begin this section by describing an Abstract XOM Machine. This is a set of extensions

that when added to a generic machine, allow it to securely execute code in compartments.

The XOM machine implements compartments as described in Section2.1 to isolate pro-

grams executing on the machine from each other. To implement these compartments, the

XOM machine will track which compartment a particular piece of code or data belongs to.

To do this, the XOM machine associates a unique identifier, called aXOM ID with each

compartment. Data and code in the machine are tagged with the XOM ID of the com-

partment to which they belong. When code is executing in a compartment, the XOM ID

for that compartment becomes thecurrently active XOM ID. As a result, all data accessed

by that program must be tagged with the same XOM ID as the compartment, otherwise

an exception occurs and the program is halted. When a program writes data to a location,

the tag on that location is set to the XOM ID of the active compartment. In this way, the

XOM machine associates executable code with data that isownedby that program in its

compartment. The XOM machine extends the base processor architecture with aXOM ID

register that holds the XOM ID of the currently active compartment, as well as adding

XOM Compartment Tagsto all registers. Operating in a compartment penalizes programs

with some amount of performance overhead. As a result, the XOM machine provides pro-

grams the ability to choose whether to execute in a compartment or not. Anenter xom

instruction is added to the instruction set architecture (ISA) of the machine that allows pro-

grams to indicate that they are going to start executing in their compartment and that all

following instructions should be protected. Likewise, anexit xom instruction executed

from within a compartment indicates that the program wishes to leave protected execution.

With this mechanism, a program can even execute partially protected in a compartment,

and partially in the clear with no protection. The actual choice of when to execute se-

curely and when not to depends on the characteristics of the application, as executing in a

compartment incurs certain penalties that will be discussed later.

Compartments provide a way for programs to execute without fear of observation or

tampering. However, the compartment also prohibits the intentional flow of information.

For example, if a program in a compartment wishes to share a result with another program

3.1. THE ABSTRACT XOM MACHINE 13

in another compartment, it would not be able to do so since the other program’s XOM ID

does not match the tags on the registers. To allow controlled communication, XOM pro-

vides ashared compartmentas described in Section2.1. This compartment has a XOM ID

of zero and programs are by default unprotected in the shared compartment before they ex-

ecute anenter xom . On anexit xom instruction, programs return to the shared com-

partment. To allow protected programs to use the shared compartment, the XOM Abstract

Machine extends the base ISA with two additional instructions to allow communication be-

tween programs. This communication is provided by themove to shared andmove

from shared instructions. These instructions provide a controlled way to change the

tags associated with a piece of data. Themove to shared instruction takes data that is

tagged with the active XOM ID and changes the tag on it to the shared XOM ID. Executing

this instruction on data that is not owned by the program results in an exception. Themove

from shared instruction changes data tagged by the shared XOM ID to the active XOM

ID. Once again data has to be tagged with shared before this instruction can be executed.

These two instructions, in combination withenter xom andexit xom , allow a pro-

gram to keep part of its execution and data in a compartment, while keeping another part in

the shared compartment as illustrated in Figure3.2. While in its private compartment, the

program can move data back and forth between its shared and private compartments with

themove to shared andmove from shared instructions.

Thus, a program can transmit data from its compartment to another through the shared

compartment as follows:

1. Program A puts the data to be shared in a register. The register is tagged with Pro-

gram A’s XOM ID.

2. Program A executesmove to shared on the register, moving the data into the

shared compartment. The register is now tagged with the shared XOM ID.

3. Program B executesmove from shared on the register, moving the data from

the shared compartment to Program B’s compartment. The register is now in Pro-

gram B’s compartment.

Note that data in the shared compartment can be read by any program, not just the intended

recipient. If Program A and Program B wish to ensure that the data is transmitted without

14 CHAPTER 3. THE XOM ARCHITECTURE

Figure 3.2: The Shared Compartment. The Shared Compartment is used as a common
compartment through which programs with separate private compartments can communi-
cate. Programs enter and exit their compartments with theenter xom andexit xom
instructions, and move data between their compartment and the shared compartment with
themove to shared andmove from shared instructions. Data can also flow be-
tween private compartments through the shared compartment.

fear of tampering or observation by an adversary, they can set up a secure channel with a

shared key.

3.1.1 Supporting External Memory

A XOM machine such as the one above would require all secure code and data to fit onto

the processor. This is unlikely given the size of today’s programs. While it would be

possible to extend the tagging scheme into memory, this presents possible security flaw.

Communication between the processor and memory usually occurs on a bus implemented

as traces on a circuit board. This can be probed by an adversary with methods orders of

magnitude cheaper than those that would be required to probe on-chip signals [31, 49]. As

a result, the XOM design must assume that any data that has been transmitted off the chip,

3.1. THE ABSTRACT XOM MACHINE 15

can be potentially read or altered by an adversary. In other words, hardware that is not in

the same chip package as the main processor is assumed to not be tamper-resistant. The

security of tags relies on the tamper-resistance of the chip package. To protect memory

we turn to cryptography. XOM encrypts data leaving the processor and decrypts it when

it is loaded back onto the processor. To allow the machine to check the integrity of the

data as well as protect it from observation, a MAC is associated with all values stored in

memory. If an external agent tampers with the data, then the MAC will not verify and

the instruction will cause an exception. As discussed in Chapter2, encryption algorithms

require a key with which to encrypt or decrypt text. As a result, every compartment must

have a uniquecompartment key. Since the program code is initially in the compartment

and in memory, it must be encrypted with the compartment key and accompanied by a

MAC before execution. Compartment code is decrypted with the compartment key before

execution. The XOM machine also uses this compartment key to encrypt and decrypt data

stored by the program in memory.

Because these cryptographic operations incur some overhead, the XOM machine al-

lows programs in a compartment to indicate whether data going to memory should be kept

in the compartment and encrypted, or whether it should be left outside the compartment

in plain text. This is done by adding asecure store instruction, which stores data

securely to memory, and asecure load instruction, which will load secure data from

memory. These do not replace regular loads and stores, which interact with data in mem-

ory without encrypting or decrypting it. Thesecure load instruction takes a destination

register and memory location as operands. It decrypts the contents of memory using the

active compartment key, verifies the MAC, loads the decrypted value into the register and

changes the tag on the register to the active XOM ID. If there is a mismatch in the MAC, the

instruction will cause an exception. Thesecure store instruction stores data to mem-

ory securely, by encrypting it with the compartment key and adding a MAC. It can only be

executed on a register tagged with the active XOM ID, while a regular store can only be

executed on a register tagged with the shared XOM ID. Thesecure store instruction

encrypts the register contents as well as creating a MAC, and stores both to memory. If the

register sourced in asecure store is tagged with a XOM ID other than the active one,

the instruction raises an exception.

16 CHAPTER 3. THE XOM ARCHITECTURE

3.1.2 Supporting an Operating System

Now we have the essential primitives to allow a single program to run securely and use

memory. However, programs must typically run alongside other programs, sharing re-

sources on the same processor. The allocation of resources is governed by an operating

system. To manage resources effectively, the operating system must be able to arbitrarily

interrupt the program, store its state to memory, and then restart the program with that state

at a later time. The operating system must also be able to relocate program data that is in

memory. However, XOM does not trust the operating system. This is because there are

many methods with which an adversary could compromise the operating system and gain

control of it [10]. When a XOM program is interrupted, the contents of the registers are still

tagged with the XOM ID of the interrupted program. As a result, the operating system is

unable to read those values to store them to memory. We need to add two more instructions

to the ISA — thesave register andrestore register instructions. To allow

the operating system to relocate secure data in memory, we make the MACs available to

the operating system so they can be moved together with the encrypted data.

Thesave register andrestore register instructions are used by the oper-

ating system to move data that it does not own and does not belong to the shared compart-

ment. Thesave register instruction takes the contents of a register and creates an

encapsulated version of this data the operating system can move, but cannot manipulate.

It first encrypts the register contents and then calculates a MAC that includes the identity

of the register. It places the encrypted data, MAC, and the XOM identifier into a set of

special registers, which are owned by the operating system. This data can then be stored to

memory.

Therestore register instruction is the inverse of thesave register opera-

tion and it is used to restore the data back to the registers before restarting a program. The

instruction uses the special registers that hold the encrypted data, MAC, and destination

key identifier. The operating system then indicates with the instruction, which register and

what compartment XOM ID it wishes to restore the register value to. The XOM machine

decrypts the data and checks the MAC. If the MAC verifies both the decrypted data and

3.1. THE ABSTRACT XOM MACHINE 17

Instruction Description
enter xom Enter secure execution and set the currently active XOM ID

to the current compartment. All following instructions are
in the compartment and should be encrypted and accompa-
nied by a MAC.

exit xom Exit XOM compartment and return to the shared compart-
ment. Set the currently active XOM ID to shared.

secure store Stores register to memory securely.
secure load Loads memory securely from memory to a register.
save register Encrypts and saves a register to memory so that the operat-

ing system can save a program’s state.
restore register Decrypts a value from memory and places it a register to

restore a program’s state.
move to shared Sets the XOM ID tag of register to the shared compartment.
move from shared Sets the XOM ID tag of register to that of the executing

program.

Table 3.1: Instructions in the Abstract XOM Machine. This table summarizes the instruc-
tions that the XOM Abstract Machine adds to the base instruction set architecture.

destination register were not tampered with, the decrypted data is written into the destina-

tion register and the register tag is set to the target XOM ID. In this way, we ensure that the

register contents are not altered and that the values are restored back to the same register

from which they were saved.

The other issue is to enable the operating system to relocate data that has been stored

and encrypted in memory. This is done by making the MACs stored by the XOM processor

available to be copied or moved along with the encrypted data. Thus when the operating

system wishes to relocate values in memory or swap them to disk, it copies both the MAC

and the cipher text together. This does not require any special instructions as the cipher text

in memory can be handled with regular memory operations.

At this point we have described all the instruction set additions XOM needs to make

to the underlying architecture. We summarize these instruction in Table3.1. We will

now discuss how this architecture affects the software distribution model. Further, we will

discuss the security of the XOM machine, by examining the types of attacks XOM defends

against.

18 CHAPTER 3. THE XOM ARCHITECTURE

3.1.3 Software Distribution Model

Since programs are typically created on a system other than the one that will execute the

program, the compartment keys must be transmitted from the program producer to the pro-

cessor that does the execution. Asymmetric ciphers are the perfect tool to accomplish this.

Figure3.3 illustrates a flowchart for this process. By hiding a private key in the hardware

of the processor and distributing the public key, programs have a way of transmitting the

compartment key to the processor for execution. As discussed in Section2.3, the software

producer simply encrypts the program image with the compartment key, and then encrypts

the compartment key with the public key of the target processor. Since this private key is

used to protect all compartment on a machine, it is referred to as themaster secret. If every

XOM machine is initialized with a different public/private key pair, then this provides a

way for a program to authenticate the processor it is executing on, as it will only be pos-

sible for the processor with the correct private key to decrypt and access the compartment

key. This providescopy protectionfor programs. Without the compartment key, a proces-

sor cannot decrypt and execute the program. Without knowledge of the master secret, even

an adversary with sophisticated virtualization or simulation technology, will not be able to

fake or forge a XOM machine, and fool software into executing.

To execute compartment code, the XOM processor must first decrypt and recover the

compartment key. As a result, what theenter xom instruction actually does to enter the

compartment, is to decrypt the compartment key with the private key or master secret of

the XOM machine, and then assign a XOM ID to it. The decrypted compartment key is

then stored in a hardware table called theXOM Key Table, which maps the compartment

keys onto XOM IDs. The XOM machine uses the XOM Key Table to find the appropriate

compartment key to decrypt instructions and for use with thesecure load andsecure

store instructions. For example, during asecure load the XOM machine does a

lookup on the XOM Key Table using the value in the currently active XOM ID register.

With this, it gets the correct compartment key, and uses that to decrypt the value that is

coming from memory.

The exit xom instruction unloads the compartment key from the XOM Key Table.

This frees up entries in the XOM Key Table for use by other programs. However, this opens

3.1. THE ABSTRACT XOM MACHINE 19

Figure 3.3: Software Distribution in XOM. The software distributor uses asymmetric keys
to transmit the compartment key to the processor. The processor can then recover the
compartment key and use it to execute code inside the compartment.

up a potential security hole. An entry in the XOM Key Table could be freed and reallocated

to another compartment, and it is possible for the new compartment to be assigned the same

XOM ID as the previous compartment. The new compartment could thus gain illegitimate

access to data belonging to the old compartment due to recycling of the XOM ID value. To

ensure that the new compartment doesn’t gain unauthorized access to data in the previous

compartment’s data, the XOM machine clears all registers that are tagged with a XOM ID

before it can be allocated to a new compartment.

XOM affects the commercial model for software distribution. For a given program,

a compartment key must be encrypted specifically for each processor. As a result, the

20 CHAPTER 3. THE XOM ARCHITECTURE

distributer will typically encrypt all copies of the program with a single compartment key

and distribute the encrypted copies. When a customer wishes to purchase the software, as

part of the installation process, she contacts the software distributor to pay for or register the

software. At this point, the distributor will return a compartment key specifically encrypted

for the customer’s processor after he is satisfied that the customer has paid for the software.

One issue where key distribution is a bit more complicated is if multiple CPUs execute

the same binary. This is the case in systems with multiple processors. Multiprocessor

systems have several CPUs that share a common pool of physical memory and are managed

by a single operating system image. As a result, each CPU has to be able execute the same

encrypted binaries. However, each XOM CPU has a different master secret. To allow all

CPUs to run the same binaries, the compartment key is encrypted separately for each CPU

and software support is added so when a thread wishes to allocate a XOM Key Table Entry,

it allocates it with the compartment key encrypted for the CPU it is running on.

XOM also affects the software development process. Software developers use debug-

ging tools inspect or even alter the state of running programs during development. XOM

would prevent any of these debuggers from working since the processor is unable to differ-

entiate between a valid user trying to debug a program and a malicious attacker trying to

use a debugger to extract secrets from a program. The solution is to note that the developer

should know the value of the compartment key. With this knowledge she may decrypt and

alter values in memory. In addition, with knowledge of the compartment key, she can con-

struct a program that can inspect and alter the register state of the program being debugged.

This can be done with a technique akin to that used to create user-defined signal handlers

as explained in Section4.4.3

3.1.4 Security

The Abstract XOM Machine has a number of useful capabilities at this point. It can sup-

port the execution of programs protected in private compartments. It also allows the use

of an untrusted operating system to manage resources for such programs. Next, we will

examine some common attack strategies that an adversary may employ and see how the

XOM machine defends against them.

3.1. THE ABSTRACT XOM MACHINE 21

Simply encrypting data in memory is not sufficient to make it tamper-resistant. Encryp-

tion only ensures the secrecy of the data in memory, but does not guarantee its integrity —

an adversary can still alter values randomly in memory. To address this, the XOM processor

adds a MAC to every piece of data that is written to memory and verifies this MAC for both

data and instructions that are read from memory as mentioned in Section3.1.1.1 The MAC

is then stored to memory at the same time the cipher text is. Taking a MAC of the data

prevents an adversary from substituting tampered data in the place of real data. This attack

is referred to as aspoofing attack. Because the adversary cannot create a valid MAC, she

cannot forge a valid piece of data in memory.

A slightly more complex attack is one where the adversary does not need to create a

fake cipher text and MAC. Instead, she simply copies both the cipher text and the MAC

from one memory address to another. We refer to this as asplicing attack. A splicing attack

is countered by including the virtual address along with the data in the pre-image2 of the

MAC. Thus, when verifying the hash, the XOM machine can ensure that the data it is being

loaded from the same virtual address it was originally written to. Since the virtual address

must be included in the pre-image for the MAC calculation, the caches must be extended

to include the virtual address of the data in each cache line.

Still another attack exists for a determined adversary. This attack involves the adver-

sary recording cipher text and MAC values at a point in the execution of a program and

then “replaying” them at a later point in the execution of the same program. This attack

is aptly named areplay attack. An adversarial operating system is capable of performing

this attack on both register and memory values. To replay a register value, the adversarial

operating system interrupts a running process and saves the register state using thesave

register instruction. The adversary than restores the process state and restarts the pro-

cess. At a later time, the adversarial operating system interrupts the process again, but

instead of restoring the register values from the second interruption, it restores the values

from the first interruption. When the process restarts, it will be using the replayed regis-

ter values. To defend against such an attack, the XOM machine uses a key other than the

1If desired, a separate key could be used for the MAC, and everything would still follow, but we do not
discuss that here.

2The pre-image is the value that is used in the hash calculation.

22 CHAPTER 3. THE XOM ARCHITECTURE

compartment key for encryption in thesave register andrestore register in-

structions. This key, called theregister key, is regenerated every time a particular XOM

compartment is interrupted. As a result, the register key that is used to save the register at

the time of the first interrupt, will have been destroyed and regenerated when the adversary

tries to restore the state from the second interrupt. Thus, trying to restore the stale value

will result in an exception.

Instead of trying to replay values in registers, an adversarial operating system may try

to replay data in memory. To do this, the operating system records cipher texts and MACs

in memory and then overwrites the same location at a later time with the old cipher text

and MACs. To defeat this attack the application keeps a hash for a region of memory in

one of the registers. To replay this region, the adversary must also be able to replay the

hash kept in the register. However, the regenerating register key will protect the register

from replay, thus defeating the memory replay attack. The drawback with this approach

is that every time a value in the region changes, the hash kept in the register must be

updated. If the region of memory is large, or if the values in this region change frequently,

this results in a large overhead as the entire region must be read to update or verify the

hash. The performance impact can be mitigated by using Merkle trees to perform memory

authentication. For now, we will defer the discuss Merkle trees to Section5.2.

3.2 Virtual Machine Implementation

A XOM machine can be implemented as a virtual machine with a minimum amount of

hardware. Such a virtual machine would operate between the operating system and the

hardware. The XOM virtual machine takes the underlying hardware and presents a XOM

Abstract Machine image to the operating system. However, a virtual machine that uses

emulation often suffers slow downs on the order of 3-13 times [64]. The performance

will be substantially improved with the implementation of aXOM Virtual Machine Mon-

itor (XVMM). With a virtual machine monitor, software is compiled for the underlying

hardware, and runs natively on the underlying hardware for the most part, with the proces-

sor hardware invoking the virtual machine monitor only when certain events occur. Virtual

3.2. VIRTUAL MACHINE IMPLEMENTATION 23

machines have been implemented in the past without additional hardware [8, 24, 63]. How-

ever, supporting the security features of XOM in a virtual machine monitor does require a

small amount of extra hardware.

The main hardware additions to the CPU include special microcode that stores the pri-

vate key, private on-chip memory, the ability to trap on instruction cache misses and a

special privileged mode under which the XVMM runs. The actual XVMM could be im-

plemented in either software or in microcode. Software implementations must be authen-

ticated by a secure booting mechanism such as those described in [37, 61, 62]. Either way,

the XVMM executes as a trusted, authorized, and privileged program. There are special

hardware facilities that only the XVMM can access, such as the private key, secure on-chip

memory and the revectoring of certain interrupts. This is why the XVMM must run at a

privilege level higher than that of the untrusted operating system.

A XVMM implementation also requires the hardware to invoke it on certain events.

When a program in a XOM compartment misses in the instruction cache, the XOM ma-

chine must fetch the required instruction from memory. The XVMM must be invoked by

the hardware on instruction cache misses so that it may decrypt the data coming from mem-

ory and place it in the cache. In this way, the XVMM can use the instruction cache to hold

decrypted instructions. This is possible becauseall instructions in a compartment must

be encrypted. However, an XVMM cannot store data in plain text in the data cache. Be-

cause compartments have the ability to choose whether data is stored to the compartment,

via thesecure store instruction, or stored to the shared compartment using a regular

store, the XVMM would have no way of telling what compartment data in the caches is in,

without additional hardware in the data cache.

An XVMM requires the processor to be configured to trap on instruction cache misses

so that the XVMM may decrypt data and instructions that are coming from memory. An

informed memory operation[30] is a mechanism that interrupts the processor on all cache

misses, and can be used to implement the control transfer required for our XVMM. The

XVMM configures the informed memory operation to transfer control to code specific to

the memory operation that missed. This code will then perform the required decryption to

recover the instructions for execution.

Data in the machine (such as caches and registers) must be tagged in some way to

24 CHAPTER 3. THE XOM ARCHITECTURE

implement compartment access control. The obvious solution is to add a hardware tag to

each unit of hardware storage that requires one. However, this additional hardware is not

strictly needed by an XVMM. Instead of explicitly adding hardware tags, the XVMM could

simply remove the compartment data from the machine every time the program leaves

a compartment (either due to an explicitexit xom instruction, or implicitly due to an

interrupt). This is done by flushing the instruction cache and clearing all registers.

Flushing the instruction cache ensures that instructions that have been decrypted and

placed in the cache are executed after the program leaves its compartment. Because the

instruction cache contains no modified data, clearing the contents is a straightforward op-

eration. However, clearing the registers requires support from the XVMM. Ashadow reg-

ister fileis needed to hold data required for XOM instructions such asmove to shared

andmove from shared , as well as register save instructionssave register and

restore register . The XVMM maintains a set of shadow registers for the each com-

partment in the XOM Key Table. These are managed entirely by the XVMM, requiring no

special hardware support. The shadow registers store the value as well as an ownership

bit indicating whether the register is in the private or shared compartment. Themove to

shared andmove from shared instructions cause the XVMM to update the owner-

ship state in the shadow registers from owned by the private compartment to owned by the

shared compartment. When a compartment is interrupted, the XVMM moves data that is

owned by the compartment from the registers into the shadow registers, thus preventing

illegal access by the operating system’s interrupt handler. Later, when the operating system

restarts the compartment, the XVMM moves the data from the shadow registers back to the

actual registers.

The limitation of this model is that the XVMM cannot unambiguously differentiate

between an operating system that legitimately alters the register state of a compartment,

from one that does so maliciously. For example, the operating system may interrupt a XOM

program running in a compartment, and store the register state of the compartment using

register save instructions. However, it might not restore a certain register when it

restarts the compartment, but may instead leave a value of its choosing in that register. The

XVMM cannot safely restart the process in this case since the unrestored register may hold

tampered data, which could be used by the compartment code if restarted. A conservative

3.2. VIRTUAL MACHINE IMPLEMENTATION 25

Figure 3.4: The XOM Virtual Machine Monitor (XVMM). The XVMM requires some
additional hardware in the form of storage for the masters secret (private key) and private
memory for the XVMM to use.

solution would be for the XVMM to refuse to restart the compartment, until the operating

system restores the state of all compartment registers using therestore register

instruction. However, this would prevent the operating system from returning data from

after an exception, as it may do after a system call. The solution to this is to note that

during an asynchronous interrupt, the operating system has no reason to alter the register

state of the interrupted compartment. However, on a synchronous interrupt such as a system

call, the compartment knows a priori, that a certain register will have a return value in it. As

a result, the burden is placed on the compartment to make sure the result register has had

its ownership changed to shared with themove to shared instruction before a system

call. Otherwise, the operating system will not be able to set the return value. This burden

on the application can be removed with additional hardware as we see later.

The additional hardware and structure of the XVMM is summarized in Figure3.4. The

26 CHAPTER 3. THE XOM ARCHITECTURE

XVMM implements the instructions as follows:

enter xom : The program indicates an address where the XVMM will find the pro-

gram’s encrypted compartment key. The XVMM loads the encrypted compartment key

and performs an asymmetric decryption to recover the compartment key. The XVMM then

stores the compartment key into the XOM key table, assigns a XOM ID, and notes that this

is the “currently active XOM ID”. Instructions after anenter xom must be encrypted and

accompanied by a valid MAC, otherwise the XVMM will not load them into the instruction

cache for execution. The XVMM initially assumes all registers are in the shared compart-

ment after anenter xom . The program must indicate to the XVMM which registers it

will use to store private data with themove from shared instruction.

The XVMM registers a handler for cache miss events so that instruction cache misses

incurred during the execution of XOM code will be correctly vectored to it. Similarly, it

also re-vectors all CPU exceptions and interrupts to itself. If the compartment takes an

exception that must be delivered to the operating system, the XVMM copies all registers

that are in the private compartment into the set of shadow registers corresponding to that

compartment. Naturally, if the compartment was active, the program counter is one of the

registers that the XVMM saves. Finally, before execution of secure code, the instruction

cache is flushed to clear out any instructions that are not in the compartment. Later, when

the operating system returns execution to the user process, the XVMM must again be in-

voked. It restores the private registers from the shadow registers for the compartment, but

leaves the registers in the shared compartment untouched. This allows the operating system

to modify some user registers in order to to handle events such as system calls.

exit xom : The XVMM unregisters the handler for cache miss faults and restores

handlers for all CPU interrupts and exceptions. The contents of the instruction cache are

flushed.

secure store : The XVMM ensures that the register is marked as private in the

shadow register file. Then it encrypts the register and calculates a hash. Both the register

and hash are stored to memory.

secure load : The XVMM decrypts the value from memory and verifies it against

the hash. If this operation succeeds, the value has not been tampered with and is written

into the register. The status of the register in the shadow register file is set to private.

3.2. VIRTUAL MACHINE IMPLEMENTATION 27

move to shared : The XVMM verifies that its shadow registers indicate that the

register is currently in the private compartment. If it is not, the XVMM raises an exception.

Otherwise, it tags the shadow register as shared.

move from shared : The XVMM checks that the register is currently marked as in

the shared compartment in its shadow registers. If so, it marks the register as being in the

private compartment.

save register : When the compartment is interrupted, the XVMM moves all val-

ues marked private in the shadow register file from the architectural registers into the

shadow registers. However, the XVMM still must note which registers were saved by

the operating system so it knows which ones to restore when restarting that compartment.

To do this, it keeps another bit, called thesaved bitfor each register in the shadow register

file the XVMM maintains for each compartment. On an interrupt, the XVMM clears all the

saved bits in the shadow register file of the compartment. When the operating system exe-

cutes asave register instruction, the XVMM sets the saved bit for the corresponding

register in the shadow register file.

restore register : When the operating system uses therestore register

instruction to restore a register value, the XVMM clears the saved bit in the shadow register

file, indicating that the register is to be restored when the compartment is restarted. When

the operating system restarts the XOM program, the XVMM checks that all saved bits are

cleared in the shadow register file. If any are still set, the XVMM throws an exception.

This prevents the operating system from injecting data into the compartment. If all saved

bits are cleared, the XVMM copies all private registers from the shadow register file to the

architectural registers and restarts the compartment. Any registers not marked private in

the shadow register file are left unaltered.

The XVMM trades off performance for a simpler hardware implementation where most

of the complexity is moved to software. The additional hardware requirements are secure

storage for the private key and some on-chip memory that the XVMM can use for its private

data structures.

28 CHAPTER 3. THE XOM ARCHITECTURE

Figure 3.5: Memory Support for Secure Store. Data is first stored into the cache. On cache
eviction, the XOM Cache Ownership Tag is used as an index into the Compartment Key
Table. The appropriate compartment key is then used to encrypt and MAC the data.

3.3 A Hardware Implementation of a XOM Machine

The XVMM described in the previous section suffers from three main performance penal-

ties which can be mitigated with extra hardware. The first is that the XVMM is unable to

cache compartment data, only instructions. In addition, the XOM machine must flush the

instruction cache every time there is a trap. Both problems can be fixed by adding XOM

ownership tags to the on-chip caches. The second source of overhead is the fact that the

cryptographic operations are handled in software by the XVMM. Selecting fast algorithms

and adding hardware acceleration reduces the cost of these operations. The final source of

overhead is that the instructions that XOM provides are interpreted as opposed to imple-

mented in hardware. A full hardware implementation would remove the need to trap to the

XVMM as those operations would be handled directly in hardware.

The performance overhead of the memory encryption and MAC computation can be

3.3. A HARDWARE IMPLEMENTATION OF A XOM MACHINE 29

Figure 3.6: Memory Support for Secure Load. On a cache hit, the data is simply loaded
from the cache. If the load misses, the cipher text and MAC is decrypted, verified and
placed in the cache.

reduced by adding XOM compartment tags to the on-chip caches. Tags allow the pro-

cessor to track the ownership of values in the caches, thus enabling the machine to cache

data valves, and removing the need to flush the instruction cache on traps. This allows

the XOM processor to utilize the on-chip data cache to defer encryption until the data is

flushed to memory and also means that data or instructions need only be decrypted once

as they are loaded from memory into the cache. Caching effectively reduces the number

of cryptographic operations, meaning the program need only pay the cost when it misses

in the cache. The overhead of the cryptographic operations are also reduced by tagging a

cache line rather than a single data word. This larger block size reduces initialization over-

head of the operations and also reduces the space overhead for the MACs as each MAC is

protecting a larger section of memory.

Tagging cache lines and not individual words also introduces a security complication.

There is a XOM ID tag for every register, and a XOM ID tag for every cache line. But a

30 CHAPTER 3. THE XOM ARCHITECTURE

cache line typically contains several words, so as a result, the granularity of compartment

ownership in the registers is different from that in the caches. This poses a security threat

that allows an adversary to take ownership of data that does not belong to it. If the XOM

machine naively sets the XOM ID to the last compartment that writes the cache line, this

would allow an adversary to take ownership of all the data in a cache line by writing to a

single word within that line. This attack is illustrated in Figure3.7. Clearing the cache line

with some value (such as zeros) before allowing the new owner to write to the line does

Figure 3.7: Valid Bits in the Caches. A clever adversary exploits that difference in protec-
tion granularity between registers and cache lines. The attacker writes to a single word to
take ownership of all words in the cache line.

3.3. A HARDWARE IMPLEMENTATION OF A XOM MACHINE 31

not solve the problem, as this would allow an adversary to arbitrarily inject values (such

as zeros) into the compartment of the previous owner. The solution requires additional

hardware to be added in the form of per-word valid bits in the cache. Valid bits are added

to each cache line to indicate which words in the line are valid and which are not. When

the XOM ID of a cache line changes, all valid bits are set to invalid, and only become

valid when that particular word is written by the new owner. Data which is set to invalid

in this way is lost. This implies that for correct operation, two compartmentscannotshare

a cache line as each time the line changes ownership, the previous owner’s data will be

clobbered. When a cache line is flushed to memory, the valid bit information must also be

stored along with the MAC and then returned when the cache line is loaded back into the

cache, otherwise the adversary could get rid of the valid bit state by simply causing the line

to be evicted.

Adding tags to the caches also introduces another problem. Naively implemented, a

XOM application that forks will cause the operating system to create a child that is the

exact copy of the parent, with the child inheriting the parent’s XOM ID value. If the

operating system interrupts one process, say the parent, and restores the other, an error will

occur since the current register key will not match the register state of the child.

The solution is to allocate a new XOM ID for the child. Because there are two different

threads of execution, we need two different register keys (and two different XOM IDs).

Register data is tagged with XOM IDs, which distinguish between the compartment of the

parent and the child. The situation with the data in the cache is more subtle. Since both

parent and child have the same compartment key, secure data in the caches must be tagged

with the same value for both. Clearly, we cannot use the XOM ID tag, which is different for

each process; instead a different set of tags, cache ownership tags, are used in the caches.

To support multiple instances of the same program using compartments, the XOM Key

Table consists of two sub-tables: theRegister Key Table, which holds the register keys and

theCompartment Key Table, which holds the compartment keys. The Register Key Table is

indexed by the XOM ID register, which refers to the register key of the currently executing

XOM ID. The value of this register is set and unset via theenter xom andexit xom

instructions. The index of a key in the Register Key Table is used as a shorthand (instead

of the key itself) to tag the register contents. We call these tags theregister ownership tags,

32 CHAPTER 3. THE XOM ARCHITECTURE

Register Key Table

Reg. Key #1
Reg. Key #2
Reg. Key #3

…
Reg. Key #N

Comp. Key #1
Comp. Key #2
Comp. Key #3

…
Comp. Key #K

Compartment Key Table

XOM ID
Register

Register

Cache Line

Owner tag (1..N)

Owner tag (1..K)

Memory Hash

XOM Key Table

Figure 3.8: XOM Key Table Design
XOM Key Table Design. The XOM ID register refers to the Register Key entry for the
currently executing XOM process. The ownership tags on the registers are used by XOM
to encrypt and decrypt register contents under program control, using specialized machine
instructions described in Table3.1. The ownership tags on the caches are used by XOM
to encrypt and decrypt cache contents in response cache evictions and fills, which are not
under explicit program control.

and they hold the XOM ID of the compartment that owns the register. Likewise, cache

lines are tagged with the indices into the Compartment Key Table. These tags are called

the cache ownership tags. Every register key in the Register Key Table corresponds to a

single entry in the Compartment Key Table, although multiple register keys may point to

the same entry in the Compartment Key Table. This architecture allows several XOM IDs

to map to the same cache ownership tag value, and thus use the same compartment key in

memory. These structures are shown in Figure3.8.

3.3. A HARDWARE IMPLEMENTATION OF A XOM MACHINE 33

The performance overhead introduced by XOM comes primarily from the time to per-

form the cryptographic operations. Two types of cryptographic operations are used in the

XOM machine. Asymmetric ciphers are used to protect the compartment key during trans-

mission from the software producer to the execution processor, while symmetric ciphers

are used to protect the actual compartments in memory. When a compartment is about to

execute, anenter xom instruction causes an asymmetric operation in the XOM machine

to recover the compartment key and enter it in the XOM key table. This means that every

entry into a compartment incurs an asymmetric operation. RSA, a common asymmetric

cipher, takes on the order of 300 million cycles to decrypt a value with a key-length of

4096 bits, according to the OpenSSL [48] crypto-library implementation. However, entry

and exit into a compartment is an infrequent event, so the cost of the initial asymmetric

operation will not have a large impact on the overall execution time of the XOM program.

As a result, the benefit of adding hardware to accelerate asymmetric operations does not

justify the cost. However, since the decrypted compartment keys are stored in the Compart-

ment Key Table, it would be possible to cache the compartment key for later use. Programs

that enter and exit their compartment frequently may benefit from caching the decrypted

compartment keys. This requires some further extensions to the instruction set and will be

discussed in Section4.2.1.

On the other hand, symmetric operations are required to decrypt instructions on every

cache miss. The symmetric cipher Rijndael [13] is a common cipher in use at the time

of writing. Optimized software implementations can perform an encryption or decryption

in Rijndael on the order of 300-1400 cycles. However, even with a optimistic cache miss

rate of 1%, this would still have an average overhead of 3-14 cycles per memory opera-

tion. This motivates us to examine hardware acceleration for the symmetric operations in

memory. There exist custom hardware implementations that can encrypt or decrypt a block

in approximately 10 cycles [45]. Rijndael is an iterative algorithm which consists of 12-

14 iterations of a basic “round” operation. In addition, since the encryption block, an L2

cache line, is larger than the basic block of the Rijndael cipher, an appropriate encryption

mode must be selected. For efficiency, a mode which allows parallel or random access de-

cryption, such as Output Feedback Mode (OFB) or Counter Mode (CTR) [41] is desirable.

This allows for faster decryption with additional hardware, as well as optimizations such

34 CHAPTER 3. THE XOM ARCHITECTURE

ascritical word first. Thus, with a conservative latency estimate of 14 cycles, a pipelined

implementation that provides a new encrypted or decrypted value every cycle is conceiv-

able. Existing implementations of the Rijndael algorithm consists of bit permutations and

lookup tables and use anywhere between 60 K to 280 K gates [45], which is an acceptable

cost for a modern processor.

Each cache line requires a MAC to be generated to check for tampering in memory.

To be effective, the MAC must be of sufficient length to guarantee a low probability of

collision. In practice, most security systems rely on a MAC of at least 128 bits. The MAC

algorithm can be made significantly faster by noting that the hash is going to be encrypted

before being stored in memory. As a result, the XOM machine need not necessarily em-

ploy a hash with a strong one-way property since the adversary would need to break the

encryption to exploit any reversibility in the hash. As a result, a faster hash algorithm such

as CRC, may be used to take the hash for the MAC. More custom hardware could be added

for the hash (which would be smaller than the symmetric cryptography hardware since it

does not need to be pipelined). For cache evictions, the hash calculated for the MAC can

happen in parallel with encryption. Unfortunately, this is not the case for cache fills since

the hash can only be calculated from the plain text value. An alternative is to use a cipher

that also checks for integrity such as Offset Codebook (OCB) [51]. This completely re-

moves the need to calculate a MAC, but makes the encryption and decryption operation

slower.

Another optimization deals with the latency of verifying the hash value on a load. Since

the hash depends on the entire line, a simple implementation would delay returning any

data to the processor until the entire line was fetched onto the processor. To eliminate this

additional overhead the XOM hardware returns the requested word first, and speculatively

starts the processor when the requested word is decoded. If the hash does not verify the

XOM thread will abort, and does not need to be restarted, obviating the need for a precise

exception in this case. All that is needed, is to ensure is that any operations that allow

information to leak out of the machine such as stores cause the machine to stall until the

check is complete.

Finally, adding XOM register ownership tags directly to the registers removes the need

for shadow registers. The tags on the caches indicate explicitly which compartment can

3.3. A HARDWARE IMPLEMENTATION OF A XOM MACHINE 35

Figure 3.9: A XOM Machine Implemented in Hardware. A full hardware implementation
of XOM may include tags in all on-chip caches and registers, as well as cryptographic
accelerators on the memory bus.

access that register. This simplifies the actions the XOM machine must take during a trap.

In addition, the requirement that the register used for a system call return value be in the

shared compartment before the system call is also removed. The explicit tag on the register

checks accesses that occur after the compartment is restored, so the XOM processor need

not perform a saved bits check as it does with an XVMM. In addition, the tags allow the in-

structions such asmove to shared , move from shared , save register , and

restore register to be implemented in hardware, removing the need to call into the

XVMM on these instructions.

A XOM machine can now be implemented by the bare hardware of the processor as

shown in Figure3.9. The machine maintains a register that holds the currently executing

program’s XOM ID. It uses this to control access to all registers and cache lines. The

XOM key table stores mappings between XOM IDs, register keys, XOM cache tags and

36 CHAPTER 3. THE XOM ARCHITECTURE

compartment keys. XOM instructions in the previously implemented by the XVMM can

now be implemented directly into the instruction set architecture of the machine:

enter xom : This operation remains essentially unchanged from the XVMM. Asym-

metric operations are still handled in software either by microcode or by a small VMM

loaded at boot. The XOM processor assumes all registers are initially in the shared com-

partment and marks their XOM ID tags as such. However, when a trap occurs, the XOM

processor only updates the XOM ID of the currently executing program to be shared.

exit xom : Because the values in the caches and registers are protected by XOM

tags, the processor does not need to flush the caches. It simply changes the XOM ID of the

currently executing program to shared.

secure store : The XOM processor verifies that the source register’s tag matches

the XOM ID of the program executing the store. If these tests pass, the processor stores

the register value to the cache. The XOM ID is translated to a XOM cache ownership tag,

which is written to the cache line. This process is illustrated in Figure3.5.

secure load : If the line hits in the cache, it compares the XOM cache tag of the

cache line against the XOM ID of the program. If a mapping in the XOM key table agrees

with the two values, both the value in the cache and matching XOM ID are written to

the register. If the load misses in the cache, then the line is filled from memory. This is

illustrated in Figure3.6.

move to shared : The XOM processor ensures that the program is not executing

with the XOM ID of shared. It changes the XOM ID tag on the register to shared.

move from shared : The XOM processor checks that the XOM ID of the program

is not shared. It then sets the XOM ID tag of the register to the XOM ID of the program.

save register : The XOM processor uses the register key associated with the

XOM ID tag on the register to encrypt and MAC the register value. This value will typ-

ically be larger than the plain text value since it will include a MAC. While saving this

large value to memory could be implemented in several cycles, it is easier to place the

larger value in several registers and have the operating system save each value individu-

ally. Instead of the singlesave register instruction, we change the architecture to

implement anxenc instruction that will encrypt and MAC the register contents with the

register key and place them in four specialXOM registers. These can be accessed via the

3.4. THE XOM HARDWARE SIMULATOR 37

Parameter Value
Master Secret 4096 bits
Compartment Keys 128 bits
MAC Hashes 128 bits
L1 Cache Line 32 bytes
L1 Cache Size 16 Kbytes
L2 Cache Size 128 Kbytes
L2 Cache Line 128 bytes
Registers 64 bits
Time for each instruction 1 cycle
Time to decrypt a cache line 15 cycles
Time to access memory 150 cycles
Time for asymmetric key decryption400,000 cycles

Table 3.2: XOM Simulator Parameters. These parameters are used in our SimOS based
implementation of a XOM hardware simulator.

xsave instruction, which takes an index pointing to one of the four registers and saves it

to a memory location.

restore register : Similarly, to replace therestore register instruction,

anxrstr instruction restores values in memory to the four XOM registers and anxdec

instruction is used to decrypt the value in the XOM registers with the register key, verify

the MAC, and return the value to a general-purpose register.

If any of the security checks above fail, the XOM processor throws an exception,

switches the currently executing program’s XOM ID to shared, and traps to the appro-

priately registered exception handler. This halts the execution of any private compartment

code.

3.4 The XOM Hardware Simulator

A cycle accurate, detailed hardware simulator of a system with a XOM processor was built

on top of the SimOS hardware simulator [28]. SimOS not only models the processor, but

the memory system (including the memory bus), and disk. A processor model in SimOS,

called Mipsy, is extended to contain XOM capabilities as explained in this chapter. Mipsy

38 CHAPTER 3. THE XOM ARCHITECTURE

Abstract Instruction Actual Instruction Implementation
enter xom xalloc $rt,offset($base)

xentr $rt,$rd
exit xom xfree $rt

xrclm $rt
xexit $rt

secure store xsd $rt,offset($base)
secure load xld $rt,offset($base)
save register xgetid $rt,$rd

xenc $rt,$rd
xsave $rt,offset($base)

restore register xrstr $rt,offset($base)
xdec $rt,$rd

move to shared xmvtn $rt
move from shared xmvfn $rt

Table 3.3: Simulated XOM Instructions. Implementation of XOM Architecture primitives
on top of our MIPS based architecture. Because of restrictions of the MIPS ISA, as well as
requirements by the operating system, some primitives specified as single instructions in the
XOM Abstract Machine, are actually implemented as several instructions in the simulator.

models an in-order processor where every instruction completes in one cycle unless stalled

by a cache miss. Mipsy’s instruction set is very similar to that of the MIPS R10000 Proces-

sor [27]. The modifications to the simulator closely follow the full hardware implementa-

tion of a XOM processor. A master secret and XOM Key Table are added to the processor

model, along with a register to hold the currently active XOM ID. Tags are added to the on-

chip caches and registers and cryptographic functions are added to the memory interface

between the caches and memory system. Extra processing is performed by the processor

each time an exception occurs and a new exception is created, which is thrown when an ac-

cess violation occurs. Finally the additional instructions given in Table3.1are added to the

instruction set. These follow the format given by the R10000 instruction set and are sum-

marized in Table3.3. Because of restrictions in the base MIPS instruction set architecture,

as well as requirements in the operating system, some of the single instructions in the XOM

Abstract Machine are implemented as several instructions in our simulator. Since part of

the motivation for breaking down the instructions into several smaller ones is motivated

by the operating system, details about what each of the simulated instructions does will be

3.5. MAINTENANCE ISSUES 39

given in the next chapter, which addresses operating system issues. In our implementation,

we use the parameters given in in Table3.2. Other parameters such as CPU speed, memory

bus bandwidth and latency, memory size, etc. are configurable.

3.5 Maintenance Issues

In this section we address two issues concerning how to maintain systems using XOM pro-

cessors. The first discusses how to migrate software from one XOM processor to another

one. This may happen legitimately when a customer buys new hardware, but would like to

continue running the same software for example. The other issue concerns the related case

where a processor is destroyed and the master key is not recoverable.

3.5.1 Processor Upgrade

Customers may wish to upgrade a processor to a newer model, but continue to use all

trusted software purchased for the previous processor. To support this, there must be some

way to migrate the master secret from the old processor to the new one. To allow this, we

propose two schemes: one which requires a central authority and one which is decentral-

ized. Both require that that the master secret should be stored EEPROM or some form of

rewriteable non-volatile RAM on the processor, and that a trusted program can be created

to overwrite the master secret with a new value.

In the first scheme, a trusted central authority, such as the processor manufacturer is

required. The customer, when wishing to upgrade to a new processor returns the old pro-

cessor to the authority. The authority then provides the customer with a trusted program

that she runs on her new processor. The trusted program contains the master secret of the

old processor embedded in its encrypted binary. The compartment key of the program is

specifically encrypted for the new processor, so it can only be run on the processor the cus-

tomer has just purchased. When she runs the program, it overwrites the the master secret on

the customer’s new processor with that of the old processor. After that, the new processor

can run all programs encrypted for the old processor.

In the second scheme, no trusted authority is required. Each processor has a trusted

40 CHAPTER 3. THE XOM ARCHITECTURE

program on it. The old processor has asenderprogram and the new processor has areceiver

program. The programs have the ability to read and overwrite master secrets. They use a

simple protocol to transfer the secret from the old processor to the new one. The main goal

is to make sure that there is no way for an attacker to tamper with the messages such that

there will be two processors with the same master key.

1. Receiver randomly creates a symmetric session key and encrypts it with Sender’s

public key. She appends a message indicating that she wishes to transfer the master

secret from the Sender to the her. Receiver signs the message with a secret signing

key to ensure the message cannot be forged.

2. Sender decrypts the message and recovers the session key. After this, both programs

will encrypt all messages with the session key. Sender then reads the master secret

from the old processor and sends it to Receiver over the encrypted channel.

3. Receiver receives the new master secret, stores it, but does not use it to overwrite

the master secret on Receiver’s processor yet. Instead, she sends an acknowledgment

back to the Sender indicating that the master secret has been received.

4. When Sender receives the acknowledgment, he overwrites the master secret with

some random value, destroying it on the old processor. Sender then sends a “secret

destroyed” message to Receiver.

5. Receiver receives the “secret destroyed” message and then commits the new master

secret to her processor overwriting the current master secret. The new processor can

now run all binaries originally encrypted for the old processor.

The only attacks a malicious adversary can mount are to either prevent the transfer from

happening, or to cause the old processor’s master secret to be destroyed and never commit-

ted to the new processor.

3.5.2 Processor Key Recovery

If a XOM processor is ever physically destroyed, lost or otherwise rendered inoperable,

then there should be away to obtain a new processor with the same master secret so that all

3.6. RELATED WORK 41

software purchased for the destroyed processor is still available. A scheme similar to the

first scheme for processor upgrades in the previous Section may be used. The only caveat

is that the customer should be able to prove that the old processor was destroyed. However,

even if she does not, the most damage the she can cause is to obtain two processors with

the same master secret.

Note that this solution requires a trusted third party to hold the master keys for all

XOM processors. While certain key infrastructures have such single points of failure, such

a structure is not desirable. The alternative is to require that the customer to have the

compartment keys for all software re-encrypted for the replacement processor.

3.6 Related Work

XOM is by no means the only system which tries to protect software from tampering. In

this section we will address various hardware and software approaches that have been tried

in the past.

We will then explore trusted computing options which are being developed concur-

rently. The most notable of these are Microsoft’s Palladium system, now called the Next-

Generation Secure Computing Base, and the Trusted Computing Platform Alliance (TCPA).

3.6.1 Hardware Approaches

There are several related hardware systems that support functionality similar to XOM.

In [21], [22], and [23] Gilmont et al. outline a method to use support in the memory

management unit to support the use of encrypted memory. Like XOM, they used a hybrid

scheme with a private-public key pair used to encrypt a symmetric key. In their perfor-

mance study, they found that the overheads were modest. Their system differs from XOM

in that they do not provide any secure method for the operating system to manage resources,

and thus implicitly trust the operating system.

In 1997, Kuhn proposed a system entitled “TrustNo1”, which has many features similar

to XOM [35]. He also proposes the use of encrypted memory, but allows the use of an un-

trusted operating system, by using hardware support to encrypt the state of the interrupted

42 CHAPTER 3. THE XOM ARCHITECTURE

process before allowing the operating system to save it. XOM uses the same method, but

allows the saving and restoring of state at a register granularity. In addition, XOM provides

protection against replay attacks and addresses the accompanying problem of having two

instances of the same program using the same compartment key.

An alternative form of hardware support to XOM, is to encase an entire system of stan-

dard components in a tamper-resistant package. The IBM 4758 [32] contains a complete

system, including a processor, memory, a PCI interface and a serial port. However, the pro-

cessor is a 100Mhz 486 processor and is slow compared to the 1GHz or more processors

it is paired with. As a result programming environment incurs significant overhead and

communication between the compute processor and the coprocessor is akin to a Remote

Procedure Call (RPC) model. Despite this, secure-coprocessor cards have experienced

some degree of success. Bennett Yee has been responsible for the Dyad [62] and Sanctu-

ary [65] projects which explore the protection of mobile code against tampering via the use

of secure coprocessors.

3.6.2 Software Approaches

For the most part, software approaches have centered around the concept of software ob-

fuscation. The goal is to find a transformation that can be applied to a program such that

the transformation does not alter the working of the code, but it would be difficult for an

adversary to reverse that transformation. This allows the program to hide secrets in its code.

To detect tampering, the program performs checks on itself that are rendered invisible to

the adversary via obfuscation. Many of these techniques involve compiler-level transfor-

mations such as altering control and data structures, inserting dead or irrelevant code, or

using lookup tables [12]. These methods have become quite popular and some have even

been commercialized at the time of this writing. However, their effectiveness is an open

question as many still believe that general software obfuscators do not exist [6].

3.6.3 Trusted Computing

The Trusted Computing Platform Alliance (TCPA) [61], Microsoft’s Next Generation Se-

cure Computing Base (also known as Palladium) [17, 18] and Intel’s LaGrande technology

3.6. RELATED WORK 43

all aim to provide a platform where a remote party can establish some level of trust. The

goal of these systems was originally to provide functionality for Digital Rights Manage-

ment (DRM) such that content providers could securely distribute content on the Internet

without fear of piracy. As a result, these architectures provide tamper-resistant and tamper-

evident functions such that a remote party, such as the content distributor, can establish

whether software, such as a movie player, has been tampered or altered on a customer’s

machine. We will now discuss TCPA and Palladium. Unfortunately at the time of writing,

we are not aware of any documentation on LaGrande.

TCPA uses a secure Trusted Platform Module (TPM), which exists as an extra IC sol-

dered onto the motherboard of the system. The TPM performs various functions such as

pseudo-random number generation, key and data storage and certain cryptographic func-

tions. In addition, the TPM certifies the boot process ensuring that only a certified operating

system can be run. This allows applications to trust the operating system. Finally TCPA

provides the ability forattestation. This allows the hardware to prove to a third party that

a certain piece of software is running on the platform. TCPA’s feature set is much smaller

than that of XOM’s. While TCPA checks the integrity of programs much like XOM, it

does not allow program’s to hide secrets in their binary code. In addition, its secure boot

architecture verifies software at boot time, but is vulnerable to an adversary who is able to

alter the contents of memory after that time.

On the other hand, Microsoft’s Palladium takes a different approach. Palladium uses a

security kernel, known as thenexusthat will run at a privilege level below that of the oper-

ating system. This prevents it from being tampered by the operating system. Programs can

communicate directly with the nexus to have it performs functions on behalf of programs,

or even have part of the program execute inside the nexus. Palladium provides many of the

same functions as TCPA, includingsealed storage, a form of storage that is only accessible

to programs with the correct credentials. It also allows the platform to attest as to what

software is running on the platform. Unlike TCPA, Palladium providescurtained memory,

which divides the physical memory on the machine into secure and insecure domains. Fi-

nally, Palladium will also provide secure input and output channels so that a compromised

operating system will not be able to tamper with input from the user or output going to the

user. XOM is able to provides the same attestation and sealed storage function as it does

44 CHAPTER 3. THE XOM ARCHITECTURE

with TCPA. In addition, compartments provide functionality similar to that of curtained

memory. XOM does not provide any functions to secure I/O, but would be compatible

with the functionality that Palladium provides.

With the exception of the secure I/O provided by Palladium, XOM provides a super-

set of functionality of TCPA and Palladium, at the cost of more complex hardware. Both

sealed storage and curtained memory are effectively implemented by the compartment ar-

chitecture of XOM. For persistent storage across reboots, the XOM processor must be

augmented with some non-volatile RAM much the same way TCPA and Palladium are.

XOM provides attestation since programs have their integrity checked constantly during

execution. In addition, a remote user can be assured that a program will only run on a

certain piece of hardware since only that hardware will contain the correct master secret to

execute that program. In general, XOM’s memory encryption allows XOM to be resilient

to an adversary who tampers with values in memory or on the memory bus, while both

Palladium are vulnerable to such attacks.

3.7 Summary

This section explored the architecture of a XOM Abstract Machine that implements com-

partments via extensions to a generic processor architecture and instruction set. We showed

that compartments can be implemented on chip via a tagging scheme that tracked the own-

ership of on-chip storage. While protected by tags, both data and instructions could be

kept in plain text for efficiency. However, when utilizing memory or other storage where

the integrity of tags could not be guaranteed, the XOM machine used cryptographic tech-

niques in the form of ciphers and MACs to guarantee both the secrecy and integrity of such

storage. This required that a compartment key and a regenerating register key be main-

tained for each compartment in a XOM Key Table structure. Finally, the compartment key

must be transmitted from the software distributor to the customer’s processor machine us-

ing asymmetric ciphers. This requires that a master secret in the form of a private key be

added to the processor.

There are two implementation alternatives for the XOM Abstract Machine. In one alter-

native, we explore a virtual machine monitor implementation which can be implemented

3.7. SUMMARY 45

with a minimal amount of hardware additions to the base processor. While flexible and

simpler, this implementation suffers from performance penalties. These are mainly due

to its inability to fully utilize the on-chip caches to store compartment data in plain text,

the length of time to perform cryptographic operations in software, and the overhead of

interpreting XOM instructions and maintaining structures such as the XOM Key Table in

software. These overheads are mitigated by a full hardware implementation that adds tags

to the registers and caches of the machine, as well as adding hardware accelerators to per-

form the cryptographic operations.

Chapter 4

An Operating System for the XOM

Architecture

The XOM architecture alters the traditional trust model that has existed in computer sys-

tems. Instead of applications trusting the operating system to safe guard them from tam-

pering, applications now distrust the operating system and trust the hardware instead. This

naturally changes the role of the operating system from both a root of trust and a resource

manager, to just that of a resource manager, with the root of trust existing in the hardware.

We examine how this change in role affects the implementation of the operating sys-

tem. As discussed in Chapter3, the operating system must deal with user data and state

differently. For example, to handle an interrupt, the operating system must use special

instructions provided by the XOM machine to save user state in the registers. User data

is encapsulated and protected by the hardware, but it is the operating system which deter-

mines where the data is to be stored. We will examine in more detail the changes that XOM

requires in an operating system. We do this by porting the IRIX6.5 [55] operating system

to the XOM architecture simulator described in Section3.4, to create the operating system

XOMOS.

The other concern is the effect XOM has on performance. The XOM hardware adds

cryptographic delays to memory accesses. On the other hand, changes to the operating

system also increases the latency of certain operations. In this chapter, we will also examine

the performance implications XOM and XOMOS have, by measuring the performance of

46

4.1. OPERATING SYSTEM DESIGN ISSUES 47

various applications and operating system micro-benchmarks.

4.1 Operating System Design Issues

The XOM architecture must satisfy two seemly conflicting requirements. It must protect

program data from a malicious operating system, but must allow a non-malicious operat-

ing system to effectively manage resources amongst mutually untrusting programs. Since

resource sharing is mostly done by the scheduler, the hardware must provide the same ex-

ception and interrupt functionality found in ordinary processors. This allows the operating

system to limit the execution time of programs and interpose when programs access pro-

tected resources. On the other hand, when the operating system moves the physical location

of resources, it must adhere to the XOM compartments. This means, when saving process

state in registers, it must use the special instructions provided by XOM that encrypt and

MAC processor registers. When relocating data in memory, the operating system must also

relocate the respective MACs.

XOMOScan be constructed by modifying a currently existing operating system. Since

most of the modifications to the operating system deal with supporting new hardware, the

higher level semantics of the underlying operating system, such as resource scheduling

policies, user program interface and software architecture are not important. In practice, the

design of XOMOS can be viewed more as a process of porting a standard operating system

to a platform that supports secure execution. However, because the XOM architecture has

some unique properties, this process requires solving some issues not found in ports to

other architecture.

There is a significant amount of new hardware that XOMOS has to support. For appli-

cations to use this hardware, interfaces in the form of new system calls must be provided.

In addition, the hardware prevents the operating system from reading some of the hardware

state unless it uses a specific interface specified by the XOM architecture. The operating

system must be modified to use this interface. These modifications fall into three cate-

gories:

• Modifications for XOM Key Table support: The hardware and operating system

must have support for programs to use the XOM key table, and the operating system

48 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

must manage the limited number of entries it has.

• Modifications for dealing with encrypted data and MACs: When the operating

system is managing system resources such as CPU time or memory, it must deal with

encrypted data and the accompanying MACs. The MACs must also be stored and

managed by the operating system as process data. The hardware and the operating

system must work together to ensure that the hash values are saved properly.

• Modifications for traditional operating system mechanisms:Various features in

a traditional operating system such as shared libraries, process creation, and user

defined signal handlers must change because the operating system access to user

data has been restricted.

We will now describe each of these modifications in more detail.

4.2 XOM Key Table Support

The XOM architecture specifies a XOM Key Table which is used to store both the com-

partment keys and register keys which are used to implement compartment. However,

compartments are created by user applications, so the operating system must provide an

interface through which user applications may manipulate entries in the XOM Key Table.

This is implemented in XOMOS as a set of system calls which user applications may call

to allocate and deallocate entries in the XOM Key Table.

Since the XOM Key Table is a finite hardware resource, it can limit the number of

concurrent compartments in use by user applications. XOMOS circumvents this restriction

by virtualizing the XOM Key Table entries.

4.2.1 XOM Key Table System Calls

The abstract XOM machine implements a singleenter xom instruction to enter a com-

partment. This allocates an entry in the XOM key table, which is freed when the program

executes anexit xom instruction. While this is adequate, it is inefficient if a program

4.2. XOM KEY TABLE SUPPORT 49

wishes to enter and exit its XOM compartment frequently, since the hardware would have

to perform an expensive public key operation every time.

An additional consideration is thatenter xom andexit xom instructions may be

executed by the programs themselves as unprivileged instructions. This makes aXOM

Transition, the act of entering and exiting a compartment, efficient as it does not require

kernel intervention. However, ifenter xom is unprivileged, the operating system cannot

prevent a malicious application from mounting a denial of service attack by allocating

all entries in the XOM key table. To satisfy these conflicting requirements, we make the

operations of loading and unloading XOM Key Table entries separate from the operations

of entering and exiting XOM compartments.

We split each of theenter xom andexit xom instructions into two smaller in-

structions. Thexalloc andxfree instructions allocate and invalidate XOM Key Table

entries, whilexentr andxexit instructions enter and exit a XOM compartment. When

a program wants to enter a new XOM compartment, XOMOS executesxalloc on behalf

of the program to load a compartment key. XOMOS specifies an entry in the Compartment

Key Table to load the key into. The XOM hardware also allocates an entry in the Register

Key Table corresponding to the compartment key and returns an index into the Register

Key Table. This index is returned by XOMOS to the program, which it then uses with the

xentr instruction to begin execution in that compartment. Code following thexentr

instruction must be properly encrypted and hashed to execute properly. Executingxexit

from a compartment exits the compartment, but the XOM Key Table entry is not removed

until the program invalidates it, so subsequent entries into the compartment only require an

xentr . Figure4.1 illustrates this process of allocating an entry in the XOM Key Table

and using it to enter a compartment.

Becausexalloc andxfree access a limited hardware resource, they are privileged

instructions, and are exported by XOMOS to user applications via the system callsxom al-

loc() andxom dealloc() . This scheme allows the operating system to interpose and

prevent misbehaving applications from allocating too many XOM key table entries. It is

important to note that even if the operating system executesxalloc on behalf of a user ap-

plication, it cannot use the resulting XOM ID to execute code in that compartment since the

operating system cannot forge a valid MAC without knowledge of the actual compartment

50 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

key.

Figure 4.1: Allocating and Using XOM Key Table entries. When a program wishes to enter
its compartment for the first time, it must first allocate an entry in the XOM Key Table and
get a XOM ID. However,xalloc the instruction to allocate XOM Key Table entries is
a privileged instruction. As a result, this functionality is provided to the program by the
operating system via a system call. With a valid XOM ID, the program and enter and exit
the compartment as it pleases. However, only the operating system can deallocate the XOM
Key Table entry, which the program does via another system call.

4.2. XOM KEY TABLE SUPPORT 51

4.2.2 Virtualizing the XOM Key Table

XOMOS manages the XOM Key Table to allow as many applications as possible to run

simultaneously. However, the table is a limited resource and there must be a mechanism to

reuse its entries. Recall that the internal storage in the machine is protected by ownership

tags that correspond to indices into the Register Key Table and the Compartment Key Table,

so reusing table entries could compromise the data of the previous owner, since both new

and old owner would share the same tag value.

To ensure that old entries are not reused inappropriately, we allow XOMOS to invalidate

and reclaim table entries.xfree invalidates entries in the Register Key Table entry causing

that particular register key to be destroyed, but preserves the Compartment Key Table entry

associated with it.xrclm is used to reclaim entries in the Compartment Key Table. Recall

that multiple Register Key Table entries may refer to the same entry in the Compartment

Key Table. As a result, an entry in the Compartment Key Table can only be evicted with the

xrclm instruction if all the Register Key Table entries referring to it have been previously

invalidated with thexfree instruction. XOMOS maintains the necessary data structures

in order to do this. It is easy to maintain the data structures since XOMOS knows which

entries are in the invalid state since all table operations require system calls into the kernel.

When a Compartment Key Table entry and the corresponding Register Key Table entries

are reclaimed, the hardware must ensure that no data protected by the old keys still exists

on the processor.

When a Register Key Table entry is invalidated, the processor clears all registers in the

register file that may be tagged with the evicted register key. This can be implemented by

reserving a XOM ID tag value to indicate that a register is invalid and cannot be read by

any program. Later, as the Compartment Key Table entry is reclaimed, all register data

related to that compartment key has already been flushed, leaving only data in the cache.

However, it is too complex for the hardware to check every cache entry so it invalidates

all on-chip caches to prevent old data in the caches from leaking out. It is the operating

system’s responsibility to make sure any dirty data in the cache is written back first, or it

will be lost.

The operating system maintains a mapping between process IDs, Register Key Table

52 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

indices, and encrypted compartment keys. When a process requests a XOM Key Table

entry via thexalloc system call, but none is available for reclamation, the operating

system forcibly reclaims an entry with thexfree andxrclm instructions. Note that the

operating system should select an entry whose processes are not interrupted while in a

compartment (since invalidating the register key makes any process state protected by the

key unrecoverable). When the process that just lost its entry is subsequently restarted, the

operating system reallocates the Key Table entry using the encrypted compartment key.

Should there be no process which is a suitable candidate for such a reclamation, XOMOS

has two options: it can forcibly kill a process holding the resource, or it may stall the

process that is requesting the resource until it becomes available. If XOMOS chooses to

stall the requester, it must be careful not to cause any deadlocks amongst its processes.

4.3 Dealing with Encrypted Data and MACs

Because user data is made inaccessible to XOMOS in plain text, XOMOS can only move

user data around when it is encrypted and accompanied by a MAC. This means that in

some cases, such as dealing with user state on an interrupt, XOMOS must first invoke the

hardware to encrypt the user state before it can save it away. In this section, we will explain

how XOMOS uses the XOM hardware to save and restore user contexts. In other cases,

XOMOS needs to relocate user data in memory to virtualize memory. However, when

secure data is encrypted in memory with a MAC, the operating system must manage these

MACs along with the encrypted data. This modification is also covered in this section.

4.3.1 Saving and Restoring Context

As discussed in Section3.1.2, the operating system saves the state of an interrupted process

with the aid of additional hardware instructions. However, when saving the register value

with the save register instruction, the operating system has no way of reading the

ownership tag of the register it is saving. When the operating system restores registers with

therestore register instruction, it needs to tell the hardware which compartment to

restore the register to with a suitable tag. To fix this, we add a new instruction,xgetid

4.3. DEALING WITH ENCRYPTED DATA AND MACS 53

that gets the ownership tag value of the compartment that owns that register. XOMOS uses

this to determine a register’s ownership tag before saving it. Without this ability, XOMOS

cannot identify the owner of data, and thus cannot manage the register.

The encrypted register is larger than a 64-bit memory/register word on our processor

due to the additional information that must be saved. XOM uses a 128-bit cipher text that

contains the encrypted register value, register number, and the register ownership tag. This

is then combined with a 128-bit hash for integrity resulting in a 256-bit value. Saving

the entire value to memory in one instruction would result in a multi-cycle, multi-memory

access instruction, which is difficult to implement in hardware.

Instead of the singlesave register instruction, we change the architecture to im-

plement anxenc instruction that will encrypt and hash the register contents with the reg-

ister key and place them in four special XOM registers. These can be accessed via the

xsave instruction, which takes an index pointing to one of the four registers and saves

it to a memory location. Similarly, to replace therestore register instruction, an

xrstr instruction restores values in memory to the four XOM registers and anxdec in-

struction is used to decrypt the value in the XOM registers with the register key, verify the

hashes, and return the value to a general-purpose register.

The low-level trap code in XOMOS includes the XOM register access instructions.

Figure 4.2 illustrates the code to save and restore a register. This sequence saves and

restores register$s0 . $k1 points to the base of the exception frame whileEF S0 is the

offset into the exception frame where the register value of$s0 is stored. A similar sequence

is required for every register. Processing traps for code in a compartment represents a large

instruction overhead — where 2 instructions are required to save and restore a register for

an application with no protected registers, 13 instructions are required to save and restore

each protected register. To preserve the performance for applications that are not executing

in a compartment, XOMOS checks if an interrupted process is in XOM mode, and only

executes the extra instructions if it is required.

Aside from new context switch code, changes are also required to the exception frame

structure, where XOMOS stores the interrupted process state. The exception frame must

be enlarged to allow room to hold the ownership tag of each register as well as the larger

cipher text.

54 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

li $k1,BASE_OF_EFRAME # save cntxt
xgetid $s0,$at # get tag

of $s0->$at
xenc $s0,$at # encrypt $s0

into $x0...$x3
xsave $0,EF_S0($k1) # save
xsave $1,(EF_S0+8)($k1) # encrypted
xsave $2,(EF_S0+16)($k1) # values
xsave $3,(EF_S0+24)($k1)
sw $at,(EF_S0_XID)($k1)
... # restore cntxt
xrstr $0,EF_S0($k1) # restore
xrstr $1,(EF_S0+8)($k1) # from memory
xrstr $2,(EF_S0+16)($k1)
xrstr $3,(EF_S0+24)($k1)
lw $at,(EF_S0_XID)($k1)# load XOM ID
xdec $s0,$at # decrypt

Figure 4.2: XOMOS Context Switch Code. In this code snippet, the operating system saves
the state of the register$s0 . To do this, it first tests the XOM ID tag on the register with
xgetid to get the identity of the compartment it is in. It then encrypts the register with
xenc and saves the encrypted and MAC’ed value to memory withxsave . Lastly it saves
the compartment XOM ID. To restore the register, it does the inverse, loading the encrypted
and MAC’ed value withxrstr , and decrypting it withxdec .

Some parts of the interrupted process state cannot be protected by XOM and are left

tagged with the shared compartment. For instance, data such as the fault virtual address

in a TLB miss, or the status bits that indicate whether the interrupted thread was in kernel

mode or not, must be available to the operating system for it be to handle these exceptions.

While this process state reveals some information about the application, the nature of such

information is limited. For example, a malicious operating system can obtain an address

trace of every page an application accesses while in a XOM compartment by invalidating

every page in the TLB and recording every fault address.

4.3.2 Paging Encrypted Memory

XOM uses cryptographic hashes to check the integrity of data stored in memory. The op-

erating system also must virtualize memory, which means that it must be able to relocate

4.3. DEALING WITH ENCRYPTED DATA AND MACS 55

encrypted data and MACs in physical memory. Unfortunately, it is impossible to imple-

ment the storage of the MACs completely in hardware because to virtualize memory, the

operating system must be able to access and move the MACs together with encrypted val-

ues in memory. We store the hashes on a different page from the data so as to retain a

contiguous address space.

A malicious operating system cannot take advantage of this separation between the

MACs and the data. The hardware will not let a XOM program with a secure memory load

if a valid MAC is not supplied to it. To tamper with data, the operating system must be able

to create a valid MAC for the fake data. Using sufficiently strong cryptographic algorithms

can make this computationally difficult.

We reserve a portion of the physical address space for thexhashsegment, where the

MACs for XOM will be stored. The starting location of the XOMOS kernel is adjusted

to be just below thexhashsegment. In our XOM processor, L2 cache lines are 128 bytes

long and require a 128-bit MAC, making thexhashsegment one-eighth the size of physical

memory. To facilitate data address to hash address translation, we locate the segment at

the top of the physical address space. The offset of the MAC in the segment can then be

calculated by dividing the physical address of the first word in the cache line by eight.

Whenever the XOMOS pager swaps a page in physical memory out to the backing

store, it also copies the matching values in thexhashsegment onto a reserved space on

swap. When faulting a page back in, the operating system copies the MAC data of the page

being faulted in, and places it at the correct offset in thexhashsegment. The operating

system gives similar treatment to XOM code pages since XOM code also has MAC values

protecting it. These are stored in a separate segment in the executable file. When a code

page is faulted in, the appropriate MAC page is also read in from the executable file image

and placed in thexhashsegment.

Since not all applications may actually use XOM facilities, our simple design is waste-

ful as it reserves a fixed portion of memory for MAC. Unencrypted values will not have

hash values that need to be saved. The design could be made more efficient with additional

hardware in the form of support for supporting flexible hash address to physical address

mappings.

56 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

4.4 Supporting Traditional Operating System Mechanisms

The XOM architecture affected three mechanisms normally found in operating systems.

The first was the use of shared libraries. Since shared libraries are executed directly by

many applications, they cannot be used by an application in a compartment directly. We

will address this problem first. We will then address the problem of running multiple in-

stances of the same compartment code. An example of this is if an application in a com-

partment makes a UNIX “fork” system call. Finally, certain operating systems allow appli-

cations to define their own signal handlers. However, when the operating system delivers a

signal to the application, the state of the interrupted context will be encrypted. The signal

handler requires special processing to access the encrypted state, as well as to modify it

and restart the context.

4.4.1 Shared Libraries

Linking libraries statically is relatively straight forward as the library code can be placed

in the XOM compartment by encrypting and hashing it with the compartment key after

linking. On the other hand, if linked dynamically, shared library code cannot be encrypted

since it must be linkable to many applications, and encrypting it with a certain key would

make it linkable to only one. While it is possible to have code in the compartment encrypt

the library code at run time, thus bringing it into the compartment, this is complicated, and

there is no way to authenticate the unencrypted code without additional infrastructure (In

the simplest case, the library would have to be signed). Instead, we chose to design an

interface where XOM encrypted code must call unencrypted library code with the assump-

tion that the call is insecure — the caller cannot be sure that the library code has not been

tampered with.

To support dynamically linked libraries in a way that is transparent to the programmer,

the compiler must be altered to use acaller-savecalling convention to deal with secure data.

To see why, recall that in a callee-save calling convention, the dynamic library subroutines

are expected to push the caller’s registers on the stack. However, since the subroutine

is not in the same compartment as the XOM code calling it, it will not have the ability to

access those values. Thus, the caller, rather than the callee, must save all secure registers. In

4.4. SUPPORTING TRADITIONAL OPERATING SYSTEM MECHANISMS 57

addition, before calling the subroutine, the calling XOM code must first move, as necessary,

register values such as subroutine arguments, the stack pointer, frame pointer, and global

pointer to the shared compartment so that the callee can access them. The key point is that

all data that the library will need, must be placed in the shared compartment for the library

to access. After this, the program exits its XOM compartment with thexexit instruction.

Encrypted data cannot be stored on the same cache line as unencrypted data. When

making a function call across a XOM boundary, we can either realign the frame pointer for

local variables to cache line boundaries, or simply use a separate stack when executing in a

XOM compartment. Similarly, the start of the unencrypted code must be aligned to be on

a different cache line than that of the encrypted code.

When returning from the subroutine call, the above sequence is reversed. The appli-

cation re-enters its XOM compartment, moves the stack pointers back from the shared

compartment, replaces them to the values before alignment and restores the caller saved

register values. Similar code must be executed before a system call since the system call

arguments and program counter must be readable by the kernel.

We have implemented and tested this method by manually saving the registers and

adding the wrapper code around calls to the C standard library (libc). An example of such

wrapper code is given in Figure4.3.

Libraries that perform security sensitive routines should be statically linked and en-

crypted. An example of this is the OpenSSL library, which contains cryptographic routines.

On the other hand, it does not make sense to encrypt shared libraries that consist of input

or output routines. The program should check values from these libraries to see if they are

sensible since they could potentially be coming from an adversary.

4.4.2 Process Creation

Naively implemented, a XOM application that forks will cause the operating system to

create a child that is the exact copy of the parent, with the child inheriting the parent’s

register ownership tag value. If the operating system interrupts one process, say the parent,

and restores the other, an error will occur since the current register key will not match the

register state of the child. This is a problem, since a fork will appear exactly like a replay

58 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

compiler has saved all registers
ownership tag value is in $s0
sd $fp,0($sp) # push fp
and $fp,$fp,˜0xF # align fp
xmvtn $fp # move pointers
xmvtn $sp # to null
xmvtn $gp
xmvtn $a0 # move
xmvtn $a1 # subr. arguments
xmvtn $t9
xexit # exit XOM (aligned)
jal $t9 # subroutine call
...
xentr $s0 # reenter XOM (aligned)
xmvfn $fp # move pointers
xmvfn $gp # back
xmvfn $sp
xmvfn $v1 # move return value
ld $fp,0($sp) # restore old fp
now compiler restores all
caller save regs.

Figure 4.3: Exiting and Entering a Compartment for a Library Call. To make a shared
library call, the XOM program must move all subroutine arguments, as well as stack, frame
and global pointers to the shared compartment. It then exists the compartment and jumps
to the subroutine. On subroutine call return, the XOM program enters the compartment,
moves the return value and pointers back, and continues with execution.

attack to the hardware since the same register state is being loaded twice.

As was mentioned earlier, the solution is to allocate a new register ownership tag for

the child. Because there are two different threads of execution, we need two different reg-

ister keys (and two different register ownership tags). A newxom fork() library call is

created for programs where both the parent and child of a fork will be using compartments.

xom fork() is similar to regular UNIXfork() except it will use thexom alloc()

system call to allocate for the child, a second register key with the same compartment key

as the parent. They must have the same compartment key because the child needs to ac-

cess the memory pages it inherits from the parent. After the new Register Key Table entry

is acquired, the parent requests the operating system to do a normalfork() . When the

parent returns, it continues to use the old register ownership tag, while the child will use

the new register ownership tag. Any data the parent wishes to pass to the child securely

4.4. SUPPORTING TRADITIONAL OPERATING SYSTEM MECHANISMS 59

must be done through memory via thesecure store andsecure load instructions

asxom fork() is executed outside of the compartment.

Eventhough we have two different XOM ID’s able to read the same memory values, this

is not a security flaw. Both XOM ID’s are allocated to programs with the same compartment

key, so the only way an adversarial operating system might exploit this mechanism, is to

copy state from one instance of the program to another. However, since a program can

protect its memory from replay, it would be able to detect when its memory values has

been overwritten with values from another instace.

4.4.3 User-defined Signal Handlers

Operating systems typically provide a mechanisms in which they may deliver interrupt-like

events to a user process. In UNIX this mechanism is called asignal. Typically processes

have default handlers defined that will be invoked when a signal arrives. Systems may also

allow programs to define their own handlers which they register with the operating system

to be called instead of the default handlers. These are termeduser-defined signal handlers.

User-defined signal handlers are provided with a copy of the state of the interrupted

process. It may access that state, as well as modify it and then restart the process with

the new state. However, when a process executing in its XOM compartment is delivered a

signal, the state of the interrupted thread will be encrypted. XOMOS saves the register state

of the process usingxgetid , xenc , andxsave instructions much like the context switch

code in Figure4.2. In XOMOS, the interrupted state is copied into asigcontextstructure

and delivered to the user-level signal handler. However, to support XOM, the fields of the

sigcontextstructure are enlarged the same way the exception frame is, to accommodate the

larger encrypted register values and hashes.

To process the signal, the signal handler requires the register key that thesigcontext

structure is encrypted with. To be secure, the hardware must only release this key to a

handler in the same compartment as the interrupted thread, which means the signal handler

code must also be appropriately encrypted and hashed with the same compartment key as

the interrupted thread. Entry into the signal handler within the XOM compartment and

the retrieval of the register key must be a single atomic action. Otherwise, we can get

60 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

the following race: If the signal handler has entered the compartment and gets interrupted

before it retrieves the register key, then that key will be destroyed by the hardware before

the handler can ever get to it.

The XOM hardware guarantees the required atomicity by writing the register key into

a general-purpose register when a program executes axentr instruction. This way, the

signal handler in the XOM compartment always has the required register key, even if it is

Figure 4.4: User-defined Signal Handler Support. The main thread of execution recieves a
signal and the user-defined signal handler is invoked. The handler is atomically given the
register key by the hardware when it enters the compartment. In this stage, the compartment
code in the handler may alter the state of the main thread’s compartment before restarting
it.

4.5. COSTS OF IMPLEMENTING XOMOS 61

subsequently overwritten in the key table by an interrupt. With the register key, the signal

handler can then decrypt and verify the cipher texts in thesigcontextstructure, and even

modify and re-encrypt them if necessary.

The simplest way for the signal handler to restart the thread is to restore the new register

state and jump to the interrupted PC. However, IRIX requires the restart path for the signal

handler to pass through the kernel so that it can reset the signal mask of the process. The

kernel uses the contents of thesigcontextstructure returned by the handler to restart the

process. Thus, the signal handler requires a way to set the register key so that it matches

the key used in the modifiedsigcontextstructure. To do this, we modifyxexit to take

a register value, which the hardware will use as the current value of the internal XOM ID

register. XOM makes signal restarts that pass through the kernel more expensive because

the signal handler must re-encrypt all modified register values in thesigcontextstructure

and the hardware must decrypt all those values when the operating system restarts the

thread. This process is illustrated in Figure4.4.

In fact, if the signal handler modifies any of thesigcontextregisters, it should select a

new register key and re-encrypt all of them with that key. Otherwise, if the signal handler

reuses the old key, a malicious operating system may choose to restore the old value and

ignore the new value. In addition, a malicious operating system may deliver signals with

faulty arguments. This will not pose a security problem since the contents in thesigcontext

structure will only be accessible if they were encrypted and hashed properly.

We have described the process of porting XOMOS. In this process, the instructions in

Table3.3 were implemented in our simulator to execute XOMOS. Table4.1 summarizes

the functions that the instruction set extensions perform.

4.5 Costs of Implementing XOMOS

With an implementation, we can now evaluate the overheads of implementing XOMOS.

There are two types of overheads in the porting XOMOS: the implementation effort in

the amount of extra code that was added or changed in IRIX to make XOMOS, and the

performance overhead in the slowdowns that the extra code adds to the execution of both

the operating system and XOM programs. In this sections we will discuss each of these

62 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

overheads in turn.

Instruction Description
xalloc $rt,offset($base) Privileged. $rt is the XOM ID of the allocated

XOM Key Table Entry. memory[$base +
offset] is the location of the encrypted com-
partment key.

xentr $rt,$rd Enter XOM compartment with XOM ID$rt .
The current register key is placed in$rd .

xfree $rt Privileged. Mark the entry in the XOM Key Table
indicated by$rt as invalid.

xrclm $rt Privileged. Reclaim XOM ID$rt in the XOM
Key Table.

xexit $rt Exit XOM compartment and return to the shared
compartment.$rt becomes the register key for
the XOM ID.

xsd $rt,offset($base) Stores $rt into memory [$base +
offset] .

xld $rt,offset($base) Loads $rt with memory [$base +
offset] .

xgetid $rt,$rd XOM ID tag value of$rt is placed in$rd .
xenc $rt,$rd If so, encrypt the contents of$rt with the keys

indicated by XOM ID$rd .
xsave $rt,offset($base) Store contents of XOM coprocessor register$rt

to memory[$base + offset] .
xrstr $rt,offset($base) Load memory at memory[$base +

offset] into XOM coprocessor register
$rt .

xdec $rt,$rd Decrypt the 256 bit value set byxrstr , validate
the result and restore to register$rt . Set the
XOM ID tag on$rt .

xmvtn $rt Set the XOM ID tag of$rt to shared.
xmvfn $rt Set the XOM ID tag of$rt to the XOM ID of the

executing program.

Table 4.1: Description of Simulated Instructions. The instructions implemented in the
simulator were implemented to support the port of XOMOS. Their functions are described
here.

4.5. COSTS OF IMPLEMENTING XOMOS 63

Function Number of
Lines Files

Key Table System Calls 63 2
Key Table Reclamation 28 2
Save and Restore Context 907 16
Paging Encrypted Pages 40 1
Signal Handling 802 2

Table 4.2: XOMOS Kernel Implementation Effort. This table gives number of lines and
number of files that were changed in the IRIX Kkernel to make XOMOS.

Function Num. of Lines
Shared Library Wrappers 64
Signal Handling 136
Fork & Process Creation 72

Table 4.3: XOMOS User-code Implementation Effort. The number of lines changed in
user level code in XOMOS.

4.5.1 XOMOS Implementation Effort

To implement XOMOS, we added approximately 1900 lines of code to the IRIX 6.5 kernel.

The breakdown of these lines of code is shown in Table4.2. In addition to the kernel

changes, dealing with process creation, shared libraries, and user level signal handling

required changes at the user level, as shown in Table4.3.

One qualitative observation we made was that most of the kernel modifications were

limited to the low-level code that interfaces between the operating system and the hard-

ware. As a result, much of the higher-level functionality of the operating system, such as

the resource management policies, kernel architecture, file system and application binary

interface, were left unchanged. This reduced the side effects of these modifications con-

siderably and suggests that the changes are not operating system dependent. While some

modifications such as signal and fork are UNIX specific, the concepts of saving state to

handle a trap, paging and process creation are common to most modern operating systems.

This suggests that it should be possible to port other operating systems to run on the XOM

architecture.

64 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

4.5.2 Operating System Performance Overhead

To try to estimate the performance of XOMOS, we ran simulated work loads on our simu-

lator. Our cycle-accurate simulator models an in-order processor model as well as caches,

memory and disks. Unless otherwise stated, we use the default simulated machine param-

eters given in Table3.2.

The operating system modifications add overhead in several areas; Tables4.4, 4.5and

4.6summarize these overheads.

First, recall thatXOMOSintroduces two new system calls to manipulate the XOM Key

Table entries. The execution time for axom alloc() is dominated by the time to execute

the xalloc instruction, in addition to the standard overhead of crossing into the kernel.

Thexalloc instruction takes 400,000 cycles to complete, during which time the CPU is

completely stalled. Thexom dealloc() system call has the same execution time as a

null system call in IRIX 6.5, since the kernel only executes anxfree before returning to

the application.

Second, additional instructions are required by the operating system to save and restore

context, resulting in more executed instructions. In addition, since encrypted registers are

larger than unencrypted registers, operating system data structures that store process state

such as the exception frame orsigcontextdata structures have a larger memory footprint.

This can increase the cache miss rate and cause more overhead.

Another source of overhead comes from the additional I/O operations that are per-

formed to save hash pages to disk. In our implementation, a hash page accompanies every

data page, and thus the I/O requirements for paging operations are increased by the size of

the hash pages. In our case the bandwidth increase of one eighth should result in only a

modest performance decrease.

Reclaiming XOM Key Table entries also results in some operating system overhead,

since it requires expensive flushing of the on-chip caches. However, note that each time

a XOM Key Table entry is allocated, the XOM processor needs to perform an expensive

public key operation. Typically, several such operations will occur before the XOMOS

needs to reclaim entries, so we have a reasonable assurance that the percentage of cycles

spent on XOM Key Table reclamation will not be large.

4.5. COSTS OF IMPLEMENTING XOMOS 65

System Call Cycles Instrs. Cache Misses
xom alloc() 413752 3625 13
xom dealloc() 5691 3841 4.2

Table 4.4: Overhead Due to New System Calls in XOMOS. These are the overheads of the
two system calls that XOMOS.

We wrote three micro-benchmarks that exercised the portions of the operating system

kernel that had been modified. These benchmarks exercised a NULL non-XOM system

call, signal handling and process creation in the modified kernel. The NULL system call

benchmark makes a system call in the kernel that immediately returns to the application.

The signal handling benchmark installs a segmentation fault (SEGV) signal handler and

then causes a SEGV to activate the handler. The handler simply loads the program counter

from the sigcontext structure, increments it to the next instruction and then restarts the main

thread. Finally, the process creation benchmark callsxom fork to create new XOM pro-

cesses. The benchmarks do not perform any secure memory operations, so the overheads

incurred are purely from the extra instructions executed and any negative cache behavior.

Tables4.5and4.6show the results from these benchmarks.

The overhead for making (non-XOM) system calls is modest and the number of extra

instructions in the kernel is actually very small. As discussed in Section4.4.1, system calls

cannot be made from inside a compartment. To make a system call, the XOM application

must exit the compartment, make the system call and then return to compartment. The

kernel only needs to check that the system call is not made while inside a compartment or

the system call will fail. Because of this, about 95% of the extra instructions occur in user

code. The remaining cycles are caused by additional cache misses. Each time a program

enters or exits a compartment, an event we call aXOM transition, the compiler must pad

the instruction stream withnop ’s so that encrypted code and unencrypted code boundaries

are aligned to cache lines in the machine. This not only increases the instruction count, but

also the code footprint which may hurt instruction cache behavior.

The signal handler overhead experiences the most kernel overhead, with the majority of

the extra instructions executed occurring on the kernel side. Because the signal is delivered

66 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

Benchmark Total Instructions Kernel Instructions
IRIX XOM OV IRIX XOM OV

System Call 3.8K 4.0K 5% 3.8K 3.8K 1%
Signal Handler 11.1K 14.6K 32% 11.0K 14.4K 31%
XOM Fork 119K 123K 3% 118K 121K 3%

Table 4.5: Micro-benchmark Instruction Overhead of XOMOS vs. IRIX. We compare the
instructions executed of three micro-benchmarks in XOMOS versus the original IRIX op-
erating system. The overheads are small except for the Signal Handler benchmark performs
more XOM operations and as a result incurs more overhead.

Benchmark Total Cycles Cache Misses
IRIX XOM OV IRIX XOM OV

System Call 5.7K 6.3K 11% 4.2 5.6 33%
Signal Handler 31.2K 39.6K 27% 38.4 48.3 26%
XOM Fork 13.9M 12.6M -9% 1035 1058 2%

Table 4.6: Micro-benchmark overhead of XOMOS vs. IRIX. The extra instructions in the
Signal Handling benchmark also affect the cache behavior adversley. This results in longer
execution time.

while the application is in a compartment, the kernel must use the longer XOM save rou-

tines shown in Figure4.2to save every register. In addition, when the kernel populates the

sigcontext structure, the kernel requires more instructions to copy the larger encrypted reg-

ister values. The additional instructions and larger data structures also result in an increase

in cache misses.

Finally, the xomfork benchmark actually has negative overhead. Fork is already a long

operation in IRIX, so the overhead imposed by XOM negligible. The majority of the extra

instructions in fork are actually due to the extraxom alloc() system call that is used

to allocate a new Register Key Table entry. However, in this case more favorable behavior

in the L1 cache makes up for the additional instructions and L2 cache misses. This is an

artifact of our implementation.

One thing we noticed from these benchmarks is that it is important to avoid performing

unnecessary XOM operations in the kernel. In our implementation, we were careful to

always test if the interrupted application was running in a compartment or not. If it wasn’t,

the extra instructions to save and restore the larger encrypted registers were left out. We

4.5. COSTS OF IMPLEMENTING XOMOS 67

can see this in the difference between the kernel instructions executed for the NULL system

call benchmark, which exits the compartment before trapping into the kernel, and the signal

handling benchmark, which traps while in a compartment. Another factor in the overheads

is that IRIX is a highly performance tuned operating system. By increasing the size of the

code and data structures, our modifications destroyed a part of that tuning and resulted in

more cache misses.

4.5.3 End-to-end Application Performance Overhead

To measure the end-to-end application overheads, we added XOM functionality to two

applications that would benefit from secure execution. The first, calledXOM-mpg123, was

created by modifying mpg123 — a popular open source MP3 audio player. This application

simulates a scenario where a software distributor may wish to distribute a decoder for a

proprietary compression format. The other is the OpenSSL [48] library, an open source

library of cryptographic functions, which is used in an array of security applications. In

OpenSSL, we tested the performance of RSA encryption and decryption, by using the

rsa test benchmark that is included in the OpenSSL distribution to create the XOM-

RSA benchmark.

We wished to study the effects of varying the amount of code in the XOM compartment

in these experiments. XOM slows applications down in two ways. First, each XOM tran-

sition requires padding in the instruction stream, which can result in extra cache misses.

Second, secure accesses to memory incur encryption or decryption latency. Minimizing

these events will result in lower overhead imposed by using XOM compartments.

These performance considerations are balanced against security requirements. Placing

a large portion of the application in the compartment reduces the amount of code visible

to the adversary. We refer to this ascoarse-grainedXOM compartment usage. On the

other hand, minimizing the portion in the compartment reduces the overheads associated

with memory accesses, but may allow the adversary to infer more information about the

application. We refer to this asfine-grainedXOM compartment usage.

To study these effects, we created three versions of XOM-mpg123 and XOM-RSA,

68 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

64
 K

B
 L

2
no

xo
m

1.
0%

64
 K

B
 L

2
co

ar
se

0.
8%

64
 K

B
 L

2
fin

e
0.

3%
64

 K
B

 L
2

su
pe

r-
fin

e
12

8
K

B
 L

2
no

xo
m

0.
6%

12
8

K
B

 L
2

co
ar

se
0.

3%
12

8
K

B
 L

2
fin

e
-0

.2
%

12
8

K
B

 L
2

su
pe

r-
fin

e
25

6
K

B
 L

2
no

xo
m

0.
1%

25
6

K
B

 L
2

co
ar

se
0.

2%
25

6
K

B
 L

2
fin

e
-0

.1
%

25
6

K
B

 L
2

su
pe

r-
fin

e
51

2
K

B
 L

2
no

xo
m

0.
1%

51
2

K
B

 L
2

co
ar

se
0.

1%
51

2
K

B
 L

2
fin

e
0.

4%
51

2
K

B
 L

2
su

pe
r-

fin
e

10
24

 K
B

 L
2

no
xo

m
0.

1%
10

24
 K

B
 L

2
co

ar
se

0.
1%

10
24

 K
B

 L
2

fin
e

0.
4%

10
24

 K
B

 L
2

su
pe

r-
fin

e

0

50

100

150

200

250

300

350

400
C

yc
le

s
(m

ill
io

n
s)

Stall Cycles
Instruction Cycles

Figure 4.5: Performance of XOM-mpeg. Percentages above the bars show the increase
relative to the non-XOM case for each cache size.

each at a different granularity of XOM compartment code. Thecoarsebenchmarks en-

compassed the entire application except the initial start-up code. Thefine benchmarks

just protect the main algorithms that the application is using, and try to avoid making any

system calls from inside the compartment to reduce the number of XOM transitions. For

example, in XOM-mpg123, the code that decodes each frame of data is protected. This

would expose the format of the MP3 file to an attacker, but would not expose the actual

decoding algorithm. The fine grained version of XOM-RSA has each encryption and de-

cryption function protected, but the code to setup those operations is in the clear. Finally

thesuper-finebenchmarks seek a small operation to protect. This operation usually makes

no system calls and has little or no memory accesses. In XOM-mpg123, only the Discrete

4.5. COSTS OF IMPLEMENTING XOMOS 69

64
 K

B
 L

2
no

xo
m

1.
6%

64
 K

B
 L

2
co

ar
se

1.
7%

64
 K

B
 L

2
fin

e
2.

0%
64

 K
B

 L
2

su
pe

r-
fin

e
12

8
K

B
 L

2
no

xo
m

0.
0%

12
8

K
B

 L
2

co
ar

se
0.

8%
12

8
K

B
 L

2
fin

e
0.

6%
12

8
K

B
 L

2
su

pe
r-

fin
e

25
6

K
B

 L
2

no
xo

m
0.

7%
25

6
K

B
 L

2
co

ar
se

0.
5%

25
6

K
B

 L
2

fin
e

0.
5%

25
6

K
B

 L
2

su
pe

r-
fin

e
51

2
K

B
 L

2
no

xo
m

-0
.1

%
51

2
K

B
 L

2
co

ar
se

0.
6%

51
2

K
B

 L
2

fin
e

0.
9%

51
2

K
B

 L
2

su
pe

r-
fin

e
10

24
 K

B
 L

2
no

xo
m

-0
.2

%
10

24
 K

B
 L

2
co

ar
se

0.
0%

10
24

 K
B

 L
2

fin
e

-0
.2

%
10

24
 K

B
 L

2
su

pe
r-

fin
e

0

10

20

30

40

50

60

70

80

C
yc

le
s

(m
ill

io
n

s)

Stall Cycles
Instruction Cycles

Figure 4.6: Performance of XOM-RSA. Percentages above the bars show the increase
relative to the non-XOM case for each cache size.

Cosine Transform (DCT) function used in MPG decode is placed in the compartment. On

the other hand, XOM-RSA only embeds thebignumimplementation it uses to manipulate

large integers. In this case, neither the cryptographic algorithms nor keys are protected,

only the bignum implementation.

For each application, we identified the sections that were to be placed in the compart-

ment and insertedxentr andxexit instructions to delimit the boundaries. In reality, the

programmer must decide which loads and stores within the compartment code need to be

protected, by identifying data structures that must be kept private. This requires significant

compiler support, so to approximate the memory bus overheads due to encryption, the sim-

ulator was modified to mark addresses that had been written to while in the compartment.

70 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

Subsequent loads and stores made to those addresses from the compartment incur crypto-

graphic overheads that XOM imposes on memory operations. The rationale is that any data

that is stored while in a compartment is to be kept secure by XOM until read again by a

compartment. All instruction fetches from inside a compartment also require cryptographic

operations. However, when not inside a compartment, instruction or data loads and stores

proceed as normal without any XOM overhead. As mentioned in Section3.1.4, protection

against memory replay attacks is expected to be implemented by the application itself, but

our ported applications do not implement this.

All three coarseness levels are simulated for each application. Both transition overhead

and encryption overhead are affected by the cache behavior of the applications. To see how

dependent it is, we also varied the cache size of the machine. The execution time results are

shown in Figure4.5 and Figure4.6, broken down into cycles spent executing instructions

and cycles spent stalled on memory.

The overall execution time is given in processor cycles. For the most part, the overhead

is lower than the previous section’s micro-benchmarks since the operating system overhead

is diluted over a longer execution time. Adding XOM functionality adds very little over-

head in general. This is not surprising for the following reasons: The XOM transitions do

not result in many extra executed instructions since number of instructions cycles remain

roughly the same, regardless of compartment coarseness. The XOM transitions may also

negatively impact cache behavior, but this effect is minimal. This is because the number of

XOM transitions is small (less than one for every 3000 instructions executed in the worst

case). As a result, the simulations showed that the compartment granularity had no effect

on the cache miss rate. For the MP3 application, the cache miss rate was about 20% for the

64KB L2 cache, about 7% for the 128KB L2 cache and less than 1% for all other L2 cache

sizes. For the RSA application, the cache miss rate was about 4% for the 64KB L2 cache,

and less than 1% for L2 cache sizes greater than 128KB. It is interesting to note that coarse

grained security can sometimes result in a larger number of XOM transitions due to all the

system calls that are made in the compartment.

Similarly, for the memory encryption overhead, note that both applications spend less

than 30% of their execution time stalled on memory. Since the encryption overhead for

each memory access is 10% of the access time (15 additional cycles to 150 cycles), this

4.6. SUMMARY 71

means that at most, the XOM encryption overhead will add about 3% to the overall ex-

ecution time. In reality, this is further reduced by the fact that on average, only about

30% of the misses in the L2 cache actually required XOM cryptographic operations. It is

interesting to note that in the XOM-RSA benchmark, there is a small slow-down as the

compartment granularity gets finer. This is in spite of a decrease in the number of XOM

memory operations. The reason for this is the additional cache misses caused by the larger

number of XOM transitions.

On the whole, we noted that neither XOM-mpeg nor XOM-RSA stressed the memory

system heavily. To find the upper bound on the XOM encryption overhead, we ported and

simulated the McCalpin STREAM benchmark [42]. This benchmark is meant to measure

memory bandwidth by executing sequential reads and writes on a large memory buffer.

We found that the memory stall time made up about 40-50% of the overall execution time.

Since the overhead on a memory access is about 10%, we expected the benchmark to have

an execution overhead of approximately 4-5%. This was confirmed by our simulator.

4.6 Summary

In this chapter, we have explored the implementation of XOMOS, an operating system for

our example XOM architeture. XOMOS is implemented as a port of the IRIX operating

system. This port involved adding two new system calls,xom alloc() andxom deal-

loc() , modifying the way the operating system handles user data, and updating various

operating facilities such as shared libraries, fork, and signal handling. The size of the

modifications on the original operating system was modest — about 1900 lines in roughly

20 files were modified. As one would expect, most of the modifications dealt with the

low-level interface between the operating system and the hardware, and with routines that

copied and saved application state. Because of this, we feel that the same types of modifi-

cations could be applied to a wide range of operating systems.

Our preliminary performance numbers look promising. The hardware overheads in our

simulator are not small — with memory encryption and decryption costing 15 cycles and

saving and restoring a protected register requiring 13 instructions instead of 2. However,

72 CHAPTER 4. AN OPERATING SYSTEM FOR THE XOM ARCHITECTURE

these costs are only incurred when the machine must do an even more expensive opera-

tion — either a memory fetch (which takes 150 cycles) or a trap into the kernel. We found

that in reality, end-to-end application overheads are often less than 5%, regardless of the

granularity of the XOM compartments. The performance is dependent on the cache be-

havior, which is influenced by the number of transitions due to the instruction and data

alignment transitions require. In the coarse compartment usage model, the only transitions

are due to system calls and shared library calls. System calls are expensive in any case,

so the additional cost of XOM appears smaller in cases where there are many transitions

due to system calls. Since coarser compartments should be more secure, we conclude that

the use of coarse compartments, where the majority of the application is executed securely,

is viable. This reduces the burden on the developer to identify and secure the sensitive

portions of an application.

Chapter 5

Security Issues

To determine whether a system is secure against attacks, one must have a clear idea what

attacks are possible. This chapter begins by outlining the goals of the adversary, as well as

some general strategies the adversary can take in trying to achieve these goals. This chapter

will also address various hardware or software based attacks that an adversary can take.

Verifying security is a problem that is comparable to the more general problem of sys-

tem verification. As a result many of the approaches of used for general system verification

are also applicable to the specific problem of security verification. This chapter examines

the use of one of theseformal verificationmethod towards the verification of system se-

curity. It gives a formal specification of the XOM architecture, and shows using a model

checker, that it is secure against an adversarial operating system.

With a level of security established by the formal verification, we address other issues

that XOM raises, including key revocation and privacy.

5.1 Attack Model

An adversary who attacks a program in a XOM compartment, generally has the intent to

observe or modify that program. This goal can be stated explicitly as three separate goals:

1. Copy a piece of software so that it runs on a processor for which it was not intended.

2. Obtain values of instructions, static data or dynamic data of the program.

73

74 CHAPTER 5. SECURITY ISSUES

3. Modify the execution of a program in its compartment without being detected.

The third goal can be achieved either by tampering with instructions that are executed in a

compartment or by modifying data values that will be used by those instructions.

In trying to achieve her goals, the adversary may try several different strategies. These

include:

1. Obtain master secret or private key of a processor.

2. Obtain compartment key of a program.

3. Read some instruction or data values inside a compartment.

4. Deterministically alter instruction or data values inside a compartment.

5. Randomly alter instruction or data values inside a compartment.

The first strategy is clearly fatal to a XOM system. The adversary can use this informa-

tion to decrypt and totally compromise any secure software that was encrypted for that

processor. In addition, the adversary can use this information to acquire and decrypt more

software unless this attack is detected. Upon detection of a compromised master secret,

the public key of the broken processor must be revoked. This process is described in Sec-

tion 5.6.1.

The second strategy, if successful, is fatal to the particular program that is compro-

mised. Knowledge of the compartment key allows the adversary to arbitrarily read or

modify instructions or data in the program.

The last two strategies are possibly damaging, but may be only of limited use to an

adversary. Being able to read some values gives the adversary partial visibility into the

execution of a program, but perhaps not enough for the adversary to achieve her final goal.

The ability to modify some values may alter the behavior of a program in a way that may

leak information that is useful to the adversary, but this is not always the case. To exploit

these weaknesses, the adversary must rely on some element of random chance, something

she can mitigate by repeating the attack a numerous number of times. However, because

computers are able to perform a large number of actions in a very short amount of time, it

is often important to defeat even the last two strategies that an adversary may employ.

5.2. HARDWARE BASED ATTACKS 75

5.2 Hardware Based Attacks

Protecting against hardware attacks is a matter of cost. By spending more resources on

equipment, time and XOM processors, the adversary can try to extract the private key from

the processor. She can do this by trying to monitor the electric signals on the processor

using techniques such as IBM’s Pica system [49], power analysis techniques [11], differ-

ential fault analysis [4] or even trying to reverse engineer the chip by examination. Most

of these attacks require expensive equipment on the part of the adversary and can be made

expensive by increasing the costs of manufacture. For example, air sensitive layers can be

added to the packaging to make it difficult for an adversary to gain access to the physical

chip.

Another possible avenue of attack is throughscan. Scan is normally used by hardware

designers to perform silicon debug on a part. Scan consists of a set ofscan chains, which

link together certain registers on processor to form a “chain.” For debugging, the chip can

be placed in a special mode where the registers on this chain can be shifted out and new

values can shifted in. Processor manufacturers typically leave the scan chains intact when

they ship their products. In some cases, third party mother board manufacturers require that

the boundary pins be scanned to debug their products. Scan poses a potential problem for

XOM since a malicious adversary can use it to access state on the processor. Accordingly,

internal scan chains should heed the access rules imposed by the compartment model or be

disabled after packaging. In other words, architectural elements that are tagged with the

XOM ID of a private compartment should not be readable or writable while using scan.

Finally, the adversary may try to read or modify values while they are outside of the

chip, either by tampering with the memory bus, or by directly tampering with memory

itself. The use of encryption combined with cryptographic MACs guarantees both the

confidentiality and integrity of data stored outside of the processor.

76 CHAPTER 5. SECURITY ISSUES

5.3 Software Based Attacks

In contrast to hardware attacks, an adversary could mount software to try and circumvent

the compartment architecture that XOM provides. We have already briefly outlined vari-

ous software attack models in Section3.1.4. Here, we will discuss those attacks in more

detail. In a software based attack, the adversary gains control over the operating system

and exploits its privilege to attack software running on the system. The tags in the system

combined with encryption for off-chip values prevent even a malicious operating system

from reading values to which it does not have permission to access. However, because the

operating system’s role is to manage resources, it does have the ability to overwrite ortam-

per with values in memory or on-chip. In general there are three types of software based

attacks an adversary could attempt.

A spoofing attackis the simplest kind of attack. This is an attack where the adversary

tries to alter program data by overwriting it with either a chosen or random value. The

adversarial operating system can try to tamper with an on-chip value in a register or cache,

as shown in Figure5.1. However, the tag on the architectural element will reflect that the

value written originated from the operating system. When the program under attack goes

to access that element, it will get an exception since its XOM ID will not match that of

the element. Tags are not used in memory so cryptographic techniques must be used to

prevent spoofing attacks by the adversary on values in memory. XOM employs Message

Authentication Codes or MACs [34] to check the integrity of data that is encrypted and

store in memory. Because the MACs are keyed, the adversary may modify a cipher text

stored in memory, but will not be able to forge a MAC to match that cipher text. When the

XOM processor loads encrypted data from memory, it always verifies it against the MAC

to check its integrity.

A slightly more complex attack is asplicing attack. Rather than trying to spoof valid

cipher texts, the adversarial operating system copies valid cipher texts from one address

in memory to another. The XOM processor defends against this tampering including the

virtual address along with the data in the pre-image that is used to compute the MAC. When

verifying the MAC on a load, the XOM processor checks it against the virtual address that

the program is loading the value from.

5.3. SOFTWARE BASED ATTACKS 77

The final type of tampering attack is known as areplay attack. In this attack, the

adversary observes values and then reuses them at a later time. An adversarial operating

system is capable of performing this attack on both register and memory values. To replay

a register value, the adversarial operating system interrupts a running process and saves

the register state using thesave register instruction. The adversary than restores the

Figure 5.1: A Register Spoofing Attack.

78 CHAPTER 5. SECURITY ISSUES

process state and restarts the process. At a later time, the adversarial operating system

interrupts the process again, but instead of restoring the register values from the second

interruption, it restores the values from the first interruption. When the process restarts, it

will be using the replayed register values. However, the XOM processor defends against

such an attack. When encrypting and decrypting registers with thesave register

and restore register instructions, the XOM processor uses aregister key, which

is regenerated every time a particular XOM compartment is interrupted. As a result, the

register key that is used to save the register at the time of the first interrupt, will have been

destroyed and regenerated when the adversary tries to restore the register at the second

interrupt. As a result, trying to restore the stale value will result in an exception.

Instead of trying to replay values in registers, the operating system may try to replay

data in memory. To do this, the operating system simply records values and MACs in

memory and then overwrites values at a later time with the stale values and MACs. To

defeat this attack the application can keep a hash for a region of memory in one of the

registers. To replay this region, the adversary must also be able to replay the hash kept

in the register. However, the regenerating register key will protect the register from replay,

thus defeating the memory replay attack. The problem with this approach is that every time

a value in the region changes, the hash kept in the register must be updated. If the region

of memory is large, or if the values in this region change frequently, this results in a large

overhead as the entire region must be read to update the hash. The performance impact can

be mitigated with additional hardware support by using a Merkle trees to perform memory

authentication [20]. A Merkle tree is a hierarchical hash structure that allows efficient

update of a hash that protects a set of elements, in this case data in memory. Figure5.2

shows an example tree. The data elements to be protected make up the leaves of the tree

and each node in the tree contains the hash of all of its children. This structure is replicated

until a single root is reached. To protect the tree from tampering, all that is necessary is to

ensure the integrity of the root, which can be stored in a register. The reader should note

that it is non-trivial to combine Merkle trees with a cache. The reason for this will be made

clear in the next section.

5.4. FORMAL SPECIFICATION AND VERIFICATION 79

5.4 Formal Specification and Verification

A formal specification was constructed and checked with the Murϕ finite-state model

checker [14]. In specifying this model several assumptions were made about the types

of errors the checker is trying to catch. First, the model uses a “black box” model for

cryptographic functions [15]. This means that encrypted data cannot by decrypted by the

Figure 5.2: A Merkle Tree. This structure uses a hierarchical hashing scheme to protect
a large number of elements with a single hash. Update to the hash is efficient as only
hashes of nodes along the path between the changed cache line and the root need to be
re-calculated.

80 CHAPTER 5. SECURITY ISSUES

adversary. However, if two plain text values are equal, they will have the same cipher

text values. The model also models hashes as collision-free, and assumes that programs

have been properly written, so that all data sharing occurring in the shared compartment is

intentional.

The adversary in the model is assumed to be an adversarial operating system. Thus

the abilities of the adversary are that which privileged code would have on a XOM pro-

cessor. The code can arbitrarily interrupt the target process and read, write and copy data

in registers, caches or memory according to the rules of the XOM architecture. Despite

this, model was verified to have two properties. The XOM processor is able to prevent the

observation of program code or data, as well as prevent modification of program code or

data by halting the process upon detection. The general approach taken by this verification

will be to define two models — anactualmodel with an adversary and aidealizedmodel

that does not have an adversary. The verification will check that the program states in the

two models are always consistent, otherwise, the model with the adversary has a fault, as

the modeled adversary was able to tamper with the program state.

This section will begin by briefly describing the Murϕ model checker. It will then

describe an abstracted instruction set that will be used to model the instruction set of a

XOM processor. The next sections describe the modeling of the XOM hardware in both

the actual and idealized models. Finally, it will describe how to simultaneously check both

models for consistency using a model checker, and give an example of an attack that was

found.

5.4.1 The Murϕ Model Checker

This thesis used the Murϕ [14] model checker to verify the XOM model specification.

Murϕ uses explicit enumeration to check the state space of a model. A model describes

the system to be checked as a state machine by providing an initial state and a set of next-

state functions. The next-state functions are specified by a set of “rules”, which have a

precondition guard, and a set of actions that modify the current state to produce a new state.

A precondition is a boolean statement based on the current state of the machine. Murϕ

performs the state exploration by starting with the initial state and exhaustively searching

5.4. FORMAL SPECIFICATION AND VERIFICATION 81

for all successor states. Murϕ finds and executes rules whose precondition is satisfied by

the current state to identify successor states. Murϕ verifies the correctness of each new state

against a set of safety criteria to determine if any of the states are illegal. Safety criteria in

Murϕ are specified as a set of invariants, which are boolean statements that are evaluated

every time a new state is found. When Murϕ detects an error, it outputs a counter example

that indicates the states it traversed to reach the error state. Murϕ has been successfully used

in other work to verify both security protocols [44, 57] and computer hardware [38, 60].

Model checkers, in general, have some limitations. First, they verify models of sys-

tems, not the systems themselves. Models abstract details of the system to make the size of

the state space tractable for the model checker. This is often done by simplifying function-

ality and by scaling down the models. Second, model checkers can only explore a finite

number of states, and may miss states to save memory. For example, rather than explicitly

remembering the states it finds, Murϕ saves a smaller, randomized low-collision hash of

them. There is some probability that a collision will result in missed states, but because the

hash is randomized, successive verifications of the same model reduce this probability.

5.4.2 Abstracting the Instruction Set

To reduce the state space of the models, the specification contains a simplified version of

a real XOM machine instruction set. The instruction set is reduced to just the operations

that affect the flow of data and information. For example, generic register operations are

amalgamated under thedef anduse operations, while control flow operations such as

branches and jumps are left out. Similar simplifications were performed to analyze Java

in [19]. The instructions available to the user are summarized in Table5.1.

An adversarial operating system can execute both user instructions and privileged ker-

nel instructions. The additional privileged instructions available to the adversary are sum-

marized in Table5.2. Note that theprefetch , write cache , invalidate and

flush instructions are not defined in the abstract XOM machine, nor were they imple-

mented in the XOM simulation system. However, they are part of the specification to be

verified here as they are reasonable future additions that could be made to the XOM archi-

tecture. Another simplification that was made is that the model assumes that there is only

82 CHAPTER 5. SECURITY ISSUES

Instruction Description
i1. def $rt,immediate Generic register definition whereimmediate is writ-

ten into register$rt . This models any non-memory
operation that writes to a register.

i2. use $rt Generic use of register$rt . This models any non-
memory instruction that reads a register.

i3. xsd $rt,addr This stores the value of register$rt to the memory
location ataddr . The store sets the XOM cache tag
to the value of the program that executed the store.

i4. xld $rt,addr This loads the register$rt with the memory value at
addr . If the load hits in the cache, the XOM cache
tag of the cache data is checked against the program’s
XOM cache tag. If the data is in memory, the data
is decrypted with the program’s compartment key and
the hash verified before loading into the register.

Table 5.1: User Instructions. List of simplified instructions available to the user in our
models.

one process per program. This simplification allows the model to make XOM ID tag and

XOM cache tag values equal, as there would be a one to one relationship between them.

5.4.3 The Actual Model

The model of the physical hardware in a XOM machine, called theactualmodel contains

three homogeneous arrays. Each array represents one of the storage levels in the machine:

registers, cache, and memory. The records stored in the arrays have different properties.

For example, they all have a data value property, as they can all be used to store data.

However, not all have XOM ID tag, hash, or key properties.

A state in the modelSactual contains the three arrays, as well as a single bit that indicates

whether theuseror theadversaryis executing on the machine. Programs run asuserswhen

the mode isusermode, while the operating system is adversarial and runs when the mode

5.4. FORMAL SPECIFICATION AND VERIFICATION 83

Instruction Description
i5. xsave $rt,$rs The operating system uses this instruction to store a

program register. The XOM processor encrypts and
hashes the program register$rs with the register key
and stores it to register$rt . The register$rt is
tagged with the operating system’s XOM ID.

i6. xrstr $rt The operating system uses this instruction to restore
registers saved withxsave . The XOM processor de-
crypts the data, verifies the hash, and returns the data
to its original register. Theregister keyis regenerated
each time the XOM processor traps to the operating
system.

i7. prefetch addr The operating system can move a value from memory
into cache, even if its XOM ID does not match the
key the data in memory is encrypted with. The data
is tagged in the cache, not with the XOM ID of the
operating system, but with the XOM ID of the key used
to decrypt it from memory.

i8. write cache addr The operating system can change the value of a cache
location. The new data is tagged with the operating
system’s XOM ID.

i9. invalidate addr The operating system can invalidate a cache location
causing the data to be destroyed. The data is not
flushed to memory.

i10. flush addr The operating system can flush a cache location with
addr from the cache to memory. The value is en-
crypted with the key indicated by the XOM cache tag,
hashed and the placed in memory.

i11. trap The operating system can cause the processor to trap
to the operating system at any time by sending an in-
terrupt. However, each time this happens, theregister
keyused to encrypt and decrypt user registers from any
previous traps is regenerated.

i12. return The operating system can return use of the processor
to the user at any time.

Table 5.2: Privileged Instructions. Additional instructions also available to a malicious
operating system, the adversary in our verification.

84 CHAPTER 5. SECURITY ISSUES

is adversarymode.

Sactual =<r0, r1 . . . rx;

c0, c1 . . . cy;

m0, m1 . . . mz;

mode >

The state has 3 storage classes, each representing a storage level. A registerri, has a data

valued, a XOM ID tag t, and if the value is encrypted, a keyk, and a register hashh,

associated with it. Similarly, a cache lineci, has a data valued, XOM ID tag t, and a

memory addressa. Note that each cache line only holds one register word. As noted in

Section3.3, a XOM machine will likely have several words per cache line, requiring the

addition of valid bits. In this case, we have consciously removed that case to allow for

a simpler model. Finally, memory locationsmi, have data valuesd, keysk, and address

hashesh. The ∅ value means that the parameter is not defined. For example, register

values can be in plain text, meaning they have no key or hash value associated with them.

Similarly, an unused cache location has a∅ address value.

ri : record{d : D; t : P ; k : [P , ∅]; h : [R, ∅]}

ci : record{d : D; a : [M , ∅]; t : P }

mi : record{d : D; k : P ; h : [M , ∅]}

mode : [adversary mode, user mode]

The model has four basic data types, to which members of the records belong.D is a set

of distinct data values,P is a set of principals and can either be the user or the adversary,

R is a set of register hashes, one for each register in the model, andM is a set of memory

5.4. FORMAL SPECIFICATION AND VERIFICATION 85

addresses in the model.

D = [0 . . . w, α]

P = [user, adversary]

R = [0 . . . x]

M = [0 . . . z]

Theα in D represents a value that was created by the adversary, which is used to model

data injection attacks. The XOM machine uses tags as proxies for keys, so tags and keys

are type-equivalent. Similarly, the pre-image for a memory hash is an address so they are

also type-equivalent. Initially, the model has∅ in all its storage locations and themodeis

set tousermode. The maximum number of data valuesw, number of registersx, number

of cache linesy, and number of memory locationsz parameterize the model.

If the model detects tampering, it prevents the user from continuing execution by caus-

ing aresetaction. The reset action is a special action that sets the entire machine state to a

legal state. In the XOM model, the reset condition sets the state back to the initial state of

the model. The user is able to perform the operations specified in Table5.1. The actions

that produce the next state for each instruction are:

i1. Define data valuea ∈ [0 . . . w] in registeri:

ri = {d = a, t = user, k = ∅, h = ∅}.

i2. Use registeri:

if ri.t 6= user

thenreset.

i3. Store value at registeri into addressj:

if ri.t 6= user

thenreset

else ifj is in cache such that∃ cl.a = j

thencl = {d = ri.d, a = j, t = ri.t}

else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = ri.d, a = j, t = ri.t}.

86 CHAPTER 5. SECURITY ISSUES

i4. Load memory addressj into registeri:

if j is in the cache such that∃ cl.a = j

then if cl.t 6= user

thenreset

else load from cacheri = {d = cl.d, t = user, k = ∅, h = ∅}
else load from memory: ifmj.k 6= user ∨ mj.h 6= j

thenreset

else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = mj.d, a = j, t = user},
ri = {d = mj.d, t = user, k = ∅, h = ∅} .1

The model checks that the user’s data has not been tampered with. As explained in Sec-

tion 3.3, a hash validates two components — the integrity of the encrypted data and the

validity of the address it is being loaded from. These two checks are modeled separately.

Preventing the adversary from creating any data that is encrypted with the user’s key sim-

ulates the integrity check of the data. On the other hand, the validity of the address is

modeled by keeping a shadow copy of the original address of the data inh.

Here is a section of the model in the Murϕ description language. This particular section

describes instructioni3:

Rule "User secure store"
!isundefined(reg_i.data) &
mode = user_mode

==>
Var

cache_l : cache_range;
Begin

if (reg_i.tag != user) then
reset();

endif;
-- find the data in the cache
cache_l = find_data(addr_j);

1Note that this definition prevents the user from reading uninitialized memory values. Such a read is
considered a programmer error, which is not covered in this verification.

5.4. FORMAL SPECIFICATION AND VERIFICATION 87

if (!isundefined(cache_l)) then
-- hit in the cache,
-- write data to cache
cache_l.data := reg_i.data;
cache_l.addr := addr_j;
cache_l.tag := reg_i.tag;

else
-- cache miss (code not shown)

endif;
endrule;

A “ -- ” indicates the following text on that line is a comment. The precondition is the

boolean expression before the “==>,” which checks that the register has data in it, and

that the processor is not in adversary mode. The body of the function, after theBegin

statement checks the permissions on the register, checks if the data is in the cache, and if

so, writes it to the cache. The actions for servicing a cache miss are left out for brevity.

This model has some safety conditions that are checked:

1. Each cache location must have a different address tag. This ensures the cache is

implemented correctly.

2. User data (data that is notα) is either tagged with the user’s XOM ID or encrypted

with the user’s key. This ensures the access control guarantees are correct.

5.4.4 The Idealized Model

Theidealizedmodel is a very simple version of a XOM architecture. It has no caches since

they are invisible to the user, and does not contain an adversary. The model has a two

storage levels: registers and memory locations. The state of the model can be expressed as:

Sideal =< r0 . . . rx; m0 . . . mz >

ri : [0 . . . w, ∅]

mi : [0 . . . w, ∅]

88 CHAPTER 5. SECURITY ISSUES

The parameters of the model arew, x andz which are the number of data values, registers,

and memory locations respectively. The model is much simpler and each storage class only

has a data value property. As in the actual model, the initial state has all locations initialized

to ∅. There is only one user in this model and the user can perform the following actions:

i1. Define data valuea ∈ [0 . . . w] in registeri:

ri = a.

i2. Use registeri:

this action is a null action.

i3. Store value at registeri into memory locationj:

if ri 6= ∅
thenmj = ri.

i4. Load an initialized memory locationj into registeri:

if mj 6= ∅
thenri = mj.

The same register store action in the actual model is written as the following in the idealized

model:

Rule "User secure store"
!isundefined(reg_i.data)

==>
Begin

mem_j.data := reg_i.data;
endrule;

The model has no safety conditions since the absence of an adversary means it cannot

be tampered with.

5.4. FORMAL SPECIFICATION AND VERIFICATION 89

5.4.5 The Adversary

The actual model also includes an adversary that can perform actions to modify the state

of the machine. In the model checker, the adversary is given a set of primitive actions that

it can perform. The model checker will exhaustively try all combinations of these actions

in an attempt to break the XOM machine. It is important to ensure that the adversary is

adequately powerful to model all attacks, but constrained so as not to be capable of things

not possible in reality. Based on the “black box” model for cryptography, and assuming

reasonable countermeasures against physical tampering of the hardware, the adversary is

not able to:

1. Access registers not tagged with its ID.

2. Decrypt values for which it does not have the key.

3. Access keys stored on the XOM machine.

4. Forge hashes.

The actions that the adversary can perform are the basic user operations and the kernel

mode operations detailed in Table5.2. Aside from the 12 basic instructions available to the

adversary, two composite instructions are added. These instructions are composed from

several basic instructions, but do not require a free a register or cache line.

i1. The adversary can define data in a registeri:

ri = {d = α, t = adversary, k = ∅, h = ∅}.

i2. The adversary can use a registeri:

if ri.t 6= adversary

thenreset.

i3. The adversary can store a registeri to addressj:

if ri.k = ∅
then if ri.t = adversary

then if j is in the cache such that∃ cl.a = j

thencj = {d = ri.d, a = j, t = adversary}

90 CHAPTER 5. SECURITY ISSUES

else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = ri.d, a = j, t = adversary}

elsereset.

i4. The adversary can load a cache locationi to registerj:

if ci.t = adversary

thenrj = {d = ci.d, t = adversary, k = ∅, h = ∅}
elsereset.

i5. The adversary can save registeri to registerj:

if ri.k = ∅
thenrj = {d = ri.d, t = adversary, k = ri.t, h = i}.

i6. The adversary can restore registeri to registerj:

if ri.h = j

thenrj = {d = ri.d, t = ri.k, k = ∅, h = ∅}
elsereset.

i7. The adversary can prefetch memory locationi into cache locationj:

if mi.h = i

thencj = {d = mi.d, a = i, t = mi.k}
elsereset.

i8. The adversary can write cache locationi:

ci = {d = α, a = ci.a, t = adversary}.

i9. The adversary can invalidate a cache locationi:

ci = {d = α, a = ∅, t = adversary}.

i10. The adversary can flush cache locationi:

givenci.a = j → mj = {d = ci.d, a = ci.k, h = j}.

i11. The adversary can trap to adversary mode. When doing so, the register key is re-

voked, so all encrypted registers are cleared:

if mode = user

5.4. FORMAL SPECIFICATION AND VERIFICATION 91

thenmode = adversary,

∀ ri ∈ [r0 . . . rx]: if ri.k 6= ∅
thenri = {d = α, t = adversary, k = ∅, h = ∅}.

i12. The adversary can return to user mode and allow the user to execute:

if mode = adversary

thenmode = user.

c13. The adversary can copy a memory locationi to another memory locationj:

mi = mj.

c14. The adversary can copy a registeri to registerj:

if rj.t = adversary

thenri = rj

elsereset.

In modeling the adversary, two simplifying assumptions are made. First, in primitivei5,

the adversary is not allowed to encrypt an already encrypted register. The same is true for

an adversary trying to decrypt a value that has not been encrypted. While a real adversary

could encrypt or decrypt register contents an arbitrary number of times by executing the

appropriate instruction over and over again, the model is finite so they cannot model this.

The model can easily be extended to allow an arbitrarily long chain of these instructions,

but this would create a larger state space. Thus, for efficiency, the model specification

restricts these operations to be performed only once on any value.

Second, the model does not allow the adversary to store encrypted register values to

memory in primitivei3. The only operation that could be performed on an encrypted value

is primitive i6, which only operates on values in registers. As a result, storing the values

to memory means at some point, the adversary will have to load that encrypted value back

from memory to another register to do anything with it. Since, this is already modeled in

actionc14, modeling this functionality again is unnecessary.

In Section5.3, attacks were classified into three categories: spoofing, splicing, and

replay. The primitive actions above allow an adversary to at least implement all three of

these attacks. While, the adversary does not know the user’s key and thus cannot insert

92 CHAPTER 5. SECURITY ISSUES

chosen text into the user’s compartment, she can still attempt to randomly write values

there. A spoofing attack can be performed by actionsi1, i8 and i10. A splicing attack

is one where the adversary tries to copy valid, user encrypted values from one location to

another. Actionsc13, c14, andi7 allow an adversary splice registers, memory locations and

caches respectively2. Finally, a replay attack involves an adversary who actively records

data, waits for the user to overwrite that location with different data, and then inserts the

old, stale data. To replay a register, the adversary executesc14and then i11 to copy and

return control to the user. When the user overwrites the old register value, the adversary

executesi11 again, and usesc14to copy the saved data back. To replay a memory location,

the adversary can either usec13instead ofc14, or usei9 to prevent a new value in the cache

from reaching memory.

5.4.6 Combining the Models

The primary goal is to verify two properties of the XOM architecture: that adversaries can-

not read user data and that adversaries cannot modify user data without being undetected.

Since the XOM machine only permits principals to read registers that have been tagged

with the correct XOM ID, the first property is verified by checking that data created by the

user is never tagged with the adversary’s XOM ID. This is actually the second safety con-

dition in the actual model given in Section5.4.3. However verifying the actual model alone

does not ensure that the adversary has not modified user data. The difficulty is that there

is no condition to check the user’s data against in the actual model. The key observation

is that there can be no tampering by the adversary on the idealized model by virtue of the

fact that there is no adversary. Thus, the idealized model can be used as a “golden” model

against which the checker can compare the state of the actual model. For this, assume the

existence of functionf that checks whether a certain state in the actual model matches a

2Note that actionsi5 andi6 do not constitute splicing attacks since the copied values are inaccessible to
the user due to the XOM ID tags on the registers.

5.4. FORMAL SPECIFICATION AND VERIFICATION 93

certain idealized model state:

f :f(Actual Model State, Idealized Model State)

= {true, false}

Tamper resistance is verified by exploring both the idealized and actual model states simul-

taneously. This involves concatenating the idealized model state with the actual model to

create the “joint” state. The model labels every action in the actual model as either a user

action or an adversary action. User actions are ones that would be performed by a user, and

as a result, these actions have analogies in the idealized model. All other actions are con-

sidered adversary actions and have no analog in the idealized model. User actions affect

the state of the idealized and actual portions of the model state, while adversary actions

only affect the actual portion of the joint state. The model checker appliesf to each new

joint state created to verify consistency. If this check above holds for all the states found,

then the adversary is not able to make the actual state inconsistent from the idealized state,

which leads to the conclusion that the adversary was not able to tamper with the user’s data.

The merging of the models must be done in a way that does not restrict the state explo-

ration of either model, otherwise this may result in the Murϕ failing to find states where the

two models might have been inconsistent. Murϕ rules have a guard condition that states

when a particular rule can be applied. The idealized model is what the user should think

she is running on, so user actions in the joint model derive their guards from the ideal-

ized model. The one caveat is all user actions can only execute when the actual model

is in usermode, so this check is added to all user guards. The bodies of those rules are a

combination of the actions that modify the idealized model and the actual model in parallel.

Adversary actions have no corresponding actions in the idealized model and so they are

guarded by elements from the actual state. Naturally, the adversary actions only modify

the actual state of the model. Because of this, adversary actions change the actual state

but leave the idealized state unchanged. Below is a section of the Murϕ description that

combines the same user action from the actual and idealized models given in Sections5.4.3

and5.4.4. Because the states of the models are now combined into the same name space,

elements from the idealized model are prefixed with an “i”, while elements in the actual

94 CHAPTER 5. SECURITY ISSUES

model are prefixed with an “a”:

Rule "User secure store"
-- only guarded by idealized state
!isundefined(ireg_i.data) &
-- must be in user mode
mode = user_mode

==>
Var

acache_l : cache_range;
Begin

-- actual model part
if (areg_i.tag != user) then

reset();
endif;
acache_l = find_data(addr_j);
if (!isundefined(acache_l)) then

acache_l.data := areg_i.data;
acache_l.addr := addr_k;
acache_l.tag := areg_i.tag;

else
-- cache miss (code not shown)

endif;
-- idealized part
imem_j.data := ireg_i.data;

endrule;

Now that a method for combining the two models has been established – all that is left is

to definedf . The reference XOM CPU is based on a RISC-like load/store architecture.

As a result, assembler instructions either move data between registers and memory, or they

perform logical or arithmetic operations on register values. As such, from the point of view

of a running program, the only state that needs to be consistent is the register state since that

is what is used to do any computation that could produce output. Because of this property,

5.4. FORMAL SPECIFICATION AND VERIFICATION 95

the functionf turns out to be very simple:

f : (Sactual, Sidealized) → {true, false},

if ∀ Sactual.ri.id = user∧

Sactual.ri.data = Sidealized.ri.data

thenf = true

elsef = false

The XOM architecture only allows programs to read registers that are tagged with their

XOM ID. The abovef is true if registers tagged with the user’s ID, and thus are acces-

sible to the user, have the same data in both the actual and idealized model. If a XOM

machine was built on top of a CISC machine, where arithmetic or logical operations may

be performed directly on memory values, then values in memory and cache must always be

consistent as well. This does not preclude a definition forf , but would make the definition

more complex.

One of the limitations is that the model must approximate the real machine by scaling

down the number of elements in the model to limit the state space. The verification was

performed on a scaled down model with 3 memory locations, 3 cache locations, 3 register

elements, 2 user data values and 1 adversary data value. All three attacks detailed in Sec-

tion 5.4.5require a minimum of two user data values, in the case of a splicing or replay

attack, or a user value and an adversary value in the case of a spoofing attack. Thus, the

largest number of different data values we need to support in our models is three. As a

result, the verification requires three elements in each storage level so that the adversary

can move all possible values around without overwriting some. Slightly larger models were

checked before the machine on which the model checker was run ran out of memory. None

of these turned up any errors that were not found in the 3 element models. With more

computational resources, larger models could be checked.

96 CHAPTER 5. SECURITY ISSUES

5.4.7 Verification Results

In performing our verification, we found a way for an adversary to perform replay attacks

on memory values. With our tool, we were able to verify that our solution to the error is

correct. We then searched the XOM architecture for extraneous actions and were able to

find one. Finally we checked for liveness guarantees and were able to show that when cer-

tain constraints were placed on the operating system, the user could be guaranteed forward

progress. The models ran for approximately 4-6 hours on a Sun Workstation with 8GB of

memory and 1Ghz Ultra SPARC 3 processors.

We were able to find an exact sequence of events that allow adversary to replay values

in memory. This existence of this attack was also suggested in [20, 39, 56]. Our method

also helped us find and implement a safe solution to the memory replay problem.

We start by noting that Section5.3 indicates that a hash of a memory region can be

used to protect that region from replay. We model this hash by creating a second memory

array that shadows the memory in the actual model. Because the hash is meant to be

kept in a replay-proof register, we make this shadow memory inaccessible to any of the

adversary actions. Acalculate hashfunction models the calculation of the hash by copying

the contents of memory in the actual model into the shadow. Averify hashfunction then

checks the contents of the shadow memory against the contents of memory in the actual

model and an exception is thrown if the two do not match.

However, it is not clear when thecalculate hashandverify hashfunctions should be

invoked. Since the hash updates would be expensive in reality, we decided to try to reduce

the frequency of the updates. We take advantage of the fact that cache locations are on chip

and thus cannot be modified by the adversary without detection. We implemented a model

where the hash is only updated when a cache line is flushed to memory and verified when a

memory location was read into the cache. While this appears to be all right at first glance,

Murϕ was able to find an attack where the adversary would invalidate cache lines before

they were flushed to memory so that the old value in memory became the current value. It

is possible to exploit this vulnerability as shown in Table5.3.

Even though the hash matches the memory valueA, the last value written wasB, so

the adversary has successfully performed a replay attack. This problem arose because the

5.4. FORMAL SPECIFICATION AND VERIFICATION 97

Action $ M H
1. User writesA to cache. A ∅ {∅}
2. Cache is flushed to memory.∅ A {h(A)}
3. User writesB to cache. B A {h(A)}
4. Adversary invalidates cache.∅ A {h(A)}

Table 5.3: Vulnerability from Caching MACs. Updates of the hash cannot be delayed as
shown here with$ is the contents of the cache,M is the contents of memory, andH is the
value of the hash.

write to an address, which occurs when the value is written into the cache, is not atomic

with the update of the hash, which occurs when the value is flushed to memory. With Murϕ

we are able to show that against an adversary who cannot invalidate cache lines, delaying

the update of the hash in this way is safe. However, since many architectures support his

operation, this optimization is generally unsafe. As a result, we must be sure the hash is

updated whenever a value is written to the cache.

Since reducing the frequency of hash operations failed, we try instead to reduce the cost

of each hash calculation by using an incremental hash. An incremental hash uses a function

to add and remove elements from a hash efficiently. An example of an incremental hash

that uses the exclusive-or function is given in [7] and an implementation appears in [20].

Such a hash would make updates to the hash more efficient as we would not need to read

all memory locations to recalculate the hash. Instead, we simply remove the old value from

the hash, and add the new one. Again, we were able to find a weakness. Essentially, Murϕ

exploited the fact that when we read in the old value to remove it, we do not actually verify

that the old value is the correct value. A clever adversary can insert a different value at this

point to create havoc. For example, the adversary could insert a value that will cancel out

the value that the user is about to write, thus leaving the hash unchanged. The adversary is

then free to replay an old value, since the hash was not updated as shown in Table5.4.

Again, though the last value written is actuallyA, the hash forB validates correctly. It

seems that the only way to defeat this is to verify that the value being removed is the correct

value, which requires reading in all of memory when updating the hash. Unfortunately, this

negates the benefit of the incremental hash.

From these two failed hash implementations, we were able to create a successful hash

98 CHAPTER 5. SECURITY ISSUES

Action $ M H
1. User writesA to cache. A ∅ {h(A)}
2. Cache is flushed to memory. ∅ A {h(A)}
3. User writesB to cache. B A {h(A)− h(A) + h(B)} = {h(B)}
4. Cache is flushed to memory. ∅ B {h(B)}
5. Adversary replaysA in memory. ∅ A {h(B)}
6. User writesA to cache. A A {h(B)}
7. Cache is flushed to memory. ∅ A {h(B)− h(A) + h(A)} = {h(B)}
8. Adversary replaysB in memory. ∅ B {h(B)}

Table 5.4: Vulnerability from Incremental Hashes. An incremental hash cannot be used as
shown here with$ is the contents of the cache,M is the contents of memory, andH is the
value of the hash.

implementation. The first optimization failed because hash calculations are not atomic with

updates to memory. An adversary may perform a replay attack by invalidating values in

memory. One solution is to limit the ability of the adversary to invalidate cache lines by

only supporting a cache flush function during regular operation. The other solution, is to

call thecalculate hashfunction every time the user writes values to the cache. Similarly,

the verify hashfunction must be executed every time a value is read into the cache from

memory and before we recalculate a new hash as shown by the second failed optimization.

Unfortunately, this method may be inefficient because the entire memory region must be

read each time the hash is calculated or verified.

To detect extraneous actions, we removed actions from the model to see if they were

necessary for security. With Murϕ we found one action in the model that appeared to be

extraneous. When the user loads data from memory, it is not necessary to check that the

data is actually encrypted with the user’s key. It is sufficient to simply tag the register that

the data is stored to with the key that the data was encrypted with. In other words we can

change the user action to:

4. Read memory addressj into registeri:

if j is in the cache such that∃ cl.a = j

then load from cacheri = {d = cl.d, t = cl.t, k = ∅, h = ∅}
else load from memory ifmj.h 6= j

thenreset

5.5. ATTACKS NOT COVERED BY XOM 99

else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = mj.d, a = j, t = mj.k},
ri = {d = mj.d, t = mj.k, k = ∅, h = ∅}.

Later, when the user tries to use the data with ause operation in Table5.1, the machine

will check the tag anyway. Though unnecessary for security, specifying the key in the

instruction does make the hardware more efficient. The XOM architecture allows encrypted

programs to select whether data stored to memory should be encrypted or in plain text.

Having the program specify the whether the data it loads is encrypted or not, saves the

hardware from having to maintain that information.

5.5 Attacks not Covered by XOM

There are some attacks that XOM has no defense against. While these attacks provide the

adversary with some information, it us unclear how they could be used to by the adversary

to achieve one of the goals outlined in Section5.1.

Because the XOM machine allows an untrusted operating system to manage resources,

programs running in the XOM machine are vulnerable to a malicious operating system

mounting a denial of service attack. Since the operating system has full control over the

allocation of resources, it can prevent any or all programs from making forward progress by

simply denying them resources such as memory or CPU time. It is fundamentally impossi-

ble to have a malicious operating system and still guarantee forward progress for programs

who’s resources are managed by that operating system.

A malicious operating system can also gather limited information about an application.

Programs running on a XOM processor are vulnerable to frequency analysis. An adversary

who watches cipher text values in memory can learn how often a particular value is stored

to a particular address location. This attack can be defrayed to a certain extent by using

address and even time dependent salts to randomize the cipher texts in memory, but the full

implications of using this strategy are beyond the scope of this thesis.

Finally, a malicious operating system can obtain a full address trace of every memory

access. The operating system simply locks all pages in the TLB to force every access to

memory to be caught by a TLB miss. There exists mechanisms to implement “Oblivious

100 CHAPTER 5. SECURITY ISSUES

RAM” [25], which adds extraneous loads and stores to the instruction stream that are in-

distinguishable from the actual memory accesses. However, these loads and stores add a

non-trivial amount of overhead to the program.

5.6 Additional Security Issues

There are two other security issues that we must address. The first deals with key revocation

for XOM. A system that is “brittle” will fail of any one its components is compromised.

Here we discuss methods to minimize the damage done if a XOM processor’s master secret

is ever revealed. The goal is to provideforward securityso that software distributed after

the compromise to other XOM processors, will remain safe.

The other issue is one of privacy for the owner of the XOM processor. Because each

processor has a unique private/public key pair, the public key could be used as an identifier

to track the purchases the owner makes.

5.6.1 Key Revocation

No matter how much effort is made to make a system secure, there is always the possibility

of a compromise. If compromised, the XOM architecture requires a way of isolating faults

so that they don’t cause more damage. If a XOM processor is ever compromised in such

a way that it’s master secret is revealed, then all software that was ever encrypted for that

processor is immediately compromised. However, to ensureforward security— that is that

the key exposure doesn’t harm future pieces of software, we must have a way ofrevoking

the compromised key so that distributors will no longer encrypt compartment keys for the

compromised processor. There are several requirements for this to occur.

First, authorities must be aware what processor has been compromised. If the attacker

who compromises the processor broadcasts the master secret, then authorities will imme-

diately know which key to revoke. If on the other hand, the attacker does not broadcast

the key, but instead simply posts the decrypted compartment keys or decrypted binaries,

5.6. ADDITIONAL SECURITY ISSUES 101

then authorities will have a harder time detecting which processor is compromised. Water-

marking keys or binaries specifically for each processor would help identify the compro-

mised processor, but would interfere software merchants being able to distribute a single

encrypted binary as mentioned in Section3.1.3. The problem of identifying a compromised

processor remains an area for future research.

Second, once the compromised processor has been identified, akey revocation scheme

must be in place to inform software distributors not to encrypt any more compartment keys

for that processor. To do this, authorities will create a message containing a list of keys

being revoked and then sign list that with their own key so that the revocation message

cannot be forged. There exist a variety of key revocation schemes that can used to augment

this operation [3, 26, 33, 46, 47].

5.6.2 Privacy

The XOM system for software distribution poses a potential problem for privacy since the

public key of a processor can be used as an identifier for the owner of that processor. Thus,

if software distributors collude, they can figure out what purchases a particular individual

is making. To solve this problem, XOM processor can be enhanced with the ability to

create ephemeral keys and then sign them with a common master signing key. Thus, every

purchase a customer makes with the same XOM processor will be with a different key,

making it impossible to track the customer’s purchases. The ability to create an ephemeral

key can be embedded in a trusted piece of software that is protected from tampering by

the XOM system. However, the ability to create ephemeral keys prevents authorities from

identifying a compromised processor because all processors must share a common signing

key. This makes the system brittle since a single compromised processor will result in a

large number of compromised processors. This number can be reduced by having a set of

ephemeral keys thus reducing the number of processors sharing the same key.

102 CHAPTER 5. SECURITY ISSUES

5.7 Related work

There has been much work on the verification of both security systems and hardware sys-

tems. Theorem proving is a formal verification alternative to model checking. The design

of IBM 4758 Secure Coprocessor [58] used theorem proving techniques to verify its se-

curity. While theorem proving is not restricted to a finite number of states, it significantly

more difficult and time consuming to use.

The idea of performing verification by checking for consistency between a higher level

model and a lower level model has been detailed in work on refinement maps [2]. Our tech-

nique differs from refinement maps in that we ensure that every transition in the idealized

model has an existing transition in the actual model, while a refinement map specifies the

converse. There has also been some work that verified security by asserting an equivalence

between an idealized model and a model with certain actions available to the adversary.

One specification method using equivalence between a realistic model and an idealized

attack-impervious model is outlined in [40], with related ideas presented earlier in [1].

Prior work on CSP and security protocols, also uses process calculus and security specifi-

cations in the form of equivalence or related approximation orderings on processes [52, 54].

Lastly, none of the techniques presented in this thesis are Murϕ specific. A variety of

other model checkers such as SPIN, TLA+, or SMV could have been used [29, 36, 43].

5.8 Summary

This chapter illustrates the techniques we envision the adversary to circumvent the security

provided by XOM. Naturally, one cannot think of every possible attack so we turned to a

formal verification method toautomaticallygenerate attacks to verify the system. In using

a model checker, we found that an effective way to check for tampering is to define two

models: one with an adversary and one without. We detect tampering by checking for

inconsistency in user data between the two models. We found that it is difficult to optimize

the protection of memory from replay attacks in XOM. Two optimizations we tried failed,

though one would be possible if the operating system is not allowed to invalidate data in

the caches, but only to cause it to be flushed to memory.

Chapter 6

Conclusions and Future Work

With the wide spread use and adoption of the Internet, more and more media and intel-

lectual property is being distributed digitally. As a result, there is a growing interest and

need for copy and tamper-resistant software to enable the safe distribution of digital con-

tent. Fundamentally, these systems rely on hiding secrets from observation and protecting

them from unauthorized modification by an adversary. On-chip circuitry is both difficult to

observe and difficult to modify, making it inherently more tamper-resistant than software.

Successful systems work by hiding at least one secret in a chip, exploiting the tamper-

resistant properties of hardware. However, it is possible to observe the data that passes

through the pins of a chip, and to modify the data that is stored in the memory chips in a

computer. This means that we need to rely on cryptographic algorithms to protect data that

leaves the chip.

This thesis presents XOM, an eXecute Only Machine that uses on-chip tags and cryp-

tographic mechanisms for off-chip data to provide compartments that applications can use

to execute protected code. While the cryptographic operations are not cheap, since they are

only used for data that is flowing off-chip the added overhead is small. Off-chip commu-

nication is sufficiently slow (hundreds of processor cycles) that the tens of cycles needed

for the cryptographic operation is a small, 10% change in current operation cost. Thus,

through a combination of cryptographic mechanisms, such as ciphers and MACs, and ar-

chitectural mechanisms, such as tags and caches, we are able to provide both performance

and security.

103

104 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

We used a model checker to explore possible exploits that may violate the security of

the XOM containers. The most difficult attack to protect against is a memory replay attack.

In this attack, an adversary records values of memory, and reuses them at a later point in

time, causing the victim to use an old, stale value. While protecting against this attack is

possible, it is difficult to do so in a an efficient manner.

Creating XOM processors also raises a number of other issues, since in such a machine,

the applications do not trust the operating system with its code or data, but still need it to

manage the machine’s resources. We were able to show that is not hard to separate the

trust component from the other aspects of an operating system. With a small number of

modifications, we were able to port IRIX to create XOMOS, an untrusted operating system

that manages resources on the XOM hardware. A malicious version of XOMOS cannot

tamper or observe the execution of any of its user processes. In developing XOMOS from

IRIX, we found most of the modifications occurred in the low-level portion of the operating

system, and does not affect the application binary interface with the exception of two new

system calls. This leads us to believe that a variety of operating systems could be ported to

XOM architectures with the same ease.

While the hardware overheads of memory encryption are on the order of 10%, and our

operating system overheads appear to be substantial, our simulations show that the end-to-

end application overhead is actually quite modest. This is because the overheads introduced

by XOM occur on events which may not be very common. The hardware overhead of

memory encryption is incurred on cache misses and the operating system overheads are

incurred mainly on system calls. On the applications studied, we found the overheads to be

within 5% of the execution time.

This dissertation demonstrates that through a combination of architectural and cryp-

tographic methods, it is possible to design a system, with reasonable performance, that

supports copy and tamper-resistant software that is secure in the face of an adversarial

operating system.

6.1. FUTURE WORK 105

6.1 Future Work

Our work has shown that building a machine where trust is maintained in the hardware

is not difficult, and these machines can export nearly the same operating system API that

programmers are familiar with. There are really two large remaining questions: can a XOM

processors really be built, and how will application programmers take advantage of these

features.

This dissertation lays out extensions that can be added to the ISA of a processor. How-

ever, these extensions have implications on the processor architecture that will benefit from

further study. The interactions XOM would have on out-of-order architectures, or on si-

multaneously multi-threaded architectures for example, are not well understood. Because

the work was done in simulation, micro-architectural issues that may arise in a silicon

implementation would not be apparent. Further study in this area would reveal both the

complexity of the hardware implementation as well as more detail on what the hardware

overheads are.

In this work, we have made a start at identifying how programmers should use the fea-

tures of XOM to reduce the performance impact on applications that are ported to XOM.

However, this dissertation does not explore the possible new applications that may arise

with facilities such as those provided by XOM. In the past, there did not exist any trusted

hardware platforms. Given that XOM and other platforms now exist, a study into tech-

niques of effectively using the features they provide would be of interest.

Finally, this thesis examines the XOM architecture from a technical stand point. How-

ever, with the recent announcements of industrial initiatives in trusted computing, such

as TCPA and Palladium, we realize that such systems must be integrated into a complex

commercial setting. Tamper and copy-resistant systems try to address what was for the

most part a legal issue, with a technical solution. However, flexibility for different licens-

ing agreements, providing techniques for upgrading or recovering XOM systems, limiting

damage from compromised systems, as well as privacy and ease of use will be issues that

will help determine the viability of trusted computing. Ultimately, even if as researchers

we can convince the computing industry that trusted computing is feasible, it remains to be

seen whether that industry can convince consumers that trusted computing is beneficial to

106 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

them.

Bibliography

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.Informa-

tion and Computation, 143:1–70, 1999. Expanded version available as SRC Research Report

149 (January 1998).5.7

[2] M. Abadi and L.Lamport. The existence of refinement mappings.Theoretical Computer

Science, 82(2):253–284, 1991.5.7

[3] W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital identity revocation. InProceedings of

CRYPTO’98, 1998.5.6.1

[4] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. InIWSP: Interna-

tional Workshop on Security Protocols, LNCS, 1997.5.2

[5] ANSI X9.17 (Revised). American national standard for financial institution key management

(wholesale). American Bankers Association, 1985.2.2

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the

(im)possibility of obfuscating programs.Lecture Notes in Computer Science, 2139, 2001.1,

3.6.2

[7] M. Bellare, R. Guerin, and P. Rogaway. XOR MAC’s: New methods for message authentica-

tion using finite pseudorandom functions.CRYPTO’95, Lecture Notes in Computer Science,

963, 1995.5.4.7

[8] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running commodity operating systems on

scalable multiprocessors. InProceedings of The 16th ACM Symposium on Operating Systems

Principles, Oct. 1997.3.2

[9] Business Software Alliance, 2003.http://www.bsa.org . 1

[10] CERT/CC. Overview incident and vulnerability trends. Technical report, CERT Coordination

Center, Apr. 2002.3.1.2

107

108 BIBLIOGRAPHY

[11] S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards sound approaches to counteract power

analysis attacks. InProceedings of CRYPTO’99: 19th Annual International Cryptology Con-

ference, volume 1666, pages 398–412, Aug. 1999.5.2

[12] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations. Tech-

nical Report 148, University of Auckland, July 1997.3.6.2

[13] J. Daemen and V. Rijmen. AES proposal: Rijndael. Technical report, Na-

tional Institute of Standards and Technology (NIST), March 2000. Available at

http://csrc.nist.gov/encryption/aes/round2/r2algs.htm . 2.2, 3.3

[14] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware

design aid. InIEEE International Conference on Computer Design: VLSI in Computers and

Processors, pages 522–5, 1992.5.4, 5.4.1

[15] D. Dolev and A. Yao. On the security of public-key protocols.IEEE Transactions on Infor-

mation Theory, 2(29), 1983.5.4

[16] T. ElGamal. A public-key cryptosystem and signature scheme based on discrete logarithms.

In Advances in Cryptography: Proceedings of CRYPTO 84, pages 10–18, 1985.2.3

[17] P. England, J. DeTreville, and B. Lampson. Digital rights management operating system. U.S.

Patent 6,330,670, Dec. 2001.3.6.3

[18] P. England, J. DeTreville, and B. Lampson. Loading and identifying a digital rights manage-

ment operating system. U.S. Patent 6,327,652. Dec. 2001.3.6.3

[19] S. Freund and J. Mitchell. A type system for object initialization in the java bytecode language.

ACM Transactions on Programming Languages and Systems, 21(6):1196–1250, Nov. 1999.

5.4.2

[20] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and Merkle trees for

efficient memory authentication. InProceedings of the 9th International Symposium on High

Performance Computer Architecture, pages 295–306, 2003.5.3, 5.4.7, 5.4.7

[21] T. Gilmont, J. Legat, and J. Quisquater. An architecture of security management unit for

safe hosting of multiple agents. InProceedings of the International Workshop on Intelligent

Communications and Multimedia Terminals, pages 79–82, Nov. 1998.1, 3.6.1

[22] T. Gilmont, J. Legat, and J. Quisquater. Hardware security for software privacy support.

Electronics Letters, 35(24):2096–2097, Nov. 1999.1, 3.6.1

[23] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. Enhancing the security in the memory manage-

ment unit. InProceedings of the 25th EuroMicro Conference, volume 1, pages 449–456, Sept.

1999.3.6.1

BIBLIOGRAPHY 109

[24] R. Goldberg. Survey of virtual machine research.IEEE Computer Magazine, 7(6):35–45,

June 1974.3.2

[25] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs.

JACM, 43(3):431–473, May 1996.5.5

[26] M. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary

with skip lists and communitative hashing. InProceedings of DARPA DISCEX II, June 2001.

5.6.1

[27] J. Heinrich.MIPS R10000 Microprocessor User’s Manual, 2.0 edition, 1996.3, 3.4

[28] S. A. Herrod.Using Complete Machine Simulation to Understand Computer System Behavior.

PhD thesis, Stanford University, Feb. 1998.3, 3.4

[29] G. Holzmann. The spin model checker.IEEE Trans. on Software Engineering, 23(5):279–295,

May 1997.5.7

[30] M. Horowitz, M. Martonoisi, T. C. Mowry, and M. D. Smith. Informing memory operations:

Memory performance feedback mechanisms and their applications.ACM Transactions on

Computer Systems, 16(2):170–205, May 1998.3.2

[31] A. Huang. Keeping secrets in hardware: The microsoft XBox case study. Technical Re-

port 2002–008, Massachusetts Institute of Technology, May 2002. http://web.mit.edu/bu-

nnie/www/proj/anatak/AIM-2002-008.pdf.3.1.1

[32] IBM Corporation.IBM PCI Cryptographic Coprocessor: General Information Manual. 3.6.1

[33] P. Kocher. On certificate revocation and validation. InProceedings of the International

Conference on Financial Cryptography, volume 1465 ofLecture Notes in Computer Science,

1998.5.6.1

[34] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication.

http://www.ietf.org/rfc/rfc2104.txt , Feb. 1997.2.4, 5.3

[35] M. Kuhn. The TrustNo1 cryptoprocessor concept. Technical Report CS555, Purdue Univer-

sity, Apr. 1997.1, 3.6.1

[36] L. Lamport.Specifying Systems. Addison-Wesley, Boston, 2002.5.7

[37] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems:

Theory and practice.Proceedings of the 13th ACM Symposium on Operating Systems Princi-

ples, 10(4):265–310, 1992.3.2

[38] D. Lie, A. Chou, D. Engler, and D. Dill. A simple method for extracting models from protocol

code. InProceedings of the 28th International Symposium on Computer Architecture, July

2001.5.4.1

110 BIBLIOGRAPHY

[39] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz. Archi-

tectural support for copy and tamper resistant software. InProceedings of the 9th International

Conference Architectural Support for Programming Languages and Operating Systems, pages

168–177, Nov. 2000.1, 5.4.7

[40] P. Lincoln, M. Mitchell, J. Mitchell, and A. Scedrov. A probabilistic poly-time framework

for protocol analysis. In M. Reiter, editor,Proc. 5-th ACM Conference on Computer and

Communications Security, pages 112–121, San Francisco, California, 1998. ACM Press.5.7

[41] H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST concerning AES-modes of

operations: CTR-mode encryption. InSymmetric Key Block Cipher Modes of Operation

Workshop, Baltimore, Maryland, USA, 2000.3.3

[42] J. D. McCalpin. Memory bandwidth and machine balance in current high performance com-

puters.Technical Committee on Computer Architecture (TCCA) Newsletter, Dec. 1995.4.5.3

[43] K. McMillan and J. Schwalbe. Formal verification of the gigamax cache consistency protocol.

In Proceedings of the International Symposium on Shared Memory Multiprocessing, pages

242–51. Tokyo, Japan Inf. Process. Soc., 1991.5.7

[44] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using

murphi. InProceedings of the 1997 IEEE Symposium on Security and Privacy, pages 141–

153, 1997.5.4.1

[45] S. Morioka and A. Satoh. A 10 gbps full-AES crypto design with a twisted-BDD S-Box

architecture. InProceedings of the 2002 International Conference on Computer Design, pages

98–103, Sept. 2002.3.3

[46] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 internet PKI online

certificate status protocol - OCSP. IETF RFC 2560, June 1999.5.6.1

[47] M. Naor and K. Nissim. Certificate revocation and certificate update. InProceedings 7th

USENIX Security Symposium, Jan. 1998.5.6.1

[48] OpenSSL, 2000.http://www.openssl.org . 3.3, 4.5.3

[49] S. Polonsky, D. Knebel, P. Sanda, M. McManus, W. Huott, A. Pelella, D. Manzer, S. Steen,

S. Wilson, and Y.Chan. Non-invasive timing analysis of IBM G6 microprocessor L1 cache

using backside time-resolved hot electron luminescence. InProceedings of the IEEE Interna-

tional Solid-state Circuits Conference, pages 222–224, Feb. 2000.3.1.1, 5.2

[50] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public

key cryptosystems.Communications of the ACM, 21(18):120–126, 1978.2.3

BIBLIOGRAPHY 111

[51] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. A block-cipher mode of operation for effi-

cient authenticated encryption. InProceedings of the Eighth ACM Conference on Computer

and Communications Security (CCS-8), pages 196–205, 2001.3.3

[52] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In

CSFW VIII, page 98. IEEE Computer Soc Press, 1995.5.7

[53] J. Saltzer and M. Schroeder. The protection of information in computer systems.IEEE,

63(9):1278–1308, Sept. 1975.2, 2.1

[54] S. Schneider. Security properties and CSP. InProceedings of the 1996 IEEE Symposium on

Security and Privacy, 1996.5.7

[55] SGI IRIX 6.5: Home Page, May 2003.http://www.sgi.com/software/irix6.5 .

4

[56] W. Shapiro and R. Vingralek. How to manage persistent state in DRM systems. InDigital

Rights Management Workshop, pages 176–191, 2001.5.4.7

[57] V. Shmatikov and J. Mitchell. Analysis of a fair exchange protocol. InSeventh Annual

Symposium on Network and Distributed System Security, pages 119–128, 2000.5.4.1

[58] S. Smith, R. Perez, S. Weingart, and V. Austel. Validating a high-performance, programmable

secure coprocessor. InProceedings of the22nd National Information Systems Security Con-

ference, Oct. 1999.5.7

[59] S. W. Smith, E. R. Palmer, and S. Weingart. Using a high-performance, programmable secure

coprocessor. InFinancial Cryptography, pages 73–89, Feb. 1998.1

[60] U. Stern and D. Dill. Automatic verification of the SCI cache coherence protocol. InCor-

rect Hardware Design and Verification Methods: IFIP WG10.5 Advanced Research Working

Conference Proceedings, 1995.5.4.1

[61] The Trusted Computing Platform Alliance, 2003.http://www.trustedpc.com . 3.2,

3.6.3

[62] J. Tygar and B. Yee. Dyad: A system for using physically secure coprocessors. Technical

Report CMU–CS–91–140R, Carnegie Mellon University, May 1991.1, 3.2, 3.6.1

[63] VMWare, Inc., 2003.http://www.vmware.com . 3.2

[64] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation. InProceedings

of ACM SIGMETRICS’96: Measurement and Modeling of Computer Systems, pages 68–79,

1996.3.2

[65] B. S. Yee. A sanctuary for mobile agents. Technical Report CS97-537, University of Califor-

nia at San Diego, Apr. 1997.3.6.1

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Overview of this Dissertation

	2 Cryptographic Concepts
	2.1 Compartments
	2.2 Symmetric Ciphers
	2.3 Asymmetric Ciphers
	2.4 Message Authentication Codes

	3 The XOM Architecture
	3.1 The Abstract XOM Machine
	3.1.1 Supporting External Memory
	3.1.2 Supporting an Operating System
	3.1.3 Software Distribution Model
	3.1.4 Security

	3.2 Virtual Machine Implementation
	3.3 A Hardware Implementation of a XOM Machine
	3.4 The XOM Hardware Simulator
	3.5 Maintenance Issues
	3.5.1 Processor Upgrade
	3.5.2 Processor Key Recovery

	3.6 Related Work
	3.6.1 Hardware Approaches
	3.6.2 Software Approaches
	3.6.3 Trusted Computing

	3.7 Summary

	4 An Operating System for the XOM Architecture
	4.1 Operating System Design Issues
	4.2 XOM Key Table Support
	4.2.1 XOM Key Table System Calls
	4.2.2 Virtualizing the XOM Key Table

	4.3 Dealing with Encrypted Data and MACs
	4.3.1 Saving and Restoring Context
	4.3.2 Paging Encrypted Memory

	4.4 Supporting Traditional Operating System Mechanisms
	4.4.1 Shared Libraries
	4.4.2 Process Creation
	4.4.3 User-defined Signal Handlers

	4.5 Costs of Implementing XOMOS
	4.5.1 XOMOS Implementation Effort
	4.5.2 Operating System Performance Overhead
	4.5.3 End-to-end Application Performance Overhead

	4.6 Summary

	5 Security Issues
	5.1 Attack Model
	5.2 Hardware Based Attacks
	5.3 Software Based Attacks
	5.4 Formal Specification and Verification
	5.4.1 The Mur Model Checker
	5.4.2 Abstracting the Instruction Set
	5.4.3 The Actual Model
	5.4.4 The Idealized Model
	5.4.5 The Adversary
	5.4.6 Combining the Models
	5.4.7 Verification Results

	5.5 Attacks not Covered by XOM
	5.6 Additional Security Issues
	5.6.1 Key Revocation
	5.6.2 Privacy

	5.7 Related work
	5.8 Summary

	6 Conclusions and Future Work
	6.1 Future Work

	Bibliography

