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Highly security sensitive organizations often perform source code audits on software they use. However,

after the audit is performed, they must still perform a binary code audit to ensure the binary provided

to them matches the source code that was audited. BinPro seeks to reduce the manual effort required

to perform the binary audit by accounting for the binary versions of functions in a given source code.

To do this, BinPro combines static analysis, graph matching and machine learning. Over a corpus of 10

applications, BinPro is able to match 74% of binary functions with their source code counterparts, and

thus determine that they are free of malicious backdoors if their source code version is. When evaluated

on applications that backdoors inserted into their binaries, BinPro detects that they do not match any

function in the source code.
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Chapter 1

Introduction

With the increasing amount of software being used in critical infrastructure, such as data storage and

retrieval, telecommunications equipment, automobiles and health monitoring systems, there has been

increasing concerns about the threat of backdoors or other malicious code, that could be intentionally

inserted into such systems. Such fears are not unfounded – backdoors have been publicly documented

in networking equipment from Juniper [18], Dlink [3] and LinkSys [36]. Other well-documented cases

include the ProFTP backdoor [30], and the Volkswagen defeat device [16]. While the latter is not a

backdoor like the others, it is exemplifies that even highly-reputable vendors may willingly or be coerced

into inserting malicious code that is intended to attack or deceive end users. It is even possible that the

vendor is not aware of the attack, and the backdoor was inserted by a 3rd party into an external library

or code that whose development that was outsourced to a 3rd party.

In light of this situation, it is natural that governments and other security-sensitive customers are not

willing to trust system vendors on faith alone, but insist instead on doing their own source code audits. A

good example of this is Microsoft’s Government Security Program [22], which gives governments access

to the source code of key Microsoft products so they can perform such audits. While other instances of

such source code sharing may not be documented as publicly, such code audits are a standard business

practice between many system vendors and their major security-sensitive customers.

Source code audits are labor intensive and expensive. However, even after a successful audit, the

customers is not done yet – before they can use a software binary from the vendor, they must still

perform another binary audit to ensure that that the binary actually matches the audited source code.

This binary audit is as important as the source code audit since performing it incorrectly allows an

adversary to insert a backdoor in the binary that is not in the audited source code, nullifying the

1



Chapter 1. Introduction 2

efforts spent on the source code audit. Avoiding the binary audit by having the customer compile the

binary from the source code themselves is usually not permitted by the auditing agreement or may void

warranties. Even if self-compiled binaries were not explicitly forbidden, there are technical hurdles that

make it impractical or impossible. For example, compilation of the binary may require proprietary tools

or licenses, which the customer does not have or does have the expertise to use, or the hardware on

which the binary is to be run may only accept binaries signed by the original vendor.

We present BinPro, a tool that reduces the effort required to audit both the source code and the

binary. To do this, BinPro introduces the problem of Binary Backdoor Accountability, whose goal is

to identify the sections of the binary whose provenance can be accounted for (i.e. has an equivalent

description for) in the source code. Accounted for code does not need to be inspected during the binary

audit, saving manual effort by human auditors.

We assume that binaries are stripped of symbols and have been compiled with a compiler that the

customer does not have access to, which might arbitrarily apply a variety of compiler optimizations

during the process of transforming source code into a binary. As a result, the major challenge for

BinPro is differentiating between differences in binaries and source code that are due to legitimate

compiler optimizations and differences due to a backdoor that has been inserted in the binary after

a source code audit. To overcome this, BinPro identifies code features that are invariant under most

compiler optimizations, but would be modified if a backdoor is inserted. For the remaining optimizations

that do alter these features, we use machine learning to train BinPro to predict when these optimizations

are likely to be applied to allow BinPro to account for them.

1.1 Contributions

Overall, this thesis makes the following contributions:

• We identify and motivate the problem of Binary Accountability, where the goal is to match func-

tions in a binary with functions in the corresponding source code.

• We describe the design and implementation of BinPro, which performs binary accountability on

binaries and source code. To implement BinPro, we identify program features present in both

source and binary code that are independent of most compiler optimizations, and use machine

learning to predict when the remaining optimization will be applied.

• We evaluate BinPro on 10 applications and 3 different compiler-configuration combinations and

find that BinPro accounts for 74% of methods in binaries in the absence of backdoors, reducing the
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binary auditing effort by 1/4. When evaluated against binaries with malicious backdoors, BinPro

does not mark any binary function with a backdoor as accounted for, meaning that it will be

flagged for manual audit.

1.2 Thesis Structure

We begin by providing relevant background on backdoor in Section 2.1. We then define Binary Account-

ability problem in Section 4. Later, we describe the design of BinPro Section 5. Implementation details

are given in Section 6 and we evaluate the effectiveness and security in Section 7. We discuss related

work in Section 3 and conclude in Section 8.



Chapter 2

Background

2.1 Backdoor

A backdoor is an undisclosed and undocumented secret method or program to bypass certain security

measures based on some triggers to perform malicious activity. Security measures include authentication

or permission based access control. Backdoors are usually used for acquiring unauthorized access to a

system using a hardcoded password, secretively downloading remote code, and stealing information, such

as obtaining cryptographic keys. Many recent backdoors, for instance Dlink [3], Juniper Network [18]

and Fortinet [4], are implemented to contain hardcoded string. For example, in the case of Fortinet, the

suspicious code contains a challenge-and-response authentication routine for logging into servers with

the SSH protocol. If an adversary enters a hard-coded password of “FGTAbc11*xy+Qqz27” (without

double quotes), an unauthorized SSH access is given to the device. Furthermore, there are other types

of backdoors, which uses library/system calls for their malicious activity, such as port-knocking1 , and

stealing information by reading a file.

Consider the following examples to illustrate the concept of backdoor. Listing 2.1 is a code-snippet

of a backdoor injected in the Proftpd 1.3.3c application. This backdoor is inserted at line 14 in the HELP

command function, such that if the string preceded is “ACIDBITCHEZ” (without double quotes), a root

shell is spawn and an adversary is able to perform malicious activity. Another example is opening up a

socket or file, and sending privacy information to an adversary.

1http://www.portknocking.org/
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Chapter 2. Background 5

1 int pr_help_add_response(cmd_rec *cmd , const char *target) {
2 if (help_list) {
3 register unsigned int i;
4 struct help_rec *helps = help_list ->elts;
5 char *outa[8], *outstr;
6 char buf [9] = {’\0’};
7 int col = 0;
8
9 if (! target) {

10 // Some Code
11 } else {
12
13 /* Backdoor Inserted here*/
14 if (strcmp(target , "ACIDBITCHEZ") == 0) {
15 setuid (0);
16 setgid (0);
17 system("/bin/sh;/sbin/sh");
18 }
19
20 /* List the syntax for the given target command. */
21 for (i = 0; i < help_list ->nelts; i++) {
22 if (strcasecmp(helps[i].cmd , target) == 0) {
23 pr_response_add(R_214 , "Syntax: %s %s", helps[i].cmd ,
24 helps[i]. syntax);
25 return 0;
26 }
27 }
28 }
29
30 errno = ENOENT;
31 return -1;
32 }
33
34 errno = ENOENT;
35 return -1;
36 }

Listing 2.1: Source code of the Proftpd backdoor.
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Related Work

Program analysis is becoming one of most active research area of interest in computer security. Especially,

technologies and software are being increasingly developed, there have been growing need for the analysis

and the detection of vulnerabilities and malware. In this section, we describe prior related works to

BinPro based on source code analysis, binary analysis and backdoor detection.

3.1 Source Code Analysis

Several works have been proposed for finding known bugs, as code clones, at the source code level based

on code similarity metrics. Token-based approaches such as CCFinder [15] and CP-Miner [21] analyze

the token sequence produced by lexer and scan for duplicate token subsequences, which indicate potential

code clones. In order to enhance robustness against code modifications, DECKARD [13] characterizes

abstract syntax trees as numerical vectors and clustered these vectors with respect to the Euclidean

distance metric. Yamaguchi et al. [42] extended this idea by determining structural patterns in abstract

syntax trees, such that each function in the code could be described as a mixture of these patterns. This

representation enabled identifying code similar to a known vulnerability by finding functions with a

similar mixture of structural patterns. ReDeBug [12] is a scalable system for quickly finding un-patched

code clones in OS-distribution scale code bases.

Huang et al. [43] implemented a system called Talos that automatically generates Software Workarounds

for Rapid Response (SWRR), which are designed to neutralize software security vulnerabilities and uses

existing error-handling code within applications. SWRRs are similar to configuration workarounds, re-

quire little effort to deploy and can mitigate vulnerabilities while preserving the majority of application

functionality. Moreover SWRRs, like patches, can mitigate more vulnerabilities, more than 2x more

6



Chapter 3. Related Work 7

than configuration workarounds.

3.2 Binary Analysis

There have been several work on analysis and detection of malware and vulnerabilities in binary. Zy-

namics BinDiff [8] is an industry standard state-of-the-art binary diffing tool. BinDiff’s matches binaries

using a variant of graph-isomorphism, which is known to be NP. At a high-level, BinDiff extracts CFGs

from the two binaries and tries to match functions based on heuristics. The major drawback of BinDiff

is that it performs extremely poorly when comparing the two binaries that have been compiled with

different optimization levels or with different compilers, as the CFGs tend to differ greatly in such cases.

Apart from algorithm and accuracy, another notable difference between BinPro and BinDiff is the fea-

tures we extract from the binaries and the source code; BinDiff is heavily dependent on CFGs. BinPro

focuses more on FCG features and is also able to take advantage of features only available in source

code. BinSlayer [1], inspired by BinDiff, perform bipartite matching using the Hungarian algorithm.

This allows them to be more resilient to CFG changes due to local compiler modifications.

Egele et al. proposed Blanket Execution, BLEX [6], a engine to match functions in binaries, with the

goal of either classifying malware or aiding automatic exploit generation. BLEX is based on dynamic

equivalence testing primitive for capturing semantics of every functions in binaries. It executes each

function of a binary in a controlled randomized environment to collect the side effects of functions. They

ensure that every basic block is executed at least once per function, unless the execution timeout or run

out of maximum of 10,000 instructions. However, BLEX is not appropriate for binary accountability

since a function containing backdoor might not get executed.

Another approach following semantic based similarity are BinHunt [9] and its successor iBinHunt.

They redefine graph-based matching problem as maximum common induced subgraphs isomorphism

problem. They use symbolic execution and a theorem prover to determine semantically equivalent basic

blocks. However, BinHunt suffers from performance bottlenecks due to its symbolic execution engine

and thus it is unclear whether it can scale to large, real-world applications.

The most recent and advanced method to search for known bugs in binary code across different

architectures was proposed by Eschweiler et al. in discovRe [7]. discovRe uses an even looser matching

algorithm to match binaries using structural and numeric features of the CFG. discovRe was inspired

by Pewny et al. [27]. First, the binary code is translated into the Valgrind intermediate representation

VEX [39]. Then, concrete inputs are sampled to observe the input-output behaviour of basic blocks,

which grasps their semantics. Finally, these I/O behaviour is used to find code parts that behave similarly
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to the bug signature. While the use of semantics similarity delivers precise results, it is too slow to be

applicable to large code bases. We note in the last three cases, the motivation is to detect similar bugs,

so their goal is simply to detect the presence of a similar control-flow structure rather than matching

corresponding functions for binary accountability as BinPro aims to do.

Thus, the problem they solve is fundamentally different. Finally, while these approaches are resilient

to CFG transformations due to local optimizations, they all have difficulty if inlining occurs as this

changes the CFG of the function dramatically. On the other hand, with access to the source code,

BinPro is able to extract features that help it predict when inlining is likely to take place and thus

BinPro is able to handle inlining well.

BINJUICE [19] normalized instructions of a basic block to extract its semantic “juice”, which presents

the relationships established by the block. Semantically similar basic blocks were then identified by

simple structural comparison of their juices, or by comparing their hashes. This approach only works

at the basic block level and was extended to find similar code fragments that span several blocks.

BINHASH [14] models functions as a set of features that represent the input-output behaviour of a basic

block.

EXPOSÉ [26] is a search engine for binary code that uses simple features such as the number of func-

tions to identify a set of candidate function matches. These candidates are then verified by symbolically

executing both functions and leveraging a theorem prover. EXPOSÉ assumes that all functions use the

cdecl calling convention, which is a very limiting assumptions even for binaries of the same architecture.

David et al. [5] proposed to decompose functions into continuous, short, partial traces of an execution

called tracelets. The similarity between two tracelets is computed by measuring how many rewrites are

required to reach one tracelet from another. In the experiments the authors only considered functions

with at least 100 basic blocks, which is rarely the case. Moreover, this method is not robust against

compiler optimizations. TEDEM [28] automatically identifies binary code regions that are similar to

code regions containing a known bug. It uses tree edit distances as a basic block centric metric for code

similarity.

3.3 Backdoor detection

Schuster et al. proposed an approach to reduce the attack surface for backdoors. The authors have

used a variation of delta debugging/differential analysis [34] to identify specific regions in a binary

where backdoors are likely to be placed, such as in authentication and command handling functionality

routines. It requires a remote gdb session, the standard debugger for GNU software system, to collect
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the traces on a function and basic block level, and uses a set of heuristics to detect a backdoor in the

binary. The limitation of this approach is that they focus their analysis on the specific routines in an

application, and the backdoor region of a binary must be executed under a gdb run-time.

Wysopal et al. [41] presented a heuristics-based, static analysis approach to identify backdoors in

software system. The main limitation is that patterns of backdoors needs to be specified before the

analysis. This means that the backdoor needs to be known in advance before the analysis can be carried

out.



Chapter 4

Preliminaries

4.1 Problem definition

Proving equivalence between two program is equivalent to the halting problem, and is thus undecidable.

For the same reason, it is difficult to prove that compilers produce binary code that is equivalent to

the input source code [20, 24]. Rather than try to prove equivalence between a binary and source code,

BinPro instead aims for a weaker property, which we call Binary Accountability. Binary accountability

aims to identify the functions in a binary that are accounted for by functions in some corresponding

source code.

We define the call graph of binary B as accountable by the call graph of source code S iff every

function b in B matches a non-empty set of functions s in S. The inverse is not true – functions in S do

not have to match a function in B because source code can be present but not included into the final

binary or the compiler may optimize some source code functions away.

In the above formulation, we define match as a function that will return true if b is produced from

s under benign compilation, but false if a backdoor is inserted into b that is not present in s. We define

a backdoor inserted into the binary as malicious code that: 1) specifies malicious functionality that is

not present in the source code and 2) that malicious functionality should be triggered only under very

specific circumstances so as to remain stealthy. In some cases, the backdoor could be a large amount of

functionality, such as making additional network and file system calls, features found in many remote

access tools (i.e. RATS) [17]. These give a remote attacker access to nearly unlimited functionality on

the victim machine. In other cases, the additional functionality could be as little as an additional code

path that allows an attacker to bypass authentication with a hard-coded password or secret keyword,

10



Chapter 4. Preliminaries 11

such as that found in various well-documented backdoors [3, 4, 18]. In this case, the attacker only has

access to legitimate functionality in the binary, but in many cases this is still enough functionality to

do a great deal of damage. While we do not claim that these two classes of backdoors are exhaustive,

we believe that a great majority of backdoors will fall into one of these cases. We thus formalize our

backdoor threat model based on these two classes where either: 1) new function calls that eventually

lead to system calls are inserted, or 2) new code paths guarded by hard-coded strings or constants are

inserted to make them stealthy.

We note that our backdoor model excludes backdoors that are built around vulnerabilities, as these

do not need to insert new functionality. For example, if an attacker inserts a memory corruption

vulnerability that they can later exploit to inject new code or perform a return-oriented-programming

attack [37], then the new functionality does not appear in the binary, but is instead injected at exploit

time. Since binary accountability is a static analysis technique, it cannot analyze new dynamically

injected functionality.

4.2 Assumptions

We make several simplifying assumptions in this work. First, while we do not assume access to compila-

tion symbols, we do assume that it can be reliably disassembled using a tool such as IDA Pro [11]. While

it is possible to produce binaries that would defeat IDA Pro, since the binary is meant to be benign,

a binary that contains obfuscated code is likely to draw suspicious in it of itself. We concede that it

may be possible for an adversary to obfuscate their backdoor so that it also happens to disassemble to

normal-looking code (for example, by overlaying 2 different instruction streams over the same binary

values). However, this requirement raises the level of difficulty for the attacker considerably.

Second, while we do not assume we have access to the build infrastructure, we do assume that we

are able to pass all the source code through our analysis tools, meaning that they are in some dialect of

C or C++ that we can parse. For now, we also assume access to the values used in processor directives

(i.e. #ifdef) and include files so as to avoid undefined or incorrectly defined symbols during our parser,

which was derived form a standard C/C++ compiler. However, this is an implementation artifact as one

could also modify the front-end of our tool to ignore undefined symbols and accept mismatched types,

which we plan to do for future work.
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4.3 Compiler optimizations

One of the main difficulties with determining binary accountability is the code transformations compil-

ers apply to optimize the compiled binary. Fortunately, many optimizations are orthogonal to binary

accountability as they do not introduce or remove system calls, nor do they affect hard-coded strings or

constants used in a binary. However, there are several that do, which we briefly outline here.

Inlining. This optimization moves a callee function into the body of a caller function, essentially

removing the callee from the binary. In addition, a new function will be created that will be a mix of

the features of both the original callee and caller. Inlining makes binary accountability hard because

two or more functions in the source code must be properly matched to a single function in the binary.

The handling of arbitrary inlining by BinPro is a distinguishing characteristic over previous work [7,27],

which will return incorrect results if inlining occurs

Library call substitution. Compilers may have standard library-specific optimizations that substitute

library calls for a more efficient version under certain circumstances. In many of these cases, these library

calls may make different system calls. Binary accountability must properly disambiguate these benign

optimizations from modifications that would result from an addition of a backdoor in the binary.

Local optimizations. Compilers also optimize control-flow basic blocks to improve the performance of

the execution. For example, optimizations such as loop unrolling may significantly change the structure

of the control-flow graph. In addition, register allocation optimizations can obscure the number of

parameters passed to a function at certain call sites if the compiler determines that the appropriate

argument is already in the appropriate register.

String modification. Compilers may insert new string constants in the compilation process (i.e.

standard pre-defined macros such as FUNC or FILE ), as well as modify existing ones (for example,

perform statically-resolvable string substitutions for format string functions).

Compiler-inserted functions. Compiler will sometimes insert their own calls to helper functions. For

example, GCC will insert calls to stack chk fail to detect stack overflow. These functions appear in

the binary but not in the source code. BinPro will flag these functions as unaccounted for since they do

not have a source code equivalent. However, they are easily recognizable and can be easily white listed

by users.



Chapter 5

Design

5.1 Overview

At a high-level, BinPro computes binary accountability by comparing a function in the binary with a

corresponding function in the source code. This comparison checks for differences in code features that

could indicate the presence of a backdoor. Pairs that show no differences in these features are labeled

as “safe”, and can be trusted to not contain a backdoor. Pairs where BinPro detects differences may be

different due to compiler optimizations. If BinPro can determine that the difference is due to a benign

optimization, the binary function is also labeled “safe”. BinPro conservatively marks all binary functions

where it could not determine if the differences are due to the compiler as “suspicious”, and this set of

functions must be audited by a human to determine if a backdoor is really present or not. We call this

comparison procedure Strict Checking.

However, before BinPro can perform strict checking, it must first determine which functions in the

binary correspond to which functions in the source code. Since we assume the binary is stripped of

Figure 5.1: High-level work flow of BinPro

13
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symbols, determining this mapping is not straightforwards. A näıve approach might be to start at the

entry points of both binaries (i.e. main()), and then perform a traversal of the call graph, but this

does not work for two reasons. First, a function could have several callees, and there must be a way

to disambiguate the callees. Second, edges in the call graph are often incomplete because of computed

function pointers, whose target cannot be determined statically. As a result, BinPro performs an iterative

Loose Matching phase that uses various code features to determine the most likely source function that

will match a binary function. In cases where loose matching is unable to find a good match for a binary

function, these binary functions will be labeled as unmatched or multi-matched, and also require a human

auditor to determine if they are new functions inserted as part of a backdoor or not.

Unlike previous work in backdoor detection [34,35], which tries to balance the trade-off between false

alarms with missed detections, binary accountability is intended for scenarios where the user has very

high security requirements, and has already committed to spending a large amount of human resources

on code auditing. In such cases, the user is willing to tolerate a high false alarm rate because the current

situation is that human auditors examine the entire binary anyways. Binary accountability is a cost

saving tool whose purpose is to determine what parts of a binary need not be audited by a human. As

a result, unlike the previous backdoor detection tools, BinPro is designed to 1) take advantage of the

fact that it has source code to perform accountability and 2) be very conservative in marking binary

functions as safe as they will not be examined further by a human auditor. The criteria for the utility of

BinPro is how many functions it can safely determine to be free of backdoors according to the backdoor

model we described in Section 4, and thus save the human auditor from having to spend manual effort

on and whether it can ever mistakenly mark a binary function that contains a backdoor as safe.

Figure 5.1 shows the high-level work-flow of BinPro. A binary and the source code are the input to

the system, where BinPro extracts code features from them. Next, BinPro uses the extracted features

to perform loose matching to identify corresponding function pairs in the source code and binary. A

refinement phase then helps disambiguate functions that lose matching was not able to uniquely pair

together. Finally, the strict matching phase checks the function pairs to determine if there are any

differences that cannot be accounted for by benign compiler optimizations.

To help explain the operation of BinPro, we will use a simple running example, as exemplified by a

toy game application whose code is described in Listing 5.1. In this simplified example, the user inputs

the name and the level he/she wants to play. Depending on the level users input, they play beginner or

advance mode of the game. However, a backdoor is inserted in the binary of the game, which is shown

in the Figure 5.2. If the user enters LegendaryHack name, then he/she unlocks extreme level, which is

hidden in the game play. Using this example, we will now describe each of BinPro’s phases in detail.
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1 void advance(char *name , int level) {
2 if (name == NULL) return;
3 // play advance level
4 }
5
6 void beginner(char *name , int level) {
7 // play novice level
8 }
9

10 void start(char *name , int level) {
11 if (level < 5) beginner(name , level);
12 else advance(name , level);
13 }
14
15 inline static void init() {
16 printf("Initializing ...\n");
17 }
18
19 int maxTen(int level) { return level %10; }
20
21 void main (int argc , char **argv) {
22 init();
23 int level =0;
24 printf("Enter level: ");
25 scanf("%d", &level);
26 level = maxTen(level);
27
28 start(argv[1], level);
29 }

Listing 5.1: Source code of the running example.

5.2 Feature Extraction

Since we cannot directly compare a binary to its source code, we abstract both source code and binary

to the same set of features, and compare these instead. We select features that are 1) mostly invariant

under compiler optimizations and 2) should change if a backdoor is inserted and 3) appear commonly

enough in source code and binary to be useful for matching. We call these features Matching Features.

We also extract another set of features that are only available in the source code. Since they are only

available in the source code, they cannot be used for matching. Instead, we use them to help predict

when function inlining will take place, which improves loose matching. We call these features Predictive

Features. We list the features that Bin Pro uses in Table 5.1.

To extract these features, BinPro extracts the call graph from both the binary and source code, and

the features are extracted from each function in the call graph. We note that both the binary and the

source code call graph may be missing edges due to function pointers. We now describe each of the

features in more detail, as well as how the extraction phase uses the predictive features to account for

function inlining.

Matching Features. BinPro extracts a set of references to string constants from each binary and

source code function. Since string constants exist as string literals in the source code and references to

the constants section of the binary, these are trivial to extract from both binary and source code. An
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Figure 5.2: Binary assembly code of the running example

instance is recorded for each use of the string and BinPro conducts use-def analysis to ensure it detect

the correct number of uses of a string even if it assigned to a variable first before being used. String

constants are a feature that is invariant under many compiler optimizations, but tend to be used in

guards of backdoors. To determine the prevalence of string constants, we examined the 10 open source

applications used in our evaluation in Section 7 and found that an average of 55% of the functions

contain a reference to a string constant. Moreover, many of these strings are only referenced by a single

unique function.

Similarly, integer constants are another feature that is suitable for binary accountability. Like string

constants, these are extracted into a set that is associated with each function. Integer constants in a

binary not only represent integers in the source code, but may also represent various other values such

as character constants, enum values and addresses. We ignore constant values such as 0, 1 and -1 which

are commonly used in functions, leaving other unique integers. Similar to constant strings, constant

integers can serve to uniquely identify functions. In addition, an attacker may also break a hard-coded

value into several constant integers, so this feature is also necessary to detect backdoors.
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Table 5.1: Features used for matching and inlining predication.

Matching

String constants
Integer constants
Library Calls
Function Call Graph
Control Flow Graph
# of function arguments

Predictive

Static Declaration
Extern Declaration
Virtual Declaration
Nested Declaration
Variadic Argument Declaration
Recursion
Computed Goto

Library calls can also help identify and pair functions and are also extracted into a set of library

calls that are associated with each function. Unlike string constants, library calls may not be uniquely

identify functions, but at the same time it is difficult for the compiler to optimize this feature. Also,

rather than call a system call directly, a backdoor may make a call to a library function in a standard

library like libc, so this feature should be included to ensure that backdoors are detected.

The number of arguments a function takes is also a feature that can help pair a binary function with

its source code equivalent. While the number arguments is easily extracted from the source code, it is

not always as easily extracted from the binary due to compiler optimizations. Still, on our corpus of 10

applications used earlier, we find that we are able to accurately calculate number of arguments for 64%

of functions.

Finally, The function call graph (FCG) and control-flow graph (CFG) of both binary and source code

are also used as features. The FCG helps identify and pair functions by checking that paired functions

have similar callers and callees. Since a backdoor can be implemented by inserting a call to a function

that leads to a system call, checking callees is also required to ensure that a function with a backdoor

is not marked as safe. Using the extracted FCG, BinPro records the set of caller and callee functions as

features for each function.

Function CFGs are often heavily modified during compilation and thus are not a good feature for

direct matching. However, BinPro still uses them during the refinement phase to help disambiguate

non-unique matches that arise out of loose matching. However, because of the large changes CFGs

undergo, they are not suitable for use during the strict matching phase as they would lead to too many

benign differences marked as suspicious. BinPro does not record the full CFG of each function, but only

keeps the number of conditional branches in the CFG for each function. The ternary operator (? :)
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does not have its own conditional node when extracted from the source code. We compensate for this

by incrementing the conditional branches in source code functions where we find a ternary operator.

Predictive Features. A key difficulty for the next phase is dealing with function inlining. In the

absence of inlining, a binary function will match exactly one source function. However, with inlining,

inlined source functions must be combined before their matching features will match the corresponding

binary function. Because BinPro has access to source code, it is able to use code features from the

source code to predict which functions the compiler is likely to inline. We list these features in Table 5.1.

Predictive features include features of the function declaration, such as whether it is static, extern virtual,

nested or has variadic arguments. We also use features of the function body, such as whether it contains

recursion (direct) or a computed goto. Access to source code is one of the reasons why BinPro can

achieve much better results than code-similarity tools that only work with binaries [1, 8, 9].

To train our classifier, we use a set of applications and a compiler. We note that these do not

need to be the same application or the same compiler for which BinPro is trying to determine binary

accountability. The intuition is that all compilers follow some common principles of when to inline,

which are applied independently of the application being compiled. Thus, this training can be done once

for all uses of BinPro.

We train the predictor by building a corpus of inlined and non-inlined functions extracted from a

variety of applications. We then use this set to train an Alternating Decision Tree (ADTree) classifier.

We used a decision tree algorithm because we felt that this closely mirrors the logic that compilers use

to decide whether to inline or not. To verify this hypothesis, we evaluated different machine learning

algorithms from the Weka toolkit [40] and found that ADTree was indeed the best predictor. The trained

classifier is then applied to the source code to be audited. Functions that are classified as likely to be

inlined have their matching features copied to their parents. We also add edges in the FCG from the

parent to the children of the inlined function. However, we do not remove the inlined function from the

FCG. The reason is that if the predictor is wrong, then the binary functions will still have a chance to

match their corresponding inlined functions. However, if the predictor is correct, than the inlined source

code function will simply be left as an unmatched function in the source code.

For example, in our running example, BinPro extracted the aforementioned features from the source

code and the binary. The FCG derived from the binary and the source code are shown in the Figure 5.3a

and Figure 5.3b, respectively. As observed from the FCGs, init function is inlined in the binary. Using

the predictive features, BinPro correctly predicted init as inlined into themain. As a result, the matching

features of init (namely the library call to .printf) will be copied into main. However, as noted above,
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main

scanf .printf maxTen start .puts

advance .strcmp beginner

(a) FCG of the binary

main

scanf init .printf maxTen start

.printf advance beginner

(b) FCG of the source code

main

scanf init .printf maxTen start

.printf advance beginner

(c) FCG of the source code after prediction

Figure 5.3: Function Call Graph (FCG) of the running example

the init node is not removed from the FCG even though it is inlined. Figure 5.3c shows the final FCG

after the BinPro’s prediction phase.

5.3 Loose Matching

The goal of loose matching is to label every binary function as matched, unmatched or multi-matched.

Multi-matched functions are binary functions where loose matching determines more than one potential

match. These functions are further refined in the next phase to either matched or unmatched. Functions

that are unmatched are labeled suspicious, as BinPro was not able to find a corresponding function in

the source code that it can be accounted to. Finally, all matched functions under go strict matching to

determine the final set of safe and suspicious functions.

After inlining prediction is applied, every function in the binary should uniquely match a single

function in the source code. If inlining took place and was predicted correctly then the binary function
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Figure 5.4: Example of weighted bipartite graph

Algorithm 1 Loose Matching

function Loose Matching(BinGraph, SrcGraph)
reGenerateCallerAndCalleeNodes(BinGraph)
reGenerateCallerAndCalleeNodes(SrcGraph)
repeat

B Create weighted bipartite graph
weights← ∅
pairs← ∅
for b ∈ BinGraph do

for s ∈ SrcGraph do
weights← compWeights(b, s)

end for
end for
B Run Hungarian and assign labels
pairs← HungarianAlgorithm(weights)
assignLabels(binGraph, pairs)

until convergence = true
end function

should match the parent function where the function was inlined. Otherwise the un-inlined binary

functions will match their respective source functions. As a result, loose matching is a classic bipartite

matching problem.

The functions in the binary and source code are mapped into a weighted bipartite graph. A bipartite

graph is a graph G where the nodes can be divided into two disjoint sets S and B, such that no two nodes

within the same set are connected by an edge. Here, one set represents the functions in the source code

and the other the functions in the binary. Weighted edges in G connect a node from S to B. Figure 5.4

shows an example of weighted bipartite graph. We must determine an optimal bipartite assignment

between the nodes in B and S that minimizes the total weight of the edges between them. This problem

is analogous to solving an assignment problem. A standard way to solve such problems is to apply

the Hungarian algorithm [23], which produces a sub-optimal solution in polynomial time, O(N3). To
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apply the Hungarian algorithm, we must then 1) compute the weight for each edge between B and S

and 2) label the pairs of nodes in the resulting assignment as matched, multi-matched or unmatched.

Algorithm 1 presents the pseudocode for the matching based on bipartite graph.

Computing weights. Weights are calculated for each pair of binary/source code functions. For each

pair of nodes (an edge) in a bipartite graph, we use these set of features to assign a cost. The total

weight is a weighted sum of the individual costs of each matching feature.

N∑
i=1

wiCfi (5.1)

where N is the total number of features, w is the weight factor for a feature and and C is cost for a

feature.

We calculate the cost of each feature, Cf , on the scale of 0 and 1, inclusive. The cost of 0 means a

pair of function is the most similar, whereas the cost of 1 means the pair is least similar. If a pair do not

share any common features we assign predefined MAX COST , otherwise we calculate the cost based

on features. The way a cost for a feature is computed depends on whether the features is a set, such as

for string constants, or whether it is a scalar value, such as for the number of function arguments.

For set features, we compute a modified Jaccard index between the two sets. The standard Jaccard

index is computed as follows:

J(B,S) =
|B ∩ S|
|B ∪ S|

(5.2)

where B and S represent a set feature from a node in the binary graph and source graph, respectively.

However, Jacquard index will calculate the same cost for cases where a string is missing in set B and

a string is added in set B. Because backdoors are likely to introduce new strings, we want to assign a

higher cost if a string is added in B. Thus, we use modified version of Jacquard index to calculate the

cost:

Cf (B,S) =



|S−B|
|S| if |B − S| = 0

|B−S|
|B| otherwise

(5.3)

For the number of function arguments, which is a scalar value, we assign a cost of 1 if the source

code and binary function do not have the same value and a 0 if they have the same value.

Let us consider the game example where we want to calculate the cost of string constant feature,

f , for the function main in the binary. Since there are only two functions that contain this feature, f

is calculated for the two pairs: 1) main from the binary and init from the source code, and 2) main
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from the binary and main from the source code. The string constant feature contains three strings for

the function main in the binary and one string for the function init. For pair 1 the cost Cf1 is 0.667,

whereas for pair 2 the cost Cf2 is 0.333. As a result, the binary main is more likely to match the source

code main because of the lower weight these lower costs would result in. A similar effect will occur due

to the other features.

Each feature contributes a different amount to the likelihood of determining a correct match. To

account for this, each features is multiplied with a weight factor before being combined into an overall

edge weight. We determine the weight factor of each feature using Sequential Minimal Optimization

(SMO) [29] to train a Support Machine Vector (SVM) [2] machine learning classifier. Once the training

is completed, we obtain the weight factors of each features according to their importance determined by

the SVM.

One challenge is that while nodes in both binary and source code functions contain a set of callers

and callees in the FCG feature, the contribution of component towards the total edge weight cannot

be computed initially because there is no mapping between callers and callees. That is, functions in

the source code are identified by function names, but functions in the binary are identified by their

addresses, and it is the mapping between those that we are trying to compute in the first place! BinPro

gets around this problem by iteratively computing the edge weights, performing Hungarian assignment

and labeling the functions. On each iteration, some number of binary/source code functions become

matched, and these matches are then used to compute costs in the FCG feature for the next iteration.

These iterations are then performed until the resultant changes converge.

Labeling functions. Once weights are assigned to each edge in the bipartite graph, the Hungarian

algorithm will determine an assignment that minimizes the weights of the edges. Each pair of functions

in the resultant assignment will have a edge weight that is either unique, equal to some other pair

or MAX COST . A unique weight means that the binary function has no other edge between it and

another source function with the same weight. Such binary functions are labeled as matched. In other

cases, there can several edges whose weights are equal to the weight of the edge between the binary

and the source function that the Hungarian algorithm assigns. In these cases, the used features cannot

definitively match a single function so these will be resolve during refinement. We label the binary

function as multi-matched and note the other source functions that have equal weight. Finally, a pair

that has MAX COST is labeled unmatched because the binary function has no common features in

common with the source code function.

Recall that after labeling, BinPro will update the edge weights of the FCG caller and callee features
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based on the new labels. After each iteration, more functions will be marked as matched, and these

matched functions affect the number of elements that intersect when computing the modified Jaccard

Index. As a result, this increases the contribution that the FCG caller and callee features make during

loose matching for each iteration, allowing more matches to be identified.

For example, let us consider functions main and start in the binary, which would be labeled as

matched after the first iteration due to its features. Once this match is found, it allows BinPro to learn

the corresponding functions in source and binary, and enable it to disambiguate advance and beginner

from maxTen in the next iteration since start calls advance and beginner while main calls maxTen.

5.4 Refinement

At this point all binary functions have been labeled as matched, multi-matched or unmatched. Refine-

ment uses CFG features to disambiguate the multi-matched binary and source code functions who have

the same edge weights between them. To do this, we perform a procedure similar to lazy matching on

these functions. However, unlike before, the edge weights in this bipartite graph is determined solely

from the the number of conditional branches in the CFG feature (recall that this feature is not used in

lazy matching). The cost of CFG feature is the difference between the number of conditional branches:

Ccfg = |Nb −Ns| (5.4)

where Nb and Ns is the number of conditional branch feature for the binary node CFG and source node

CFG. We again run the Hungarian algorithm on the bipartite graph and re-label the nodes in this smaller

bipartite graph based on whether the resultant assignments have a unique, non-unique or MAX COST

weight.

For example, the function advance in the toy game contains one conditional branch in both the

binary and the source code. This function will thus be labeled as matched.

5.5 Strict Checking

The goal of this component is to label every binary functions as either safe or suspicious. At this

point, BinPro has determined the best source code function that it can find for the matched binary

functions. Every binary function that is still unmatched or multi-matched is marked as suspicious and

will be manually audited. However, functions that are labeled matched are marked as safe and won’t
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be audited. As a result, to ensure they are truly safe, BinPro performs strict checking to determine if

the there are differences between their features that could indicate the presence of a backdoor. For now,

we describe how BinPro does this and leave the discussion of the security guarantees and possible ways

that an attacker could evade BinPro to Section 7.1.

We check the string constant, integer constant, callee and library call features of every pair of matched

functions for strict equivalence. An inserted backdoor is likely to change one of these features. We note

that the string constant, integer constant, callee and library call features are used during loose matching

so one might wonder why we allow functions that differ in these features to be matched at all during

loose matching. The reason is that when we tried to be strict during the matching phase, we found

this resulted in very few matches being found at all due to compiler optimizations. Since very few

matches could be found, loose matching could not “bootstrap” itself and find callees and callers during

the iterations during the matching phase. As a result the callee and caller features are not as helpful and

many functions that would have been matched and pass strict checking were never matched in the first

place. Thus, it is better to have some functions that are slightly different due to compiler optimizations

be matched so that their callers or callees can, which might be exactly the same can also be matched

during loose matching.

Considering the game example, we know that functions main, start, advance and beginner are

matched respective to its source code functions in the Loose Matching and Refinement stages. In the

Strict Checking phase, these matched functions are compared, for instance advance from the binary will

be compared with advance from the source code. After comparison we observed that advance contains

additional string constant in the binary than the source code and, thus we flag the function as suspicious

for manual checking.

One possible reason that equivalent functions might not pass during strict checking is due to an

instance where function inlining occurred in the binary, but was not predicted to happen during loose

matching. As a result, the inlined features from the inlined callees will appear in the binary function,

but not in the matched source function. To prevent this misprediction from causing correct matches

to be labeled as suspicious, strict checking accounts for inlining by recursively searching the children of

a mismatched source code function for any additional features found in the binary function. To avoid

searching to the entire sub-graph, we only check for inlined feature at a maximum depth of two levels.

This means that we only check the callees and their children functions. Since compiler optimizations may

add or remove integer constants, BinPro uses a threshold of and treats differences in integer constants

less than the threshold as the same. In our BinPro prototype, we find using a threshold of 8 works well.
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5.6 Discussion

While BinPro is able to correctly match many binary functions with the correct source code function

and determine the absence of a backdoor, there are still anywhere from 10-35% of functions where it is

unable to do. The main reason for this is benign compiler optimizations. Since static compilers cannot

use dynamic profiles to guide when to apply optimizations, they often must rely on complex algorithms

to determine optimizations should be applied. With the exception of inlining, we found it ineffective to

try to predict when these other optimizations will occur.

Two design features in BinPro enable it to achieve matches despite these optimizations. First, BinPro

allows functions with some minor differences to still match during lazy matching. Second, BinPro only

uses features that a backdoor would affect during strict checking. For example, a commonly applied

optimization that BinPro does not try to predict is loop unrolling, which will increase the number of

conditional branches used in the CFG feature. However, this optimization has only a minor effect on

the final result of BinPro since it is only used during the refinement phase.

Another optimization is register allocation and spills to the stack. On the x86-64 processor architec-

ture, there are 6 dedicated registers used for passing arguments in a function call (rdi, rsi, rdx, rcx,

r8, r9) [38]. We use these registers to calculate the number of arguments feature for binary functions

(see Section 6 for more details). However, due optimizations definitions and uses of these registers may

be removed making it difficult to tell which registers are live at a function call site. As a result, we found

that our machine learning tended to place a low weight factor on this feature, meaning that it only came

into play when all the other features between two functions were very similar.

Compilers may also perform library call substitutions that replace some standard library calls with

more efficient versions if the call-site arguments permit it. While these differ widely from compiler to

compiler, and thus are a poor target for training unless one has access to the compiler itself (something

BinPro does not assume), they are fairly easily recognizable by a human auditor, as they are almost

universally applied to standard library functions and a human who understands the semantics of the

library calls would be able to easily determine their equivalence (i.e. replacing printf with puts or

vsprintf). Thus, BinPro can be configured with a white list of such substitutions. Once the auditor

notices a compiler making such substitutions, they can add the substitution to BinPro’s white list and

run BinPro again, which prevents it from incorrectly flagging these substitutions as suspicious. A similar

white list also exists for compiler-inserted functions (also described in Section 4.3).

Finally, we found that string constant and function caller-callee relationships were rarely modified by

compiler optimizations, making them reliable for both loose matching and strict checking. As we detail in
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Section 6, these three features are given the heaviest weight factors by our machine learning algorithm.

The major case where compilers insert strings are with pre-processor defined strings as described in

Section 4.3. Another more obscure case was where format strings that contained a substitution that

could be statically resolved (i.e. sprintf(str, "%d", 5)) might be performed at compilation time.

While some pre-processor inserted stings such as LINE or FILE can be resolved since BinPro

theoretically knows the file and line where the macro appears, in general, these string substitutions are

difficult to white list as the inserted string can be very dependent on the environment where the binary

was compiled (i.e. the date or compiler version). As a result, BinPro currently does not white list any

compiler-generated string constants.
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Implementation

6.1 Extracting and comparing features

BinPro has three major components. The first component extracts features from source code, while

the second component extract features from binaries. Finally a third component performs binary ac-

countability on the two sets of extracted features. The source code feature extraction component of

BinPro is implemented by extending the ROSE compiler framework [33] with 1907 LOC. As mentioned

in Section 4.2, we currently rely on access to the build scripts of an application (i.e. Makefiles), to

extract compiler directives so that preprocessor macros and include files resolve properly, but believe

this dependency can be eliminated by removing type checking, permitting the use of undefined variables

and searching the source tree to resolve include files. The source code extraction feature processes each

source file individually and outputs each function as a description in Graphviz DOT format [10]. The

functions are then linked together along with the other source features in Table 5.1 using a set of Python

scripts (730 LOC) using PyDot [31] and Networkx [25] libraries.

Even though BinPro is able to detect all of the real and synthetic (made by us) backdoors, there

are limitations with the tool that may evade BinPro’s binary backdoor accountability algorithm. Recall

that for function call references, we are relying on ROSE compiler and IDA Pro for the source code

and binary. These tools do not handle indirect function call, and as a result BinPro does not handle

backdoor containing indirect function calls.

With the exception of the number of arguments, all binary features are extracted using IDA Pro [11].

To extract the number of arguments, we wrote a python script that will use IDA Pro’s API to extract

the necessary binary features to compute the number of arguments. BinPro takes into account compiler

27
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idioms such as xor r8, r8, which appear to be reading register r8, but are in fact just initializing it to

zero. Unfortunately, due to control-flow imprecision, statically determining dynamic instruction ordering

is not always reliable. As a result, we have observed cases where BinPro extracts the wrong number of

arguments.

The matching phase described is implemented in 12,110 lines of JAVA code. We have based our

implementation on the Graph Matching Toolkit framework by Riesen and Bunke [32], which provides an

implementation of the Hungarian algorithm. Most of the code in the framework has been modified and

updated to our needs, which includes the lazy matching, and refinement and strict matching phases.

6.2 Application of machine learning

We train machine learning classifiers for inlining prediction during feature extraction and to compute

the optimal weights for edge weight calculation during loose matching. The likelihood of inlining and

the relative importance of the features is dependent when the compiler applies optimizations, which can

change significantly depending on the optimization level that is passed to the compiler. For instance,

there are four standard optimization levels in GNU GCC compiler. The GCC flag -O0 will turn off all

optimizations, whereas -O1 will turn on 31 different optimizations. The flag -O2 will turn on another 26

optimizations and -O3 additional 9. We don’t know expect to know the optimization level the binary to

be audited has been compiled with, or even whether it was compiled with GCC or not. As a result, we

train with a mix the -O2 and -O3 optimizations levels, which are the most commonly used optimization

levels for production code.

To train the inlining prediction classifier, we use a corpus of training applications. Each application

is compiled twice, once with -O2 and again with -O3 compiler optimization levels. We use debugging

symbols within the compiled binaries to divide the functions into a set that were inlined and a set that

were not. For each application, we then selected the smaller of the two sets (usually the set that was

inlined) and randomly select an equal size set of functions from the other set making a set of functions

that is 50% inlined and 50% not-inlined. For each function, we extract a feature vector containing the

predictive features for the function. We then aggregate these functions and feature vectors across all

applications and train our inlining predictor. The resulting predictor can be used to predict whether a

function will be inlined or not using predictive features.

The edge weights for lazy matching are computed using a similar procedure. Again, we use a corpus

of applications and compile each application using GCC, but only at the -O2 optimization level so that

only functions that are very likely to be inlined get inlined. We then exclude all the inlined functions
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Table 6.1: Average weights of the features used in Loose Matching phase

Feature No. Feature Name Weight
1 string constant 1.469
2 integer constant 0.6315
3 library calls 0.2828
3 caller functions 2.9293
4 callee functions 2.9293
5 # of arguments 0.9296

and using the ground truth for which source function matches which binary function, we can then create

a set of function pairs for each application composed of 50% correct matches and 50% incorrect matches.

Inlined functions are excluded because we cannot always combine the callee and caller features correctly,

and these errors pollute the training set. We then train the weights so that the SVM classifier is able

to maximally classify these two sets correctly across all applications in the training set. During our

evaluation, we perform a 5-fold cross evaluation across our 10 applications. We tabulate the average

computed weights from this 5-fold evaluation in Table 6.1, which shows that FCG callee and callers, as

well as string constants are the main features used for matching as they have the heaviest weights.
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Evaluation

We evaluated BinPro on virtual machines running Ubuntu 14.04 on Intel Core i7-2600 CPUs (4 cores @

3.4 GHz) with 16 GB of memory. For this study, we use a set of 10 applications: Proftpd 1.3.4b, Busy-

box 1.23.2, Apache (HTTP) 2.4.12, Bind 9.10.2, Mongoose 2.1.0, OpenSSH 7.1p2, Dropbear 2015.71,

OpenVPN 2.3.10, Transmission 2.84 and Lighttpd 1.4.39. While these are open-source applications, we

feel that the results are representative of similar closed-source applications. Every applications were

compiled with GCC 4.8.2 with optimization level -O2 and -O3, and the ICC Intel compiler 15.0.3 with

the highest optimization level -O3. This evaluation addresses the following questions:

• How effective is BinPro at marking binary functions with various backdoors inserted into them as

suspicious?

• In the absence of backdoors, what percentage of binary functions does BinPro correctly mark safe

and consequently how much binary auditing effort does BinPro save?

7.1 Identifying backdoors

We begin by verifying that BinPro flags backdoors as suspicious when they are inserted in binaries and

accounted against source code that is free of backdoors. We first use real, publicly documented backdoors

in ProFTP, Apache, Dropbear and Juniper’s ScreenOS. In cases where we could not get access to the

actual backdoor binaries, we implemented them based on the descriptions of the backdoors. Since

we don’t have the source code for ScreenOS, we implemented its backdoor as another backdoor in

Dropbear. The ProFTP, DropBear and ScreenOS backdoors all use hard-coded strings to access hidden

functionality. Since BinPro flags binary functions with extra string constants, it flags all the binary

30
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functions containing these backdoors as suspicious. The Apache backdoor is more sophisticated in that

a specially crafted GET request that contained a special string that had to decrypt to a particular format

when decrypted with the requester’s IP address. In this case, BinPro detected an additional function

call within the binary function with the backdoor, which is used for comparing the input string with the

encoded string.

These real backdoors are trivially flagged as suspicious by BinPro because they do not make much

attempt to hide their presence from static analysis tools. To further evaluate the resilience of BinPro to

evasion, we now envision an adversary who is aware of how BinPro works, but is still constrained by our

backdoor model. There are a large number of ways an adversary could insert a backdoor, so it is hard

to prove that BinPro cannot by circumvented. Instead, we attempt to construct backdoors that might

evade BinPro’s accountability algorithm. To this end, we evaluate the following types of backdoors on

Mongoose, Proftpd and Dropbear:

Strings as individual characters. Instead of encoding a hard-coded string as a string constant,

the attacker embeds the string check directly in the code as a series of comparisons against individual

characters of the string. This avoids having a string constant. However, it increases the number of

conditional branches and integer constants because each comparison requires an integer constant and a

conditional branch causing BinPro to classify it as suspicious.

Compute a hash the string and compare the resulting value. Instead of comparing the string

directly, the adversary hashes the string using a hash (MD5 in our tests) and compares the hash value

to reduce the number of conditional branches and integer constants introduced. Comparing an MD5

hash only requires 4 comparisons with 4 integer constants, which is below BinPro’s threshold. However,

calling the MD5 function adds a function call, which causes BinPro mark the function as unmatched

and label it suspicious. If the adversary inlines the MD5 hash function to avoid calling a function, then

BinPro detects an increase in the number of integer constants and branches due to the MD5 code and

marks the function as suspicious.

Calling an intermediate function. Instead of directly calling a library function for string comparison,

we call a local wrapper function, which calls a library function. In this case, BinPro the binary function

no longer matches its source code function and is labeled unmatched, causing BinPro to eventually label

it is unmatched. This eventually causes BinPro to label the function as suspicious

Calling an existing function. The adversary can find a function that already makes a call to the

MD5 function and put the backdoor in that function. However, BinPro tracks the number of calls to

each function in its callee list, causing the binary function with the backdoor to not match its source
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function, resulting it being labeled as suspicious.

Use an existing string constant in the function. Instead of introducing a new string constant

or a string constant from another function, which BinPro would definitely flag, the attacker could try

to re-use an existing string constant that the function is already accessing in their backdoor. However,

because BinPro counts the number of string constant accesses, this still fails strict checking and the

function is labeled as suspicious.

Assign an existing string constant to a local variable. Instead of using the string constant twice,

the adversary modifies the function to assign the string constant to a temporary variable and modifies

the original use to use that variable. She then uses the temporary variable in the backdoor. However,

BinPro takes use-def chains into account when computing the number of string constant references, so

this backdoor is also caught during strict checking.

Portknocking. Instead of preventing accidental discovery of the backdoor with a long string constant,

the attacker uses port-knocking1 to hide the presence of the backdoor. However, port-knocking introduces

new library calls to listen to the various ports in the sequence, which cause BinPro to flag the function

as suspicious.

We did think of some backdoor insertion methods that will evade BinPro. For example, an adversary

could fine one or a series of existing checks for obscure errors (an out of memory error for example) set

a global variable if it is triggered. The global variable then triggers some existing functionality that is

useful to the attacker. However, this increases the difficulty of using this backdoor as the attacker must

find error paths that are not likely to be triggered by accident, yet must be easy for the attacker to

trigger from an external interface.

In another instance, the attacker could use a very short string (less than 7 characters long) as the

hard-coded string that triggers the backdoor. Due to local optimizations, BinPro allows differences in

conditional branches and integer constants below some threshold and a small enough increase in these

will not cause BinPro to mark a function as suspicious. However, using a short string increases the

chances that the backdoor might be triggered accidentally or during blackbox testing. As a result, while

we cannot prove that BinPro will prevent any type of backdoor from being marked as accounted for, we

believe that BinPro make it non-trivial for an attacker to insert a backdoor and avoid auditing.

1http://www.portknocking.org/
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Figure 7.1: BinPro matching effectivness on benign applications.

7.2 Effectiveness of the matching using source-code

We evaluate how much binary auditing effort BinPro can save by evaluating the percentage of functions

marked safe by BinPro when performing binary accountability on benign binaries. We perform a 5-fold

cross validation when training the inlining predictor and matching weights when running BinPro on

our 10 applications. We run BinPro once and white-list the standard library function substitutions

that BinPro finds. We then run BinPro again with the extracted white-list and post the final results

in Figure 7.1. BinPro is able to match an average of 76.5% of the binary functions across the 10

applications and 3 compiler-optimization combinations, reducing the binary auditing effort by more

than 1/4 on average. The main reasons why BinPro is not able to match all of the functions even in

the benign case are 1) simple functions with very few matching features, 2) different functions that have

similar features and 3) various compiler optimizations that confuse relationship between corresponding

functions.

We compile the binaries with symbols and from these symbols find that 2.5% of functions are marked

as matched, but match the incorrect function, meaning that 74% of functions are correctly matched.

We find that the cases where a BinPro matched a binary function with the incorrect source function, all

the features of the matched source function actually match the binary function, but it just so happened

that the two functions were different. In other cases, we found that mismatches occurred because the

Hungarian matching algorithm provides a non-optimal bipartite matching solution.

The most surprising result is that even though both the inlining predictor and matching weights are
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trained only with GCC, we are able to achieve comparable matching results on Intel’s ICC compiler,

a completely different compiler. We attribute this to the observation we made that while compiler

implementation may vary wildly, the types of optimizations they make tend to be similar “textbook”

type optimizations.

To further understand how BinPro achieves robust matching across compilers, we investigated the

performance of the inlining predictor. We performed a 5-fold cross evaluation across our 10 applications.

The predictor is trained on the on GCC as described in Section 6.2 and then evaluated on the Intel ICC

compiler. On average, the training set consisted of 12040 feature vector and the testing set consisted

of 735. The inlining prediction correctly predicts inlining on 78% of inlined functions and incorrectly

predicts inlining on 17% of un-inlined functions. This confirms that the relatively good cross-compiler

performance of the inline predictor is one of the reasons that BinPro is able to achieve high percentage

of accountability, even across compilers.



Chapter 8

Conclusion

BinPro is intended to reduce the manual effort required to perform binary audits of security-critical

code. BinPro performs binary accountability, a task whose goal is to match functions in a binary with

those in the corresponding source code such that matched functions don’t have malicious backdoors.

In our evaluation across 10 applications and 3 compiler-configurations, we find that BinPro is able to

correctly match 74% of functions and thus eliminate them from auditing, reducing the binary auditing

effort by 1/4 on average.

BinPro achieves these results only with access to the functions source code, and does not need

information about the compiler or compiler optimization level used to compile the binary. We find that

one of the main reasons behind this is that using machine learning to predict when compiler inlining

occurs works fairly well across different compilers (such as GCC and Intel ICC compilers). Dealing with

inlining is critical as it is one of the optimizations that tends to have the largest effect on code FCG and

CFG features.
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