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Abstract—Effective machine-aided diagnosis and repair of
configuration errors continues to elude computer systems
designers. Most of the literature targets errors that can be
attributed to a single erroneous configuration setting. However,
a recent study found that a significant amount of configuration
errors require fixing more than one setting together. To
address this limitation, Ocasta statistically clusters dependent
configuration settings based on the application’s accesses to its
configuration settings and utilizes the extracted clustering of
configuration settings to fix configuration errors involving more
than one configuration settings. Ocasta treats applications as
black-boxes and only relies on the ability to observe application
accesses to their configuration settings.

We collected traces of real application usage from 24 Linux
and 5 Windows desktops computers and found that Ocasta
is able to correctly identify clusters with 88.6% accuracy. To
demonstrate the effectiveness of Ocasta, we evaluated it on
16 real-world configuration errors of 11 Linux and Windows
applications. Ocasta is able to successfully repair all evaluated
configuration errors in 11 minutes on average and only requires
the user to examine an average of 3 screenshots of the output
of the application to confirm that the error is repaired. A user
study we conducted shows that Ocasta is easy to use by both
expert and non-expert users and is more efficient than manual
configuration error troubleshooting.

Keywords-Fault diagnosis, System recovery, Clustering algo-
rithms, Software tools

I. INTRODUCTION

Configuration errors are a leading cause of failure and
unavailability for desktop applications [1]. Fixing such er-
rors has essentially two steps: identifying the configuration
settings causing the error, and replacing the faulty settings
with values that fix the configuration error.

To facilitate the first step, proposals in the literature
have tried to pinpoint the time the configuration error first
appeared [2], used statistical anomaly detection to detect
abnormal configuration settings [3], [4], [5], or used white-
box dynamic analysis to find the particular configuration
setting that causes the application to execute an erroneous
code path [6]. Of these three approaches, only the last two
try to identify the configuration setting that causes the error
and even then, they only work if the error is the result
of a single configuration setting. Unfortunately, this can
be a serious drawback since a recent study found that a
significant number of configuration errors (14.9%-34.7%)
require changing more than one configuration setting to
fix [7], because some configuration settings are related.

One example of related configuration settings is illustrated
in Figure 1a: the number of “Item” settings should never
exceed the value of Max Display setting. Microsoft Word
automatically maintains this relationship. For instance, if a
user reduces the maximum number of recently accessed doc-
uments from the Preference menu, Microsoft Word not only
reduces the value of Max Display setting, but also deletes
extra Item settings. Consequently, if the user wants to undo
the effect of reducing the maximum number of recently
accessed documents, both the old value of Max Display
and the deleted Item settings need to be recovered.

In this paper, we present a novel technique that uses hier-
archical agglomerative clustering [8] to identify clusters of
related configuration settings, relying only on the ability to
observe application accesses to its configuration store, and is
thus language, binary and OS independent. We implemented
this technique in Ocasta, which treats applications as black-
boxes and is able to work on a wide range of applications
and environments.

To evaluate the effectiveness of Ocasta, we collected
traces of application usage from both Windows and Linux
machines ranging from 18 to 76 days in length and then use
Ocasta to identify clusters of related configuration settings
in 11 different application in across 4 different OS flavors.
Using this data and 16 real-world configuration errors, we
show that Ocasta’s clustering is able to accurately identify
88.6% of the clusters of related configuration settings.

To further evaluate Ocasta, we added a simple GUI-based
configuration error repair tool that, with user input, uses the
clustering information from Ocasta to automatically search
for and fix settings causing configuration errors. The Ocasta
search tool requires the user to provide a GUI-action script
that triggers the error, which it then uses to automatically
search historical values of the clusters of configuration
settings found by Ocasta for a fix. A screenshot of the result
is recorded after each search and the user is asked to select a
screenshot that shows that the symptoms of the configuration
have been treated.

Configuration error repair in general is very hard and
while Ocasta’s proof of concept tool is able to fix the symp-
toms of all of our configuration errors, it cannot guarantee
that the selected fix does not introduce new hidden errors,
nor can it fix errors that do not have any visible symptoms.
In general, studies have shown that even trained humans
may fail to fix configuration errors completely, create new



Application: MS WORD 2010 
…\File MRU\Max Display: 20 
 
…\File MRU\Item 1: \Path\To\ Document1 
… 
…\File MRU\Item 20: \Path\To\ Document20 
 
Description: The “Max Display” setting 
determines the number of recently accessed 
documents stored in the “Item” settings. 

(a) MS Word

Application: Acrobat Reader 
…/InlineAutoComplete: true 
 
…/RecordNewEntries: true 
…/ShowDropDown: true 
 
Description: The “InlineAutoComplete” setting 
enables/disables the “auto complete” feature 
when user fills a form. The other settings specify 
how the “autocomplete” feature should behave. 

(b) Acrobat Reader

Application: Evolution Mail 
…/mail/display/mark_seen: true 
 
…/mail/display/mark_seen_timeout: 15 
 
 
Description: When the setting “mark_seen” is 
set to true, Evolution marks an email as “seen” 
after the email is opened for the time specified in 
the setting “mark_seen_timeout”. 

(c) Evolution Mail

Figure 1: Examples of dependency relationships among configuration settings

errors in the process troubleshooting or fixing an existing
error, or have to resort to resetting the application back
to its defaults to remove the symptoms of a configuration
error [9]. Our evaluation demonstrates that Ocasta’s method
for inferring related configuration settings broadens the
range of errors automated configuration error repair tools
can handle by providing with clustering information. We
believe that even when automated tools fail, the clustering
information provided by Ocasta will still be valuable to
human troubleshooters.
Our contributions are:
• We characterize the types and reasons of for relation-

ships between configuration settings by manually in-
specting and analyzing over 500 configuration settings
across 11 applications.

• We present the design and prototype implementation
of Ocasta, which uses black-box statistical clustering
of application behavior to identify related configuration
settings. Ocasta has been implemented on both Linux
and Windows and evaluated on both systems using data
collected from machines used by real people.

• We further evaluate the usability of Ocasta’s clustering
with a proof-of-concept tool that given a set of ac-
tions that recreates a configuration error, automatically
searches historical values of clusters of configuration
settings for a fix. We demonstrate the effectiveness of
our tool against 16 real-world configuration errors. We
also provide a user study showing the effectiveness of
Ocasta’s configuration repair tool.

We begin by studying relations between configuration set-
tings and defining the problem solved by Ocasta in Sec-
tion II. We then describe Ocasta’s high-level design in
Section III and give implementation details in Section IV.
We describe how we collected our traces in Section V and
evaluate Ocasta in Section VI. Finally, we discuss related
work in Section VII and conclude in Section VIII.

II. PROBLEM DEFINITION

Similar to relationships between program variables [10],
relationships between configuration settings are a common,
though not often documented phenomenon that applications
exhibit. We begin by describing 3 representative examples

Name Days Reads Writes # Keys TTKV Size
Windows 7 42 6.76M 67.72K 4,611 85MB
Windows
Vista

53 3.46M 20.5K 14,673 29MB

Windows
Vista-2

18 15.08M 224.64K 1,123 6.3MB

Windows
XP

25 22.80M 311.9K 14,667 24MB

Windows
XP-2

32 26.76M 268.96K 19,501 46MB

Linux-1 25 91.52K 3.34K 1,660 6MB
Linux-2 84 8.15K 0.48K 35 0.1MB
Linux-3 46 52.41K 0.44K 706 0.7MB
Linux-4 64 507.07K 5.43K 751 6.4MB

Table I: Summary of trace statistics. The traces on the
Linux machines are aggregated by users instead of machines.
We only list statistics for users whose data we use in the
evaluation of this paper. The last column gives the size of
the TTKV at the end of the trace. For Linux-2, Linux-3 and
Linux-4, the TTKV only stores keys from the application-
file logger.

of related configuration settings that we found by manually
inspecting over 500 configuration settings that were accessed
by 11 different Windows and Linux applications in our traces
(trace statistics given in Table I).

In Figure 1a, to control the number of documents listed
in the recently opened documents list in Microsoft Word,
Max Display limits the number of document names
stored in the Item settings (e.g. Item 1, Item 2). In
Figure 1b, Acrobat Reader uses InlineAutoCompelete
to determine whether to enable the “auto complete” feature
when user fills a form, while RecordNewEntries and
ShowDropDown specify how the “auto complete” feature
works, including whether to record user-entered data and
whether to display the list of previously recorded data
in a dropdown box. Finally, in Figure 1c, Evolution will
automatically mark an opened email as “seen” after an email
has been opened by the user for the time interval specified
by the value of mark_seen_timeout, but only when
mark_seen is set to “true”. These examples illustrate that
related configuration settings exist when one or more settings
controls the validity or meaning of another group of settings.

Because related configuration are designed to work to-



gether, applications are likely to update related configuration
settings together, in order to satisfy their relation as illus-
trated in our 3 examples. In addition, users tend to change
related configuration settings together. For example, a user
will probably set the value of mark_seen_timeout and
change the value of mark_seen to “true” together, in
order to enable Evolution to automatically mark an opened
email. In contrast, independent configuration settings are
unlikely to be changed together. Based on this intuition,
Ocasta identifies the relations among configuration settings
by observing the access correlations among them and uses
hierarchical agglomerative clustering to group together con-
figuration settings based on access correlations.

Limitations: Ocasta has several limitations. First, inde-
pendent configuration settings can be accidentally updated
simultaneously and cause the hierarchical agglomerative
clustering algorithm that Ocasta uses to incorrectly identify
them as dependent. Similarly, partial update of dependent
settings may be legal in some cases causing Ocasta to
incorrectly infer that related settings should be in separate
clusters. Ocasta’s clustering can be tuned to handle such
cases, but this tuning may require some manual intervention.
Ultimately, Ocasta can only perform as well as the quality
and amount of data available to it. Second, Ocasta must be
able to intercept and record accesses to the individual keys
where the application stores its persistent settings. We have
implemented and tested such capabilities for OS-provided
key-value stores like the Windows Registry and GConf in
Linux. While many applications use OS-provided stores,
some applications use their own files to store configurations.
Thus we have also implemented custom parsers for several
common file formats, such as XML, JSON, PostScript, INI
and plain text.

Ocasta’s proof-of-concept error repair tool has some ad-
ditional limitations. First, a fix for the configuration error
must exist in the application’s recorded history. Our tool
cannot fix applications that have always been misconfigured
or where the configuration error arose due to a change
in an external dependency. Second, the configuration error
must occur deterministically, because our tool only performs
one trial execution per historical cluster value in its search.
Finally, because the user must be able to identify a fixed
application from its screenshot, the configuration error must
be visually observable on the display.

III. OVERVIEW

A. Clustering configuration settings

Ocasta improves configuration troubleshooting and repair
by heuristically identifying clusters of related configuration
settings. Ocasta abstracts configurations into key-value pairs,
with the key being the name of the configuration setting
and the value being the content of the setting. As we see
in Section IV, many application configurations naturally fit
into this abstraction.

It is important that the clusters of configuration settings
that Ocasta extracts from observing application behavior
be accurate. On one hand, extracting undersized clusters
can create clusters that do not contain all the configuration
keys necessary to fix a configuration error. Even worse,
attempting to fix an error with an undersized cluster can,
in some cases, break dependencies between configuration
settings, leading to a non-working application configuration.

On the other hand, extracting oversized clusters causes
unrelated configuration settings to be clustered together, and
can lead to extraneous configuration changes when trying
to repair errors. As an extreme example, repairs that reset
an application configuration back to its defaults, or copy a
configuration from a previous snapshot or a different user,
essentially treat the application’s configuration as a single,
large, oversized cluster.

Ocasta uses the property that related configuration keys
are much more likely to be modified together than unrelated
keys to infer which keys are related. To determine whether
keys have been modified together, Ocasta uses a sliding time
window and considers all keys written within the window to
have been modified together. Ocasta uses a default sliding
window of 1 second, which can be increased if needed by the
user. Some keys are modified very frequently, so the chances
of such a key being modified concurrently with unrelated
keys is high. Consequently, Ocasta only clusters together
keys that are often modified together, but rarely modified
individually on their own or with other keys. To do this, we
define a correlation metric between each pair of keys:

Correlation =
|A∩B|
|A|

+
|A∩B|
|B|

A and B denote the set of all writes to keys A and B
respectively, and the intersection of A and B denotes the
set of writes where both keys were written together. The
correlation metric is maximized at 2 when both keys are
always modified together and minimized at zero when both
keys are never modified together. The larger the correlation,
the more related the pair of keys. Note that the correlation is
only defined when both keys have a non-zero number writes.
Since Ocasta assumes that the application worked initially,
any key that has not been modified from its initial value
cannot cause a configuration error, and is thus excluded from
Ocasta’s search for a configuration fix.

Hierarchical agglomerative clustering [8] takes as input
a set of points, distances between each pair of points,
and a linkage criterion that defines how distances between
clusters are computed. It then iteratively merges clusters
together, forming a hierarchy with larger clusters at the
top of the hierarchy. In Ocasta, we use the “maximum
linkage criterion”, which defines the distance between a pair
clusters as the maximum distance between any two keys
across the clusters. Hierarchical clustering has the advantage
over other types of clustering, such as k-means or centroid-



based clustering, in that it does not require the number of
clusters to be specified in advance. To perform hierarchical
clustering, distances need to be smaller as keys become
more related, so we use the inverse of our correlation metric
as the distance for Ocasta’s clustering. To decide when to
stop clustering, Ocasta provides a tune-able threshold, which
defines the maximum distance between any two clusters. By
default, Ocasta uses a threshold equivalent to a correlation
value of 2 (i.e. a distance of 0.5), which only clusters keys
that are always modified together. If the user finds that
configuration repair fails due to undersized clusters, she may
decrease the threshold to allow Ocasta to cluster together
keys that are modified together most of the time.

Like any black-box heuristic, Ocasta can fail under certain
circumstances, particularly for configuration settings that
have had very few modifications from which Ocasta can
learn. For example, the user may modify several unrelated
settings at once, causing the application to store those
changes together into its configuration store. Unless, these
settings are later modified separately, Ocasta will incorrectly
infer that they are related, resulting in an oversized cluster.
Similarly, it is possible that a user makes a single change
to an application that causes a change to only one level of
hierarchically dependent configuration keys. For example,
she may disable the feature completely, which would only
change the higher-level key, modify the lower-level keys
without changing the higher-level key, or only modify a
subset of the lower-level keys. Again, if this was the only
instance of modifications to the key, then Ocasta may infer
an undersized cluster that separates related keys from each
other into different clusters. While only using black-box
information makes Ocasta more broadly applicable, Ocasta
can only work with the information it observes and as a
result, can be misled when there is inadequate history for
its clustering to work.

B. Automated repair

Ocasta’s automated repair tool uses the clustering infor-
mation to aid the user in fixing configuration errors. For ex-
ample, configuration error #15, described in Table III, causes
the menu bar to disappear when certain PDF documents are
opened in Acrobat Reader. To use Ocasta, the user must first
create a trial, which tells Ocasta how to recreate the error
and makes the symptoms of the error visible on the screen.
For example, in the case of error #15, the user starts Acrobat
Reader and uses it to open the PDF document that causes
the error. Since the menu bar disappears once the document
is opened, the error is visible on the screen. The user thus
ends the trial with the menu bar missing and document open
on the screen. Ocasta records the UI actions the user made
in the trial and automatically extracts the identity of the
application or applications that were used.

Ocasta’s repair tool then asks the user to specify an
optional start time and an optional end time. The start time

is the earliest time the user believes the configuration error
could have been introduced, and allows Ocasta to limit how
far back in time it searches for the cluster that causes the
error, which we call the offending cluster. If the user doesn’t
specify a bound, Ocasta will search all the cluster versions in
the recorded history of the application. The end time is the
latest time the user believes the configuration error could
be introduced and should roughly coincide with time the
configuration error is first discovered. This is useful if the
user might have tried to fix the error themselves and thus
may have made spurious configuration changes that might
slow down the search. If the user does not specify an end
time, Ocasta uses all recorded values up to the end of the
recorded history.

In some cases Ocasta can identify a large number of
clusters in an application (as many as 220 in our measure-
ments). As a result, recovery will be significantly faster if
Ocasta sorts clusters so that the ones that are likely to be
configuration clusters are checked before the ones that are
likely to be non-configuration clusters. We use the intuition
that changes to configuration settings should be infrequent
because for them to change, the user must explicitly modify
a configuration setting, which also happens infrequently.
Ocasta thus sorts the clusters by the number of times they
have been modified over the application’s history.

Ocasta then executes the user-provided trial on the histor-
ical values of the clusters by rolling back an entire cluster
of configuration settings at a time and running the trial
in a sandbox, which prevents the execution to leave any
persistent changes. Ocasta can be configured to perform
either a breadth-first (BFS) or depth-first (DFS) search on the
historical values of each cluster. In DFS, Ocasta executes the
trial on all the historical values of a cluster before moving
onto the next cluster. In BFS, Ocasta executes the latest
historical value of each cluster before moving onto the next
historical value. DFS works well if Ocasta’s sort algorithm
successfully prioritizes the offending cluster early in the sort,
while the BFS algorithm provides performance that is less
influenced by how well the sort worked.

After each trial execution, the tool takes a screenshot.
Ocasta discards the screenshot if it is identical to either
the erroneous screenshot or any previous screenshots it has
recorded. The user can periodically check on the recorded
screenshots recorded to see if any of them display a fixed
configuration. When she see a fixed configuration, Ocasta
permanently rolls back the cluster to its corresponding value
and returns back to recording mode. A video demonstrating
the use of Ocasta is available online for viewing 1.

IV. IMPLEMENTATION

In this section we describe implementation details of Oca-
sta’s prototype. Ocasta works on both Windows and Linux.

1http://youtu.be/aRvJlTj-0F0

http://youtu.be/aRvJlTj-0F0


Ocasta supports applications that use the Windows registry
or the GConf configuration system, as well as applications
that store configuration state in XML, JSON, PostScript, INI
and plain text files. We describe the implementation of the
Ocasta time travel key-value store, the logger, as well as the
clustering and repair components of Ocasta.

A. Time travel key-value store

Ocasta records configuration key-value activity in a time
travel key-value store (TTKV). We implemented Ocasta’s
TTKV using Redis, a commonly used key-value store [11].
Redis maps each key in the application to a record that
contains the number of writes and deletions, as well as a
list of historical values of the key including timestamps. A
special type of value is used to represent deletions of the
key, which are also recorded in the value history.

During regular application use, Ocasta’s loggers (de-
scribed in the next section) intercept accesses by applica-
tions to their configuration store and record information
about these accesses in the TTKV. Ocasta then uses the
information stored in the TTKV to compute the clustering
information for the keys. In addition, Ocasta’s configuration
error repair tool uses historical values in the TTKV when
performing its search for a configuration error fix.

B. Logger

The primary purpose of the logger is to intercept accesses
an application makes to its persistent storage and abstract
those into key-values that can be stored into the TTKV. As
a result, the logger is necessarily dependent on the way the
application stores its application state. Below we detail the
implementation of Ocasta loggers for the Windows registry,
GConf configuration system, and various file formats used
by the applications we tested.

1) Windows registry: The Windows registry is a key-
value store provided by the Windows OS. Applications
write keys in the Windows registry using a well-documented
API provided by the OS. We implemented the Windows
registry logger as a user-space shared library. To intercept
registry API calls made by applications, we use the Windows
debug APIs to inject the shared library into Explorer, the
Windows shell. Once injected into Explorer, the shared
library intercepts each Windows registry API by hooking
the first five bytes of the instructions of the API call in
a way similar to Detours [12]. The shared library also
injects itself into new processes created by the process it is
loaded into by intercepting the Windows API call that creates
new processes. Virtually all regular applications are started
via the Explorer shell, which implements all the common
methods for starting applications such as the Start Menu,
desktop shortcuts, taskbar shortcuts, or double-clicking an
executable in a folder. As a result, the Ocasta logger is able
to monitor every application a user uses. We note that the
Windows registry logger only captures registry activity by

user applications, not by system services or the Windows
kernel, so our current prototype cannot fix configuration
errors in those components.

2) GConf configuration system: The GConf configuration
system, commonly found on Linux systems, implements
the handlers for its APIs in a shared library. We used the
standard approach of intercepting shared library calls on
Linux by using the LD_PRELOAD environment variable to
load our own shared library into the address space of every
process. Our library exports a set of shared library calls that
is identical to the set of shared library APIs exported by
the GConf shared library. By specifying our library in the
LD_PRELOAD environment variable, our library is always
loaded before the GConf library and thus all calls to those
APIs will invoke our functions, which will then subsequently
call the real functions in the GConf shared library after
logging the events to the TTKV.

3) Application-specific file formats: Applications that
don’t use OS-provided key-value storage facilities such as
the Windows Registry or GConf generally implement their
own file-based key-value store. We conducted a small study
on the common file formats used for configuration storage
and found applications generally use standard file format:
JSON, XML, PostScript, or one of two key-value lists that
both had the format “key = value”, which we called INI if
it is hierarchical and plain text if it is flat.

We elide the details of the implementation of our
application-specific file parsers for the sake of space. One in-
herent shortcoming of Ocasta when dealing with application-
specific file formats is that applications typically read the
entire file into an in-memory key-value store. The applica-
tions then perform writes on the in-memory store and flush
the in-memory store back to disk. To infer which keys are
changed, Ocasta compares the files before and after each
flush. In practice, we observe that applications typically
flush their in-memory store after each key modification to
guarantee persistence, but if they do not, Ocasta will not
be able to tell if a key was modified several times between
flushes. As shown in Section VI, despite the coarser level
of information available to Ocasta for applications that use
application-specific files, Ocasta is still able to offer good
clustering performance for these applications.

C. Ocasta clustering and repair tool

Ocasta’s clustering algorithm is based on an open source
clustering library [13]. However, the hierarchical clustering
API provided by this library does not allow a cluster
threshold to be used to restrict clustering. Hence, we added
functionality to prune the results returned by the hierarchical
clustering API according to a specified threshold.

Ocasta’s repair tool has three main components – a UI
record and replay tool, which records the user-provided trial
and re-executes it on the application, a screenshot tool,
which takes and records screenshots of the application and



a controller, which coordinates the entire recovery search.
We have implemented the repair tool on both Windows and
Linux. To save time and effort, we made judicious use of
various open-source libraries and packages for recording UI
actions, as well as capturing and manipulating screenshots.

A limitation with our current implementation of the repair
tool is that it deterministically replays trials and thus does
not guarantee the same trial can be replayed correctly across
different configuration settings. A robust adaptive replay
can probably address this limitation, but the current focus
of our work is to demonstrate the benefits of clustering.
Nonetheless, we found our repair tool works well in our
evaluation and user study.

V. DATA COLLECTION

We deployed Ocasta on 24 Linux desktop computers
running Debian 6 and 5 Windows desktop computers. Ocasta
intercepts and records reads, writes and deletions of settings
into application configuration stores such as the Windows
registry, GConf database and application configuration files.
Configuration settings are abstracted into keys and stored
into a key-value store called the Time Travel Key Value
Store (TTKV). Table I summarizes the characteristics of the
traces from these deployments, which we use in this paper.
The period of deployments range from one month to over
two months. All the computers were actively used during
the deployment.

All the Linux desktop computers are from four undergrad-
uate computing laboratories administrated by our depart-
ment. To reduce bias in the selection of the computers, we
choose 6 computers from each laboratory. These computers
are used mainly on site by undergraduate students for their
course work, and remotely by graduate students and faculty
members in our department. This study was approved by our
institutional ethics review board.

Because these machines are shared among many users,
we link usage of applications by the same user regardless of
what machine they are using – traces from one machine by
a particular user will be combined with traces from another
machine by the same user. Our ethics review board required
us to only instrument a fraction of the computers in any
one lab to give students who did not wish to participate
in the study ample opportunity to select an uninstrumented
machine. Unfortunately, this meant that we only got a
sampling of user-behavior since a student would not be
likely to use an instrumented machine every time they were
in the lab.

The 5 Windows desktop computers are personal comput-
ers used by four graduate students and one faculty member.
They run a variety of Windows OS including Windows 7,
Windows Vista, and Windows XP.

VI. EVALUATION

We evaluate 3 aspects of our Ocasta prototype. First, we
evaluate the accuracy of the clusters that Ocasta extracts.

Application Description #Keys #Clusters %Accuracy
MS Outlook E-mail Client 182 33/82 97.0%
Evolution Mail E-mail Client 183 18/65 38.9%
Internet
Explorer

Web Browser 33 9/12 66.7%

Chrome
Browser

Web Browser 35 1/34 100%

MS Word Word Processor 143 18/110 100%
GNOME Edit Word Processor 10 1/7 0.0%
MS Paint Image Editor 66 2/8 50.0%
Eye of GNOME Image Viewer 5 0/5 N/A
Acrobat Reader Document

Reader
751 120/550 95.8%

Explorer Windows Shell 298 32/91 84.4%
Windows Media
Player

Media Player 165 21/41 90.5%

Total N/A 1,871 255/1,005 88.6%

Table II: Applications and their clusters Identified by Ocasta.
In column #Clusters, we show two numbers: the number
of clusters that have more than one configuration setting,
followed by the number of all clusters.

Second, we evaluate the effectiveness and performance of
Ocasta, and the benefits of using clustering at recovering
from configuration errors. Finaly, we perform a user study
to evaluate how easy it is for a user to generate a trial,
identify the screenshot showing a fixed application, and use
Ocasta in general. All Windows experiments were performed
on an Intel Core Duo Dual-Core laptop with 2 GB of
memory running Windows 7 and all Linux experiments were
performed on a Intel Core 2 Quad-Core desktop with 4 GB
of memory running Debian 6. We used 11 popular desktop
applications in our evaluations, as listed in Table II.

A. Clustering Analysis

To evaluate the accuracy of Ocasta’s clustering algorithm,
we manually examined all 255 clusters, each of which
contains more than one configuration setting, across all
applications used in our evaluations. First, we try to confirm
whether configuration settings are correlated by examining
their names and values. We identify relations of configura-
tion settings from their hierarchical names [5] and verify
their relations from their values. Second, we individually
change configuration settings in a cluster and check whether
the corresponding application runs properly after the change.
We conservatively consider a cluster as correctly identified if
and only if there is a dependency relationship among every
configuration setting of the cluster.

As a result, we define an oversized cluster as a cluster
that contains one or more extra configuration settings that
are not related with the other configuration settings in the
cluster, and an undersized cluster as a cluster that does not
contain one or more configuration settings that are related
with the configuration settings in the cluster.

We show the accuracy of Ocasta’s clustering algorithm
in Table II. For each application, we compute the ratio of
correctly identified clusters with more than one setting over



Case Trace Application Logger Description
1 Windows 7 MS Outlook Registry User is unable to use Navigation Panel.
2 Windows 7 MS Word Registry User loses the list of recently accessed documents.
3 Windows 7 Internet Explorer Registry Dialog to disable add-ons always pops up.
4 Windows Vista Explorer Registry “Open with” menu does not show installed applications that can

open .flv file.
5 Windows XP Windows Media

Player
Registry Caption is not shown while playing video.

6 Windows XP MS Paint Registry Text tool bar does not pop up automatically when entering text.
7 Windows XP Explorer Registry Image files are always opened in a maximized window.
8 Linux-1 Evolution Mail GConf Evolution Mail starts in offline mode unexpectedly.
9 Linux-1 Evolution Mail GConf Evolution Mail does not mark read mail automatically.

10 Linux-1 Evolution Mail GConf Evolution Mail does not start a reply at the top of an e-mail.
11 Linux-1 Image Viewer GConf User is unable to print image files.
12 Linux-1 Text Editor GConf User is unable to save any document.
13 Linux-2 Chrome Browser File Bookmark bar is missing.
14 Linux-2 Chrome Browser File Home button is missing from the tool bar.
15 Linux-3 Acrobat Reader File Menu bar disappears for certain PDF document.
16 Linux-4 Acrobat Reader File Find box is missing from the tool bar.

Table III: Real configuration errors used in our evaluation.

the total number of clusters with more than one setting.
The result illustrates that Ocasta has a high accuracy of
identifying clusters with more than one setting, 72.3% on
average (mean accuracy among all applications) and 88.6%
overall (ratio of the total number of correctly identified
clusters to the total number of clusters across all applica-
tions). Except for four applications (Evolution Mail, Internet
Explorer, Text Editor, and MS Paint) that have a very small
number of clusters (smaller than 20) and a small number of
configuration settings, Ocasta accurately identified clusters
with more than one setting in 94% of the cases. We elaborate
on our findings below.

Oversized Clusters: The majority of the incorrectly
identified clusters are oversized clusters, which are caused
by two major sources. First, Ocasta is limited to using a
minimum of one second as the sliding time window. This
is because the trace collection infrastructure only records
the update time of configuration settings to the precision
of the nearest second. Although the 1-second sliding time
window works well for most applications, one second is long
enough for an application to update more than one group of
dependent configuration settings. For example, one oversized
cluster of Evolution Mail contains six groups of dependent
configuration settings. Second, some configuration settings
may be updated simultaneously as the result of software up-
dates, in which case even independent configuration settings
could be updated together.

Oversized clusters can cause unnecessary configuration
settings to be changed when attempting to fix configuration
errors. As a result, we want to minimize the number of
oversized clusters and the number of extra configuration
settings in oversized clusters. To achieve that, we examined
all 17 oversized clusters of the four applications with the
highest ratio of oversized clusters. We found that 11 of
the oversized clusters are composed of several groups of
dependent configuration settings and that the remaining 6

of them have one extra configuration setting in them. This
indicates that most of the oversized clusters are probably
caused by using a 1-second sliding time window and could
potentially have been eliminated if our trace collection
infrastructure had recorded key modification times at a finer
granularity.

Undersized Clusters: Ocasta’s clustering algorithm can
also cause undersized clusters if dependent configuration
settings are not always updated together. Undersized clus-
ters can cause failures in fixing configuration errors, since
dependent configuration settings are not changed together,
or leave configuration settings in an inconsistent state that
can cause application misbehavior. In the next section, we
describe how out of 16 injected errors, Ocasta is able to
fix all but 2 using the default clustering threshold of 2 and
window size of 1 second. The 2 unfixed errors are a result
of undersized clusters, which we were able to correct by
tuning of the clustering threshold and window size. We did
not observe any application crashes or misbehavior during
the hundreds of clusters that were changed during the trials
executed by Ocasta to fix these errors.

B. Configuration repair

The traces we collected contain realistic application usage,
but because they are collected without interacting with
the users of the applications, we are unable to confirm
if configuration errors occurred during trace creation. In
addition, we want to be able to precisely control the time
at which the configuration error occurs in each trace. Thus,
we simulate configuration errors by injecting a write into the
trace at the point in time at which we want the error to occur,
that changes the offending setting to the erroneous value.
If the configuration error is caused by presence or absence
of the offending setting, we insert or delete the setting in
the trace. To simulate the recording phase of Ocasta, we
populate the TTKV of the test machine with one of the



Case Cl.Size Trials Time(mm:ss) Screens Ocasta NoClust
1 2 15 0:30/6:00 5 Y Y
2 8 2 0:34/1:01 1 Y N
3 2 14 4:16/5:24 11 Y Y
4 3 33 3:02/8:57 1 Y N
5 4 60 5:36/28:40 1 Y Y
6 8 8 3:04/3:30 1 Y N
7 2 134 3:30/24:11 2 Y N
8 2 7 1:46/2:11 2 Y Y
9 2 9 6:52/8:32 9 Y N
10 2 12 5:28/6:31 2 Y Y
11 1 2 0:24/0:56 1 Y Y
12 1 2 0:20/0:44 1 Y Y
13 1 7 0:36/3:40 2 Y Y
14 1 7 0:30/2:58 4 Y Y
15 1 17 1:05/8:41 2 Y Y
16 1 157 0:28/57:19 4 Y Y

Table IV: Ocasta recovery performance. For each error, we
show the average cluster size, the number of trials required
for Ocasta to find the offending cluster using DFS, the
recovery time in minutes and seconds to find the offending
cluster vs the time for Ocasta to search all the clusters, and
the total number of unique screenshots, and the comparison
of the effectiveness between Ocasta and Ocasta-NoClust.

traces that exhibited usage of the same application in the
configuration error scenario.

We first evaluate how effective Ocasta is at fixing 16
real-world configuration errors, numbered 1-16 in Table III,
which are all configuration errors that were either previously
used in the literature [3], [14] or were found via online
forums, FAQ documents and configuration documents. To
demonstrate the benefit of using clustering, we compare the
effectiveness of Ocasta with the effectiveness of a modified
version of Ocasta, called Ocasta-NoClust, that does not use
clustering and rolls back a single configuration setting at a
time when it tries to fix errors.

We use as many complex and real configuration errors
as possible for the evaluation. For example, error #12 was
found on an internet message board, where the discussion
contained 56 messages spanning 3 months. However, we are
restricted to only using errors where the offending setting(s)
have been modified in our traces – otherwise Ocasta will
have no clustering information for them and Ocasta’s repair
tool will have no values to roll back to. This problem
cannot happen in practice because any configuration key
that is misconfigured must have a modification history on
a particular system. We simulate the configuration error by
injecting the erroneous value into the TTKV 14 days before
the end of the trace and invoke Ocasta in recovery mode.
For each error, we provide a suitable trial and set the start
time to 14 days before the end of the trace. We configure
Ocasta to use the DFS search strategy.

We evaluated Ocasta using the minimum window size of 1
second and the maximum correlation threshold of 2, because
these produce smaller clusters and are thus the most likely
to lead to invalid configurations or failed fixes. In practice, a
user can adjust these settings in case they fail to cluster the

configuration settings that cause the configuration problem.
With these parameters, Ocasta was able to successfully find
the offending cluster and fix the errors in all cases except
errors #2 and #4. In both of these cases, the settings that
needed to be rolled back were split into several clusters.
In error #2, the offending settings consisted of one rarely-
changing dominant setting, which controls the validity of
another 50 settings that change frequently over a moderate
span of time, as we described in Figure 1a. When the
clustering threshold is reduced to 1, the dominant setting is
clustered with 34 of the other settings, but there remain 26
settings that were not clustered together. When we increase
the window size to 30 seconds, causing all settings to be
clustered together. In error #4, one setting stores an ordered
list of names of settings that store applications capable of
opening Flash video files. The setting storing the list tends to
change even when the setting storing the application name
does not change. Reducing clustering threshold to 1 caused
both the setting storing the list and the settings storing
application names to be clustered together.

Quantitative results are shown in Table IV. We can see
that Ocasta successfully fixed all 16 configuration errors,
but Ocasta-NoClust failed to fix 5 configuration errors,
because it requires rolling back more than one configuration
settings at a time to fix them. The average cluster size varies
between 1 and 8 for our errors, thus effectively reducing the
search space by the same factor because Ocasta searches
clusters of keys at a time instead of individual keys. The
time column gives the time required by Ocasta to find the
offending cluster versus the total time for Ocasta to search all
cluster versions up to the 14 day start time. This shows that
Ocasta’s sort is successful at prioritizing the clusters, finding
the offending cluster by an average of 78% faster than
having to search the entire history. The screenshots column
gives the total number of unique screenshots produced by
Ocasta, while the trials column indicates the number of trials
executed before the offending cluster is found. The user must
examine an average of 3 screenshots, with a worst case of
11, indicating a very modest amount of user effort.

Recall that instead of using DFS, Ocasta can also use
BFS as the search strategy. To study the trade-offs we
perform searches using both strategies over all 16 errors
while varying the number of days in the past when the
error was injected, as well as fixing the injection time at
14 days in the past and adding between 0-2 spurious writes
after the initially injected error to simulate the case where
the user tried to fix the configuration error for 0-2 times.
Figure 2a shows the average number of trial executions as a
function of error injection time for BFS and DFS. As can be
seen, the number of trials by both BFS and DFS increases
as the injection time occurs further in the past, as a result
of Ocasta’s bias towards checking more recently modified
clusters first, while DFS provides better performance overall.
Figure 2b shows the average number of trials as a function
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Figure 2: Comparison between DFS and BFS.
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Figure 3: Average cluster size.

of the number of spurious writes after the injected error.
BFS search is highly sensitive to this parameter because to
search more writes within a cluster, it must try every other
cluster as well, so the number of rollbacks increases if there
are a lot of clusters.

We now evaluate the effect of the start time, which
controls the time period Ocasta searches over, on the number
of trials Ocasta must execute. Figure 2c shows the average
number of trials Ocasta perform in its search as start time
goes further into the past. As can be seen, the number of
trials rises roughly linearly with the length of time the search
is conducted over.

C. Sensitivity

We examine the sensitivity of cluster size to both windows
size and clustering threshold. Larger clusters mean fewer
trials, but also lead to the potential for more unrelated
keys getting changed if the offending cluster grows in size.
Figures 3a and 3b show the growth in average cluster
size as a function of both the window size and clustering
sensitivity. The sharp drop at the left hand side of Figure 3a,
is when the window is changed from one second to zero
seconds (modifications must have the same timestamp at
zero seconds). Since our traces only record key modification
times to the nearest second, there is a lot of noise between
these two points. With the exception of this artifact, the
average cluster is relatively insensitive to either parameter,
and ranges between between roughly 3.5 to about 4.5 or 25%
of its value. These results indicate that the overall cluster

size is relatively insensitive to changes in these parameters,
which might suggest that users should tend to prefer smaller
thresholds and larger window sizes to minimize the chances
of the offending cluster being undersized.

D. User Study

To evaluate the effectiveness of the Ocasta repair tool with
default settings 2 , we performed a user study on 19 partici-
pants with various backgrounds. Because this study contains
human subjects, we have obtained a second ethics approval
for this study from our institutional ethics review board. The
participants include two faculty members from our depart-
ment, 13 graduate students from four different departments,
a system administrator, an administrative assistant, and two
software engineers. Six out of the 19 participants of the
user study are non-technical users. None of participants were
authors of this paper and none were compensated for this
user study. Each participant was given a brief explanation on
how Ocasta works and shown a demonstration on a contrived
configuration error. The participant then tested Ocasta on
a computer setup with configuration error #11, #13, #15
and #16 from Table III. We use only four errors to limit
the length of the user study, because it took between 1.5
and 2 hours for each participant to finish the user study. In
each case, the participants were first asked to quantitatively
rate how familiar were they with the application having the
configuration error. Then they were given a description of the
error and were asked to use Ocasta to fix the configuration
error. We recorded the time the participants took to create
the trial. After they finished creating the trial, they were
asked to quantitatively rate how difficult it was to produce
the trial.

The participant was then shown the set of screenshots
Ocasta produces when run on the history from our traces
and asked to select the screenshot that showed the fixed
application. The time taken for the participant to select
the screenshot was also recorded. After the participant
selected the screenshot, we recorded whether they selected

21-second sliding time window, clustering threshold of 2, and DFS search
strategy



Figure 4: Comparison of time required to fix the error with
Ocasta versus manual fixing from our user study.

the right one. We also asked the participant how many of
the screenshots they actually examined and to qualitatively
rate how difficult it was to find the screenshot.

We then reset the system back to its misconfigured state
and asked the participant to try to fix the error manually.
The participant was given full control of the computer and
was allowed to use Internet to search for possible solutions
to the configuration error. To keep the test short, we cut
the participants off at 5 minutes. We recorded whether the
participant was able to fix the error manually or not and the
time it took for them to fix the error. For each error, the
participant was finally asked whether they had experienced
the particular error themselves before and the steps they took
to fix or try to fix the error.

Figure 4 shows a comparison between the average time
users took to both create the witness and select the screen-
shot and the average time taken to manually repair each
configuration error. If we use the time spent as an indicator
of the amount of user effort, we can see that Ocasta saves
users a significant amount of effort to repair configuration
errors. Only in case 16 were the majority of participants able
to fix the configuration error manually and this significantly
lowered the average time for the a manual fix. Qualitatively
on a difficulty scale of 1 to 5, with 1 being the easiest, across
the 4 errors, the participants rated the creation of the trial as
1 74% of the time, 2 21% of the time and and 3 5% of the
time. For selecting the correct screenshot, participants rated
the difficulty as 1 80% of the time, 2 11% of the time, 3
8% of the time and 4 1% of the time.

Our user study has several sources of bias. First, selection
of participants was not completely random, but consisted
of colleagues and acquaintances of the authors. Second,
the administration of the study was single blind and the
person administrating the test knew the correct answer. To
minimize this effect, we tried to minimize interaction with
the participant and communicated using written materials
as much as possible. Third, the participants were cut off
at 5 minutes when they tried to fix the error manually,
while no cut off was used for generating the Ocasta trial

or selecting the screenshot. Thus, the time measurements
for some of the manual fixes represent a lower-bound while
the time measurements for Ocasta usage are precise. Finally,
we selected errors that tended to be simple. This made it
easier to explain the errors to users who might be unfamiliar
with the applications. In addition, simple errors make manual
fixing easier and thus make it more difficult for Ocasta to
have a significant advantage over manually searching for the
fix.

VII. RELATED WORK

Inferring related configuration settings: Few previous
studies automatically infer relations among configuration
settings. Zheng et al. [15] deduce dependency among con-
figuration settings by experimentally testing the impact of
changing configuration settings. Ocasta’s clustering algo-
rithm avoids the overhead of experimental tests by us-
ing observed application accesses to configuration settings.
Glean [5] infers relations among configuration settings by
analyzing hierarchical structure of configuration settings,
while Ocasta’s clustering algorithm does not require the
existence of hierarchial structure for configuration settings.

Diagnosing configuration errors: Of the work that
focuses on diagnosing configuration errors, Ocasta is most
closely related to Strider [4] and PeerPressure [3]. Both
PeerPressure and Strider use a genebank of common con-
figurations and apply statistical methods to determine where
the error might lie. These systems assume homogeneity
across machines and also have privacy implications as users
must share their configurations with the genebank. Ocasta
only requires information collected locally from the machine
with the error and thus does not have the drawbacks of a
genebank.

ConfAid [6] takes a “white-box” approach by using taint-
analysis to try to identify the configuration setting that
causes a configuration error. ConfAid ranks configuration
settings that affect the path taken to reach the configuration
error as more likely to be configuration keys that can fix
the error. Another “white-box” approach, Failure-Context-
Sensitive analysis [16] extracts the mapping between config-
uration settings and the source code lines that can be affected
by these configuration settings, from the source code of an
application. These mappings can be used to identify the
configuration setting that causes configuration errors, when
the source code lines of the errors are available, for example
from an application’s error message. More recent work,
ConfDiagnoser, combines static analysis of an application’s
source code and execution profiling to rank configuration
settings that causes executions to deviate from pre-generated
correct executions [17]. Because these approaches are white-
box, they require application source code. In contrast, Ocasta
treats applications as black-boxes and only requires access
to the application’s key-value store.



All above work focuses on identifying a single configura-
tion setting that causes configuration errors. With the cluster-
ing provided by Ocasta, their techniques can be leveraged
to diagnose configuration errors caused by more than one
configuration settings.

Chronus [2] maintains a history of entire system states and
focuses on using binary search to find the optimal recovery
point in an application’s history. Chronus logs at the disk
block layer and as a result, many of the historical states it
generates can corrupt file systems and thus cannot be used
for recovery.

Fixing configuration errors: Kardo [18] and Auto-
bash [19] are both systems that take a human-generated
solution for a configuration error, perform analysis on the
solution to find the minimum set of actions that make up
the configuration fix and generalize it so it can be applied
to a wider set of machines. Ocasta does not require human-
generate solutions.

Detecting configuration errors: Like Ocasta,
CODE [14] analyzes the accesses patterns that applications
make to the Windows registry. CODE uses a rule learning
algorithm to identify normal key access patterns of an
application and flags anomalous access patterns as possible
configuration errors. CODE detects configuration errors,
but unlike Ocasta, it does not fix the errors, nor does it
try to identify relationships between keys other than the
access patterns. Conferr is a tool for quantifying system
manageability and resilience to configuration errors [20],
[21]. It uses simulated human models to try to generate
realistic configuration errors. Both CODE and Conferr can
be viewed as complementary to Ocasta.

Time travel and roll back: The concept of time travel
and roll back has been used for debugging and system
recovery from intrusions. Time-travel virtual machines [22]
enables deterministic replay of whole machines to simplify
OS debugging. Taser [23] and Retro [24] use system-level
tracking and perform selective recovery after an intrusion.
Rx [25] uses repeated roll backs to find an execution
where bugs do not occur, but does not try to find the root
cause or attempt to permanently fix the bug. Like Ocasta,
these systems use roll back recovery but focus on fixing
other types of faults while Ocasta focuses specifically on
configuration errors.

Hierarchical clustering: Many previous studies have
used hierarchical clustering for software clustering [26],
[27], [28], including program comprehension, reverse en-
gineering, and software reengineering, cluster different lev-
els of abstractions of software artifacts, such as variables,
functions, and source files. Prior work has also used hier-
archical agglomerative clustering to improve the efficiency
of finding software failures during software testing [29] or
categorizing software failures [30]. They cluster profiles of
an application’s executions.

Ocasta uses the maximum linkage criterion, which as been

found by other prior work [31], [32] to provide better per-
formance than other linkage criterion. Ocasta augments the
hierarchical agglomerative algorithm to be able to partition
clusters using an adjustable clustering threshold, which is
more flexible and intuitive for our purposes of clustering
configuration settings.

VIII. CONCLUSION

We describe the design and implementation of Ocasta, a
system that enables configuration recovery systems to handle
multi-configuration setting errors by identifying clusters of
related configuration settings using statistical clustering. We
have evaluated Ocasta over several months on both Windows
and Linux machines and find that Ocasta’s clustering accu-
rately identifies about 88.6% of clusters on average. Our
evaluation of Ocasta in fixing configuration errors shows
that Ocasta successfully fixed all 16 real world configuration
errors used in our evaluation, 5 of which require changing
more than one configuration setting together to fix, by utiliz-
ing the identified clusters of related configuration settings,
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