
A System for Detecting, Preventing and Exposing
Atomicity Violations in Multithreaded Programs

 by

Lee Chew

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright © 2009 by Lee Chew

ii

A System for Detecting, Preventing and Exposing Atomicity

Violations in Multithreaded Programs

Lee Chew

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2009

Abstract

Multi-core machines have become common and have led to an increase in multithreaded

software. In turn, the number of concurrency bugs has also increased. Such bugs are elusive and

remain difficult to solve, despite existing research. Thus, this thesis proposes a system which

detects, prevents and optionally helps expose concurrency bugs. Specifically, we focus on bugs

caused by atomicity violations, which occur when thread interleaving violates the programmer’s

assumption that a code section executes atomically. At compile-time, our system performs static

analysis to identify code sections where violations could occur. At run-time, we use debug

registers to monitor these sections for interleaving thread accesses which would cause a

violation. If detected, we undo their effects and thus prevent the violation. Optionally, we help

expose atomicity violations by perturbing thread scheduling during execution. Our results

demonstrate that the system is effective and imposes low overhead.

iii

Acknowledgments

First, I would like to thank Professor David Lie for his guidance. His insight, knowledge and

expertise have greatly improved this work.

 Second, I would like to thank my fellow graduate students, Lionel Litty, Tom Hart, James

Huang and Stan Kvasov, for their helpful comments.

 I would like to also thank the Ontario Graduate Scholarship program and the University

of Toronto for funding my studies.

 Finally, I would to thank my family for their love and support. They have made this

endeavour even more worthwhile.

iv

Table of Contents

1 Introduction ...1

1.1 Our Approach...1

1.2 Contributions..2

1.3 Structure ...2

2 Related Work ..4

2.1 Atomicity Violation Detectors ...4

2.2 Atomicity Violation Prevention Systems...6

2.3 Data Race Detectors ...6

2.4 Complementary Systems ...8

3 System Overview ..10

3.1 Problem Definition...10

3.2 Architecture..12

3.2.1 Static Component: ANNOTATOR ..13

3.2.2 Dynamic Component: PREVENTION ENGINE ..17

3.3 Limitations ...22

4 Implementation ...24

4.1 CIL Background...24

4.2 ANNOTATOR ...24

4.2.1 CIL Analysis ..24

4.2.2 CIL Transformation ...25

4.3 PREVENTION ENGINE ..27

4.4 Deficiencies..30

4.5 Optimizations ...31

v

5 Evaluation ...33

5.1 Experimental Set-up...33

5.2 Run-time Overhead ..33

5.3 Detecting and Preventing Atomicity Violations ..36

6 Future Work ..38

7 Conclusion ..39

Bibliography ..40

vi

List of Tables

Table 3.1: Access interleavings .. 11

Table 5.1: Benchmarks used ... 34

Table 5.2: Non-optimized overhead results .. 35

Table 5.3: Impact of different sources of overhead .. 35

Table 5.4: Effects of various optimizations .. 35

Table 5.5: Bug detection results.. 37

vii

List of Figures

Figure 3.1: Serializable interleaving and an equivalent serial execution...................................... 10

Figure 3.2: Unserializable interleaving ... 10

Figure 3.3: System diagram .. 12

Figure 3.4: ANNOTATOR Diagram ... 13

Figure 3.5: Annotation example ... 14

Figure 3.6: Disallowed atomic regions ... 14

Figure 3.7: Disallowed atomic regions (longer example) ... 15

Figure 3.8: Allowed atomic regions .. 16

Figure 3.9: Simplified NORMAL mode operation .. 18

Figure 3.10: Actual NORMAL mode operation .. 20

Figure 3.11: Why some atomicity violations are hard to expose .. 21

Figure 3.12: Making some atomicity violations easier to expose ... 22

Figure 4.1: Deciding what remote access type to watch ... 25

file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606326
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606327
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606328
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606329
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606330
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606331
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606332
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606333
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606334
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606335
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606336
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606337
file:///E:\Documents%20and%20Settings\LK\Desktop\Copy%20of%20Copy%20of%20Thesis%20(David%20Edit%203)_orig.docx%23_Toc241606338

viii

List of Acronyms

Acronym Definition

AR Atomic Region

AVT Atomicity Violation Triplet

CFG Control-flow Graph

DFA Data-flow Analysis

IR Intermediate Representation

LSV List of Shared Variables

PC Program Counter

1

1 Introduction

Multi-core computers are, and will continue to be, prevalent. This is because simply increasing

the clock frequency is no longer a viable means of gaining performance. In turn, programs will

have to become multi-threaded in order to take advantage of this hardware and increase

performance. Concurrent programs are notoriously difficult to write correctly, and give rise to

numerous types of bugs. These bugs are difficult to fix because they often remain dormant,

requiring a combination of two unlikely conditions. First, like regular non-threaded bugs, they

require the right set of program inputs, which is exponential in number. Second, they also

require the right thread interleaving, which is again exponential in number.

 Both difficulties are outstanding problems, and the target of ongoing research

[1,11,24,44]. Currently, most companies resort to running “stress” tests for several days, which

involves running the program repeatedly with inputs from a massive test suite. The idea is that

they will get the right combination of program inputs and thread interleaving on one of the runs

through brute force. Not only is this very time-consuming, it is not particularly efficient at

catching bugs [31].

1.1 Our Approach

Given the difficulties with finding concurrency bugs, we propose a system that protects the user

from them. The system would detect the bugs, mitigate their effects and optionally help expose

them. We envision two usage scenarios: 1) the developer wants to release the application with

concurrency bugs in it, or 2) same as the first scenario, except the customer is willing to help

improve the application – as might be the case during beta-testing. While there are numerous

types of concurrency bugs, such as deadlocks and data races, we restrict ourselves to

concurrency bugs caused by atomicity violations. These violations occur when the results of one

thread’s memory accesses are changed because they were interleaved with the memory accesses

of another thread. Thus, such bugs occur because the atomicity of the accesses that was assumed

by the programmer was violated. In a recent survey, approximately 70% of non-deadlock

concurrency bugs were caused by atomicity violations [18].

CHAPTER 1. INTRODUCTION 2

 In keeping with the two uses, our system operates in two modes: normal and bug-finding.

Normal mode detects and prevents atomicity violations. First, our system conducts a

conservative static analysis of the program source code, and annotates groups of memory

accesses whose atomicity may be violated. Then our system executes the program, and checks

for interleaving accesses made by other threads which would violate the atomicity of these

groups. When such an access is about to occur, our system prevents the violation by forcing the

access to execute serially with respect to the group of accesses.

 Bug-finding mode does everything that normal mode does, but also tries to expose

atomicity violations. We achieve this by exploiting the following insight. Atomicity violations

are often hard to trigger because the memory accesses that should execute atomically usually

occur temporally close together. Even if a thread could violate their atomicity, the chances of it

making an access in this short interval are low. Therefore, we increase the probability by

injecting delays between accesses in the group. When a violation is detected, our system reports

the details of it to help the developer fix the violation.

1.2 Contributions

We are the first to implement an online system that can both detect and prevent atomicity

violations. We developed a method that can do this automatically, efficiently, and using only

commodity hardware. Others have focused on a low-overhead system for detecting and avoiding

deadlocks [45]. Previous atomicity violation detectors have incurred high overhead [7], required

user annotations [10] or were offline [31]. Previous systems that attempted to prevent violations

required custom hardware [16,49]. We also extend this method to expose hidden atomicity

violations and help developers fix them by providing following information: the threads involved

and the memory accesses involved and their order. Finally, we measure the performance

overheads of our approach, and our effectiveness at detecting bugs caused by atomicity

violations.

1.3 Structure

The rest of this thesis is structured as follows. Chapter 2 discusses related work. Chapter 3

provides an overview of the system: the problem definition, our system architecture and the

limitations of our approach. Chapter 4 presents our system implementation, existing deficiencies

CHAPTER 1. INTRODUCTION 3

and optimizations. Chapter 5 contains an evaluation of our system’s performance overheads, and

ability to detect bugs. Chapter 6 discusses future work, and we conclude in Chapter 7.

4

2 Related Work

Although multi-core computers have only become prevalent in the last few years, multi-threaded

software, and its attendant bugs, has been around for a long time. As such, there has been a lot

of related work. In this chapter, we begin by presenting research in the areas directly related to

our system: detecting atomicity violations, and preventing atomicity violations. Then we cover

research in the closely related area of detecting data races. Finally, we finish with research that

complements our work.

2.1 Atomicity Violation Detectors

A class of detectors is based on the theory of left- and right-movers. A left/right-mover is an

operation of one thread which can be moved behind or in front of, respectively, an adjacent

operation (in execution order) of another thread without changing the system state. These

systems start with a sequence of operations which consist of an atomic group of operations from

one thread interleaved with operations from other threads. If, by commuting left- and right-

movers with their adjacent instructions, it can be converted to an equivalent sequence where the

atomic group of operations is not interleaved by other operations, then atomicity is preserved.

 The detectors are implemented as type-based systems. Each expression in the program is

assigned a type, which reflects its value, and an atomicity, which reflects its effect on atomicity.

A violation is detected whenever an expression is assigned an atomicity of error. The first

system was a static detector, and required the programmer to annotate all synchronization points

and atomic functions [10]. A subsequent system, Atomizer [7], was a dynamic detector that

could infer this information, but programs running under it suffered from slowdowns of 2.2X-

50X. In contrast, our approach does not require programmer annotations, and imposes only

modest overheads. Recent work extends the type system introduced above to increase

expressiveness and thus decrease the number of false positives [35]. It is also able to infer type

information and function atomicity without user annotations. It is aimed at complementing

dynamic atomicity violation detectors by filtering out code that can be statically proven

violation-free. This is because, despite its extensions, the system still suffers from a high false-

positive rate.

CHAPTER 2. RELATED WORK 5

 Velodrome [9] takes a similar approach, but checks whether a sequence of atomic code

sections can be serialized using the happens-before relation [15]. This relation states that certain

events create an ordering between operations. For example, if an atomic code section A releases

a lock L which another atomic code section B then acquires, then A is considered to happens-

before B. A more precise explanation is provided in Section 2.3. As the program is running,

Velodrome constructs a happens-before graph which orders the atomic code sections observed

thus far. If a cycle is created in the graph, then an atomicity violation has occurred, because this

means there is no equivalent serial execution of the atomic sections. Again, this approach

requires that the programmer annotate which code sections are atomic, and suffers from

slowdowns of 1.1X-72X.

 Some recent detectors do not require manual annotation. SVD [48] uses the idea of

computational units (CU) to approximate atomic regions. A CU is an intra-thread group of

instructions that starts with a read to a shared variable, and then consists of any following

instructions that are read-write or control-dependent on that initial read. As such, it can only

detect half of the violations our system can. Specifically, it cannot detect ones which begin with

writes to shared variables. In addition, programs running under it suffer up to 65X slowdown,

partially due to the complicated dependencies it must calculate in software for every instruction.

AVIO [19] detects atomicity violations of memory access pairs. It first executes training runs on

programs to differentiate between benign violations and malignant ones. Then it builds a

database of malignant violations indexed by the second access of a memory access pair. The

authors provide both a hardware and software implementation. The hardware solution imposes

very little overhead (0.4-0.5%), but requires custom hardware. The software solution imposes

very high overheads (programs running under it suffer up to 25X slowdown), as it must record

every access to a shared variable, and for every access it must perform a lookup to see if a

malignant violation has occurred. Finally, CTrigger [31] uses the same insight as our system

with regards to exposing atomicity violations. It takes as input an execution trace and identifies

sets of instructions which may participate in atomicity violations. Afterwards, it removes sets

which cannot lead to atomicity violations due to synchronization such as locks or barriers. Then

it re-executes the program with the same inputs, and injects delays between instructions in each

set to increase the likelihood of a violation. Although our techniques are similar, our goals are

different – CTrigger is primarily attempting to expose atomicity violations offline, while we are

CHAPTER 2. RELATED WORK 6

primarily attempting to detect and mitigate them online. As a result, low performance overheads

are not a concern for their system, whereas it is an important consideration for our system.

2.2 Atomicity Violation Prevention Systems

Atom-Aid [16] is a hardware system that attempts to decrease the probability of atomicity

violations occurring. It builds upon recent architectural proposals, such as BulkSC [2] and ASO

[46], that arbitrarily execute groups of instructions atomically. Atom-Aid extends this by

actively grouping instructions. It looks for suspicious access patterns to shared variables that

indicate an atomicity violation is possible. It then dynamically groups future accesses to those

shared variables on-the-fly into chunks, which are guaranteed by the hardware to execute

atomically. In contrast, our system deterministically prevents atomicity violations, and does not

require custom hardware.

 The system in [49] proposes to prevent atomicity violations at run-time by restricting the

number of possible thread interleavings. The system requires an initial training phase, where the

target program is executed several times and its memory accesses are recorded. Based on these

traces, it generates Predecessor Set constraints. Each constraint records, for a particular memory

instruction, the set of memory instructions made by other threads that must immediately precede

it. At run-time, an atomicity violation occurs if a memory access not in this set executes

immediately before the particular instruction. When the system detects a violation, it repairs the

violation by either delaying the violating memory access or using a checkpoint-and-rollback

mechanism. The system was implemented using the dynamic binary rewriter Pin [17], which

incurred 100x-200x run-time overhead. In order to achieve reasonable overheads, the authors

stated that caches would have to be modified to record last-access information for every memory

location, and that cache-coherency protocols would have to be extended to transmit this

information. Our system is able to achieve low overhead with existing commodity hardware.

2.3 Data Race Detectors

A data race occurs when two threads access a shared memory location without any

synchronization, and at least one of the two accesses is a write. Although it is closely related to

atomicity violations, they are not the same. Not all data races are atomicity violations. For

example, a data race only requires two accesses – one from each thread, whereas an atomicity

CHAPTER 2. RELATED WORK 7

violation requires three accesses – two by one thread interleaved with a third access by another

thread. Conversely, not all atomicity violations are data races. For example, each of the three

accesses in an atomicity violation could be individually protected by a lock (i.e., the lock is

acquired immediately before the access and released immediately after), and thus would be data-

race-free. There are three general approaches to detecting these types of bugs: those based on

the lockset algorithm, those based on the happens-before relation, and those based on a hybrid of

the two.

 The basic lockset algorithm determines whether all accesses to shared variables are

protected by some non-empty set of locks. Each shared variable V has a lockset Lv, which

initially consists of all locks in the program. Whenever a thread accesses a shared variable, the

variable’s lockset is updated to the intersection of itself with the locks currently held by the

thread. If a lockset of any variable becomes empty, then a warning is raised about a possible

data race. The algorithm was first implemented as a dynamic detector in Eraser [36], and then as

a dynamic detector with static optimizations such as filtering out statements which can never

race in [3]. The algorithm has also been implemented as a static detector in RacerX [6], which

ranks possible data races according to metrics derived from statistical analysis. These included

whether the race occurred in a multithreaded section of code and whether the variable actually

needed to be protected.

 The happens-before relation is a partial order on events in a distributed memory system.

It can trivially be adapted to provide a partial order on operations performed by a multi-threaded

program. The basic concept is that certain events can order the operations made by different

threads. For example, if it is observed during execution that thread A releases lock M and then

thread B acquires lock M, then all memory accesses made by thread A prior to the release of M

happens-before all memory accesses made by thread B after the acquisition of M. Other

examples of ordering events include thread A creating thread B, or thread A calling signal on a

semaphore S that thread B is waiting on. A data race is detected when a pair of accesses made

by two threads, with at least one being a write, is not ordered by happens-before. CHESS [25]

performs “stress” tests on small sections of code, each time choosing a different thread schedule,

and uses the happens-before relation to detect data races. Recently, FastTrack [8] found that, for

the majority of the time, the amount of data which had to be kept about past memory accesses

could be made constant (as opposed to linear with the number of threads). This space

CHAPTER 2. RELATED WORK 8

optimization in turn led to performance optimizations, as certain comparison operations now

occurred in constant time as opposed to linear time.

 Finally, some detectors are a combination of the two approaches. RaceTrack [50] and

MultiRace [32] first use the lockset algorithm to generate a list of possible data races. Then they

use the happens-before relation to filter out races which could not occur because the memory

accesses involved were ordered. The system in [29] took a similar approach, except it used a

simplified version of the happens-before relation which ignored certain ordering events, such as

lock acquires/releases. It gained performance at the expense of missing some data races.

RaceFuzzer [37] is an improvement on that system and only reports data races which lead to

errors. It takes as input the set of possibly racing pairs of statements from the latter system. For

each pair of statements, it runs the program, and whenever a thread is about to execute one of the

statements in the pair, it is frozen. When both statements have a frozen thread about to execute

it, then the system randomly lets one thread proceed. If an error or exception is generated

afterwards, then this is a data race.

2.4 Complementary Systems

There has been research into the prevention of data races – either preventing them from

occurring, or preventing them from damaging the system. Transactional memory [12] provides

support for preventing data races from being visible to the system. The programmer annotates

code regions that access shared data as transactions. Transactions speculatively execute, and

commit their changes (i.e., make their changes visible to the system) only if there are no

conflicts. If conflicts exist, the transaction is re-executed again and again, until it is able to

commit without conflicts. Some recent examples include RSTM [38] and McRT-STM [34].

Autolocker [20] aims to prevent data races from ever occurring. Programmers annotate which

locks must protect which shared variables, and which code sections are transactions (these are

the same as in transactional memory). The system then converts the transactions into lock-based

code which is guaranteed to be free of data races. Essentially, the tool converts optimistic

concurrency into pessimistic concurrency.

 Given the difficulty in detecting data races and atomicity violations, there has also been

research into making debugging such problems easier. Kendo [30] proposes new lock and

unlock functions that ensure threads acquire locks in a deterministic fashion. Although it makes

CHAPTER 2. RELATED WORK 9

it easier to reproduce some results of multithreaded programs, it is not applicable to solving data

races or atomicity violations as these are due to missing synchronization operations such as

locks. DMP [4] is a hardware system which guarantees that a multithreaded program will

behave in the same way given the same inputs. It allows multiple threads to execute in parallel,

and only if determinism is compromised will threads be re-executed using transactional memory

hardware. Race/replay systems allow programmers to record a program’s execution into a log,

and then later on replay the program from it. There are both hardware implementations such as

Delorean [22], Strata [27] and Rerun [13], and software implementations such as ReVirt [5] and

Flashback [39]. However, since cache coherency messages represent the only way to efficiently

capture the ordering between thread operations, only hardware solutions have low enough

overhead for multithreaded applications.

 We conclude by presenting recent work which tries to make debugging easier, and can

sometimes prevent data races from occurring. ReEnact [33] implements lightweight data race

monitoring on top of thread-level speculation hardware. When a data race is detected, it can

replay the system from a point before the bug occurred, with extra instrumentation to create a

bug signature for the programmer. ReEnact would also theoretically be capable of fixing data

races by replaying the system again from a point before the bug occurred, and delaying threads

to prevent the buggy ordering. However, the authors only discussed, but did not implement,

such a feature.

10

3 System Overview

This chapter aims to give a high-level overview of our system. We first define the problem.

Then, we discuss our system architecture. Finally, we finish with a discussion of the limitations

of our approach.

3.1 Problem Definition

Consider an execution of a multithreaded program P, where a thread T in P makes a sequence S

of two or more accesses to shared variables. The accesses in S are interleaved with accesses to

the same variables by other threads in P. The outcome of S is the set of values composed of the

value read by every read in S and the final value of each shared variable after the last write to it

in S. This interleaving is unserializable if there is no serial execution of S and the accesses by

other threads such that the outcome of S is the same. We define this situation as an atomicity

violation with respect to S, or simply as an atomicity violation when the context is clear. In

particular, our system addresses atomicity violations in the simplified case where S contains only

two memory accesses to a shared variable, and they are interleaved by a single access to the

same shared variable by another thread. We refer to T as the local thread, and its accesses to

shared variables as local accesses. Any other thread is a remote thread, and its accesses to

shared variables are remote accesses. A remote access that violates the atomicity of S is called a

violating access. The two local accesses in S are called the local access pair. When combined

with the violating access, they form the atomicity violation triplet (AVT) that characterizes an

atomicity violation.

 Table 3.1 lists the eight different possible interleavings of local accesses and remote

access, including the four which are AVT’s. In Table 3.1, A is a shared variable, Rlocal(A)/

Rremote(A) denote a local/remote read of variable A, and Wlocal(A)/ Wremote(A) denote a

1
st
 Rlocal(A)

2
nd

 Rlocal(A)

 Rremote(A)

1
st
 Rlocal(A)

Rremote(A)

2
nd

 Rlocal(A)

Figure 3.1: Serializable interleaving and an

equivalent serial execution

1
st
 Rlocal(A)

 Wremote(A)

2
nd

 Rlocal(A)

Figure 3.2: Unserializable interleaving

CHAPTER 3. SYSTEM OVERVIEW 11

local/remote write to variable A. Let us consider both an example of a serializable interleaving

and an unserializable interleaving from Table 3.1 to illustrate the difference. In Figure 3.1, the

left box contains a serializable interleaving and the right box contains one possible serial

execution of the interleaving. The interleaving is serializable because the outcome of the local

accesses, the two local reads, is the same in both cases. Figure 3.2 contains an unserializable

interleaving, because there is no serial execution of the accesses such that the outcome of the

local accesses is the same. To prove this, we note that there are only two alternative serial

executions: either move the remote write before the first local read or after the second local

read. This will cause the first and second local read to respectively read a different value.

Type Interleaving
Equivalent Serial

Execution

Serializable

Rlocal(A)

Rremote(A)

Rlocal(A)

Rremote(A)

Rlocal(A)

Rlocal(A)

Rlocal(A)

Rremote(A)

Wlocal(A)

Rremote(A)

Rlocal(A)

Wlocal(A)

Wlocal(A)

Rremote(A)

Rlocal(A)

Wlocal(A)

Rlocal(A)

Rremote(A)

Wlocal(A)

Wremote(A)

Wlocal(A)

Wremote(A)

Wlocal(A)

Wlocal(A)

Unserializable

Rlocal(A)

Wremote(A)

Rlocal(A)

N/A

Rlocal(A)

Wremote(A)

Wlocal(A)

N/A

Wlocal(A)

Wremote(A)

Rlocal(A)

N/A

Wlocal(A)

Rremote(A)

Wlocal(A)

N/A

Table 3.1: Access interleavings

CHAPTER 3. SYSTEM OVERVIEW 12

3.2 Architecture

Our system has two goals: the primary one is to detect and prevent atomicity violations, and the

secondary one is to expose atomicity violations. The system has two major components, which

are shown in Figure 3.3 in the solid-border boxes. The ANNOTATOR is a static component which

annotates all local access pairs in the source code – these are the potential victims of atomicity

violations. The compiler, which is outside of our system, then compiles the annotated code

normally. Finally, the PREVENTION ENGINE, which is a dynamic component, executes the

compiled program. It can operate in two modes, depending on our goals. The first mode

achieves the primary goal. For the period between the first local access and the corresponding

second local access, it detects atomicity violations by monitoring the shared variable being

accessed by the first local access for violating accesses. If it detects that such an access is about

to occur, the PREVENTION ENGINE prevents the atomicity violation by converting what would

have been an unserializable interleaving of the local access pair and violating access into a serial

execution of the accesses. The second mode achieves both the primary and secondary goals.

Thus in addition to the aforementioned functionality, it will also do the following. When it

encounters the first local access of a local access pair, the PREVENTION ENGINE introduces a

delay to increase the probability of exposing an atomicity violation. When an atomicity violation

occurs, it will report the details to the developer.

Source Code ANNOTATOR Compiler
PREVENTION

ENGINE

Figure 3.3: System diagram

CHAPTER 3. SYSTEM OVERVIEW 13

Annotated

Source Code

Find Shared

Variables

Figure 3.4: ANNOTATOR Diagram

Source Code LSV

Annotate

Atomic

Regions

3.2.1 Static Component: ANNOTATOR

The purpose of the ANNOTATOR is to annotate local access pairs in the source code, and is

accomplished in the two steps shown in Figure 3.4. The first step is to generate a conservative

list of shared variables (LSV); being conservative, some variables on this list may not actually be

shared. Henceforth, we will refer to variables on this list, and in general variables which could

be shared, as shared variables for brevity. In the second step, for each variable in the LSV, the

ANNOTATOR searches for pairs of local accesses to it. For each pair it finds, it marks the code

between the two accesses inclusive as an atomic region. As such, each atomic region is

associated with a variable in the LSV. The beginning of the region is marked with a

begin_atomic() function call such that if the function is called, then the first local access is

guaranteed to occur afterwards. The end is marked with an end_atomic() function call such that

if the second local access occurs, then the function is guaranteed to be called afterwards.

 Figure 3.5 gives an example of how these annotations are placed. Here, it is assumed that

global_counter is on the LSV. The ANNOTATOR has found a local access pair: the read of

global_counter on line 2 and the write to global_counter on line 4. Thus, it marks all the code

between the two accesses inclusive – the code on lines 2, 3 and 4 – as an atomic region using the

begin_atomic() and end_atomic() functions. More detail about what these two functions do is

presented in the next section. The parameters of these two functions are presented in the next

chapter, and will be elided in all figures until then.

CHAPTER 3. SYSTEM OVERVIEW 14

void increment()

{

1: int tmp;

2: tmp = global_counter;

3: tmp = tmp + 1;

4: global_counter = tmp;

}

void increment()

{

1: int tmp;

2: begin_atomic(…);

3: tmp = global_counter;

4: tmp = tmp + 1;

5: global_counter = tmp;

6: end_atomic(…);

}

Figure 3.5: Annotation example

 A local access can usually be the first local access of a local access pair at most once,

because otherwise atomic regions could have more than two local accesses, and thus fall outside

of the type of atomicity violation our system addresses. We do not extend our problem

definition to include such cases because the number of atomic regions our system must monitor

and manage at run-time is O(N
2
), where N is the number of local accesses in the atomic region.

As an example of why this rule is applied, refer to the short code snippet in Figure 3.6, where A

represents a shared variable and AR1, AR2 and AR3 are atomic regions. There should only be

two atomic regions: AR1 and AR2. However, by allowing the read on line 3 to be the first local

access more than once, there are three atomic regions: AR1, AR2 and AR3. Figure 3.7 shows a

longer code snippet which demonstrates the quadratic growth of the number of atomic regions.

Figure 3.6: Disallowed atomic regions

AR2

AR1

 1: begin_atomic(…)

 7: end_atomic(…)

 2: begin_atomic(…)

10: end_atomic(…)

 8: // some code

 9: Rlocal(A)

 3: Rlocal(A)

 4: // some code

 5: begin_atomic(…)

 6: Wlocal(A)

11: end_atomic(…)

AR3

CHAPTER 3. SYSTEM OVERVIEW 15

AR2

AR1

 2: begin_atomic(…)

 11: end_atomic(…)

 3: begin_atomic(…)

13: begin_atomic(…)

15: Rlocal(A)

 5: Rlocal(A)

 6: // some code

 8: begin_atomic(…)

10: Wlocal(A)

16: end_atomic(…)

AR3

12: // some code

19: begin_atomic(…)

20: Wlocal(A)

22: end_atomic(…)

18: // some code

25: Rlocal(A)

26: end_atomic(…)

24: // some code

 1: begin_atomic(…)

27: end_atomic(…)

28: end_atomic(…)

 7: begin_atomic(…)

Figure 3.7: Disallowed atomic regions (longer example)

17: end_atomic(…)

14: begin_atomic(…)

23: end_atomic(…)

 9: begin_atomic(…)

29: end_atomic(…)

 4: begin_atomic(…)

21: end_atomic(…)

AR4

AR5

AR6

AR7

AR8

AR9

AR10

CHAPTER 3. SYSTEM OVERVIEW 16

 The only exception to this rule is if a local access can form a local access pair with

multiple other local accesses. This occurs when: 1) a local access is in a basic block BB which

has multiple immediate successors, 2) more than one of BB’s successors contain a local access

to the same shared variable and 3) there are no intervening local accesses to the same shared

variable. Figure 3.8 presents such an example – notice that AR1 and AR2 only have 2 local

accesses, as required. By the same logic, a local access can usually be the second local access

of a local access pair at most once. There is a similar exception to this rule when multiple other

local accesses can form a local access pair with this local access. Note that, because of these

rules and our algorithm, all atomic regions have exactly two local accesses to the same shared

variable in them.

 Our system does not use on the ANNOTATOR to annotate remote accesses to shared

variables, as the task would be difficult using static analysis. Instead, we use the PREVENTION

ENGINE to detect them and determine if they are violating accesses at run-time. The

PREVENTION ENGINE is presented in the next section.

 As this component is based on static analysis, in the general case, it cannot determine

with certainty whether a particular variable is shared or whether a particular local access will

occur at run-time. The result is that the annotations are conservatively placed. This does not

affect the correctness of our approach, since we detect atomicity violations at run-time. It only

hurts the performance of the PREVENTION ENGINE due to unnecessary annotations.

 2: Rlocal(A)

 3: if (…)

 4: {

 5: Wlocal(A)

 7: }

 8: else

 9: {

10: Wlocal(A)

 1: begin_atomic(…)

 6: end_atomic(…)

11: end_atomic(…)

12: }

AR2

Figure 3.8: Allowed atomic regions

AR1

CHAPTER 3. SYSTEM OVERVIEW 17

3.2.2 Dynamic Component: PREVENTION ENGINE

The PREVENTION ENGINE operates in one of two modes: NORMAL, which is the default, or

BUGFINDING. In NORMAL mode, the PREVENTION ENGINE detects and prevents atomicity

violations from occurring. We initially present its operation under the simplifying assumption

that when a begin_atomic() is called, its corresponding end_atomic() will also eventually be

called and vice-versa, as shown in Figure 3.9. First, it runs the program. When a thread in the

program calls begin_atomic(), the PREVENTION ENGINE starts monitoring accesses to the shared

variable associated with this atomic region. This is done through hardware registers for

efficiency reasons - the exact implementation is discussed in the next chapter. If a remote thread

is about to make a violating access, the access is delayed until after the atomic region. This is

done by first freezing the remote thread. When the local thread calls end_atomic(), we stop

monitoring the shared variable and the remote thread that was frozen is awoken. It is allowed to

make its access, which now cannot violate the atomicity of the atomic region. Then the program

proceeds to execute normally. If during the atomic region no remote thread is ever about to

make a violating access, then the only action taken when the local thread calls end_atomic() is to

stop monitoring the shared variable.

 Although not shown in Figure 3.9 for simplicity, the PREVENTION ENGINE supports

nested atomic regions. If an atomic region AR2 is started by the local thread during an atomic

region AR1 that was also started by the local thread, then the operation of the PREVENTION

ENGINE for AR2 follows the diagram in Figure 3.9. If an atomic region AR2 is started by a

remote thread during an atomic region AR1 started by the local thread, and AR2 is not

associated with the same shared variable, then the operation of the PREVENTION ENGINE for AR2

again follows the diagram in Figure 3.9. If AR2 is associated with the same variable, then it is

shifted to occur after AR1. This is done by treating the particular begin_atomic() call as a

violating access. It is acceptable because the ANNOTATOR inserts the call to begin_atomic() such

that if it is called, then the first local access is also guaranteed to occur afterwards. Thus, the

thread to which AR2 belongs will be frozen until after AR1’s end_atomic().

CHAPTER 3. SYSTEM OVERVIEW 18

Execute Program

Monitor Accesses

Freeze Remote Thread

begin_atomic(…) called

violating

access about

to occur?

end_atomic(…) called

Yes No

Stop Monitoring Accesses end_atomic(…) called

Stop Monitoring Accesses

Unfreeze Remote Thread

Figure 3.9: Simplified NORMAL mode operation

CHAPTER 3. SYSTEM OVERVIEW 19

 Unfortunately, our simplifying assumption is unrealistic. When the ANNOTATOR

annotates a local access pair with begin_atomic() and end_atomic(), it is not possible in the

general case to statically determine whether either function call will occur at run-time. There are

two cases to consider:

1. begin_atomic() is not called – This is not a problem because, as shown in Figure 3.9, the

PREVENTION ENGINE only begins detection and prevention after begin_atomic() is called. It

is irrelevant whether end_atomic() is called in this case, since it will do nothing.

2. begin_atomic() is called and end_atomic() is not called – This is a problem for two

reasons. The first reason is that we can only prevent the atomicity violation when the

remote access is about to occur, but we only know if the remote access is a violating access

when the second local access occurs, and by extension the end_atomic() is called. Thus,

the PREVENTION ENGINE is augmented as shown in Figure 3.10. Instead of freezing the

remote thread when it makes a remote access until end_atomic() is called, it is frozen for a

set period of time. If end_atomic() is called within this period, then everything precedes as

before. If end_atomic() is not called within this time, the remote thread unfreezes. If the

end_atomic() eventually gets called, the PREVENTION ENGINE will record that an atomicity

violation occurred but it could not be prevented. If the end_atomic() never gets called, then

we do nothing. The second reason is that we monitor the shared variable until

end_atomic() is called. If end_atomic() is never called, the unnecessary monitoring

introduces performance and resource overheads with no benefit. For now, we assume there

is a way to stop monitoring regardless of whether end_atomic() is called. The exact

method is detailed in the next chapter. In Figure 3.10, this is why we can stop monitoring

when no violating access is about to occur.

CHAPTER 3. SYSTEM OVERVIEW 20

Figure 3.10: Actual NORMAL mode operation

Execute Program

Monitor Accesses

Freeze Remote Thread

for period of time PT

begin_atomic(…) called

violating

access about

to occur?
Yes

No

Stop Monitoring

Accesses

Stop Monitoring

Accesses

Unfreeze Remote Thread

Yes

PT expires

Yes

end_atomic(…)

called?

PT

expired?

Note Atomicity Violation

was not Prevented

No

No

CHAPTER 3. SYSTEM OVERVIEW 21

 In BUGFINDING mode, the PREVENTION ENGINE tries to expose atomicity violations. As

in NORMAL mode, it still detects and prevents atomicity violations. The only differences are that

the PREVENTION ENGINE increases the chances of an atomicity violation occurring in the program

and reports debugging information to the developer. To achieve this, we use the intuition from

Chapter 1: atomicity violations are hard to expose because the local accesses in an AVT usually

execute together – that is, no thread is scheduled to run in between the accesses. We illustrate

this in Figure 3.11. There is an atomicity violation involving the first and second local access,

but the gap between the accesses is small. For most executions, during testing for example, the

accesses made by remote threads fall outside this gap and remain remote accesses and not

violating accesses. Thus, we inject an artificial delay between the first and second local access,

leading to the situation shown in Figure 3.12. This is done by freezing the local thread for a set

period of time when begin_atomic() is called, but letting all the remote threads execute normally.

Although this injects a delay before the first local access, which is different from our conceptual

idea of injecting a delay between the accesses, it accomplishes the same goal. This is because if

we detect a remote access during this freeze period, then it would have been possible for that

remote access to occur between the two accesses in the local access pair. In order to report

debugging information, after we’ve detected an atomicity violation we record the accesses which

make up the AVT and the ID’s of the local and remote threads that participated in the violation.

1
st
 local access

2
nd

 local access

time

remote access remote access remote access remote access

violating access

remote access

Figure 3.11: Why some atomicity violations are hard to expose

CHAPTER 3. SYSTEM OVERVIEW 22

3.3 Limitations

In BUGFINDING mode our system is unable distinguish between benign atomicity violations –

those that do not cause bugs or that the programmer intended to occur – and malignant ones.

Thus, we report all atomicity violations that our system detects at run-time. However, we may

miss violations, and in turn, any bugs caused by them, under various conditions:

1. The right inputs are not provided - Our system does not influence the programs’ control

flow. As such, if the program does not execute a section of code that contains an atomicity

violation because the required inputs were not provided, then our system will not report the

violation.

2. The right thread interleaving does not occur – Our system does not influence the

program’s thread schedule outside of freezing threads when they call begin_atomic(), and

when they make violating accesses. If an atomicity violation exists, but no remote access

was made during the atomic region (e.g., the remote thread made the violating access

before the atomic region started), then our system will not report a violation.

3. Pointer aliasing – In the general case, it is not possible to statically determine whether two

pointers point to the same memory location. As such, our system misses AVT’s which

1
st
 local access 2

nd
 local access

time

remote access

violating access violating access

violating access violating access

remote access

Figure 3.12: Making some atomicity violations easier to expose

DELAY

CHAPTER 3. SYSTEM OVERVIEW 23

involve aliased pointers. For example, if the first local access was to ptr, and the second

local access was to possible_alias_of_ptr, the ANNOTATOR will not consider them a local

access pair.

4. Multiple executions of a statement – The ANNOTATOR only considers pairs of accesses

where the first access is not the same program statement as the second access. For

example, in a while-loop, it will not form a pair of local accesses from the loop’s condition

statement with itself. Thus, our system misses any atomicity violations involving such

AVT’s.

24

4 Implementation

This chapter presents our system implementation. First, we give background on a text

replacement tool called C Intermediate Language (CIL), and then describe how we implemented

the ANNOTATOR using it. Next, we present the implementation of the PREVENTION ENGINE as a

modified Linux kernel. Following that, we discuss the existing deficiencies of our

implementation, and finally conclude with optimizations.

4.1 CIL Background

CIL [28] is a tool that simplifies analysis of C programs and can perform source-to-source

transformations on them. It works in three stages. First, it parses the source code of a program

and constructs an intermediate representation (IR) of it. The IR is similar to an abstract syntax

tree. Second, it applies analyses/transformations – OCaml programs written by the user – on the

IR. Lastly, it converts the IR back into C source code, which can then be passed to a compiler.

It supports almost all GCC extensions – enough to successfully process the Linux kernel.

4.2 ANNOTATOR

As mentioned in Chapter 3, this component is responsible for annotating atomic regions. It has

two sub-components: a CIL analysis which constructs the LSV, and then a CIL transformation

that takes the LSV and inserts annotations around atomic regions.

4.2.1 CIL Analysis

This OCaml program constructs the LSV in three steps:

1. Global Variables – CIL automatically identifies these, so they are simply copied from

CIL’s built-in list.

2. Pointer arguments – CIL automatically builds function signatures for every function, so

pointer arguments are added to the LSV by simply reading from these signatures.

3. Others - For each function in the program, our analysis constructs a control flow graph

(CFG). Using the CFG, it performs data-flow analysis (DFA) and tracks which variables

are potentially shared. We are conservative, and treat any variable as shared unless we can

CHAPTER 4. IMPLEMENTATION 25

show otherwise. These potentially shared variables include pointers to pointers (and

pointers to pointers to pointers, etc.) local to the function that are passed to another

function, or pointers assigned the return value of another function, pointers assigned a

pointer already in the LSV, and variables accessed by dereferencing pointers already in the

LSV (e.g., for shared_pointerdata, data is considered to be shared)

4.2.2 CIL Transformation

This OCaml program takes the LSV, and applies the following algorithm for each function in the

program source code. First, it constructs the CFG. Then, it uses the CFG and performs path-

insensitive DFA, tracking where shared variables are accessed (i.e., the program statement) and

the type of access. At the end of each DFA-iteration, it tries to form intra-procedural local

access pairs by matching each shared variable accessed in the current statement with accesses to

that variable in a statement previously visited in the DFA. The decision to restrict our search to

intra-procedural pairs was based on empirical evidence. Our system was able to detect all the

bugs in our handcrafted corpus of bugs from large, mature and widely-used applications, without

having to rely on the complexity of inter-procedural analysis. The corpus is presented in the next

chapter.

1
st
 local

access type?

2
nd

 local

access type?

write read

watch for writes

watch for reads watch for reads/writes watch for writes

write read don’t know

Figure 4.1: Deciding what remote access type to watch

CHAPTER 4. IMPLEMENTATION 26

 For each such pair, the transformation inserts a begin_atomic() function call immediately

before the previous access (i.e., first local access). The function begin_atomic() requires six

parameters: the address of the shared variable, the size of the shared variable, the first local

access’ access type, the type of remote access to watch for, a globally unique atomic region ID,

and a globally unique function ID. The first three parameters are obtained from the information

CIL generates by default about the source code. The type of remote access to watch is

determined by the decision tree in Figure 4.1. The decisions are driven by the question of what

atomicity violations are possible. For example, if the first local access is a read, then the only

possible violating access in the two applicable AVT’s ([local read, remote write, local write] and

[local read, remote write, local read]) is a remote write, and thus we only need to watch for

writes. The atomic region ID is unique for each local access pair identified by the ANNOTATOR.

The function ID is unique for each function in the source code. The reasons for these parameters

will be presented in the next section. Then it inserts an end_atomic() function call immediately

after the current access (i.e., second local access) such that the former will execute if the latter

does. The end_atomic() function requires two parameters: the second local access’ access type

and an atomic region ID. The arguments are obtained in the same way as they were for the

begin_atomic() function. Again, the reason for these parameters will be presented in the next

section.

 As mentioned in the previous chapter, a begin_atomic()’s corresponding end_atomic()

may not execute at run-time, and thus we need an alternative method to stop monitoring shared

variables in such a case. Since our implementation restricts our search to intra-procedural points,

we can simply stop monitoring when a function exits. The ANNOTATOR inserts a call to

clear_ar_data() at all function exit points. This function takes one parameter: a globally unique

function ID, which is generated in the same way as the one provided to begin_atomic(). More

detail about this function is presented in the next section.

 It should be emphasized that imprecision in the analysis of either sub-component of the

ANNOTATOR does not affect correctness, since we only detect, and optionally report, violations

that occur at run-time.

CHAPTER 4. IMPLEMENTATION 27

4.3 PREVENTION ENGINE

This portion of our system is a modified Linux kernel. The functions begin_atomic() and

end_atomic() are implemented as system calls, and the freezing of a thread is achieved by

modifying the kernel scheduler to remove the thread from the runqueue. Crucial to the success

of our system was a low-overhead method of detecting accesses to a memory location. Our

initial implementation had used page permissions to detect remote accesses. For example, to

detect writes, our system would mark the page containing the shared variable as read-only.

When a page fault occurred, the faulting address was compared to the address of the shared

variable to determine if a remote access had occurred. It was able to support the simultaneous

monitoring of any number of shared variables. However, the coarse granularity of detection

meant there were many unnecessary page faults that occurred from accesses to variables that

were on the same page, but were not the shared variables we were monitoring. This imposed

high performance overheads and was incompatible with our goal of a low-overhead online

system. Thus, our current implementation uses the four data debug registers present on modern

Intel/AMD processors to detect remote accesses. These registers allow the kernel to monitor a

memory location for reads, writes or both. A promising alternative, which we may use when it is

implemented in production hardware, is Mondrian Memory Protection [47]. It combines the

benefits of both the page permission and debug register approach by allowing for low-overhead

hardware monitoring of any number of memory locations.

 The PREVENTION ENGINE is responsible for detecting, preventing and optionally exposing

atomicity violations. We will present its implementation in the context of a hypothetical

program running on top of it. Steps that only occur in BUGFINDING mode are labelled as such.

When a thread in the program calls begin_atomic(), the following happens:

1. Check if we've used up all the data debug address registers, because we allow for nested

atomic regions. If not, set one of them to the provided address of the shared variable;

otherwise, return.

2. Set the relevant bits in the debug control register to reflect the provided remote access type

and the provided shared variable size. Then enable exact breakpoints, which cause the

processor to trap immediately after the instruction which accessed the memory location

CHAPTER 4. IMPLEMENTATION 28

specified in the debug address register (i.e., after a remote thread has performed a remote

access). In some cases, this is not possible [14]. We discuss this situation in the next

section.

3. If we are detecting remote writes, save the value of the shared variable as OLD_VALUE.

Otherwise, do nothing.

4. Our system has a per-thread table that records the atomic regions which have not yet

ended. This table is indexed by the pair [atomic region ID, function ID]. Register our

atomic region with the provided atomic region ID and function ID by inserting a new entry

into this table.

5. [BUGFINDING mode] Set the state of the current thread (i.e., the local thread) to

TASK_INTERRUPTIBLE, which makes the thread non-schedulable (i.e., frozen). We

also set a freeze period counter FPCountlocal to the length of the freeze period. Now return.

6. [BUGFINDING mode] All other threads in the program are allowed to run as normal. The

kernel scheduler keeps track of how long threads have been running by default, and we

modified this portion to also keep track of how long the local thread has been frozen.

After the freeze period has expired, the state of the local thread is set to TASK_RUNNING

and it is now allowed to execute. It should be noted that the shared memory location is still

being monitored, and only stops being monitored when end_atomic() or clear_ar_data() is

called.

If a remote access is detected, we do the following:

1. Record its access type.

2. Unfortunately, accesses to the monitored memory location generate a trap, and not a fault.

This means that the access has already occurred, and the program counter (PC) has been

updated to the next instruction. Thus, we cannot prevent the access from occurring, and

can only undo its effects. At this point, we cannot determine whether the remote access is

a violating access, because it is known only when the second local access occurs.

However, by that time, the results of the access could have been used by the program.

CHAPTER 4. IMPLEMENTATION 29

Thus, we must pre-emptively undo the effects of the access now. If the remote access was

a write, we can undo its effects by simply saving the current value of the shared variable as

NEW_VALUE and then writing OLD_VALUE to the shared variable. Otherwise, if the

remote access was a read, then it becomes more complicated. We defer discussion of this

until the next section.

3. Set the state of the current thread (i.e., the remote thread) to TASK_INTERRUPTIBLE,

which makes the thread non-schedulable. We also set a freeze period counter FPCountremote

to the length of the freeze period: (FPCountlocal’s current value + 1) quanta. If

end_atomic() does not awaken it, the remote thread is awoken in the same way as the local

thread, as described above.

If a thread calls end_atomic(), the following occurs:

1. First, check whether the corresponding begin_atomic() was called by comparing the

provided atomic region ID with all stored atomic region ID’s which belong to the thread.

If there is a match, proceed to the next step. Otherwise, return.

2. We check if a violating access occurred by checking whether the right type of remote

access was made. If the remote thread which made this access is no longer frozen (i.e.,

FPCountremote has already expired), then we note that an atomicity violation occurred which

was not prevented. Otherwise, if the violating access was a write, write NEW_VALUE

into the shared memory location. In effect, this shifts the violating write after the atomic

region. Note that when the violating write occurred, we only undid its effects. In the case

of multiple violating writes, NEW_VALUE will contain the value of the most recent

violating write.

3. Clear the appropriate fields of the data debug address and control registers for this atomic

region. Then wake-up all frozen remote threads by setting their thread states to

TASK_RUNNING.

4. [BUGFINDING mode] For each violation detected, report the thread ID's of the threads

involved and the PC of each instruction involved and their order.

CHAPTER 4. IMPLEMENTATION 30

 If a thread calls clear_ar_data(), we clear the appropriate fields of the data debug address

and control registers for all atomic regions belonging to the calling thread that have the same

function ID as the provided function ID.

4.4 Deficiencies

As mentioned before, if the remote access was a read, it becomes complicated to undo its effects

because we do not know the original value stored at the read’s destination, or even the

destination of the read. The latter problem is due to x86 instructions being variable-length and

so it is not possible in the general case to dynamically determine the previous instruction.

Although we have not implemented this yet, we envision the following solution. We can

disassemble the program and store a table that holds the address of each instruction. In this way,

we can obtain the old program counter (PC) by indexing into the table’s entry for the PC’s

current value, and then use the value in the previous entry. The one exception is if the

instruction at the current PC is a jump target. The only way for a jump to read a memory

location is in an indirect jump as a result of calling a function via a function pointer. Thus, if we

are at the beginning of a function, we index into the table’s entry for the return address of the

current function, and then use the value in the previous entry as the old PC.

 However, we still do not know the original value of the read’s destination, and this

prevents us from undoing the read’s effects. Thus, we must prevent the system from using the

value that was read until after the second local access (i.e., the second local write), when we can

re-execute the read to read the proper value. To do this, we decode the previous instruction and

check whether the destination of the read was a register or a memory location. If it was the

former, then we freeze the remote thread which made the access because only it can use the

value. If it was the latter, then we monitor the destination of the read and freeze the next thread

to read it. This forms a dependency chain of threads, where each thread depends on the thread

immediately before it to read the correct value. When the associated end_atomic() is called, we

set the PC of the first thread in the chain to its old value, then single-step the read. This is

repeated until all threads in the chain have re-executed their respective reads. The effect is to

shift the reads after the atomic region in the order in which they occurred. If the situation arises

that we need to monitor the destination of a read but no debug registers are available for use, we

CHAPTER 4. IMPLEMENTATION 31

unfreeze all threads in the dependency chain, and report that we were unable to prevent an

atomicity violation.

 A second problem alluded to before was that exact breakpoints are not always possible.

The P6 family of processors, which include the Pentium I Pro, II and III processors, do not report

data breakpoints for the REP MOVS and REP STOS instructions until after the completion of

the iteration after the iteration in which the memory location was accessed. These two

instructions perform repeated array reads and writes respectively. The consequences of such an

event are serious because our system is dependent on being notified immediately of a remote

access. There are two situations to consider. The first situation is that a violating access

involving the REP MOVS/STOS instruction occurs, and the second local access occurs between

when the violating access is made and the associated data breakpoint is triggered. In this case,

our system would not be able to detect or prevent the atomicity violation. The second situation is

that a violating access involving either the REP MOVS/STOS instruction occurs, and the second

local access occurs after the associated data breakpoint is triggered. In this case, our system

would still detect the atomicity violation, but our efforts to prevent the atomicity violation could

introduce errors into the program. This is because prevention requires we undo the effects of the

access such that they are not observed by the program. If there is a delay between the time of the

access and the notification of the access, then reversing the effects could cause the program to

enter an inconsistent state. Although we have not implemented it, we could choose not to

prevent atomicity violations in the case that the current or previous instruction was REP

MOVS/STOS and we were running on a machine that is using a processor from the P6 family.

We would use the previously mentioned method for determining the previous instruction.

 Additionally, all Pentium processors do not report data breakpoints for repeated INS and

OUTS instructions until after the iteration in which the memory was accessed. These two are

I/O instructions, and thus should not have any impact on our system as they would not appear in

user-level programs.

4.5 Optimizations

As the next chapter shows, most of our overhead is due to the number of system calls made, and

that the majority of our system call cost comes from dropping into the kernel. To reduce this

CHAPTER 4. IMPLEMENTATION 32

overhead, we target both aspects of the problem. First, the ANNOTATOR supports a whitelist for

variables. This can either be done with a list of functions, where all function arguments are

added to the whitelist, or with a list of object types, where all variables of those types are added

to the whitelist. Currently, we manually generate a whitelist of synchronization object types,

such as lock types, for the programs used in our evaluation. We assume that synchronization

functions have been implemented correctly and therefore all atomicity violations with respect to

synchronization variables are benign. This lowers the overhead of our system by reducing the

number of atomic regions, and in turn, the number of system calls programs running on our

system must make.

 Second, instead of end_atomic() dropping into the kernel, it sets a flag and some

variables with the relevant information (e.g., what registers to clear) in user space. Then, on the

next begin_atomic() call or remote access, our system checks the flag and does what the

end_atomic() would have done. Intuitively, we are lazily executing end_atomic()’s functionality

by delaying it until we have to drop into the kernel for some other reason, thus avoiding a

boundary crossing between user and kernel space If the functionality is delayed to a remote

access, it is never considered a violating access because the end_atomic() has already occurred.

This optimization also applies to clear_ar_data().

 Third, we employ minor optimizations to avoid dropping into the kernel when not

required, such as when there are no available data debug address registers. These are

straightforward and we will not elaborate on them further. Lastly, we implemented a simple but

powerful optimization early in the development of our system. We disable the data debug

registers during context switches when the next thread to run is the local thread that had set the

registers. This eliminates the traps that would have otherwise occurred for each atomic region

due to local accesses. However, the optimization introduces a problem for the AVT [local write,

remote write, local read]. After the local write, OLD_VALUE still contains the value of the

shared variable before that write. Therefore, when the remote write occurs, we will revert to the

wrong value. Thus, the optimization requires that the ANNOTATOR split the local write into two

statements. The first statement saves the value to be written for the PREVENTION ENGINE, and the

second statement performs the original write.

33

5 Evaluation

We evaluate our system according to two metrics. We first measure run-time performance

overhead because our system is an online one, and thus low overhead is an important criterion.

Then, we test our system’s ability to achieve its primary goal: detect and prevent atomicity

violations. We do not measure the overhead introduced by the ANNOTATOR during the

compilation process because that component of our system is used only once each time the

program is released. It is not used any other time the program is compiled. As such, its

overhead is negligible.

5.1 Experimental Set-up

All evaluation was conducted on a machine with a 2.13 GHz Core 2 Duo processor, 2GB of

RAM, a 7200 RPM Serial-ATA disk and a Gigabit Ethernet network card. The operating system

is Ubuntu 8.10, with a Linux 2.6.27 kernel modified to implement the PREVENTION ENGINE.

5.2 Run-time Overhead

To measure performance overhead, we ran several large multithreaded applications under our

system. These include the NSS module in the Mozilla Firefox web browser [23], VLC media

player [43], Apache web server [41], MySQL database application [26] and the SPEC2001 Open

MP (OMP) benchmark [40]. Table 5.1 lists the benchmark used for each application. These

were chosen to provide good code coverage, in order to get an accurate indication of our

overheads. Our system was run in BUGFINDING mode to obtain the worst-case results.

 We first ran the applications with a version of our system which was largely non-

optimized – it contains only the last optimization in Section 4.5 – and which we will refer to as

the non-optimized version. The overheads are presented in Table 5.2. The overheads for the

Webstone [21] and TPC-W [42] benchmarks are with respect to throughput. The overheads for

all other benchmarks are with respect to execution time. These initial results were unsatisfactory

and we then considered two optimization strategies. The first strategy was to reduce the freeze

period. To test the possible benefits, we ran our non-optimized system with all freeze periods set

to zero. The second strategy was to reduce the cost of our system calls. To test the possible

benefits, we ran our non-optimized system with begin_atomic() and end_atomic() replaced with

CHAPTER 5. EVALUATION 34

null (i.e., empty) system calls. Each modification was applied in isolation, and the overhead

results are presented in Table 5.3. They show that the first strategy would not yield significant

benefits. Although they would also seem to suggest the same thing about the second strategy,

the reality is more nuanced. Table 5.3 actually demonstrates that the cost of

begin_atomic()/end_atomic() is dominated by the boundary crossing between user and kernel

space. Thus, the strategy with the greatest potential is to reduce the total number of system calls

made by the instrumented programs.

Application Benchmark

NSS Running the included test suite

VLC media player Transcoding a video using the x264 codec

Apache Webstone 2.5

MySQL TPC-W with 10 browsers

SPEC2001 OMP Running itself

Table 5.1: Benchmarks used

 We implemented optimizations which tried to first reduce the number of system calls

made, and second, reduce the number of times we dropped into the kernel. These optimizations

were discussed in Section 4.5. The results of these optimizations are presented in Table 5.4. In

the last column, “Minor optimizations” refers to simple checks that ensure we drop into the

kernel only when required. For example, as mentioned previously, these include checking for

the existence of available data debug registers. The results show that the best improvement was

obtained by not having end_atomic() drop into the kernel, while the use of a whitelist afforded

approximately half the improvement. This is because the former reduces the overhead of every

full local access pair (i.e., both begin_atomic() and end_atomic() execute at run-time) by half.

The latter is only able to remove from consideration local access pairs involving synchronization

variables, which are a small fraction of all local access pairs that we check.

CHAPTER 5. EVALUATION 35

Application Overhead (%)

NSS 27.6

VLC media player 15.4

Apache 23.7

MySQL 24.5

SPEC2001 OMP 26.2

Table 5.2: Non-optimized overhead results

 Overhead (%)

Application Original Replace with null system call Reduce freeze periods to zero

NSS 27.6 25.0 26.4

VLC 15.4 14.1 14.7

Apache 23.7 21.9 22.5

MySQL 24.5 22.4 23.0

SPEC2001 OMP 26.2 24.3 25.2

Table 5.3: Impact of different sources of overhead

 Overhead (%)

Application Original Whitelist Whitelist +

end_atomic() does

not drop into kernel

Whitelist +

end_atomic() does

not drop into kernel

+ Minor

optimizations

NSS 27.6 24.2 16.4 16.1

VLC 15.4 13.6 10.6 10.4

Apache 23.7 20.3 12.8 12.7

MySQL 24.5 21.4 13.9 13.7

SPEC2001 OMP 26.2 23.6 15.7 15.5

Table 5.4: Effects of various optimizations

CHAPTER 5. EVALUATION 36

5.3 Detecting and Preventing Atomicity Violations

In order to evaluate the ability of our system to achieve its primary goal of detecting and

preventing atomicity violations, we tested it against a collection of known bugs. We created a

corpus of concurrency bugs caused by atomicity violations by searching the public bug trackers

of various large open-source multithreaded programs. We first collected fixed bugs whose

reports contained the following keywords: “data race”, “race condition”, “concurrency” or

“synchronization”. Afterwards, we removed those bugs that were not caused by atomicity

violations. Finally, we filtered out bugs in non-C code and bugs whose reports either did not

mention the triggering inputs or did not mention the specific code section and interleaving which

caused the bug. Table 5.5 shows the distribution of the bugs by application and the type of

interleaving that caused it.

 For each bug, we ran the associated program with the inputs specified in the bug report.

Unfortunately, not all bugs cause crashes, and we do not possess oracles which can determine

whether the application is behaving incorrectly. Thus, for each bug, we obtain the local access

pair from the bug report. Then, we manually analyze the source code and note the ID of the

atomic region containing the aforementioned local access pair. We consider a bug to be

detected if an atomicity violation involving the same atomic region occurs. Our system was able

to detect all of the bugs.

 For those bugs which caused crashes, we verified that once our system detected the bug,

the application no longer crashed. For all other bugs, we lacked a means of determining whether

the program was behaving correctly and thus whether we had successfully prevented the

atomicity violation. Therefore, we augmented the PREVENTION ENGINE to provide timestamps,

as well as the values read and written, for all accesses in the AVT of the relevant atomicity

violation. We manually inspected the reported information and verified that our prevention

routines were behaving as expected. Note that, due to the deficiency mentioned in Section 4.4,

we were unable to prevent the NSS bug in the last row (i.e., the one caused by the local write,

remote read, local write unserializable interleaving).

CHAPTER 5. EVALUATION 37

Unserializable

Interleaving

Application

Total

Apache NSS MySQL

Rlocal(A)

Wremote(A)

Rlocal(A)

2 2 2 6

Rlocal(A)

Wremote(A)

Wlocal(A)

1 3 0 4

Wlocal(A)

Wremote(A)

Rlocal(A)

0 0 0 0

Wlocal(A)

Rremote(A)

Wlocal(A)

0 1 0 1

Table 5.5: Bug detection results

38

6 Future Work

There are a few directions we would like to explore with our work. The most straightforward

one is supporting more languages. Currently, our system only works with programs written in C

because the ANNOTATOR can only parse C. In order to support more languages, we would need a

parser for each one. For interpreted languages (e.g., Java), we may also need to modify the

PREVENTION ENGINE, depending on the threading model used.

 The main source of overhead for our system is the number of system calls, which makes

it a good target for future work. We can tackle it in two ways: 1) reduce the cost of our function

calls, or 2) reduce the number of function calls. In order to reduce the cost, we could add

dynamic checks to see if the atomic region’s shared variable is actually shared. If it is not, we

avoid dropping into the kernel. In order to reduce the number of function calls, we could apply

the static lockset algorithm to filter out places where we know atomicity violations cannot occur,

or escape analysis to eliminate variables from the LSV that we know are not shared.

 Finally, an area of our work which has largely been unexplored is the use of different

scheduling algorithms to expose hidden atomicity violations during BUGFINDING mode. This

could be applied to all threads prior to encountering an atomic region, or applied to remote

threads when the local thread is frozen inside an atomic region.

39

7 Conclusion

Concurrency bugs are a difficult class of bugs to solve. Their numbers will only increase as

more programs become multithreaded to take advantage of multi-core machines. We present a

system which can detect, prevent and expose concurrency bugs caused by atomicity violations.

It is an effective online system that imposes low overhead. We were able to achieve this for

three reasons. The first is that the dynamic component of our system was implemented in the

kernel. This allowed us to control the thread scheduling of user-level programs more efficiently

than with dynamic binary instrumentation tools such as Pin. The second is that we used

hardware registers present in modern Intel/AMD processors. This allowed us to efficiently

monitor accesses to shared variables and be immediately notified when they occurred. Lastly,

we implemented optimizations that greatly reduced the number of times we had to drop into the

kernel. The end result is that users are protected from latent atomicity violation bugs in

applications.

40

Bibliography

[1] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.

EXE: automatically generating inputs of death. In CCS '06: Proceedings of the 13th ACM

Conference on Computer and Communications Security, pages 322-335, 2006. ACM.

[2] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: bulk enforcement

of sequential consistency. In ISCA '07: Proceedings of the 34th Annual International

Symposium on Computer Architecture, pages 278-289, 2007. ACM.

[3] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O'Callahan, Vivek Sarkar, and

Manu Sridharan. Efficient and precise datarace detection for multithreaded object-oriented

programs. In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference on

Programming Language Design and Implementation, pages 258-269, 2002. ACM.

[4] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: deterministic shared

memory multiprocessing. In ASPLOS '09: Proceedings of the 14th International Conference

on Architectural Support for Programming Languages and Operating Systems, pages 85-96,

2009. ACM.

[5] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.

ReVirt: enabling intrusion analysis through virtual-machine logging and replay. In OSDI

'02: Proceedings of the 5th Symposium on Operating Systems Design and Implementation,

pages 211-224, 2002. ACM.

[6] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race conditions and

deadlocks. In SOSP '03: Proceedings of the 19th ACM Symposium on Operating Systems

Principles, pages 237-252, 2003. ACM.

[7] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity checker for

multithreaded programs. In POPL '04: Proceedings of the 31st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 256-267, 2004. ACM.

BIBLIOGRAPHY 41

[8] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race

detection. In PLDI '09: Proceedings of the 2009 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 121-133, 2009. ACM.

[9] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: a sound and complete

dynamic atomicity checker for multithreaded programs. In PLDI '08: Proceedings of the

2008 ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 293-303, 2008. ACM.

[10] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In PLDI '03:

Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design

and Implementation, pages 338-349, 2003. ACM.

[11] Patrice Godefroid, Nils Klarlund, and Koushik Sen, "DART: directed automated random

testing," SIGPLAN Not., vol. 40, pp. 213-223, 2005.

[12] Maurice Herlihy and J. Eliot B., "Transactional memory: architectural support for lock-free

data structures," SIGARCH Comput. Archit. News, vol. 21, pp. 289-300, 1993.

[13] Derek R. Hower and Mark D. Hill, "Rerun: Exploiting Episodes for Lightweight Memory

Race Recording," SIGARCH Comput. Archit. News, vol. 36, pp. 265-276, 2008.

[14] Intel Corporation. (2009, June) Intel® 64 and IA-32 Architectures Software Developer's

Manual. [Online]. http://www.intel.com/Assets/PDF/manual/253669.pdf

[15] Leslie Lamport, "Time, clocks, and the ordering of events in a distributed system,"

Commun. ACM, vol. 21, pp. 558-565, 1978.

[16] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-Aid: Detecting and

Surviving Atomicity Violations. In ISCA '08: Proceedings of the 35th International

Symposium on Computer Architecture, pages 277-288, 2008. IEEE Computer Society.

http://www.intel.com/Assets/PDF/manual/253669.pdf

BIBLIOGRAPHY 42

[17] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized

program analysis tools with dynamic instrumentation. In PLDI '05: Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language Design and Implementation, pages

190-200, 2005. ACM.

[18] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou, "Learning from mistakes: a

comprehensive study on real world concurrency bug characteristics," SIGARCH Comput.

Archit. News, vol. 36, pp. 329-339, 2008.

[19] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: detecting atomicity

violations via access interleaving invariants. In ASPLOS-XII: Proceedings of the 12th

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 37-48, 2006. ACM.

[20] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchronization

inference for atomic sections. In POPL '06: Conference Record of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 346-358, 2006.

ACM.

[21] Mindcraft. (2009) Mindcraft - WebStone Benchmark Information. [Online].

http://www.mindcraft.com/webstone/

[22] Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Recording and

Deterministically Replaying Shared-Memory Multiprocessor Execution Efficiently. In ISCA

'08: Proceedings of the 35th International Symposium on Computer Architecture, pages

289-300, 2008. IEEE Computer Society.

[23] Mozilla Corporation. (2009) Network Security Services (NSS). [Online].

http://www.mozilla.org/projects/security/pki/nss/

[24] Madanlal Musuvathi and Shaz Qadeer, "Iterative context bounding for systematic testing of

multithreaded programs," SIGPLAN Not., vol. 42, pp. 446-455, 2007.

http://www.mindcraft.com/webstone/
http://www.mozilla.org/projects/security/pki/nss/

BIBLIOGRAPHY 43

[25] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam A. Nainar,

and Iulian Neamtiu. Finding and Reproducing Heisenbugs in Concurrent Programs. In

OSDI, pages 267-280, 2008.

[26] MySQL AB. (2009) MySQL : MySQL 5.1 GA. [Online].

http://dev.mysql.com/downloads/mysql/5.1.html

[27] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory

dependencies using strata. In ASPLOS-XII: Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and Operating Systems,

pages 229-240, 2006. ACM.

[28] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:

Intermediate Language and Tools for Analysis and Transformation of C Programs. In CC

'02: Proceedings of the 11th International Conference on Compiler Construction, pages

213-228, 2002. Springer-Verlag.

[29] Robert O'Callahan and Jong-Deok Choi, "Hybrid dynamic data race detection," SIGPLAN

Not., vol. 38, pp. 167-178, 2003.

[30] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient deterministic

multithreading in software. In ASPLOS '09: Proceedings of the 14th International

Conference on Architectural Support for Programming Languages and Operating Systems,

pages 97-108, 2009. ACM.

[31] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: exposing atomicity violation bugs

from their hiding places. In ASPLOS '09: Proceedings of the 14th International Conference

on Architectural Support for Programming Languages and Operating Systems, pages 25-36,

2009. ACM.

[32] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race detection in multithreaded

C++ programs. In PPoPP '03: Proceedings of the 9th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 179-190, 2003. ACM.

http://dev.mysql.com/downloads/mysql/5.1.html

BIBLIOGRAPHY 44

[33] Milos Prvulovic and Josep Torrellas. ReEnact: using thread-level speculation mechanisms

to debug data races in multithreaded codes. In ISCA '03: Proceedings of the 30th Annual

International Symposium on Computer Architecture, pages 110-121, 2003. ACM.

[34] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin

Hertzberg. McRT-STM: a high performance software transactional memory system for a

multi-core runtime. In PPoPP '06: Proceedings of the 11th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 187-197, 2006. ACM.

[35] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. Automated type-based

analysis of data races and atomicity. In PPoPP '05: Proceedings of the 10th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 83-94, 2005. ACM.

[36] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson,

"Eraser: a dynamic data race detector for multithreaded programs," ACM Trans. Comput.

Syst., vol. 15, pp. 391-411, 1997.

[37] Koushik Sen. Race directed random testing of concurrent programs. In PLDI '08:

Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 11-21, 2008. ACM.

[38] Jaswanth Sreeram, Romain Cledat, Tushar Kumar, and Santosh Pande. RSTM: A Relaxed

Consistency Software Transactional Memory for Multicores. In PACT '07: Proceedings of

the 16th International Conference on Parallel Architecture and Compilation Techniques,

pages 428, 2007. IEEE Computer Society.

[39] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and Yuanyuan Zhou.

Flashback: a lightweight extension for rollback and deterministic replay for software

debugging. In ATEC '04: Proceedings of the Annual Conference on USENIX Annual

Technical Conference, pages 3-3, 2004. USENIX Association.

[40] Standard Performance Evaluation Corporation. (2009) SPEC OMP V3.2. [Online].

http://www.spec.org/omp2001/

http://www.spec.org/omp2001/

BIBLIOGRAPHY 45

[41] The Apache Software Foundation. (2009) The Apache HTTP Server Project. [Online].

http://httpd.apache.org/

[42] Transaction Processing Performance Council. (2009) TPC-W. [Online].

http://www.tpc.org/tpcw/default.asp

[43] VideoLAN. (2009) VLC media player - Open Source Multimedia Framework and Player.

[Online]. http://www.videolan.org/vlc/

[44] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model Checking

Programs. In ASE '00: Proceedings of the 15th IEEE International Conference on

Automated Software Engineering, pages 3, 2000. IEEE Computer Society.

[45] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur, and Scott Mahlke. The

theory of deadlock avoidance via discrete control. In POPL '09: Proceedings of the 36th

annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 252-263, 2009. ACM.

[46] Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos,

"Mechanisms for store-wait-free multiprocessors," SIGARCH Comput. Archit. News, vol.

35, pp. 266-277, 2007.

[47] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protection. In

ASPLOS-X: Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 304-316, 2002. ACM.

[48] Min Xu, Rastislav Bodík, and Mark D. Hill. A serializability violation detector for shared-

memory server programs. In PLDI '05: Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 1-14, 2005.

ACM.

[49] Jie Yu and Satish Narayanasamy, "A case for an interleaving constrained shared-memory

multi-processor," SIGARCH Comput. Archit. News, vol. 37, pp. 325-336, 2009.

http://httpd.apache.org/
http://www.tpc.org/tpcw/default.asp
http://www.videolan.org/vlc/

BIBLIOGRAPHY 46

[50] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: efficient detection of data race

conditions via adaptive tracking. In SOSP '05: Proceedings of the 20th ACM Symposium on

Operating Systems Principles, pages 221-234, 2005. ACM.

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Our Approach
	Contributions
	Structure

	Related Work
	Atomicity Violation Detectors
	Atomicity Violation Prevention Systems
	Data Race Detectors
	Complementary Systems

	System Overview
	Problem Definition
	Architecture
	Static Component: Annotator
	Dynamic Component: Prevention Engine

	Limitations

	Implementation
	CIL Background
	Annotator
	CIL Analysis
	CIL Transformation

	Prevention Engine
	Deficiencies
	Optimizations

	Evaluation
	Experimental Set-up
	Run-time Overhead
	Detecting and Preventing Atomicity Violations

	Future Work
	Conclusion
	Bibliography

