
Using Hypervisors to Secure Commodity Operating
Systems

David Lie
University of Toronto

Lionel Litty∗

VMware Inc.

ABSTRACT
Hypervisors are an excellent tool for increasing the security of com-
modity software against attack. In this paper, we discuss some
of the lessons and insights we gained from designing and imple-
menting four research prototypes that use hypervisors to secure
commodity systems. We also compare our findings with other ap-
proaches to implementing security in a hypervisor.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive Software,Security ker-
nels

General Terms
Security

Keywords
Hypervisors,Isolation,Integrity,Proxos,Patagonix

1. INTRODUCTION
Traditionally, the responsibility for enforcing system security has

largely fallen on shoulders of the operating system (OS). For exam-
ple, it is the responsibility of OS code to enforce process isolation
and access control between principals and objects. Unfortunately,
commodity OSs are large and complex, and because of this, they
contain a large number of flaws that make them vulnerable to com-
promise. Once compromised, an attacker can violate all the se-
curity guarantees that the OS is supposed to enforce, giving her
unfettered to access to the system. As a result, systems that re-
quire a higher amount of security and assurance have traditionally
turned to hardware-enforced security to gain an additional level of
protection should the measures in the OS fail. For example, a va-
riety of software copyright and integrity solutions use “hardware
dongles”, which provide security in the form of a token, since the
ability to copy hardware components is independent of the integrity
∗The majority of this work was done while Lionel Litty was at the
University of Toronto

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0095-7/10/10 ...$10.00.

of the software on the system. Highly secure systems may also
use a physically secure co-processor card such as the IBM 4758,
which contains a simple but complete computer system encased
in a tamper-resistant package [16]. Recent Intel TXT, AMD SVM
and TCG TPM functionality incorporated into commodity PCs pro-
vides additional hardware security to protect systems in the event
of a failure of OS integrity to an attack. This recent trend in com-
modity hardware illustrate that the main threat to systems today are
OS vulnerabilities, since they assume physical security against an
attacker, and are designed only to protect the system in the event of
a breach of security of the software in the OS.

However, hardware support for security has some disadvantages.
First, implementation in hardware is generally more expensive and
difficult that in software. As a result, the functionality is often re-
strictive and simple, thus constraining its power and effectiveness.
Overly complex functionality requires more silicon area, which if
only rarely used, does not justify its cost. Second, once function-
ality is defined in hardware, it is inflexible and difficult to change.
Any bugs or vulnerabilities in a hardware design generally have
fairly severe consequences and may require a software work-around.
If a software workaround is not possible or weakens the security,
a product recall is required 1. In addition, since hardware can-
not be changed after it is deployed, the functionality must be gen-
eral and OS-agnostic, since hardware designers cannot predict what
changes will occur in the OS after the hardware is deployed.

A hypervisor is a layer of software below the OS that runs at a
higher privilege level than the OS. Because of the higher privilege
level, the integrity of the hypervisor remains intact even if the OS is
compromised. As a result, an alternative to implementing security
in hardware is to implement security functionality in a hypervisor.
On one hand, a hypervisor is not as secure as hardware against
an adversary who has physical access to the system because she
may tamper with the boot process to remove the hypervisor. How-
ever, in cases where physical access is not granted to the adversary,
the security properties of a hypervisor and hardware are equiva-
lent. On the other hand, a hypervisor offers significant advantages
over hardware for implementing low-level security. Because it is in
software, the security functionality can be arbitrarily complex and
may even be specifically tailored to the guest OSs it is supporting.
Flaws found in the security system or hypervisor can be patched
just like any other software. Finally, implementation in software
allows such functionality to be highly configurable and customiz-
able, allowing end users to specify policies that suit their needs.

We have taken two broad approaches to improving the secu-
rity of commodity OSs using hypervisors. In the first approach,

1There have been documented cases of BIOS bugs causing some
machines to become unbootable after TXT is used. One of the
authors has experienced this personally.

Hypervisor

Commodity OS VMPrivate VM

Security-
sensitive

Application

Private OS
Kernel Commodity OS Kernel

Other
Applications

Untrusted system calls are routed
to the commodity OS kernel

Trusted system
calls are routed
to private OS

methods
Host Process

Private apps can interact
with other apps via the

host process

All apps can access
commodity OS resources

Proxos

Figure 1: The Proxos Architecture

we implement secure execution for applications using a system
called Proxos. Proxos allows applications to control how much
trust they must place in the OS, thus limiting the damage an attacker
who compromises the OS can cause to applications and their data.
While OSs typically consist of millions of lines of code, Proxos al-
lows applications to minimize how much that code base contributes
to the application’s trusted computing base (TCB). In our second
approach, we use hypervisor introspection to attempt to detect and
mitigate flaws in commodity OSs. The advantage of using a hy-
pervisor is that the detection system is immune to tampering by
the OS, and will continue to function correctly even if the attacker
controls the OS.

This paper is organized as follows. We begin by giving some
background on hypervisors in Section 2. We then describe systems
we have built implementing our two approaches to hypervisors sup-
port for security in Section 3 and Section 4. We discuss lessons and
insights we gained from our experience in Section 5 and conclude
in Section 6.

2. BACKGROUND
A hypervisor is a layer of software that interposes between the

OS and the hardware. As a result, it runs at a privilege level higher
than that of the OS. Often, hypervisors use their privileges to vir-
tualize the underlying hardware and give the illusion of multiple
identical hardware instances. When used in this way, hypervisors
are also sometimes referred to as virtual machine monitors, as they
can export multiple virtual machine objects that are used to run
multiple OS images simultaneously. We will refer to an OS im-
age running on the hypervisor as a Guest OS. For the purposes of
this paper, whether the hypervisor is used to support multiple or
just one OS image is not important – the points made in this paper
apply equally to cases where there are multiple guest OSs running
concurrently and to cases where there is just one guest OS.

Aside from exporting multiple virtual copies of the underlying
hardware, hypervisors can also be used to modify the behavior of
the underlying hardware from the point of view of the guest OS. For
example, a hypervisor can be used to emulate a different instruction
set, or emulate hardware functionality that does not actually exist
in software. Hypervisors provide three important properties that
make security hardware that is emulated in the hypervisor as secure
against an attacker who has compromised the OS as real security

hardware. First, hypervisors run in a separate protection domain
from the guest OS. Thus all security functionality in the hypervi-
sor is strongly isolated from any vulnerabilities or bugs in the guest
OS. Second, the interface between the hypervisor and the guest OS
is very narrow. It is roughly equivalent to the interface between
a regular OS and the underlying hardware. For example, the Xen
hypervisor exposes only four types of virtual hardware primitives –
privileged instructions, devices, interrupts and page tables. In com-
parison, Linux exports more than 300 or so system calls to pro-
cesses. This narrow interface gives an attacker who compromises
a guest OS fewer opportunities to compromise the hypervisor than
an attacker who compromises a process in a traditional OS. Finally,
hypervisors are generally small and simple because their job is to
emulate hardware, which in itself is generally simpler than soft-
ware. Most complex policy and resource allocation decisions are
implemented in software by the OS, leaving only simple operations
that must either be fast or isolated from the OS to be implemented
below in the hypervisor or in the hardware.

3. SECURE EXECUTION WITH PROXOS
For various, usually non-technical reasons, commodity OSs have

all too often emphasized utility over security. As a result, they
export broad and powerful interfaces to user-level processes, giv-
ing application programmers a large amount of freedom. Unfortu-
nately, this power and freedom come at the cost of security. While
OSs generally restrict the most sensitive capabilities to “privileged”
applications, the fact remains that those capabilities are so use-
ful and powerful that many applications end up being privileged.
Researchers have recognized this problem and proposed some so-
lutions, such as privilege separation [2, 14] and fine-grain access
control [11]. However, these solutions either require non-trivial ap-
plication porting or very complex policies to effectively limit priv-
ileges, so while effective, they have not experienced wide-spread
applicability.

In commodity OSs, compromising a privileged process gives an
attacker the ability to add code to a running kernel in the form of
drivers or modules, to start or disable other processes, or to inspect
and change the state of any process or file. As a result, even though
this privileged code is not actually in the kernel, it is still in the
TCB of the system because its privileged status make it as powerful
as code in the OS kernel. Thus, to compromise an application,

the attacker need not find a vulnerability in the application or the
systems code it uses – she need only to find a vulnerability in any
privileged process running on the same system.

Unfortunately, because of the many capabilities given to privi-
leged processes, a great deal of useful code often does run with
full privileges in a commodity OS. For example, services that man-
age devices, fix file system corruption and perform backups run
with full privileges. In addition, many network services, such as
network file systems, http, e-mail, and remote login services have
some component that require full privileges. Because of this, appli-
cation developers find it beneficial to use these services to speed up
application development and simplify their tasks. On an unvirtual-
ized machine, there can only be one OS image, forcing unrelated
applications to share a single OS image. An unfortunate result of
this is that the TCB of an application becomes the OS kernel and
the union of all other privileged code required by any application on
the same OS. For a security-sensitive application, privileged code
that is required by an application that is completely unrelated to it
becomes part of the security-sensitive application’s TCB.

The goal of Proxos is to allow an application to reduce the trust
it has in this large TCB to the bare set of functionality it needs from
the OS. The architecture of Proxos is illustrated in Figure 1. Rather
than run the security-sensitive application in the same OS as other
privileged processes, each security-sensitive application is run in its
own “private” VM with its own private OS, which has only the bare
minimum functionality required to execute the application. All bi-
naries and sensitive data required to execute the application are
placed in this private VM, while other applications remain on the
“commodity OS”. In this way, unrelated code is removed from the
TCB of the security-sensitive application. The security-sensitive
application has the option of forwarding certain system calls to be
executed in the commodity OS by a “host process”. We will discuss
the reasons for doing this below.

However, an application running on its own in a VM cannot in-
teract with other processes normally found in a commodity OS,
making it less useful. For example, one of the applications we
chose to protect in our prototype is the ssh remote login service.
By placing the ssh server in its own VM, we protect important in-
formation such as the user passwords and cryptographic keys used
by the ssh server from the underlying OS if it gets compromised.
However, the ssh server would not be very useful to a remote user
since once they log into the private VM, there would be no services
or applications to access. While these other applications and ser-
vices need not be in the TCB of the ssh server, the ability to interact
with them is still important to the user of the ssh server. Proxos pro-
tects the security-sensitive application and its data while at the same
time allowing the application to interact with other commodity ap-
plications by having the security-sensitive application declare the
interface it can safely export to other applications through a set of
system call routing rules. In this way, rather than giving unlimited
access to privileged code in the commodity OS, only the minimum
interface that is necessary for the utility of the application is ex-
posed.

To illustrate, we compare a the ssh server running in a commod-
ity OS with that of an ssh server protected by Proxos in Figure 2.
In the commodity OS, all operations are performed on the single
commodity Linux OS. However, with Proxos, when the ssh server
opens and reads sensitive data like the password file, Proxos routes
these system calls to the private OS where that sensitive data is
stored. System calls that require interaction with the commodity
OS, such as those used to spawn a shell and establish input and
output pipes with the shell, are forwarded by Proxos to the com-
modity OS, where it is executed by the ssh host process. Since the

Set up pipe &
start shell

Linux OS

Encrypted
Traffic

Linux OS

SSH listening
parent

SSH
Server

Command
Shell

Network
Private OS

SSH listening
parent

SSH Host
Process

Network

SSH
Server

Command
Shell Linux

Pipe

Linux
Pipe

Encrypted
Traffic

Commodity OS Proxos

Password
File &

Host keys

Password
File &

Host keys

Figure 2: Protecting SSH using Proxos

shell is spawned on the commodity OS, it gives remote users the
illusion that the ssh server is actually running on the commodity
OS, even though the ssh server and all sensitive data is protected
in the private VM and running on a private OS. An attacker who
controls the Linux OS would only be able to affect the ssh server
through the limited attack surface presented by the pipes between
it and the command shell it spawned on the commodity OS. To ac-
cess the password file or host keys, the attacker would have to find
another vulnerability in the ssh server itself and exploit it via these
pipes. In contrast, an attacker who compromises the Linux OS in
the commodity OS side would have full access to the password file
and host keys by virtue of having root privileges.

Other systems have also tried to protect applications in the face
of a hostile or compromised OS. For example, XOM [8], Aegis [17]
and SP [7] all use processor support to protect applications while
executing. By encrypting and signing data stored in memory, the
untrusted OS is allowed to manage the resources used by these ap-
plications, but cannot view or tamper with the data without vio-
lating the guarantees provided by cryptographic protections. Like
Proxos, Overshadow [4] also uses a hypervisor to protect appli-
cations from a compromised OS. However, unlike Proxos, which
places the protected application in a separate VM, Overshadow
takes an approach much more similar to the processor-based sys-
tems mentioned earlier. Whenever the security-sensitive applica-
tion is executing, Overshadow ensures that the memory pages be-
longing to the application are not mapped into any other address
space that doesn’t belong to the application. If a context other than
the security-sensitive application executes, such as the OS kernel
or another application, then Overshadow unmaps the application’s
pages from its address space. If the other context attempts to access
pages belonging to the security-sensitive application, Overshadow
encrypts and signs the content of the pages and then permits ac-
cess. As a result, the security-sensitive application and commodity
OS execute in the same VM, but the data and execution context
of the application are protected from compromise through crypto-
graphic means, just like in the processor hardware-based proposals
listed above.

The different designs of Proxos and Overshadow present some
interesting trade-offs. Despite the different approaches, both sys-
tems are in reality quite similar. Because the OS kernel cannot
directly access the address space of the security-sensitive applica-

Hypervisor

Guest
Process

Monitor

Monitoring from
within hypervisor

Symbol
Oracle

Symbol Information is
passed to hypervisor from

oracle

Monitored VM

Guest
Process

Symbol VM

Guest Kernel Monitored Kernel

Monitored
Kernel
Copy

Figure 3: Sensor Architecture

tion, system call arguments must be marshaled and unmarshaled in
both systems. In addition, page protections prevent the OS kernel
from maliciously accessing the address space of the application so
a full TLB-flush is required on each system call, while a trusted
commodity OSs does not incur this cost. However, because Over-
shadow places the pages within the VM of the commodity OS, it
must additionally encrypt and decrypt the pages of the security sen-
sitive application whenever the OS wishes to access them. While
this is an additional expense, it permits the OS to manage the re-
sources used by the application. For example, Overshadow allows
the OS to swap the security-sensitive application’s pages to disk.
In contrast, by putting the security-sensitive application in a sep-
arate VM, Proxos essentially gives the security-security sensitive
application its own set of resources, which are managed by the pri-
vate OS in that VM. Any re-allocation of resources between the
security-sensitive application and the commodity OS would have
to be handled by the hypervisor. Thus, for the cost of the encryp-
tion and decryption overhead, Overshadow permits the commodity
OS kernel to handle resource sharing between the security-sensitive
application and the rest of the commodity OS instead of relying on
the hypervisor.

Both systems also require OS-specific code to be added to the
TCB of applications. On the one hand, certain OS operations had
to be emulated in the Overshadow hypervisor to be secure. For
example, to support protected pipes between applications, Over-
shadow re-implements pipes outside of the commodity OS. Proxos
does not need to do this because security-sensitive applications that
need to communicate would already have their own private OS over
which they could communicate. On the other hand, the original de-
sign of Proxos required some porting of applications to target the
private OS, which was intended to be minimal and thus had less
functionality than the commodity OS. For example, the private OS
of Proxos did not support multiple address spaces or threads. Our
more recent incarnations of Proxos utilize a standard commodity
OS kernel as the private VM, but simply have unnecessary privi-
leged code removed, reducing the attack surface. In addition, the
private OS has no direct network access, further reducing the attack
surface. While one always hopes to add as little complexity to the
TCB as possible, by increasing the size of the hypervisor slightly,
both in the case of Overshadow and Proxos, they are able to remove

the majority of a commodity OS from the TCB of an application
while at the same time permitting the controlled use of services
in the commodity OS by the application. A promising approach
that can further reduce the TCB is to remove the commodity OSs
altogether and create smaller secure OSs with reduced functional-
ity [12, 15]. An interesting open question is whether these smaller
but brand-new computing bases are more secure than the larger but
more heavily tested computing bases found in commodity software
components. We will examine this issue further in Section 5.

4. USING INTROSPECTION TO DETECT
OS COMPROMISES

An alternative approach to protecting applications against a com-
promised commodity OSs is to detect when an attacker has suc-
cessfully compromised the OS and prevent damage at that time.
Traditionally, intrusion detection systems (IDS) were implemented
either in the network or on the host. Host-based IDSs are more
accurate than network-based IDSs due to their visibility into the
monitored OS, but suffered the disadvantage that they could be dis-
abled if an attacker were to evade the intrusion detection system
and compromise the host without the administrator being alerted.
In addition, host-based detection systems present a larger admin-
istrative footprint since they must be installed and maintained on
each individual machine. An exciting alternative to host-based and
network-based monitoring for intrusions is to do the monitoring in
a hypervisor by having it introspect on the guest OSs running on
it. Implementing intrusion detection in the hypervisor holds the
promise accuracy equivalent to a host-based IDS, but at the same
time protecting the IDS from tampering by isolating it from the
monitored OS in the hypervisor [6]. In addition, a single IDS im-
plemented in the hypervisor, can simultaneously monitor several
guest VMs in a coordinated way.

However, the benefit of being able to achieve host-based accu-
racy without the risk of tampering by an adversary is hampered by
a problem called the “semantic gap” [3]. Guest OSs typically are
not aware that they are running in a VM, and so make no special ef-
fort to communicate the meaning of events or data structures to the
underlying hypervisor. As a result, the hypervisor must indirectly
infer the significance of events and data structures and assign se-

HypervisorMonitor

Patagonix VM
Identity Oracles

Monitored OS

Application
Code

User-space
Control
Logic

ELF Identity
Oracle

PE Identity
Oracle

Trap on code
execution

Monitored VM

Page, Addr,
Process

App Name,
Addr Range

Retrieve
information and

map page

Database of
Known

Binaries

Hypercalls

Figure 4: The Patagonix Architecture

mantic meaning to them. For example, if an attacker abused stolen
privileges to alter the password file in an OS, all the hypervisor
would perceive is a series of hardware interrupts caused by system
calls, the reading and writing of certain locations in memory and
perhaps some accesses to the virtual disk device. Without informa-
tion mapping certain interrupts to read, write and open system calls,
and certain disk blocks to the password file, the hypervisor can-
not distinguish this event from other benign file accesses or events.
This “gap” between events in the guest OS and what the hypervi-
sor is able to reliably interpret from the resulting hardware events
hampers the accuracy of any hypervisor-based monitoring system.

We have developed two systems that take different approaches
to bridging the semantic gap between the hypervisor and the guest
OS. In the first, we used symbol information extracted from the
kernel compilation process to be able to interpret the meaning of
bits in kernel memory [1]. Our Sensors system accomplished this
as shown in in Figure 3. A user-space oracle extracts the symbol
information from a copy of the kernel binary from the monitored
VM and passes the information to a monitor implemented in the hy-
pervisor. Since extraction of the symbol information is only done
once at start-up, implementing this component outside of the hy-
pervisor is efficient and keeps the hypervisor and TCB of the VMs
small. The hypervisor then uses this information to interpret events
and data in the monitored VM. Using symbol information was also
implemented in the Livewire [6] and the two systems share many
similarities. Both systems can be classified as “white-box” intro-
spection since they assume the hypervisor introspection system has
detailed knowledge, such as symbol tables, about the system it is
monitoring.

With our Sensors, we were able to get high-fidelity information
on events in the OS. For example, by applying this intrusion de-
tection system to monitor several honeypots we had connected to
the Internet, we were able to accurately and automatically detect
when real attackers had exploited vulnerabilities in the honeypots
and compromised the monitored OSs. With the information col-
lected by our hypervisor and the kernel symbol table to serve as a
map by which we could interpret the information, we could deduce
in great detail the actions taken by those attackers.

However, white-box monitoring is vulnerable to deception by
an attacker who is aware of what type of information the monitor
uses to bridge the semantic gap. For example, suppose that one
uses the hypervisor to monitor for the execution of certain system
calls. One way to do this is to use kernel symbol information to find

the location of the system call handler functions that will execute
when an application makes a system call. Then, the hypervisor can
replace the initial entry-point instruction of these functions with a
trap instruction, which will notify the hypervisor when the function
is executed. An attacker who is aware of this can evade detection
simply by making a copy of the monitored function elsewhere and
creating an alternate path to the copied and unmonitored function.
For example, if monitoring the open system call, the attacker could
make a copy of the open system call handler that the hypervisor is
not aware of and thus does not place a trap in, and then redirect the
system call table to point at the copy instead of the original. While
the Sensors could also monitor the system call table, in general,
an attacker who is aware of what is being monitored can always
change code paths or references to evade the detection. Such eva-
sion is also possible by tampering with memory data-structures so
as to mislead the monitor.

The fundamental problem with white-box introspection is that
it relies on non-binding information about the monitored system.
Non-binding information is information that is true in an uncom-
promised OS, but can be arbitrarily changed by an attacker who
has compromised the OS kernel. In other words, white-box sys-
tems depend on assumptions implied by the non-binding informa-
tion, but the attacker is not bound to uphold these assumptions and
can break them to evade detection by the monitor. Our conclusions
from this work are that while the monitor logic is isolated from the
monitored VM at all times, and thus cannot be tampered with by
an attacker, the information that the monitor logic reports from the
monitored VM is vulnerable to tampering by the attacker. Other
than the fact that the introspection cannot be outright disabled by
the attacker, white-box introspection is no more tamper-resistant
than a host-based IDS system that logs all its monitoring results in
a way that is isolated from the monitored VM, such as to a remote
host.

To avoid this pitfall, we have also explored the design and im-
plementation of two “black-box” introspection systems – an initial
prototype called Manitou [10], and a more complete system called
Patagonix [9]. Black-box introspection systems treat the monitored
OS as an opaque system and only use externally visible events to
infer what is going on in the OS. Both our black-box systems were
experiments in trying to determine how accurate an introspection
system that did not depend on any non-binding state could be. In
this paper, we will focus our attention on Patagonix. The architec-
ture of Patagonix is illustrated in Figure 4. Patagonix identifies all

executing binaries in a VM, and detects the execution of unknown
binaries without trusting anything except the processor hardware
and binary format specification. As with the Sensors system, Patag-
onix also implements a monitor in the hypervisor and implements
non-performance critical components in a separate VM. As input,
the Patagonix VM requires information about the binaries it will
identify in the form of a list of known binaries. Any binaries not
found in the list are identified as “unknown”.

Patagonix operation is divided into two major tasks. First, it
must detect when binary code executes. Then, it must identify the
binary code or indicate that it is of unknown identity. To detect
code execution, Patagonix’s hypervisor monitor component lever-
ages the processor’s memory management unit (MMU) to detect
code as it executes. The processor MMU performs virtual to phys-
ical translations and restricts execute and write access to memory
pages according to page tables specified by the hypervisor. To ef-
ficiently detect the execution of code, Patagonix initially marks all
pages in a VM as non-executable. When a page is executed, the
hypervisor receives a trap and identifies the page. Once identified,
Patagonix does not need to be informed of the further execution of
instructions on that page unless the identity of the page changes, so
Patagonix marks the page as executable, but non-writable. Since
the page is non-writable, its contents and thus the identity cannot
change. Any attempt to modify the contents of an executable page
will trap to Patagonix, at which time Patagonix will again mark the
page writable but non-executable. If the page is executed again af-
ter the modification, it must be re-identified before it is allowed to
execute again.

To identify binaries, Patagonix uses identity oracles. An identity
oracle is a function that takes a page, an address indicating where
code was to be executed, and an address space identifier as inputs,
and then returns the identity of the binary as the output. An indi-
vidual oracle is needed for each type of binary that Patagonix is to
identify. The reason is that the mapping between a binary on disk
and an executable in memory is specific to the binary format of the
executable. The oracle inverts this process to recover the original
on-disk image of the page and thus match it to an entry in the known
binary database. Certain types of binaries can be more difficult to
invert than others. For example, Linux shared libraries, which are
in the ELF binary format, are position independent and thus sim-
ple to identify because their in-memory format is the same as their
on-disk format. In contrast, Windows 32-bit DLLs, which are in
the PE format, are not position independent and must be relocated
at load time, making their in-memory format different from their
on-disk format. As a result, the location of all absolute references
had to be added to the known kernel binary database. When identi-
fying a page from a PE binary, the absolute references on the page
needed to be relocated back to their default values before the page
could be identified. However, without knowing the identity of a
page, it was impossible to know which bytes on a page contain ab-
solute references. To break this circular dependency, the Patagonix
PE oracle exploits the fact that most binaries have a small num-
ber of entry points which must be executed before any other code
in the binary and that binaries can only be relocated by a integral
number of pages. As a result, the offset between the faulting ad-
dress and the closest page boundary can be used as a key to quickly
narrow down the number of candidate binaries a page could have
come from. Using this method, Patagonix was able to relocate PE
binaries back their original locations and then match them against
their on-disk images without having to depend on any information
from the OS.

When developing Patagonix, we had an intermediate design that
depended on an untrusted agent that was installed in the OS. The

agent gave “hints” to Patagonix that reported the identity and ad-
dress at which every executing binary was located. Patagonix took
this information and confirmed its truth by replicating the oper-
ations a legitimate loader would take in loading the binary from
disk to a particular memory address. If the loaded memory image
that Patagonix computes deviates from what is actually in memory,
Patagonix knows that either the agent or the binary has been tam-
pered with and raises an alarm. One drawback of an agent is sim-
ply that it is another piece of software that must be installed into all
VMs and managed. Further, a version of the agent must exist for
every OS to be monitored. As a result, we eventually abandoned
this design in favor of an agent-less design. However, the use of
an untrusted agent that provides hints has several advantages. First,
it makes the Patagonix oracles simpler because instead of having
to invert a complex loader operation, the oracle simply needs to
reimplement what a legitimate loader would do. While we did not
explore the possibility, it may have even been possible to use an ex-
isting loader whose integrity had been independently verified, thus
reducing the effort needed to generate oracles for other binary for-
mats. Second, we believe that in some cases, the use of an agent
could even have performance advantages. The simpler and faster
execution of the oracles may be able to offset the additional cost of
transferring the agents hints into the Patagonix monitor.

Since Patagonix depends only on the binary format specification
and the processor hardware, it is able to correctly identify binaries
even if an attacker has compromised the OS kernel. This is be-
cause compromising the OS kernel neither allows the attacker to
change the processor hardware nor the binary format specification
used by the system, since both of these are independent of the ker-
nel implementation. This explains why a single processor hardware
specification or single binary format can be supported by different
OSs. It is also worth noting that both processor behavior and bi-
nary formats are long-lived, and tend to remain unchanged even
as kernel versions change. As a result, Patagonix works without
modification on different OSs and different OSs versions.

5. DISCUSSION
From building these systems, we have learned some valuable

lessons. We attempt to summarize these lessons under three points
in this section.

Minimize TCB by implementing functionality outside of the
hypervisor. In building these systems, we quickly learned to im-
plement as much functionality outside of the hypervisor as possi-
ble. Initially, the reasons for this were purely practical. Imple-
menting new code in the hypervisor leads to new bugs being added
to the hypervisor, which usually crashed the development machine
and were also much more difficult to debug. It also permits pro-
totyping in scripting languages and the use of external libraries for
cryptographic operations. However, while this conveniently facil-
itates development, a benefit that outweights the initial reasons is
that the hypervisor is the most privileged component on the sys-
tem, and is in the TCB of every VM in the system. While it is not
always obvious whether a particular component should be imple-
mented in the hypervisor or not, we believe that in general, there are
only two reasons why one should implement security functionality
directly in hypervisor. The first reason to implement functionality
in the hypervisor is that it requires privileges that only the hypervi-
sor has. For example, Patagonix requires the ability to manipulate
executable and writable permissions on page table entries, as well
as examine the contents of guest VM memory pages. As a result,
the code that manipulated page tables needed to be added to the
monitor in the hypervisor. On the other hand, the logic to exam-
ine the pages and perform lookups in the known binary database

are implemented as user processes in the Patagonix VM. To al-
low this code to access pages from another VM, the Patagonix VM
was given special privileges to gain access to pages in another VM
via the Patagonix monitor component in the hypervisor. In addi-
tion, the Patagonix VM was given access to special hypercalls we
implemented as part of the Patagonix monitor that allows the user-
space components to retrieve information about the address of the
faults and the address space the fault occurred in. While this gives
the Patagonix VM privileges that other VMs do not have, an at-
tacker who successfully compromises the Patagonix VM does not
get unfettered access to all VMs since the use of these privileges are
still checked and controlled by the hypervisor, which remains in a
separate and more privileged protection domain than the Patagonix
VM.

The other reason to add functionality in the hypervisor is that it
must communicate frequently with other components in the hyper-
visor or with components in other VMs. Communicating across
protection domains is expensive so if it occurs too frequently, per-
formance will suffer. As an example, a significant amount of logic
is required in Patagonix to ensure that a page cannot be simultane-
ously executed and written at the same time. The key is to note that
the permissions are applied to virtual pages, but a physical page
may be simultaneously mapped to several virtual pages with differ-
ent permissions. In other words, if Patagonix does not check for
simultaneous inconsistent mappings, an attacker could simultane-
ously gain executable and write access to a page by constructing
one set of page tables that maps a physical page as executable but
non-writable, and constructing another set of page tables that maps
the same physical page as writable but non-executable. To prevent
this, each time a virtual page is switched from executable but non-
writable to writable but non-executable or vice-versa the Patago-
nix monitor must ensure that all other virtual pages mapping to the
same physical page are also switched. To make this operation ef-
ficient, Patagonix maintains a count of the number of mappings to
each physical page. If the permissions on a virtual page change
and Patagonix finds that there is more than one mapping to the
physical page the virtual page maps to, then Patagonix must find
all other page tables with mappings to the same physical page and
adjust them accordingly. While both maintaining counts and page
table-walking are complex operations, they are implemented in the
hypervisor component of Patagonix because they need access to
every page table belonging to the monitored VM.

Make hypervisor security events infrequent to keep perfor-
mance overhead low. Security events are usually not simple and
often require some complex check or operation. As a result, picking
which events to check or secure can have an effect on the perfor-
mance overhead of the hypervisor security system. As an example,
the forwarding of system calls from the private VM to the com-
modity VM in Proxos involves communication across VMs, which
requires five context switches. This turns many system calls, which
normally take less than 1 µs to execute, into operations that take on
the order of 10 µs to execute. Fortunately, system calls are fairly in-
frequent for most applications so in practice, we observed very little
overhead on real application workloads. Similarly, when identify-
ing a memory page, the cost of switching protection domains and
transferring information from the Patagonix monitor in the hyper-
visor to the user components in the Patagonix VM took on the order
of 40 µs. In addition, the user-space components took on the order
of and additional 100 µs on top of the communication operations,
resulting in an overall cost of approximately 140 µs. However,
we were able to mitigate the overall cost of this operation by only
requiring it to be paid when a page of code was executed for the
first time. As a result, the overall overhead of Patagonix was still

Project TCB Size (LOC)
Proxos [18] 10,478
Flicker [12] 4,415
HiStar [19] 15,350
Linux 2.6.34.15 8,356,048

Table 1: Size of recent small TCB projects in lines of code
(LOC) compared to Linux.

Xen Version Approximate Release Date Size (LOC)
Xen-2.0.7 08/2005 175,942
Xen-3.0.2 04/2006 349,438
Xen-3.1.3 12/2007 567,117
Xen-3.2.0 01/2008 536,691
Xen-3.3.0 08/2008 910,066
Xen-3.4.0 05/2009 845,112
Xen-4.0 04/2010 919,129

Table 2: Growth in size of Xen hypervisor

less than 5% in most cases. Security events that require frequent
intervention are not good candidates for a hypervisor-based imple-
mentation because of the prohibitive cost of transferring events and
information between the guest VM and the hypervisor.

The ability to support commodity code can result in a higher
quality TCB. One of the advantages of using a hypervisor is that
it is able to add security to existing commodity code. However,
the addition of the hypervisor itself increases the size of the TCB
since the system is now vulnerable to bugs in both the hypervi-
sor and the original commodity OS. In our original Proxos design,
we removed the commodity OS from the private VM in favor of
a custom-crafted private OS that has less functionality, but as a re-
sult was considerably smaller. Recently, other proposals have made
similar attempts to produce small but secure TCBs. We tabulate
the sizes of Proxos, Flicker [12] and HiStar [19] and compare them
against a commodity OS like Linux in Table 1. We note that the
three research prototypes should not be compared to each other as
they have different functionality: Flicker only contains support for
cryptographic operations, TPM access and memory management,
Proxos supports a good part of the Linux system call interface and
HiStar actually contains drivers for hardware, as well as supporting
its own system call interface. However, it can be seen that none of
these security kernels approaches even 1% of the size of the Linux
kernel.

One big reason that these systems are small is the fact that they
are research prototypes and do not contain complete support for all
possible applications one might want to use them for. Thus, they
are likely to grow in size and complexity if they were turned into
commercial products. An interesting analog is the growth of the
Xen hypervisor code base as it transitioned from a research proto-
type to a commercially deployed system, which we tabulate in Ta-
ble 2. While many of the additions that contributed to the increase
in Xen’s code base are not security related, to be useful, one can
assume that many of these security-oriented OSs would also need
to support additional functionality to enable developers to produce
useful applications. Thus, we might expect a similar and rapid in-
crease in code size if the concepts were adopted in a commercial
product.

Various studies have also shown that older code bases tend to
have a lower density of bugs. This is to be expected, since bugs

are found and fixed through use of the code. Chou et al’s study
of kernel bugs [5] finds that many kernel versions seem to stabi-
lize after some time, indicating that so long as no more new code
is added, the bug density of a given code base will significantly
smaller than when it is first developed. In addition, it is unlikely
for security bugs to be quickly removed from a code base. Ozment
and Schechter [13] find that security bugs had a median lifetime of
2.6 years, and that over a 7.5 year period 62% of the vulnerabili-
ties found during that period were introduced right at the beginning
of the period. This evidence since to suggest that older but larger
commodity code bases can be significantly more secure than newer
systems despite their larger size. Newer systems will have higher
bug density, and will have to go through a period in which more
new code is rapidly added to their code base. After that, they will
have to go through a stabilization period as bugs introduced during
that growth phase are found and removed. Finally, in that process,
applications may have to be ported or rewritten, further introducing
new bugs.

One should not read this as an argument that we should not de-
velop new systems that support security, but simply that comparing
the code size of a new system against that of a commodity system is
not instructive as their is often a large gap in code quality, bug den-
sity and functionality. However, we do believe that this indicates
that in many cases, retrofitting security into existing commodity
systems may yield a better result than building a new system from
scratch by minimizing the risk of adding new bugs and at the same
time still deriving some if not all of the intended security benefit.
Hypervisors fill this role well since they can be used to add security
functionality to commodity system without having to trust the ex-
isting system, and without requiring changes that risk introducing
new bugs to be made to these large and already complex systems.

6. CONCLUSIONS
Even though security is increasingly important, for economic

reasons, users are often stuck with commodity software. In ad-
dition, older, widely used code bases are less likely to contain bugs
that lead to vulnerabilities. Hypervisors offer a way of improving
the security of commodity systems without having to trust the exist-
ing commodity code base. Thus, their functionality remains intact
even if an attacker is able to compromise the OS kernel. Currently,
there exist a number of mature, commercial-grade hypervisors to
which security functionality could be added. Because hypervisors
need only to virtualize the underlying hardware, their design and
implementation can be considerably simpler than that of a full OS
kernel, and their interface to the untrusted guest VMs can be much
narrower than an equivalent OS system call interface.

We have built several systems that implement two different ap-
proaches to securing commodity systems with hypervisors. The
first approach, embodied in a system called Proxos, provides bet-
ter isolation for security-sensitive applications than a commodity
OS, but without constraining the way those applications can in-
teract with the OS or other applications. The second approach,
embodied in our Sensor, Manitou and Patagonix systems, intro-
spects on commodity guest OSs to detect compromises. We have
learned that some of the major challenges to implementing security
support in the hypervisor include bridging the semantic gap with-
out using non-binding information, supporting legacy code with-
out unduly increasing the TCB, and finding ways to implement as
much functionality outside of the core hypervisor as possible with-
out impacting performance. We think several interesting avenues
remain unexplored. For example, the spectrum between white-box
and black-box introspection is broad, and we believe that there may
be benefits to using a system based on untrusted agents that provide

hints. In addition, the trade-offs between building fresh new sys-
tems and retro-fitting existing commodity systems with hypervisors
remains a rich area of future research.

Acknowledgements
We would like to thank Kurniadi Asrigo and Richard Ta-min, who
were reponsible for a large part of the implementation of the Sen-
sors and Proxos systems respectively. Funding for some of the
work described in this paper was provided through an NSERC Dis-
covery Grant and the ISSNet NSERC Strategic Network.

References
[1] K. Asrigo, L. Litty, and D. Lie. Using VMM-based sensors to

monitor honeypots. In Proceedings of the 2nd International
Conference on Virtual Execution Environments (VEE), pages
13–23, June 2006.

[2] D. Brumley and D. Song. Privtrans: Automatically partition-
ing programs for privilege separation. In Proceedings of the
13th USENIX Security Symposium, pages 57–72, Aug. 2004.

[3] P. M. Chen and B. D. Noble. When virtual is better than real.
In 8th Workshop on Hot Topics in Operating Systems (Ho-
tOS), pages 133–138, May 2001.

[4] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports. Over-
shadow: A virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In Proceedings of
the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 2–13, May 2008.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An
empirical study of operating system errors. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles
(SOSP), pages 73–88, Oct. 2001.

[6] T. Garfinkel and M. Rosenblum. A virtual machine introspec-
tion based architecture for intrusion detection. In Proceedings
of the 10th Symposium on Network and Distributed System
Security (NDSS), pages 191–206, Feb. 2003.

[7] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and
Z. Wang. Architecture for protecting critical secrets in mi-
croprocessors. In Proceedings of the 32nd International Sym-
posium on Computer Architecture (ISCA), pages 2–13, June
2005.

[8] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. In Proceedings of the 9th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
168–177, Nov. 2000.

[9] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support
for identifying covertly executing binaries. pages 243–258,
July 2008.

[10] L. Litty and D. Lie. Manitou: A layer-below approach to
fighting malware. In Proceedings of the Workshop on Archi-
tectural and System Support for Improving Software Depend-
ability (ASID), pages 6–11, Oct. 2006.

[11] P. Loscocco and S. Smalley. Integrating flexible support
for security policies into the Linux operating system. In
FREENIX Track of the 2001 USENIX Annual Technical Con-
ference (FREENIX’01), pages 29–42, June 2001.

[12] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB min-
imization. In Proceedings of the 2008 ACM European Con-
ference on Computer Systems (EuroSys), Apr. 2008.

[13] A. Ozment and S. E. Schechter. Milk or wine: Does soft-
ware security improve with age? In Proceedings of the 15th
USENIX Security Symposium, pages 93–104, Aug. 2006.

[14] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege
escalation. In Proceedings of the 12th USENIX Security Sym-
posium, pages 231–242, Aug. 2003.

[15] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing
TCB complexity for security-sensitive applications: Three
case studies. In Proceedings of the 2006 ACM European Con-
ference on Computer Systems (EuroSys), Apr. 2006.

[16] S. W. Smith, E. R. Palmer, and S. Weingart. Using a high-
performance, programmable secure coprocessor. In Financial
Cryptography, pages 73–89, Feb. 1998.

[17] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas.
Design and implementation of the AEGIS single-chip secure
processor using physical random functions. In Proceedings of
the 32nd International Symposium on Computer Architecture
(ISCA), June 2005.

[18] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Mak-
ing trust between applications and operating systems config-
urable. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), pages 279–292,
Nov. 2006.

[19] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proceedings
of the 7th Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 263–278, Nov. 2006.

	Introduction
	Background
	Secure Execution with Proxos
	Using introspection to detect OS compromises
	Discussion
	Conclusions

