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Abstract

Obfuscation is used in malware to hide malicious activ-
ity from manual or automatic program analysis. On the
Android platform, malware has had a history of using ob-
fuscation techniques such as Java reflection, code pack-
ing and value encryption. However, more recent mal-
ware has turned to employing obfuscation that subverts
the integrity of the Android runtime (ART or Dalvik), a
technique we call runtime-based obfuscation. Once sub-
verted, the runtime no longer follows the normally ex-
pected rules of code execution and method invocation,
raising the difficulty of deobfuscating and analyzing mal-
ware that use these techniques.

In this work, we propose TIRO, a deobfuscation
framework for Android using an approach of Target-
Instrument-Run-Observe. TIRO provides a unified
framework that can deobfuscate malware that use a com-
bination of traditional obfuscation and newer runtime-
based obfuscation techniques. We evaluate and use
TIRO on a dataset of modern Android malware samples
and find that TIRO can automatically detect and reverse
language-based and runtime-based obfuscation. We also
evaluate TIRO on a corpus of 2000 malware samples
from VirusTotal and find that runtime-based obfuscation
techniques are present in 80% of the samples, demon-
strating that runtime-based obfuscation is a significant
tool employed by Android malware authors today.

1 Introduction

There are currently an estimated 2.8 million applica-
tions on the Google Play store, with thousands being
added and many more existing applications being up-
dated daily. A large market with many users naturally
draws attackers who create and distribute malicious ap-
plications (i.e. malware) for fun and profit. While dy-
namic analyses [10, 27, 28, 34] can be used to detect
and analyze malware, anti-malware tools often use static

analysis as well for efficiency and greater code cover-
age [1, 2, 12]. As a result, malware authors have increas-
ingly turned to obfuscation to hide their actions and con-
fuse both static and dynamic analysis tools. The presence
of obfuscation does not indicate malicious intent in and
of itself, as many legitimate applications employ code
obfuscation to protect intellectual property. However, be-
cause of its prevalence among malware, it is crucial that
malware analyzers have the ability to deobfuscate An-
droid applications in order to determine if an application
is indeed malicious or not.

There exist a variety of obfuscation techniques on the
Android platform. Many common techniques, such as
Java reflection, value encryption, dynamically decrypt-
ing and loading code, and calling native methods have
been identified and discussed in the literature [11,22,26].
These techniques have a common property in that they
exploit facilities provided by the Java programming lan-
guage, which is the main development language for An-
droid applications, and thus we call these language-
based obfuscation techniques. In contrast, malware au-
thors may eschew Java and execute entirely in native
code, obfuscating with techniques seen in x86 mal-
ware [3, 8, 17, 20, 24]. We call this technique full-native
code obfuscation.

In this paper, we identify a third option—obfuscation
techniques that subvert ART, the Android RunTime,
which we call runtime-based obfuscation techniques.
These techniques subtly alter the way method invoca-
tions are resolved and code is executed. Runtime-based
obfuscation has advantages over both language-based
and full-native code obfuscation. While language-based
obfuscation techniques have to occur immediately before
the obfuscated code is called, runtime-based obfuscation
techniques can occur in one place and alter code exe-
cution in a seemingly unrelated part of the application.
This significantly raises the difficulty of deobfuscating
code, as code execution no longer follows expected con-
ventions and analysis can no longer be performed piece-

1



meal on an application, but must examine the entire ap-
plication as a whole. Compared to full-native code ob-
fuscation, runtime-based obfuscation allows a malware
developer to still use the convenient Java-based API li-
braries provided by the framework. Malware that use na-
tive code obfuscation will either have to use language- or
runtime-based obfuscation to hide its Android API use,
or risk compatibility loss if it tries to access APIs directly.
Our study of obfuscated malware suggests that authors
almost universally employ language- and runtime-based
methods to hide their use of Android APIs in Java.

To study both language- and runtime-based obfusca-
tion in Android malware, we propose TIRO, a tool that
can handle both types of obfuscation techniques within
a single deobfuscation framework. TIRO is an acronym
for the automated approach taken to defeat obfuscation
— Target-Instrument-Run-Observe. TIRO first analyzes
the application code to target locations where obfusca-
tion may occur, and applies instrumentation either in the
application or runtime to monitor for obfuscation and
collect run-time information. TIRO then runs the ap-
plication with specially generated inputs that will trig-
ger the instrumentation. Finally, TIRO observes the re-
sults of running the instrumented application to deter-
mine whether obfuscation occurred and if so, produce
the deobfuscated code. TIRO performs these steps itera-
tively until it can no longer detect any new obfuscation.
This iterative mechanism enables it to work on a variety
of obfuscated applications and techniques.

TIRO’s hybrid static-dynamic design is rooted in an
integration with IntelliDroid [31], which implements tar-
geted dynamic execution for Android applications. TIRO
uses this targeting to drive its dynamic analysis to lo-
cations of obfuscation, saving it from having to execute
unrelated parts of the application. However, IntelliDroid
uses static analysis and is susceptible to language-based
and runtime-based obfuscation, which can make its anal-
ysis incomplete. By using an iterative design that feeds
dynamic information back into static analysis for de-
obfuscation, TIRO can incrementally increase the com-
pleteness of this targeting, which further improves its de-
obfuscation capabilities. In this synergistic combination,
IntelliDroid improves TIRO’s efficiency by targeting its
dynamic analysis toward obfuscation code and TIRO im-
proves IntelliDroid’s completeness by incorporating de-
obfuscated information back into its targeting. Succes-
sive iterations allow each to refine the results of the other.

We make three main contributions in this paper:

1. We identify and describe a family of runtime-based
obfuscation techniques in ART, including DEX file
hooking, class modification, ArtMethod hooking,
method entry-point hooking and instruction hook-
ing/overwriting.

2. We present the design and implementation of TIRO,
a framework for Android-based deobfuscation that
can handle both language-based and runtime-based
obfuscation techniques.

3. We evaluate TIRO on a corpus of 34 modern mal-
ware samples provided by the Android Malware
team at Google. We also run TIRO on 2000 obfus-
cated malware samples downloaded from VirusTo-
tal to measure the prevalence of various runtime-
based obfuscation techniques in the wild and find
that 80% use a form of runtime-based obfuscation.

We begin by providing background on the Android
runtime and classical language-based obfuscation tech-
niques in Section 2. We then introduce and explain
runtime-based obfuscation techniques in Section 3. We
present TIRO, a deobfuscation framework that can han-
dle both language- and runtime-based obfuscation in
Section 4 and provide implementation details in Sec-
tion 5. We present an analysis of obfuscated Android
malware in Section 6 and show how TIRO can deobfus-
cate these applications. We analyze our findings and our
limitations in Section 7. Related work is discussed in
Section 8. Finally, we conclude in Section 9.

2 Background

Android applications are implemented in Java, compiled
into DEX bytecode, and executed in either the Dalvik
Virtual Machine or the Android Runtime (ART).1 The
Dalvik VM, used in Android versions prior to 4.4, inter-
prets the DEX bytecode and uses just-in-time (JIT) com-
pilation for frequently executed code segments. ART, a
separate runtime introduced in Android 4.4 and set as the
default in Android 5.0, adds ahead-of-time (AOT) com-
pilation (using the dex2oat tool) to a DEX interpreter.
Starting in Android 7.0, ART also includes profile-based
smart compilation that uses a mixture of interpretation,
JIT, and AOT compilation to boost application perfor-
mance.

We briefly discuss traditional language-based obfusca-
tion and full-native code obfuscation techniques:

Reflection. Java provides the ability to dynamically in-
stantiate and invoke methods using reflection. Because
the target of reflected method invocations is only known
at run-time, this frustrates static analysis and can make
the targets of these calls unresolvable (e.g. by using
an encrypted string), thus hiding call edges and data ac-
cesses.

Value encryption. Key values and strings in an applica-
tion can be encrypted so they are not visible to static anal-
ysis. When executed, code in the application decrypts

1https://source.android.com/devices/tech/dalvik/
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the values, allowing the application to use the plain text
at run-time. Value encryption is often combined with re-
flection to hide the names of classes or methods targeted
by reflected calls.

Dynamic loading. Code located outside the main ap-
plication package (APK) can be executed through dy-
namic code loading. This is often used in packed ap-
plications, where the hidden code is stored as an en-
crypted binary file within the APK package and de-
crypted when the application is launched. The decrypted
code is stored in a temporary file and loaded into the
runtime through the use of the dynamic loading APIs
in the dalvik.system.DexClassLoader and dalvik.
system.DexFile classes. Normally, the temporary files
holding the decrypted bytecode are deleted after the load-
ing process to further hide or obfuscate it from analysis.
In some cases, the invocation to the dynamic loading API
may be obfuscated by performing the invocation reflec-
tively or in native code, using multiple layers of obfusca-
tion to increase the difficulty of analysis.

Native methods. Java applications may use the Java Na-
tive Interface (JNI) to invoke native methods in the appli-
cation. When used for obfuscation, malicious behavior
and method invocations can be performed in native code.
Unlike Java or DEX bytecode, native code contains no
symbol information—variables are mapped to registers
and many symbols are just addresses. Thus, static anal-
ysis of native code yields significantly less useful results
and the inclusion of native code in an application can
hide malicious activity or sensitive API invocations from
an analyzer.

Full-native code obfuscation. Because Android appli-
cations can execute code natively, it would also be possi-
ble to implement an entire Android application in native
code and utilize native code obfuscation techniques. Na-
tive code obfuscation has a long history on x86 desktop
systems, and can be extremely resistant to analysis [3].
The primary drawback to this approach is that access
to Android APIs, which can reveal the user’s location
and give access to various databases containing the user’s
contacts, calendar and browsing history, can only be re-
liably accessed via API stubs in the Java framework li-
brary provided by the OS. On one hand, calling APIs
from Java code without language- or runtime-based ob-
fuscation would expose the APIs calls to standard An-
droid application analysis [2, 12]. On the other hand,
calling these APIs from native code requires the appli-
cation to correctly guess the Binder message format that
the services on the Android system are using. Because
the ecosystem of Android is very fragmented,2 this poses
a challenge for malware that wishes to avoid executing

2https://developer.android.com/about/dashboards/
index.html

Java code. As a result, applications that use native code
obfuscation still need obfuscation for Java code if they
want to be able to make Android API calls reliably.

3 Runtime-based obfuscation

Before we describe runtime-based obfuscation, we first
describe how code is loaded and executed in the ART
runtime. Figure 1 illustrates three major steps in loading
and invoking code. First, A shows how DEX bytecode
must be identified and loaded from disk into the runtime.
Second, B is triggered when a class is instantiated by
the application and shows how the corresponding byte-
code within the DEX file is found and incorporated into
runtime state. Finally, C shows how virtual methods are
dynamically resolved via a virtual method table (vtable)
and execution is directed to the target method code. We
describe these steps in more detail below.

3.1 DEX file and class loading
In Stage A , DEX files are loaded from disk into mem-
ory, a process that involves instantiating Java and native
objects to represent the loaded DEX file. The Java java.
lang.DexFile object is returned to the application if it
uses the DexFile.loadDex() API; in normal cases, this
object is passed to a class loader so that ART can later
load classes from the new DEX bytecode.

The class loading process, Stage B , is triggered when
a class is first requested (e.g. when it is first instantiated).
The class linker within ART searches the loaded DEX
files (in the order of loading) until it finds a class defi-
nition entry (class_def_item) matching the requested
class name. The associated class data is parsed from
the DEX file, now loaded in memory, and a Class ob-
ject is used to represent this class in ART. In addition,
data for class members are also parsed, and ArtField or
ArtMethod objects created to represent them. To handle
polymorphism, a vtable is stored for each class and used
to resolve virtual method invocations efficiently. The ta-
ble is initially populated by pointers to ArtMethod in-
stances from the superclass (i.e. inherited methods). For
overridden methods, their entries in the table are replaced
with pointers to the ArtMethod instances for the current
loaded class.

3.2 Code execution
When a non-static virtual invocation is made, marked by
Stage C , the target method must be resolved. The res-
olution begins by determining the receiver object’s type,
which references a Class object. The method specified
in the invocation is used to index into the vtable of this
class, thereby obtaining the target ArtMethod object to
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Figure 1: ART state for code loading and execution

invoke (see 4 in Figure 1). The actual invocation pro-
cedure depends on the method type (e.g. Java or native)
and the current runtime environment (e.g. interpreter or
compiled mode). A set of entry-points are stored with
the ArtMethod to handle each case (see 5 ); each is
essentially a function pointer/trampoline that performs
any necessary set-up, obtains and executes the method’s
DEX or OAT code, and performs clean-up. While Fig-
ure 1 shows only how the DEX code pointer is retrieved
for a method (see 6 ), OAT code pointers for compiled
code are obtained in an analogous way.

3.3 Obfuscation techniques
Runtime-based obfuscation redirects method invocations
by subverting runtime state at a number of points during
the code loading and execution process outlined above.
Because runtime-based obfuscation works by modifying
the state of the runtime, it must acquire the addresses of
the runtime objects it needs to modify, which is normally
done using reflection, and modify them using native code
invoked via JNI (since Java memory management would
prevent code in Java from modifying ART runtime ob-
jects). In total, our analysis with TIRO has identified
six different techniques used by malware to obfuscate the
targets of method invocations. In Figure 1, 1 - 3 indi-
cates runtime state that can be modified to hijack the code
loading process such that the state is initialized with un-
expected data (with respect to the input provided to the

runtime from the application). 4 - 6 indicates runtime
state that can be subverted to alter the code that a method
invocation resolves to. We describe these techniques in
more detail below:

1 2 DEX file hooking. When loading a DEX
file, the dalvik.system.DexFile class is used in Java
code to identify the loaded file; however, the bulk of
the actual loading is performed by native code in the
runtime, using a complementary native art::DexFile
class. To reconcile the Java class with its native coun-
terpart, the DexFile::mCookie Java field stores point-
ers to the associated native art::DexFile instances that
represent this DEX file. When classes are loaded later,
this Java field is used to access the corresponding na-
tive art::DexFile instance, which holds a pointer to
the memory address where the DEX file has been load-
ed/mapped. Obfuscation techniques can use reflection to
access the private mCookie field and redirect it to another
art::DexFile object, switching an apparently benign
DEX file with one that contains malicious code. In most
cases, the malicious DEX file is loaded using non-API
methods and classes within native code, or is dynami-
cally generated in memory, further hiding its existence.

Similarly, instead of modifying the mCookie field, the
obfuscation code can also modify the begin_ field
within the art::DexFile native class and redirect it to
another DEX file. However, this approach can be more
brittle since the obfuscation code must make assump-
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tions about the location of the begin_ field within the
object.

3 Class data overwriting. Obfuscation code can
also directly modify the contents of the memory-mapped
DEX file to alter the code to be executed. DEX files
follow a predetermined layout that separates class dec-
larations, class data, field data, and method data.3 Both
the class data pointer (class_data_item), which de-
termines where information for a class is stored, and
method data pointer (method_data_item), which de-
termines where information is stored for a method, are
prime targets for such modification. Modifying the class
data pointer allows the obfuscation code to replace the
class definition with a different class while modifying the
method definition allows the obfuscation code to change
the location of the code implementing a method. This
can be done en masse or in a piecemeal fashion, where
each class or method is modified immediately before it
is first used. We note that there are no bounds checks
on the pointers, so while class and method pointers nor-
mally point to definitions and code within the DEX file,
obfuscation code is free to change them to point to ob-
jects (including dynamically created ones) anywhere in
the application’s address space.

Class declarations (class_def_item) are not normally
modified by obfuscation code since this top level object
is often read and cached into an in-memory data structure
for fast lookup. If the obfuscation code misses the small
window where the DEX file is loaded but this data struc-
ture has not yet been populated, any modifications to the
class declarations will not take effect in the runtime.

4 ArtMethod hooking. After the receiving class of
an invocation is determined, the target method is found
by indexing into the class’s vtable. Obfuscation code
can obtain a handle to a Class object using reflection
and determine the offset at which the vtable is stored.
By modifying entries in this table, the target ArtMethod
object for an invocation can be hooked so that a differ-
ent method is retrieved and executed. The target method
that is actually executed must be an ArtMethod object,
which might have been dynamically generated by the ob-
fuscation code or loaded previously from a DEX file. In
the latter case, the use of virtual method hooking is to
hide the invocation and have malicious code appear to
be dead. The feasibility of this type of modification for
obfuscation was established in [6].

5 Method entry-point hooking. Once the target
ArtMethod object has been determined for an invoca-
tion, the method is executed by invoking one of its entry-
points, which are mere function pointers. Similar to

3https://source.android.com/devices/tech/dalvik/
dex-format

Class objects, reflection via the JNI can be used to ob-
tain the Java Method object and through this, the obfus-
cation code can determine the location of the correspond-
ing ArtMethod object, which is a wrapper/abstraction
around the method. By modifying and hooking the val-
ues of these entry-points, it can change the code that is
executed when the method is invoked.

Although the new entry-point code can be arbitrary na-
tive code, there exists a number of method hooking li-
braries [18, 19, 35] that allow an application developer
to specify pairs of hooked and target methods in Java.
They use method entry-point hooking so that a generic
look-up method is executed when the hooked methods
are invoked. This look-up method determines the regis-
tered target method for a hooked method invocation and
executes it.

6 Instruction hooking and overwriting. The final
stage in the method invocation process is to retrieve the
DEX or OAT code pointers for a method and execute
the instructions; this is performed by the method’s entry-
points. These code pointers are stored and retrieved
from the ArtMethod object. Instruction hooking can be
achieved by modifying this pointer such that a different
set of instructions is referenced and executed when the
method is invoked. Alternatively, instruction overwriting
can be achieved by accessing the memory referenced by
this pointer and performing in-place modification of the
code—this normally requires the original instruction ar-
ray to be padded with NOPs (or other irrelevant instruc-
tions) to ensure sufficient room for the newly modified
code. While the invocation target does not change, the
obfuscation code can essentially execute a completely
different method than what was first loaded into the run-
time. The modification of a method’s instructions can oc-
cur before or after class loading, since the runtime links
directly to the instruction array in ArtMethod objects.
It is even possible to overwrite the instructions multiple
times such that a different set of instructions is executed
every time the method is invoked.

4 TIRO: A hybrid iterative deobfuscator

To address language-based and runtime-based obfusca-
tion techniques, we describe TIRO, a deobfuscator that
handles both types of obfuscation. At a high level, TIRO
combines static and dynamic techniques in an iterative
fashion to detect and handle modern obfuscation tech-
niques in Android applications. The input to TIRO is
an APK file that might be distributed or submitted to
an application marketplace. The output is a set of de-
obfuscated information (such as statically unresolvable
run-time values, dynamically loaded code, etc.) that can
be passed into existing security analysis tools to increase
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their coverage, or used by a human analyst to better un-
derstand the behaviors of an Android application.

The main design of TIRO is an iterative loop that in-
crementally deobfuscates applications in four steps:

T arget: We use static analysis to target locations
where obfuscation is likely to occur. For language-
based obfuscation, these are invocations to the meth-
ods used for the obfuscation (e.g. reflection APIs with
non-constant target strings). For runtime-based obfus-
cation, we target native code invocations as these are
necessary to modify the state of the ART runtime.

I nstrument: We statically instrument the application
and the ART runtime to monitor for language-based
and runtime-based obfuscation, respectively. This in-
strumentation reports the dynamic information neces-
sary for deobfuscation.

R un: We execute the obfuscated code dynamically
and trigger the application to deobfuscate/unpack and
execute the code.

O bserve: We observe and collect the deobfuscated
information reported by the instrumentation during
dynamic analysis. If TIRO discovers that the de-
obfuscation reveals more obfuscated code, it iterates
through the above steps on the new code until it has
executed all targeted locations that could contain ob-
fuscation.

TIRO’s iterative process allows for deobfuscation of
multiple layers or forms of obfuscation used by an ap-
plication, since the deobfuscation of one form may re-
veal further obfuscation. This is motivated by our find-
ings that obfuscated code often combines several obfus-
cation techniques and that deobfuscated code often itself
contains code that has been obfuscated with a different
technique. For instance, an application that dynamically
modifies DEX bytecode in memory often uses reflection
to obtain classes and invoke methods in the obfuscated
code. Without supporting both forms of obfuscation, ei-
ther the deobfuscated reflection target is useless without
the bytecode for the target method, or the extracted ob-
fuscated code appears dead since the only invocation into
it is reflective.

4.1 Targeting obfuscation
A fundamental part of TIRO’s framework is the abil-
ity to both detect potential obfuscation (i.e. targeting)
and to perform deobfuscation (i.e. observation). With-
out targeting, TIRO would need to instrument and ob-
serve all program paths, which could be infinite in num-
ber. Targeting enables TIRO to only instrument and ob-
serve the program paths that are involved in deobfuscat-
ing or unpacking obfuscated code. For this reason, we

build the static analysis portion of TIRO on top of Intel-
liDroid [31], a tool for targeted execution of Android ap-
plications. Given a list of targets (i.e. locations in the
code), IntelliDroid automatically extracts call paths to
these targets and generates constraints on the inputs that
trigger these paths. An associated dynamic client solves
these constraints at run-time, assembles the input object
from the solved values, and injects the input objects to
trigger the paths. Using IntelliDroid, TIRO specifies lo-
cations of obfuscation as targets. While recent Android
obfuscators generally automatically unpack application
code at startup (and thus require no special inputs), an
added benefit of targeting is that we can use IntelliDroid
to generate inputs to trigger paths in future obfuscated
code that may only unpack sections of code under spe-
cific circumstances [25].

For language-based obfuscation, obfuscation locations
are visible in static analysis and the targets provided to
IntelliDroid are invocations to reflection APIs, dynamic
loading APIs, and native methods. For runtime-based
obfuscation, while the obfuscated code is executed in the
runtime (i.e. in Java/DEX bytecode), the actual obfusca-
tion is done in native code as described in Section 3.3.
IntelliDroid is currently unable to target locations in-
side native code. As a result, we instead target all Java
entry-points into application-provided native code, such
as invocations to native methods and to native code load-
ing APIs (e.g. System.load(), which calls the JNI_
OnLoad function in the loaded native library). While this
is an over-approximation, targeting native code will en-
sure that any runtime-based obfuscation can be detected
in the instrumentation phase.

4.2 Instrumenting obfuscation locations

Once all of the target obfuscation locations have been
identified, TIRO instruments the application and the
ART runtime such that any detected obfuscation is re-
ported and deobfuscated values/code are extracted. For
language-based obfuscation, TIRO instruments applica-
tion code since that is where the actual obfuscation oc-
curs. The instrumented code is inserted immediately
before the target locations and the instrumentation re-
ports the values of unresolved variables to logcat, An-
droid’s logging facility. A separate process monitors
the log and keeps a record of the dynamic information
reported. For example, to deobfuscate a statically un-
resolvable reflection invocation, the parameters to the
invocation are logged (as well as the exact location
where invocation occurs, to disambiguate between mul-
tiple uses of reflection). To deobfuscate dynamic load-
ing, part of the instrumentation will store the loaded
code in a TIRO-specific device location and report this
location in the log. Native code transitions are also de-
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obfuscated by instrumenting calls from Java into native
code and Java methods that can be called from native
code. This allows TIRO to create control-flow connec-
tions of the type: Java caller → [native code]
→ Java callee, which helps shed light into what ac-
tions are being taken in the native code of an application,
even though TIRO does not perform native code analysis.

For runtime-based obfuscation, TIRO instruments the
ART runtime. Since the result of this modification is the
execution of unexpected code on a method invocation,
one approach might be to record the code that was loaded
into the runtime for a given method and check whether
this code has been modified at the time of invocation.
However, this poses a catch-22 situation: to detect the
obfuscation, TIRO would have to target the obfuscated
method but with runtime-based obfuscation, the obfus-
cation code could modify any class or method in the pro-
gram. It would be impractical to target every method in
the program. Instead, we use the fact that runtime-based
obfuscation must rely on native code to do the actual state
modification. As a result, to detect runtime-based obfus-
cation, TIRO instruments transitions between native to
Java and Java to native code to detect whether runtime
state has been modified while the application was exe-
cuting native code.

The runtime state monitored is specific to the ob-
jects used to load and execute code, as described in
Section 3.3. For example, to detect DEX file hook-
ing, TIRO finds and monitors the DexFile::mCookie
and art::DexFile::begin_ fields of all instantiated
objects for changes before and after native code exe-
cution. If modifications are detected, TIRO reports the
call path which triggered the modification, the element(s)
that were modified and affected by the modification, and
if possible, the code that is actually executed as a result
of the runtime-based obfuscation. In some cases, there
are legitimate reasons why runtime state may change be-
tween initial code loading and code execution (e.g. lazy
linking or JIT compilation). We detect these and elimi-
nate these cases from TIRO’s detection of runtime-based
obfuscation.

Checking all runtime state for modifications can be
expensive as there can be many classes and methods to
check. To reduce this cost we: (1) only monitor run-
time state used in the code loading and execution pro-
cess, and that are retrievable via the dynamic loading
or reflection APIs (i.e. state stored within DexFile,
Class, and Method objects); (2) only monitor the ob-
jects for methods and classes used by the application, as
determined by reachability analysis during TIRO’s static
phase. This process relies on TIRO’s iterative design,
since the reachability analysis and subsequent monitor-
ing becomes more complete as the application becomes
progressively deobfuscated in later iterations.

4.3 Running obfuscated code

TIRO substitutes the original application with its instru-
mented code and uses IntelliDroid’s targeting capabili-
ties to compute and inject the appropriate inputs to run
the instrumented obfuscation locations. However, doing
this on obfuscated code raises an additional challenge—
many instances of obfuscated applications also contain
integrity checks that check for tampering of applica-
tion code and refuse to run if instrumentation is de-
tected. We found that the most robust method for cir-
cumventing these checks is to return (i.e. spoof) the
original code when classes are accessed by the applica-
tion and return instrumented code when accessed by the
runtime for execution. To avoid conflicts with any run-
time state modification that may be performed by obfus-
cation code, TIRO checks if any state modifications tar-
get instrumented code and if so, TIRO aborts execution
of the instrumented code and allows the modifications to
be performed on the original application code instead. In
the next iteration, after extracting the modified code, the
previously obfuscated code will be instrumented and ex-
ecuted.

4.4 Observing deobfuscated results

TIRO observes how the application either resolves and
runs sections of code (to defeat language-based obfusca-
tion), or how the application’s obfuscation code modifies
the runtime state (for runtime-based obfuscation). The
results of this observation and the information provided
by TIRO’s instrumentation are reported to the user for
deobfuscation of the application.

The iterative approach taken by TIRO also relies on
these observed results to incrementally deobfuscate lay-
ers of obfuscated code. For obfuscation that hides or con-
fuses invocation targets (e.g. reflection, native method
invocations, method hooking), TIRO’s instrumentation
reports the caller method, the invocation site, and the ac-
tual method that is executed. This information is used in
the next iteration to generate a synthetic edge in the static
call graph that represents the newly discovered execution
flow. Often, this turns apparently dead code into reach-
able code and TIRO will target this code on the next iter-
ation. For obfuscation that executes dynamically loaded
code (e.g. dynamic loading, DEX file hooking, etc.),
TIRO’s instrumentation extracts the code that is actually
executed into an extraction file, and a process monitoring
TIRO’s instrumentation log pulls this file from the device.
The extracted code is then included in the static analysis
in the following iteration. An example of how TIRO iter-
atively deobfuscates code from the dexprotector packer
is given in Appendix A.
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5 Implementation

We implemented the static and dynamic portions of TIRO
on top of IntelliDroid [31] and added the ART instrumen-
tation that deobfuscates runtime-based obfuscation.

5.1 AOSP modifications
The modifications to AOSP are located within the ART
runtime code (art/runtime and libcore/libart).
We have implemented these changes on three different
versions of AOSP: 4.4 (KitKat), 5.1 (Lollipop), and 6.0
(Marshmallow) due to the portability issues of the DEX
file hooking technique, which is performed by most of
the malware in our datasets. In order to access the private
DexFile::mCookie field for DEX file hooking, appli-
cations must use reflection or JNI, but the mCookie field
type has changed from an int in 4.4, to a long in 5.0,
and finally to an Object in 6.0. These changes and other
conventions that the malware relies upon (such as private
method signatures and locations of installed APKs) re-
sult in crashes when the applications are not executed on
their intended Android version.

5.2 Extending IntelliDroid
TIRO uses IntelliDroid’s [31] static analysis to target
likely locations of obfuscation and its dynamic client to
compute and inject inputs that trigger these locations.
The deobfuscated information extracted by TIRO is in-
corporated into the static analysis prior to the call graph
generation phase and the code instrumentation is per-
formed after the extraction of targeted paths and con-
straints. To enable support for ART, which was intro-
duced in Android 4.4, we have ported IntelliDroid from
Android 4.3 to Android 6.0. In addition, we have ported
IntelliDroid to use the Soot [29] static analysis frame-
work, which provides direct support for instrumenta-
tion of DEX bytecode via the smali/dexpler [14] library.
Previously, IntelliDroid used the WALA analysis frame-
work, which does not have a backend for DEX bytecode.
While instrumentation could have been achieved by us-
ing WALA with Java-to-DEX conversion tools [7, 21],
we found that malicious applications and packers often
use very esoteric aspects of the bytecode specification
that are not always supported by conversion tools.

5.3 Soot modifications
To incorporate deobfuscated values back into the static
portion of TIRO, we made several modifications to
Soot [29]. Most of these changes were in the call graph
generation code, where we tag locations at which deob-
fuscated values were obtained and add special edges to

the call graph representing dynamically resolved/deob-
fuscated invocations. Other deobfuscated values/vari-
ables are tagged in the intermediate representation and
can be accessed in the post-call-graph-generation phases
of Soot.

Some obfuscated applications are armored to prevent
parsing by frameworks such as Soot. For example, there
were several instances of unparseable, invalid instruc-
tions in methods that appear to be dead code. While
this code is never executed, a static analysis pass would
still attempt to parse these instructions, resulting in er-
rors that halt the analysis. In cases where a class def-
inition or method implementation is malformed (which
often occurs for applications performing DEX bytecode
modification), we skip these classes/methods and do not
produce an instrumented version. If the bytecode is mod-
ified at run-time, TIRO will extract them and instrument
them in the following iteration.

6 Evaluation

To evaluate TIRO’s accuracy, we acquired a labeled
dataset of 34 malware samples, each obfuscated by one
of 22 different Android obfuscation tools. This dataset
was provided by the Android Malware team at Google
and were transferred to us in two batches: one in March
2017 and another in October 2017. The samples in the
dataset were chosen for their use of advanced obfusca-
tion capabilities and difficulty of analysis, and attention
was made to ensure that they represent a wide range of
state-of-the-art obfuscators. Each sample was manually
confirmed as malware and classified by a security ana-
lyst from Google, independent of our own analysis using
TIRO. To evaluate TIRO’s accuracy, we shared the re-
sults of TIRO’s analysis with Google and they confirmed
or denied our findings on the samples.

In our evaluation, the static portion of TIRO was ex-
ecuted on an Intel i7-3770 (3.40GHz) machine with
32 GB of memory, 24 GB of which were provided to
the static analysis JVM. The dynamic portion was exe-
cuted on a Nexus 5 device running TIRO’s instrumented
versions of Android 4.4, Android 5.1, and Android 6.0.

We begin by evaluating TIRO’s accuracy, as well as de-
tailing the findings made by TIRO on the labeled dataset.
Then, to measure the use of obfuscation on malware in
the wild, we apply TIRO to 2000 obfuscated malware
samples from VirusTotal [30]. Finally, we present an
analysis of TIRO’s performance.

6.1 General findings
Table 1 summarizes our findings after running TIRO on
the labeled dataset. The table lists the name of the obfus-
cator, the number of samples from that obfuscator, the
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Table 1: Deobfuscation results
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aliprotect 2 • n • • • 3 0 44

apkprotect 1 • d • 2 8 52

appguard 1 • • • 2 0 5

appsolid 1 • n • 2 0 82

baiduprotect 1 • n • • • 2 1 2

bangcle 1 • n • 2 1 4

dexguard 3 • 2 0 4

dexprotector 3 • r • 4 0 80

dxshield 2 • n • • 2 3 25

ijiamipacker 2 • n • • • • • • 2 1 93

liapp 1 • n • 2 4 90

naga 1 • n • • 2 2 2

naga_pha 1 • n • • • • • • 2 0 6

nqprotect 1 • d • 2 1 12

qihoopacker 3 • n • • 2 3 217

secshell 2 • r n • • • 2 200 287

secneo 1 • n • 3 0 12

sqlpacker 2 • d • 2 1 31

tencentpacker 2 • n • • 3 3 504

unicomsdk 2 • d • 2 226 227

wjshell 1 • d • • 2 8 13

d Direct dynamic loading invocation r Dynamic loading invoked via reflection n Dynamic loading invoked in native code

obfuscation techniques found by TIRO and the number
of iterations TIRO used to fully deobfuscate the sample.
We also show the number of sensitive APIs that are stat-
ically visible before and after TIRO’s deobfuscation. For
obfuscation tools where there was more than one sample,
the table shows the results for the sample with the most
sensitive behaviors detected.

After sharing our results with the Google Android
Malware team, we confirmed that TIRO successfully
found and deobfuscated the known obfuscated code in
the applications, with the exception of the two samples
packed with unicomsdk, and was able to reach and an-
alyze the original applications (i.e. the bytecode for
the underlying application before it was obfuscated or
packed). On closer analysis, we found TIRO failed on
the unicomsdk samples because while TIRO does trigger
call paths that invoke dynamic loading, the obfuscation
code tries to retrieve bytecode from a network server that
is no longer active. Our comparison also showed that
TIRO did not have any false positives on the dataset—in

no case did TIRO mistake legitimate state modification
performed by ART for an attempt to perform runtime-
based obfuscation by the application.

We make several general observations about the re-
sults. First, all of the malware samples employed basic
language-based obfuscation such as reflection and native
code usage, while roughly 53% (18/34) of the samples
also employed the more advanced runtime-based obfus-
cation techniques. We note that none of the samples
in this set employed method entry-point hooking, per-
haps owing to their age as these samples are older than
those used in our VirusTotal analysis described in Sec-
tion 6.3. In addition, all used between 2-4 layers of ob-
fuscation, requiring multiple iterations by TIRO. These
findings demonstrate the utility of TIRO’s iterative de-
sign and ability to simultaneously handle multiple types
of obfuscation.

Second, many of the obfuscators employed tactics to
make analysis difficult. For example, 21 of the 34 sam-
ples included code integrity checks that TIRO’s code
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spoofing was able to circumvent. In addition, a common
post-loading step in most of the samples was the deletion
of the decrypted code file after it had been loaded. This
made it marginally more difficult to retrieve the code,
since the unpacked DEX file was unavailable after it was
loaded; however, since TIRO extracts DEX code from
memory during the loading process, this did not impact
its deobfuscation capabilities.

Finally, in all cases, the obfuscation was used to hide
calls to sensitive APIs in Java, which were used to per-
form malicious activity. The number of sensitive APIs
shown in Table 1 are the number of API calls found by
static analysis before and after running TIRO, where the
set of sensitive APIs were obtained from FlowDroid’s [2]
collection of sources and sinks. On average, TIRO’s iter-
ative deobfuscation resulted in over 30 new hidden sen-
sitive API uses detected in each sample. The new sen-
sitive behaviors detected after TIRO’s iterative deobfus-
cation included well-known malware behaviors such as
premium SMS abuse and access to sensitive data, includ-
ing location information and device identifiers.

6.2 Sample-specific findings
We now describe in detail some of the interesting behav-
iors and obfuscation techniques TIRO uncovered:

aliprotect: During TIRO’s first iteration, we
found that the APK file contained only one class
(StubApplication) that set up and unpacked the
application’s code. Static analysis found only one case
of reflection to instrument and one direct native method
invocation via System.load(). During dynamic anal-
ysis, we found that the sample used DEX file hooking
to load the main application code dynamically. After
loading, the obfuscated DEX file was also overwritten
prior to class loading to change the bytecode defining the
application’s main activity. When extracting the modi-
fied DEX bytecode, TIRO found that some of the class
data pointers referred to locations outside the DEX code
buffer (i.e. outside the DEX file). The application stored
code in separate memory locations and, via pointer
arithmetic, modified the DEX class pointers to refer to
those locations. In the second iteration, static analysis
showed that most of the methods in the obfuscated (and
now extracted) DEX file were empty—when invoked,
they would throw a run-time exception. These empty
methods and classes appeared to be decoys and were
never actually executed by the application. The methods
and classes that were executed had undergone DEX
bytecode modification, and TIRO successfully extracted
the new non-empty implementations.

apkprotect: In the first iteration, TIRO found several
classes in the APK file, none of which were the com-

ponents declared in the manifest. In the dynamic phase,
instrumentation of dynamic loading and reflection re-
trieved the dynamically loaded code and deobfuscated
the reflection targets. From the run-time information
gathered, TIRO reported that a number of class objects
were requested via reflection, but only one was instanti-
ated via a reflected call to the constructor method.

In the second iteration, TIRO found that only the class
that was instantiated was actually present in the dynam-
ically loaded code. Further analysis showed that the ap-
plication performed a trial-and-error form of class load-
ing, where it looped through class names app.plg_v#.
Plugin (with # a sequentially increasing integer) until
it found a class object that could actually be retrieved
and instantiated. This form of class loading would have
introduced a great deal of imprecision in static analysis
since the class name was unknown and obscured by the
loop logic; however, with the dynamic information re-
trieved by TIRO, the static analysis in the subsequent iter-
ations was able to precisely identify the loaded and exe-
cuted class. During the static phase, TIRO also found two
methods within the dynamically loaded code that con-
tained invalid instructions and were unparseable. These
methods did not appear to be invoked but attempting
to load them without patching Soot resulted in crashes
stemming from parsing errors.

baiduprotect / naga / naga_pha: These samples used
DEX file hooking to load code dynamically but they
would also modify the hooked DEX file multiple times
in their execution. Each modification would change the
data for one class but also invalidated header values in
another; therefore, after the DEX bytecode modification
process had begun, no single snapshot of the DEX code
memory buffer would result in a valid DEX file. Since
TIRO retrieves modified code in a piecemeal fashion as
the modification is detected for each class (rather than
taking a single snapshot of the buffer), it was able to han-
dle the multiple code modifications and the subsequent
mangling of class metadata.

dexprotector: This sample highlights how TIRO deob-
fuscates multiple layers of obfuscation and is described
in Appendix A. It used a combination of reflection to in-
voke dynamic loading APIs (DexFile.loadClass())
and to invoke methods in the dynamically loaded code.
The loaded code included another call to DexFile.
loadDex() for a second layer of dynamic loading that
unpacked the main activity. Further iterations deobfus-
cated the reflected and native method invocations that
formed most of the application’s call graph.

ijiamipacker: When first installing this APK, the
dex2oat tool reported a number of verification errors in
most of the classes. TIRO’s static analysis had similar
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results but within the parseable classes, it detected in-
stances of reflection, native methods, and dynamic load-
ing. The dynamic phase showed that some of the classes
with DEX verification errors were executed without er-
ror due to dynamic modification of the classes’ bytecode.
Furthermore, the methods were modified one at a time as
they were loaded by the class loader, which was achieved
by hooking a method within the class loader. In the sec-
ond iteration, TIRO was able to analyze the extracted
bytecode for the now-parseable classes and instrumented
new cases of reflection.

We also found that this sample suppressed log mes-
sages after a certain point in the unpacking process be-
fore the main activity was loaded. Since TIRO’s feed-
back system of relaying dynamic information to static
analysis depends on instrumented log messages, this ini-
tially posed a problem for deobfuscation. Fortunately,
this sample did not suppress error logs, so TIRO was
modified to write to the error log as well. A more robust
approach would be to implement a custom deobfuscation
log that only TIRO can access and control.

qihoopacker: In addition to the DEX file hooking obfus-
cation that this sample employed, we found that it also
invoked art::RegisterNativeMethods() to redefine
the native method DexFile.getClassNameList().
This is a form of native method hooking, where the na-
tive function attached to a method is swapped for another.
The hooked method getClassNameList() does not ac-
tually play a part in the class loading process nor was it
used by the application; however, it is useful for code
analysis as it returns a list of loaded classes and its redef-
inition made such interactive analysis more difficult.

For completeness, we also found two publicly avail-
able method hooking libraries: Legend [18] and
YAHFA [19], and used these to create our own applica-
tion obfuscated with method hooking. For both libraries,
TIRO detected the hooked methods, which contained
modified method entry-point pointers. These pointers
were redirected to custom trampoline/bridge code that
resolved the hooked invocation and invoked the target
method specified by the developer. TIRO heuristically
reported the method objects retrieved by the application
that were likely to serve as target methods for this hook-
ing, and in the following iterations, correctly constructed
call edges between the hooked and target methods.

6.3 Evaluation on VirusTotal dataset
We also use TIRO to measure the types of obfuscation
used by malware in the wild. We searched VirusTotal
for malware tagged as obfuscated or packed, and down-
loaded 2000 randomly selected samples that were sub-
mitted throughout the month of January 2018. When

Table 2: Obfuscation in 2000 recent VirusTotal samples

Language-based Runtime-based

Reflection 58.5 % DEX file hooking 64.0 %
Dynamic loading 79.9 % Class data overwriting 0.7 %

Direct 52.2 % ArtMethod hooking 0.5 %
Reflected 0.1 % Method entry hooking 0.3 %
Native 49.2 % Instruction hooking 33.7 %

Native code 96.8 % Instruction overwriting 0.1 %

TIRO was run on this dataset, it exceeded the 3 hour time-
out on the static analysis phase for four of the samples
and ran out of memory on two others. Of the remaining
samples, all proceeded to instrumentation and analysis
by TIRO’s dynamic phase. Table 2 shows the breakdown
of the types of obfuscation found by TIRO.

On this dataset, a larger proportion (80%) of these
applications used runtime-based obfuscation techniques,
compared to 53% on the labeled dataset. In addition, us-
age of all types of runtime-based obfuscation were ob-
served, including method entry-point hooking. While
this dataset is larger, we speculate that these differences
and the broader use of runtime-based techniques likely
owe more to the fact that the malware in this dataset are
more recent than those in the previous labeled dataset.

The most frequent form of runtime-based obfusca-
tion found was DEX file hooking, which is likely due
to the ease of implementing the state modification (i.e.
the DexFile::mCookie field) required for the obfus-
cation. Likewise, use of instruction hooking was also
prominent, since the obfuscation required changing just
the DEX code pointer (and possibly the compiled OAT
code pointer) in ArtMethod objects. Techniques that re-
quire overwriting larger regions of memory or more pre-
cise determination of a location to modify (e.g. modi-
fying a vtable entry for ArtMethod hooking) were much
less common. This may be due to the implementation
effort of these techniques, which require greater knowl-
edge of the runtime objects being modified to ensure that
any overwriting maintains the expected layout of these
objects and preserves the stability of the runtime. How-
ever, we do see instances of these techniques in recent
malware, and the overall frequency of runtime-based ob-
fuscation techniques in our dataset is likely in response
to advances in analyses that can deal with the simpler and
more well-known language-based techniques.

6.4 Performance
We evaluate the performance of the static and dynamic
phases in TIRO separately. The run time of the static
component increases as iterations find and deobfuscate
more code to analyze. In the first iteration of the static
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component (where the analysis is only targeting obfusca-
tion locations in the original APK file), the average static
analysis time for the samples in Table 1 is 4.3 minutes.
However, after the last iteration, the static component
takes an average of 12.2 minutes across our dataset.

TIRO’s instrumentation also incurs overhead in its dy-
namic phase. Since the majority of obfuscation occurs
in the application launch phase (i.e. when the applica-
tion unpacks its main activity and other components), we
compare the launch time of the application when running
in TIRO against the launch time in an unmodified version
of AOSP. On average, there is a 3.3× slowdown, with all
of the applications launching in under 11 seconds. The
majority of this overhead is due to the checking of ART
runtime state before and after native code is executed.
While this is a noticeable performance impact, we note
that TIRO is meant for analysis and not production us-
age; thus, while the slowdown is large, applications still
launch and run in a reasonable amount of time. To fur-
ther reduce performance overhead, we believe that we
can optimize TIRO’s monitoring using hardware support.
Currently, a full check is performed of all tracked run-
time state on every native-to-Java transition. By manip-
ulating memory protections or dirty bits in the hardware
page table to identify modified pages, and tracking which
objects are stored on those pages, TIRO can reduce the
number of objects it must check for modifications.

7 Discussion

From our analysis of obfuscation in recent Android mal-
ware, we identify and classify a type of runtime-based
obfuscation that differs from obfuscation seen in previ-
ous work on x86 and Java. The use of a runtime intro-
duces another technique of hiding code that we show is
already in use in Android malware.

7.1 Bypassing the runtime
Unlike language-based obfuscation where the applica-
tion abuses Java language features, runtime-based obfus-
cation requires modifying runtime data, which must be
done using native code. A natural question is whether
runtime-based obfuscation is a stepping stone toward
full-native code obfuscation. Static analysis of native
code is more imprecise and most existing static malware
analyzers for Android are limited to Java bytecode, so
a full native code application would make them ineffec-
tive. We argue that runtime-based obfuscation is not su-
perseded by full native code but is a complementary tech-
nique.

In runtime-based obfuscation, native code is used to
modify the runtime state but the execution inevitably re-
turns to Java code after the modifications have been per-

formed. This highlights the main difference between
the two forms of obfuscation: in runtime-based obfusca-
tion, the actual malicious behavior can be implemented
in Java. Whether this is useful to the malware devel-
oper is dependent on the type of malicious activity they
wish to execute on a victim’s device and how they want
to implement it. Many state-of-the-art obfuscators are
commercial tools that add wrapper classes to an applica-
tion to pack them into an obfuscated APK and unpack
them when the application is launched. Runtime-based
obfuscation allows for complex obfuscation while still
allowing the users of these commercial tools to imple-
ment their code in Java, which may be preferable due
to ease of development. Reusing the existing runtime
on Android makes it easier for commercial obfuscation
tools to reliably support all forms of Android applica-
tions.

In addition, system services are normally accessed
through their RPC interface, which would require a tran-
sition back into the runtime and would be detected by
TIRO’s monitoring of native-to-Java transitions. To avoid
any Java code (i.e. a true fully native application), the ap-
plication would have to access system services by calling
the low-level Binder interface or Unix ioctls directly.
Since the Binder library is not part of the Android NDK,
the application is then sensitive to any changes in imple-
mentation in the Binder kernel driver or Android service
manager. We believe that this is one of the reasons why
language- and runtime-based obfuscation is so prominent
on Android despite the long history and effectiveness of
native code obfuscation on x86. As a result, for the fore-
seeable future, language- and runtime-based obfuscation
techniques will likely still be relevant techniques for ob-
fuscated code on Android.

Another form of obfuscation may be to embed a
natively-implemented interpreter within the application
that executes a secret bytecode. This is a complemen-
tary technique to runtime-based obfuscation and is also
a method of bypassing the ART runtime, since the inter-
preter would be fully implemented in native code. Simi-
lar to full-native code obfuscation, access to system ser-
vices would be limited and invocations to framework
methods would still require execution in the ART run-
time and would therefore be deobfuscated by TIRO.

7.2 Other limitations

Part of TIRO’s deobfuscation focuses on retrieving DEX
bytecode that the application dynamically loads and ex-
ecutes. This implicitly assumes that any manipulation of
the DEX bytecode is reflected in the compiled OAT or
ODEX code, and vice versa. Obfuscation code may vi-
olate this assumption and perform modifications directly
on the OAT or ODEX bytecode, bypassing the current
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implementation of TIRO. However, in doing this, the ob-
fuscation code forgoes portability across devices, as OAT
and ODEX files are device-specific. We did not observe
any malware instances that were device-specific in this
way. If direct OAT or ODEX modification were to ex-
ist, it would be straightforward to enhance TIRO to de-
tect these modifications by monitoring art::OatFile
objects in the same manner as art::DexFile objects.

While we have identified a number of forms of
runtime-based obfuscation in Section 3.3, there may be
others that TIRO currently does not monitor, providing
avenues for newer malware to avoid detection and deob-
fuscation. However, the framework proposed in TIRO is
general enough to accommodate the monitoring of other
forms of runtime state as they are identified. A further
limitation is that applications can employ x86 obfusca-
tion and hooking techniques to bypass TIRO’s monitor-
ing within the ART runtime. While we currently can-
not prevent this, due to the shared address space between
the application and the runtime environment, future work
may explore the separation of application and runtime
memory, which would also prevent tampering of runtime
state and disable runtime-based obfuscation.

Since TIRO relies on dynamic analysis to report de-
obfuscated values, full deobfuscation of an application
would require executing all of its obfuscation code.
Since TIRO was implemented on top of IntelliDroid [31],
we rely on it to execute targeted obfuscation locations.
However, because its analysis is limited to Java, while
it can target native method invocations, it cannot extract
execution paths within native code. Since native code
is used extensively by obfuscators, we may miss certain
paths. In addition, IntelliDroid may not be able to extract
all targeted paths and constraints due to static impreci-
sion and complex path constraints in the code; TIRO nat-
urally inherits these limitations. TIRO can be combined
with fuzzers if deobfuscation is required in native code or
in execution paths with constraints that cannot be solved.

8 Related work

A variety of security and privacy analyzers have been de-
veloped for Android, including static [2,12] and dynamic
tools [10, 27, 28, 34]. TIRO is a hybrid system similar
to [22, 23, 31, 32], which use dynamic information to en-
hance static analysis. Tools that perform malware classi-
fication [1, 12] are often based on application semantics
and rely on the ability to determine the actions performed
by an application. While they are effective against unob-
fuscated applications, they cannot handle complex code
obfuscation and will likely miss malicious actions that
the malware performs. While some tools have been de-
signed with obfuscation resilience in mind [13], they of-
ten cannot handle the complex obfuscation techniques

used by existing Android packers and malware.
The work that most closely resembles TIRO are exist-

ing deobfuscation tools for Android. Some focus only on
language-based obfuscation. Harvester [22] uses static
code slicing to execute paths leading to specific code lo-
cations, such as reflection invocations, and can log deob-
fuscated values. However, code slices do not always pro-
duce realistic executions and it does not handle runtime-
based obfuscation. StaDynA [38] uses a hybrid itera-
tive approach similar to TIRO to deobfuscate reflection
and retrieve dynamically loaded code. However, it re-
lies on instrumentation of reflection and dynamic load-
ing API invocations. Some Android unpackers, such
as DexHunter [36] and Android-unpacker [26], handle
certain cases of DEX file and DEX bytecode manipu-
lation, but use special packer-specific values to identify
the code that must be extracted. They also do not handle
any other form of obfuscation, which makes it difficult
to analyze the retrieved code if it is further obfuscated in
another way. Others, such as PackerGrind [33] and App-
Spear [16] have a more general design but their monitor-
ing for bytecode modification is limited to instrumenta-
tion of specific methods they expect obfuscation code to
use. While these unpackers identify certain cases of DEX
bytecode modification, they do not handle other forms
of state modification in the code execution process nor
do they address the wider issue of runtime-based obfus-
cation. DroidUnpack [9] uses full system emulation to
dynamically extract packed code. While DroidUnpack
can extract dynamically loaded code and decrypted DEX
files, they do not discuss or indicate if they can han-
dle runtime-based obfuscation the way TIRO can. De-
Guard [4] takes a different approach and uses a statisti-
cal model to reverse the name obfuscation performed by
the ProGuard [15] tool included with the Android SDK.
Since TIRO focuses on the actions taken by an applica-
tion, we do not deobfuscate class and method names.
However, combining the results of TIRO and DeGuard
would aid in manual analysis of malware.

TIRO is also similar to deobfuscation tools proposed
for general Java applications. TamiFlex [5] deobfuscates
reflection by instrumenting the reflection classes loaded
by the Java runtime, but does not handle other forms
of obfuscation. However, its modification of the class
loader in the runtime is similar to the technique used in
TIRO to load instrumented application classes. Similarly,
Ripple [37] also targets reflection but does so through
static resolution, which is less precise. These tools do
not address runtime-based obfuscation.

Deobfuscation and unpacking tools also exist for x86
applications. Renovo [17] tracks whether previously
written memory regions are being executed and can
handle multiple “hidden layers" of packing. Polyun-
pack [24] checks whether dynamic instruction sequences
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match those in its static model of the application and
returns new unpacked instruction sequences. Ether [8]
presents a transparent malware analysis tool that handles
emulator-resistant techniques used by packers to pre-
vent reverse engineering. Omniunpack [20] uses an in-
memory malware detector to determine if malicious code
is being unpacked and retrieves this code from memory.
These techniques are more general than those used in
TIRO but would require special support to handle the An-
droid runtime and its code loading processes. By focus-
ing on obfuscation for the Android runtime via language-
based and runtime-based deobfuscation, we account for
the environment in which Android applications are run
and produce effective results that can be integrated with
existing Android security tools.

9 Conclusion

In this paper, we identify a family of obfuscation tech-
niques used on the Android platform, which we name
runtime-based obfuscation. These techniques subvert the
integrity of the Android runtime to manipulate the code
loading and execution processes and execute malicious
code surreptitiously. We propose TIRO, a unified deob-
fuscation framework for Android applications that can
deobfuscate runtime-based obfuscation as well as tra-
ditional techniques such as reflection or native method
invocation. Through an iterative process of static in-
strumentation and dynamic information gathering that
uses Target, Instrument, Run and Observe, we show
that TIRO is able to deobfuscate malware that have been
packed using state-of-the-art Android obfuscators. We
also show that runtime-based obfuscation is prevalent
among recent Android malware and that effective se-
curity analysis will require deobfuscation of these tech-
niques. Using the deobfuscated application information
produced by TIRO, it is possible for existing security
analysis tools to achieve more complete analysis and de-
tection of Android malware.
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Appendix

A Iterative deobfuscation in TIRO

Most obfuscators and packers use more than one of the
obfuscation techniques we have described. For instance,
like other API invocations that the malware wishes to
hide, dynamic loading invocations may be hidden behind
reflection. Deobfuscation in these cases requires multi-
ple iterations to resolve the reflection target and, if the
target is used for another form of obfuscation, to resolve
the reflected obfuscation API.

As an example, Figure 2 shows how TIRO iteratively
applies the T-I-R-O loop to deobfuscate the combination
of techniques used by the dexprotector packer and to ex-
tract a complete application call graph.

Iteration 1: The scope of the static analysis is limited
to code in the application’s APK file. TIRO finds loca-
tions of reflected method invocations and instruments
them to determine the reflection targets. The dynamic
phase executes the instrumented code and reports the
reflection targets. It also finds two dynamically loaded
DEX files.

Iteration 2: The static analysis scope is expanded to in-
clude code from these two DEX files. This code in-
cludes entry-points into the application that were pre-
viously unknown. However, the use of reflection in
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Figure 2: Deobfuscated call graphs produced for an ap-
plication packed with dexprotector

the dynamically loaded code means that the call graph
may miss certain invocation edges. TIRO’s static anal-
ysis adds new instrumentation for any obfuscation
(namely, reflection) found in the APK code or dynam-
ically loaded code. The dynamic phase will again ex-
ecute the instrumented code to find the reflection tar-
gets.

Iteration 3: Some reflective call edges are resolved
in the static call graph; however, TIRO still sees
seemingly-dead code from the second dynamically
loaded DEX file. The process is repeated until TIRO
encounters no new unresolved obfuscation/reflection.

Iteration 4: The final result is a static call graph that
represents all of the code executed by an applica-
tion and the method invocation relationships. If used
alongside a security analysis tool, malicious actions
performed by the application can then be discovered
by searching the deobfuscated call graph.
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