
PROCHLO: Strong Privacy for Analytics in the Crowd

Andrea Bittau? Úlfar Erlingsson? Petros Maniatis? Ilya Mironov? Ananth Raghunathan?

David Lie‡ Mitch Rudominer◦ Ushasree Kode◦ Julien Tinnes◦ Bernhard Seefeld◦
?Google Brain ‡Google Brain and U. Toronto ◦Google

Abstract
The large-scale monitoring of computer users’ software
activities has become commonplace, e.g., for application
telemetry, error reporting, or demographic profiling. This
paper describes a principled systems architecture—Encode,
Shuffle, Analyze (ESA)—for performing such monitoring
with high utility while also protecting user privacy. The ESA
design, and its PROCHLO implementation, are informed by
our practical experiences with an existing, large deployment
of privacy-preserving software monitoring.

With ESA, the privacy of monitored users’ data is guaran-
teed by its processing in a three-step pipeline. First, the data
is encoded to control scope, granularity, and randomness.
Second, the encoded data is collected in batches subject to
a randomized threshold, and blindly shuffled, to break linka-
bility and to ensure that individual data items get “lost in the
crowd” of the batch. Third, the anonymous, shuffled data is
analyzed by a specific analysis engine that further prevents
statistical inference attacks on analysis results.

ESA extends existing best-practice methods for sensitive-
data analytics, by using cryptography and statistical tech-
niques to make explicit how data is elided and reduced in
precision, how only common-enough, anonymous data is an-
alyzed, and how this is done for only specific, permitted pur-
poses. As a result, ESA remains compatible with the estab-
lished workflows of traditional database analysis.

Strong privacy guarantees, including differential pri-
vacy, can be established at each processing step to defend
against malice or compromise at one or more of those steps.
PROCHLO develops new techniques to harden those steps,
including the Stash Shuffle, a novel scalable and efficient
oblivious-shuffling algorithm based on Intel’s SGX, and new
applications of cryptographic secret sharing and blinding.
We describe ESA and PROCHLO, as well as experiments
that validate their ability to balance utility and privacy.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

SOSP ’17, October 28, 2017, Shanghai, China

c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5085-3/17/10. . .

DOI: https://doi.org/10.1145/3132747.3132769

1. Introduction
Online monitoring of client software behavior has long been
used for disparate purposes, such as measuring feature adop-
tion or performance characteristics, as well as large-scale
error-reporting [34]. For modern software, such monitoring
may entail systematic collection of information about client
devices, their users, and the software they run [17, 60, 69].
This data collection is in many ways fundamental to modern
software operations and economics, and provides many clear
benefits, e.g., it enables the deployment of security updates
that eliminate software vulnerabilities [62].

For such data, the processes, mechanisms, and other
means of privacy protection are an increasingly high-profile
concern. This is especially true when data is collected au-
tomatically and when it is utilized for building user profiles
or demographics [21, 69, 71]. Regrettably, in practice, those
concerns often remain unaddressed, sometimes despite the
existence of strong incentives that would suggest otherwise.
One reason for this is that techniques that can guarantee pri-
vacy exist mostly as theory, as limited-scope deployments,
or as innovative-but-nascent mechanisms [5, 7, 25, 28].

We introduce the Encode, Shuffle, Analyze (ESA) archi-
tecture for privacy-preserving software monitoring, and its
PROCHLO implementation.1 The ESA architecture is in-
formed by our experience building, operating, and maintain-
ing the RAPPOR privacy-preserving monitoring system for
the Chrome Web browser [28]. Over the last 3 years, RAP-
POR has processed up to billions of daily, randomized re-
ports in a manner that guarantees local differential privacy,
without assumptions about users’ trust; similar techniques
have since gained increased attention [6,7,70,74]. However,
these techniques have limited utility, both in theory and in
our experience, and their statistical nature makes them ill-
suited to standard software engineering practice.

Our ESA architecture overcomes the limitations of sys-
tems like RAPPOR, by extending and strengthening current
best practices in private-data processing. In particular, ESA
enables any high-utility analysis algorithm to be compatible
with strong privacy guarantees, by appropriately building on
users’ trust assumptions, privacy-preserving randomization,

1 PROCHLO combines privacy with the Greek word όχλος for crowds.

441

and cryptographic mechanisms—in a principled manner, en-
compassing realistic attack models.

With ESA, software users’ data is collected into a database
of encrypted records to be processed only by a specific anal-
ysis, determined by the corresponding data decryption key.
Being centralized, this database is compatible with existing,
standard software engineering processes, and its analysis
may use the many known techniques for balancing utility
and privacy, including differentially-private release [27].

The contents of a materialized ESA database are guaran-
teed to have been shuffled by a party that is trusted to remove
implicit and indirect identifiers, such as arrival time, order,
or originating IP address. Shuffling operates on batches of
data which are collected over an epoch of time and reach
a minimum threshold cardinality. Thereby, shuffling ensures
that each record becomes part of a crowd—not just by hiding
timing and metadata, but also by ensuring that more than a
(randomized) threshold number of reported items exists for
every different data partition forwarded for analysis.

Finally, each ESA database record is constructed by spe-
cific reporting software at a user’s client. This software en-
sures that records are encoded for privacy, e.g., by removing
direct identifiers or extra data, by fragmenting to make the
data less unique, or by adding noise for local differential pri-
vacy or plausible deniability. Encoded data is transmitted us-
ing nested encryption to ensure that the data will be shuffled
and analyzed only by the shuffler and analyzer in possession
of the corresponding private keys.

ESA protects privacy by building on users’ existing trust
relationships as well as technical mechanisms. Users in-
dicate their trust assumptions by installing and executing
client-side software with embedded cryptographic keys for
a specific shuffler and analyzer. Based on those keys, the
software’s reporting features encode and transmit data for
exclusive processing by the subsequent steps. Each of these
processing steps may independently take measures to pro-
tect privacy. In particular, by adding random noise to data,
thresholds, or analysis results, each step may guarantee dif-
ferential privacy (as discussed in detail in §3.5).

Our contributions are as follows:
• We describe the ESA architecture, which enables high-

utility, large-scale monitoring of users’ data while pro-
tecting their privacy. Its novelty stems from explicit trust
assumptions captured by nested encryption, guarantees
of anonymity and uncertainty added by a shuffler inter-
mediary, and a pipeline where differential privacy guar-
antees can be independently added at each stage.
• We describe PROCHLO, a hardened implementation of

ESA that uses SGX [36], showing strong privacy guar-
antees to be compatible with efficiency, scalability, and a
small trusted computing base. We design, implement, and
evaluate a new oblivious-shuffling algorithm for SGX,
the Stash Shuffle, that scales efficiently to our target data
sizes, unlike previous algorithms. We also introduce new

cryptographic primitives for secret-shared, blind data
thresholding, reducing users’ trust requirements.
• We evaluate PROCHLO on two representative monitoring

use cases, as well as a collaborative filtering task and
a deep-learning task, in each case achieving both high-
utility and strong privacy guarantees in their analysis.

On this basis we conclude that the ESA architecture for
monitoring users’ data significantly advances the practical
state-of-the-art, compared to previous, deployed systems.

2. Motivation and Alternatives
The systems community has long recognized the privacy
concerns raised by software monitoring, and addressed them
in various ways, e.g., by authorization and access controls.
Notably, for large-scale error reporting and profiling, it
has become established best practice for systems software
to perform data reduction, scrubbing, and minimization—
respectively, to eliminate superfluous data, remove unique
identifiers, and to coarsen and minimize what is collected
without eliminating statistical signals—and to require users’
opt-in approval for each collected report. For example, large-
scale Windows error reporting operates in this manner [34].

However, this established practice is ill-suited to auto-
mated monitoring at scale, since it is based solely on users’
declared trust in the collecting party and explicit approval of
each transmitted report, without any technical privacy guar-
antees. Perhaps as a result, there has been little practical
deployment of the many promising mechanisms based on
pervasive monitoring developed by the systems community,
e.g., for understanding software behavior or bugs, software
performance or resource use, or for other software improve-
ments [13, 39, 46, 59, 61, 77]. This is ironic, because these
mechanisms rely on common statistics and correlations—
not individual users’ particular data—and should therefore
be compatible with protecting users’ privacy.

To serve these purposes, the ESA architecture is a flex-
ible platform that allows high-utility analysis of software-
monitoring data, without increasing the privacy risk of users.
For ease of use, ESA is compatible with, and extends, exist-
ing software engineering processes for sensitive-data analyt-
ics. These include data elimination, coarsening, scrubbing,
and anonymization, both during collection and storage, as
well as careful access controls during analysis, and public
release of only privacy-preserving data [28].

2.1 A Systems Use Case for Software Monitoring
As a concrete motivating example from the domain of sys-
tems software, consider the task of determining which sys-
tem APIs are used by which individual software application.
This task highlights the clear benefits of large-scale software
monitoring, as well as the difficulty of protecting users’ pri-
vacy. Just one of its many potential benefits is the detection
of seldom-used APIs and the cataloging of applications still

442

using old, legacy APIs, such that those APIs can be depre-
cated and removed in future system versions.

Naı̈vely collecting monitoring data for this task may
greatly affect users’ privacy, since both the identity of ap-
plications and their API usage profiles are closely correlated
to user activities—including those illegal, embarrassing, or
otherwise damaging, such as copyright infringement, gam-
bling, etc. Indeed, both applications and the combinations
of APIs they use may be unique, incriminating, or secret
(e.g., for developers of their own applications). Therefore, to
guarantee privacy, this task must be realized without associ-
ating users with the monitored data, without revealing secret
applications or API usage patterns, and without creating a
database of sensitive (or deanonymizable) data—since such
databases are at risk for abuse, compromise, or theft.

This paper describes how this monitoring task can be
achieved—with privacy—using the ESA architecture. How-
ever, we must first consider what is meant by privacy, and
the alternative means of guaranteeing privacy.

2.2 Privacy Approaches, Experience, and Refinements
Generally, privacy is intuitively understood as individuals’
socially-defined ability to control the release of their per-
sonal information [5,64]. As such, privacy is not easily char-
acterized in terms of traditional computer security proper-
ties. For example, despite the integrity and secrecy of input
data about individuals, social perceptions about those indi-
viduals may still be changed if the observable output of com-
putations enables new statistical inferences [22].

Privacy Approaches and Differential Privacy Definitions
Myriad new definitions and techniques have been pro-
posed for privacy protection—mostly without much trac-
tion or success. For example, the well-known property of
k-anonymity prevents direct release of information about
subgroups with fewer than k individuals [65, 66]. However,
since k-anonymity does not limit statistical inferences drawn
indirectly, from subgroup intersections or differences, it can-
not offer mathematically-strong privacy guarantees [32, 48].

In the last decade, the definitions of differential privacy
have become the accepted standard for strong privacy [26,
27]. The guarantees of differential privacy stem from the un-
certainty induced by adding carefully-selected random noise
to individuals’ data, to the intermediate values computed
from that data, or to the final output of analysis computa-
tions. As a result, each-and-every individual may be sure
that all statistical inferences are insensitive to their data; that
is, their participation in an analysis makes no difference, to
their privacy loss—even in the worst case, for the unlucki-
est individual. Specifically, the guarantees establish an ε up-
per bound on the sensitivity in at least 1 − δ cases; thus,
an (ε, δ)-private epidemiology study of smoking and cancer
can guarantee (except, perhaps, with δ probability) that at-
tackers’ guesses about each participant’s smoking habits or
illnesses can change by a multiplicative eε factor, at most.

A wide range of mechanisms have been developed for
the differentially-private release of analysis results. Those
mechanisms support analysis ranging from simple statis-
tics through domain-specific network analysis, to general-
purpose deep learning of neural networks by stochastic gra-
dient descent [4, 27, 51]. Alas, most of these differentially-
private mechanisms assume that analysis is performed on a
trusted, centralized database platform that can securely pro-
tect the long-term secrecy and integrity of both individuals’
data and the analysis itself. This is disconcerting, because it
entails that any platform compromise can arbitrarily impact
privacy—e.g., by making individuals’ data public—and the
risk of compromise seems real, since database breaches are
all too common [41, 56].

Instead of adding uncertainty to analysis output to achieve
differential privacy, an alternative is to add random noise to
each individual’s data, before it is collected. This can be
done using techniques that provide local differential privacy
(e.g., randomized response) in a manner that permits moder-
ately good utility [7, 28, 70, 74]. By adopting this approach,
the risk of database compromise can be fully addressed: the
data collected from each individual has built-in privacy guar-
antees, which hold without further assumptions and require
no trust in other parties.

Experiences with Local Differential Privacy Mechanisms
Local differential privacy is the approach taken by our
RAPPOR software monitoring system for the Chrome Web
browser [28]. Over the last 3 years, we have deployed, op-
erated, and maintained RAPPOR versions utilized for hun-
dreds of disparate purposes, by dozens of software engi-
neers, to process billions of daily, randomized reports [16].

Regrettably, there are strict limits to the utility of locally-
differentially-private analyses. Because each reporting indi-
vidual performs independent coin flips, any analysis results
are perturbed by noise induced by the properties of the bi-
nomial distribution. The magnitude of this random Gaussian
noise can be very large: even in the theoretical best case, its
standard deviation grows in proportion to the square root of
the report count, and the noise is in practice higher by an
order of magnitude [7, 28–30, 74]. Thus, if a billion individ-
uals’ reports are analyzed, then a common signal from even
up to a million reports may be missed.

Because of their inherent noise, local differential privacy
approaches are best suited for measuring the most frequent
elements in data from peaky power-law distributions. This
greatly limits their applicability—although they may some-
times be a good fit, such as for RAPPOR’s initial purpose of
tracking common, incorrect software configurations. For ex-
ample, a thousand apps and a hundred APIs may be relevant
to a task of measuring applications’ API usage (§2.1). How-
ever, an infeasible amount of data is required to get a clear
signal for each app/API combination with local differential
privacy: an order-of-magnitude more than 100,000, squared,
i.e., reports from one trillion individual users [30].

443

Somewhat surprisingly, if the set of reports can be parti-
tioned in the right manner, the utility of RAPPOR (and sim-
ilar systems) can be greatly enhanced by analyzing fewer re-
ports at once. By placing correlated data into the same parti-
tions, signal recovery can be facilitated, especially since the
square-root-based noise floor will be lower in each partition
than in the entire dataset.

In particular, the data required for the app/API example
above can be reduced by two orders of magnitude, if the
reported API is used to partition RAPPOR reports into 100
disjoint, separately-analyzed sets; for each separate API,
only 100 million reports are required to find the top 1000
apps, by the above arithmetic (see also §5.2’s experiment).

Unfortunately, such partitioning may greatly weaken pri-
vacy guarantees: differential privacy is fundamentally in-
compatible with the certain knowledge that an API was used,
let alone that a particular individual used that API [22, 32].
Therefore, any such partitioning must be done with great
care and in a way that adds uncertainty about each partition.

Another major obstacle to the practical use of locally-
differentially-private methods—based on our experiences
with RAPPOR—is the opaque, fixed, and statistical nature
of the data collected. Not only does this prevent exploratory
data analysis and any form of manual vetting, but it also ren-
ders the reported data incompatible with the existing tools
and processes of standard engineering practice. Even when
some users (e.g., of Beta or Developer software versions)
have opted into reporting more complete data, this data is
not easily correlated with other reports because it is not col-
lected via the same pipelines. In our experience, this is a
frustrating obstacle to developers, who have been unable to
get useful signals from RAPPOR analysis in a substantial
fraction of cases, due to the noise added for privacy, and the
difficulties of setting up monitoring and interpreting results.

Insights, Refinements, and Cryptographic Alternatives
The fundamental insight behind the ESA architecture is
that both of the above problems can be eliminated by
collecting individuals’ data through an intermediary, in a
unified pipeline. This intermediary (the ESA shuffler) ex-
plicitly manages data partitions (the ESA crowds), and
guarantees that each partition is sufficiently large and of
uncertain-enough size. This is done by batching and ran-
domized thresholding, which establishes differential privacy
and avoids the pitfalls of k-anonymity [22, 32, 33, 48]. Fur-
thermore, this intermediary can hide the origin of reports and
protect their anonymity—even when some are more detailed
reports from opt-in users—and still permit their unified anal-
ysis (e.g., as in Blender [6]). This anonymity is especially
beneficial when each individual sends more than one report,
as it can prevent their combination during analysis (cf. [70]).

ESA can be seen as a refinement of existing, natural
trust relationships and best practices for sensitive data an-
alytics, which assigns the responsibility for anonymity and
randomized thresholding to an independently-trusted, stan-

S

trust
boundary

A
Ea

Eb

Ec

a
a b

c

Σ{abc}~

trust
boundary

b

c

a

b

c

Figure 1: ESA architecture: Encode, shuffle, and analyze.

dalone intermediary. ESA relies on cryptography to de-
note trust, as well as to strengthen protection against dif-
ferent attack models, and to provide privacy guarantees even
for unique or highly-identifying report data. Those cryp-
tographic mechanisms—detailed in the remainder of this
paper—differ from the cryptography typically used to pro-
tect privacy for aggregated analysis (or for different pur-
poses, like Vuvuzela or Riposte private messaging [19, 72]).

Other cryptography-based privacy-protection systems,
such as PDDP, Prio, and Secure Aggregation [11, 15, 18],
mostly share ESA’s goals but differ greatly in their ap-
proach. By leveraging multiparty computations, they create
virtual trusted-third-party platforms similar to the central-
ized PINQ or FLEX systems, which support differentially-
private release of analysis results about user data [38, 52].
These approaches can improve user-data secrecy, but must
rely on added assumptions, e.g., about clients’ online avail-
ability, clients’ participation in multi-round protocols, and
attack models with an honest-but-curious central coordi-
nator. Also, in terms of practical adoption, these systems
require radical changes to engineering practice and share
RAPPOR’s obstacle of making user data overly opaque and
giving access only to statistics.

In comparison, ESA is compatible with existing, un-
changed software engineering practices, since the output
from the ESA shuffler can be gathered into databases that
have built-in guarantees of uncertainty and anonymity. Fur-
thermore, ESA offers three points of control for finding
the best balance of privacy and utility, and the best pro-
tections: local-differential privacy, at the client, randomized
thresholding and anonymity, at the privacy intermediary, and
differentially-private release, at the point of analysis.

3. The Encode-Shuffle-Analyze Architecture
The ESA architecture splits responsibility between en-
coders, shufflers, and analyzers, as shown in Figure 1.

Encoders run on the client devices of users, potentially
as part of the software being monitored. They can transform
the monitored data in a number of ways—in particular, by
converting its encoding—and they also use nested encryp-
tion to guarantee which parties process it and in what order.

444

For privacy purposes, encoders control the scope, granular-
ity, and randomness of the data released from clients; in par-
ticular, they can add enough random noise to provide users
with strong guarantees, without trust assumptions [28].

Shufflers are a separate, standalone networked service
that receives encrypted, encoded data. They are responsible
for masking data origin and confounding data provenance by
eliminating metadata (arrival time, order, originating IP ad-
dress) and by shuffling (to thwart traffic analysis). Shufflers
collect data into batches during a lengthy interval (e.g., one
day), not only to eliminate implicit timing metadata, but also
to ensure that every data item can get lost in a crowd of sim-
ilar items. Large-enough batches are forwarded for analysis
after undoing a layer of nested encryption. Shufflers should
be trustworthy parties and (at least logically) completely in-
dependent of analysis services—although their collusion is
considered in our attack model.

Analyzers are networked services that receive shuffled
data batches, and are responsible for materializing and an-
alyzing or releasing a database after undoing the innermost
encryption. Their cryptographic key determines the specific
analysis outcome and associated privacy protection (§3.1).

To illustrate, consider the app/API example from §2.1
(see §5 for detailed use cases). For this example, the ESA ar-
chitecture enables high utility and privacy without requiring
a deluge of user data. Since this analysis only seeks statistics
about individual API uses in apps and not multi-API pat-
terns, ESA encoding can transmit data as multiple, broken-
apart bitvector fragments (§3.2), without necessarily adding
random noise. This fragmentation breaks apart unique pat-
terns that might identify users of rare applications and does
not affect the utility of the intended statistical analysis.

ESA shuffling breaks any direct associations between
data fragments of individual users, thereby hiding their data
in the crowd (§3.3). It can also add uncertainty by randomly
thresholding the data before forwarding to analysis. By using
cryptographic secret-sharing (§4.2) and blinding (§4.3), ESA
enables the collection of a database of app names for anal-
ysis, without revealing any unique apps. For hard-to-guess,
hash-based app names, this guarantee can hold even for our
strongest attack model below, where all parties, including the
shuffler, collude against users (§5.2 is a concrete example).

Thanks to ESA, the combined data from app/API bitvec-
tor fragments need not be considered sensitive—even if no
differential privacy was introduced by adding random noise
during encoding. Therefore, this data is well-suited for anal-
ysis using standard tools, techniques, and processes. Even
so, by adding minimal further noise at the ESA analyzer
(§3.4), the analysis output may be subject to differentially-
private release, at no real loss to utility.

3.1 Keys, Trust, and Attack Models
Users rely on the encoder’s use of specific keys for nested
encryption to specify who should receive monitoring data,
what that data should contain, and how it should be pro-

cessed. Thus, users state their trust assumptions implicitly
using those keys. This trust may be well placed, for exam-
ple, when the cryptographic keys are embedded in software
that the user must trust (such as their operating system), and
where those keys are associated with clear policies for the
processing of the monitored data. The users’ trust in those
keys may also be misplaced, e.g., if the keys have been com-
promised, or if different parties collude. This provides a nat-
ural structuring of an attack model for the ESA architecture:

Analyzer compromise The analyzer is the primary attacker
against which ESA defends. Its attacks can, in partic-
ular, link different data received, and correlate it with
auxiliary information—for example, overlapping, public
databases—in order to breach users’ privacy.

Shuffler compromise The shuffler is assumed to be honest
but curious. If compromised, it reveals the types of re-
ports sent—when, in what frequency, from which IP ad-
dresses, in what data partition—but contents are still pro-
tected by the inner layer of nested encryption.

Analyzer and shuffler collusion If attackers control both
the shuffler and the analyzer, they will see which users
contribute what data—as if they had compromised a
monitoring data collection service not using the ESA
architecture. Even then, encoding may still provide some
protections for users’ privacy (e.g., as in RAPPOR [28]).

Encoder compromise and collusion In all cases, attackers
may control most (but not all) encoders, and use them to
send specially-crafted reports. In collusion with an ana-
lyzer or shuffler adversary, this enables more powerful at-
tacks, e.g., where users’ data is combined into a “crowd”
comprising only Sybil data [24]. Also, this enables data-
pollution attacks on analysis, for which creation of a ma-
terialized database or a hardened encoder may be partial
remedies [1, 47], as might be some multi-party computa-
tion schemes proposed before (e.g., Prio [18]). However,
we do not consider data pollution or Sybil attacks further
in this work.

Public information In all cases, attackers are assumed to
have complete access to network communications, as
well as analysis results, e.g., using them to perform tim-
ing and statistical inference attacks.

ESA can still provide differential privacy guarantees to users
under this powerful attack model.

3.2 Encoder
Encoders run at users’ clients, where they mediate upon the
reporting of monitored data and control how it is transmitted
for further processing. As described above, encoders are tied
to and reflect users’ trust assumptions.

Encoders locally transform and condition monitored data
to protect users’ privacy—e.g., by coarsening or scrubbing,
by introducing random noise, or by breaking data items into

445

fragments—apply nested encryption, and transmit the result-
ing reports to shufflers, over secure channels. Encoders also
help users’ data become lost in a crowd, by marking trans-
mitted reports with a crowd ID, upon which the ESA shuffler
applies a minimum-cardinality constraint, preventing analy-
sis of any data in crowds smaller than a threshold.

For most attack models, encoders can provide strong
privacy guarantees even by fragmenting the users’ data
before transmission. For example, consider analysis in-
volving users’ movie ratings, like that evaluated in §5.5.
Each particular user’s set of movie ratings may be unique,
which is a privacy concern. To protect privacy, encoders
can fragment and separately transmit users’ data; for ex-
ample, the rating set {(m0, r0), (m1, r1), (m2, r2)}, may be
encoded as its pairwise combinations 〈(m0, r0), (m1, r1)〉,
〈(m0, r0), (m2, r2)〉, and 〈(m1, r1), (m2, r2)〉, with each
pair transmitted for independent shuffling. Similarly, most
data that is analyzed for correlations can be broken up into
fragments, greatly increasing users’ privacy.

As an important special case, encoders can apply random-
ized response to users’ data, or similarly add random noise
in a way that guarantees local differential privacy. While
useful, this strategy has drawbacks—as discussed earlier
in §2.2. Other ESA encoders can offer significantly higher
utility, while still providing differential privacy (albeit with
different trust assumptions). For example, §4.2 discusses a
PROCHLO encoder based on secret sharing.

3.3 Shuffler
The shuffler logically separates the analyzer from the clients’
encoders, introducing a layer of privacy between the two. To
help ensure that it is truly independent, honest-but-curious,
and non-colluding, the shuffler may be run by a trusted,
third-party organization, run by splitting its work between
multiple parties, or run using trusted hardware. Such techni-
cal hardening is discussed in §4.1.

The shuffler performs four tasks: anonymization, shuf-
fling, thresholding, and batching, described in turn.

As the first pipeline step after client encoders, shufflers
have access to user-specific metadata about the users’ re-
ports: timestamps, source IP addresses, routing paths, etc.
(Notably, this metadata may be useful for admission con-
trol against denial-of-service and data poisoning.) A primary
purpose of shufflers is to strip all such implicit metadata, to
provide anonymity for users’ reports.

However, stripping metadata may not completely disasso-
ciate users from reports. In our attack model, a compromised
analyzer may monitor network traffic and use timing or or-
dering information to correlate individual reports arriving at
the shuffler with (stripped) data forwarded to the analyzer.
Therefore, shufflers forward stripped data infrequently, in
batches, and only after randomly reordering the data items.

Even stripped and shuffled data items may identify a
client due to uniqueness. For example, a long-enough API
bitvector may be uniquely revealing, and the application it

concerns may be truly unique—e.g., if it was just written.
An attacker with enough auxiliary information may be able
to tie this data to a user and thereby break privacy (e.g.,
by learning secrets about a competitor’s use of APIs). To
prevent this, the shuffler can do thresholding and throw away
data items from item classes with too few exemplars. That is
the purpose of the crowd ID, introduced into the data item
by the encoder: it allows the shuffler to count data items for
each crowd ID, and filter out all items whose crowd IDs have
counts lower than a fixed, per-pipeline threshold. In the API
use case, the crowd ID could be some unique application
identifier, ensuring that applications with fewer than, say, 10
contributed API call vectors are discarded from the analysis.

Shuffling and thresholding have limited value for small
data sets. The shuffler batches data items for a while (e.g., a
day) or until the batch is large enough, before processing.

3.4 Analyzer
The analyzer decrypts, stores, aggregates, and eventually re-
tires data received from shufflers. Although sensitivity of
data records forwarded by shufflers to the analyzer is already
quite restricted, the analyzer is the sole principal with access
privileges to these records. In contrast, in our attack model,
the analyzer’s output is considered public (although in prac-
tice, it may be subject to strict access controls).

For final protection of users’ privacy, the analyzer output
may make use of the techniques of differentially-private re-
lease. This may be achieved by custom analysis mechanisms
such as those in PINQ [52] and FLEX [38], or by systems
such as Airavat [63], GUPT [53], or PSI [31]. These ready-
made systems carefully implement a variety of differentially
private mechanisms packaged for use by an analyst without
specialized expertise.

However, it may be superfluous for the analyzer to pro-
duce differentially-private output. In many cases, shuffling
anonymity and encoding fragmentation may suffice for pri-
vacy. In other cases, differential privacy may already be
guaranteed due to random noise at encoding or to crowd
thresholding at shuffling. In such cases, the database of user
data is easier to work with (e.g., using SQL or NoSQL tools),
as it requires no special protection.

For a protected database, intended to remain secret, ex-
ceptional, break-the-glass use cases may still be supported,
even though differentially-private release is required to make
its analysis output public. Such exceptional access may be
compatible with trust assumptions, and even expected by
users, and may greatly improve utility e.g., by allowing the
analyzer to debug the database and remove corrupt entries.

3.5 Privacy Guarantees
Differential privacy [26,27] is a rigorous and robust notion of
database privacy. As described earlier, in §2.2, it guarantees
that the distribution of analysis outputs is insensitive to the
presence or absence of a single record in the input dataset.

446

Differential privacy provides the following beneficial prop-
erties, which may be established at three points with ESA.

Robustness to auxiliary information Differential privacy
guarantees are independent of observers’ prior knowl-
edge, such as (possibly partial) knowledge about other
records in the database. In fact, even if all clients but
one collude with attackers, the remaining client retains
its privacy.

Preservation under post-processing Once differential pri-
vacy is imposed on analysis output, it cannot be un-
done. This means that all further processing (including
joint computations over outputs of other analysis) do not
weaken the guarantees of differential privacy.

Composability and graceful degradation Differential pri-
vacy guarantees degrade gracefully, in an easily-understood
manner. At the encoder, if a single user contributes their
data in multiple, apparently-unrelated reports (e.g., be-
cause the user owns multiple devices), then that user’s
privacy only degrades linearly. At the analyzer, the pri-
vacy loss is even less—sublinear, in terms of (ε, δ) differ-
ential privacy—if a sensitive database is analyzed multi-
ple times, with differentially-private release of the output.

Two principal approaches to practical deployment of dif-
ferential privacy are local (see earlier discussion in §2.2)
and centralized. Centralized differential privacy is typically
achieved by adding carefully calibrated noise to the mech-
anism’s outputs. In contrast with local differential privacy,
the noise may be smaller than the sampling error (and thus
nearly imperceptible) but this requires trusting the analyzer
with secure execution of a differentially private mechanism.

The ESA architecture offers a framework for building
flexible, private-analytics pipelines. Given an intended anal-
ysis problem, a privacy engineer can plug in specific pri-
vacy tools at each stage of an ESA pipeline, some of which
we have implemented in PROCHLO, and achieve the desired
end-to-end privacy guarantees by composing together the
properties of the individual stages. We elaborate on such pri-
vacy tools for each stage of the ESA pipeline, and describe
some illustrative scenarios, below.
Encoder: Limited Fragments and Randomized Response
Encoding will limit the reported data to remove superfluous
and identifying aspects. However, even when the data itself
may be uniquely identifying (e.g., images or free-form text),
encoding can provide privacy by fragmenting the data into
multiple, anonymous reports. For small enough fragments
(e.g., pixel, patch, character, or n-gram), the data may be
inherently non-identifying, or may be declared so, by fiat.

Encoders may utilize local differential privacy mecha-
nisms, like RAPPOR [7,28,70,74]. However, for fragments,
or other small, known data domains, users may simply prob-
abilistically report random values instead of true ones—a
textbook form of randomized response [75]. Finally, for do-
mains with hard-to-guess data, secret-share encoding can

protect the secrecy of any truly unique reports (see §4.2).

Shuffler: Anonymity and Randomized Thresholding
The shuffler’s batching and anonymity guarantees can greatly
improve privacy, e.g., by preventing traffic analysis as well
as thwarting longitudinal analysis (cf. [70]).

In addition, by using the crowd ID of each report, the
shuffler guarantees a minimum cardinality of peers (i.e., a
crowd), for reports to blend into [10, 33, 45]. Crowd IDs
may be based on user’s attributes (e.g., their preferred lan-
guage) or some aspect of the report’s payload (e.g., a hash
value of its data). If privacy concerns are raised by reveal-
ing crowd IDs to the shuffler, then they can be addressed by
using two shufflers and cryptographic crowd IDs blinding,
as discussed in §4.3. Even naı̈ve cardinality thresholding—
forwarding when T reports share a crowd ID—will improve
privacy (provably so, against the analyzer, with the secret
sharing of §4.2). However thresholding must done carefully
to avoid the k-anonymity pitfalls [22, 32, 33, 48].

With randomized thresholding, the shuffler forwards
only crowd IDs appearing more than T + noise times, for
noise independently sampled from the normal distribution
N (0, σ2), at an application-specific σ. Subsuming this, shuf-
flers can drop d items from each bucket of crowd IDs, for
d sampled from a rounded normal distribution

⌊
N (D,σ2)

⌉
truncated at 0. With near certainty, the shuffler will forward
reports whose crowd ID cardinality is much higher than T .

The first, similar to the privacy test in Bindschaedler et
al. [10], achieves differential privacy for the crowd ID set.
The second provides improved privacy for the crowd ID
counts (at the small cost of introducing a slight system-
atic bias of dropping D items on average for small D). In
combination, these two steps address the partitioning con-
cerns raised in §2.2, and allow the shuffler to establish strong
differential-privacy guarantees for each crowd.

Analyzer: Decryption and Differentially Private Release
Differentially private mechanisms at all stages of the ESA
pipeline can be deployed independently of each other; their
guarantees will be complementary.

The analyzer, which has the most complete view of the re-
ported data, may choose from a wide variety of differentially
private mechanisms and data processing systems [27,31,38,
53, 63]. While these analysis mechanisms will typically as-
sume direct access to the database to be analyzed, they do not
require the provenance of the database records—fortunately,
since they are elided by the shuffler.

For an illustration of flexibility of the ESA architecture,
consider two sharply different scenarios. In the first, users
report easily-guessable items from a small, known set (e.g.,
common software settings). While the data in these reports
may be of low-sensitivity, and not particularly revealing,
it may have privacy implications (e.g., allowing tracking
of users). Those concerns may be addressed by the ESA
encoder fragmenting users’ data into multiple reports, and by

447

the ESA shuffler ensuring those reports are independent, and
anonymous, and cannot be linked together by the analyzer.

For a second example of ESA flexibility, consider when
users report sensitive data from a virtually unbounded do-
main (e.g., downloaded binaries). By using the secret-share
ESA encoding, or randomized thresholding at the ESA
shuffler—or both—only commonplace, frequent-enough
data items may reach the analyzer’s database—and the set
and histogram of those items will be differentially private.
To add further guarantees, and improve long-term privacy,
the analyzer can easily apply differentially-private release to
their results, before making them public.

4. PROCHLO Implementation and Hardening
Assuming separation of trust among ESA steps, each adds
more privacy to the pipeline. Even in the worst of our threat
models, the encoder’s privacy guarantees still hold (§3.1).
In this section, we study how ESA can be hardened further,
to make our worst threat models less likely. Specifically, in
§4.1, we study how trustworthy hardware can strengthen the
guarantees of ESA, in particular its shuffler, allowing it to be
hosted by the analysis operator. In §4.2 we describe how a
novel application of secret-sharing cryptography to the ESA
encoder increases our privacy assurances both separately and
in conjunction with the shuffler. Then, in §4.3, we explore
how a form of cryptographic blinding allows the shuffler
to be distributed across distinct parties, to further protect
sensitive crowd IDs without compromising functionality.

4.1 Higher Assurance by using Trustworthy Hardware
Trustworthy hardware has been an attractive solution, es-
pecially after the recent introduction of Intel’s SGX, as a
mechanism for guaranteeing correct and confidential execu-
tion of customer workloads on cloud-provider infrastructure.
In particular, for the types of data center analytics that would
be performed by the ESA analyzer, there have been several
proposals in the recent literature [20, 57, 67].

There has been relatively less proposed for protecting the
client side, e.g., the encoders for ESA. Abadi articulated the
vision of using secure computing elements as client-local
trusted third parties to protect user privacy [1]. We have also
argued that trusted hardware can validate the user’s data, to
protect privacy and analysis integrity [47].

In this paper we focus on using trustworthy hardware
to harden the ESA Shuffler. In practical terms, trustworthy
hardware enables the collocation of the shuffler at the same
organization hosting the analyzer, largely eliminating the
need for a distinct trusted third party; even though the same
organization operates the machinery on which the shuffler
executes, trustworthy hardware still prevents it from break-
ing the shuffler’s guarantees (§3.3). This flexibility comes
at a cost: since trustworthy hardware imposes many hard
constraints, e.g. limiting the size of secure, private memory
and allowing only indirect access to systems’ input/output

features. In this section, we describe how PROCHLO imple-
ments the ESA shuffler using Intel’s SGX, which in current
hardware realizations provides only 92 MB of private mem-
ory and no I/O support [36].

4.1.1 SGX Attestation for Networked Shuffler Services
To avoid clients having to blindly trust the ESA shuffler over
the network, PROCHLO employs SGX to assert the legiti-
macy of the shuffler and its associated public key. Thereby,
per our attack models (§3.1), that key’s cryptographic state-
ments can give clients greater assurance that their encoded
messages are received by the correct, proper shuffler, with-
out having to fully trust the organization hosting the shuf-
fling service, or its employees.

Specifically, upon startup, the shuffler generates a pub-
lic/private key pair and places the public key in a Quote op-
eration, which effectively attests that “An SGX enclave run-
ning code X published public key PK shuffler .” The shuf-
fler’s hosting organization cannot tamper with this attesta-
tion, but can make it public over the network. Having fetched
such an attestation, clients verify that it (a) represents code
X for a known, trusted shuffler, and (b) represents a certifi-
cate chain from Intel to a legitimate SGX CPU. Now the
client can derive an ephemeral Kshuffler encryption key for
every data item it sends to the particular shuffler.

The shuffler must create a new key pair every time it
restarts, to avoid state-replay attacks (e.g., with a previously
attested but compromised key pair). So, unlike a shuffler
running at a trusted third party, an SGX-based shuffler will
have shorter-lived public keys—say on the order of hours.
Certificate transparency mechanisms may also be used to
prevent certificate replay by malicious operators [42, 49].

4.1.2 Oblivious Shuffling within SGX Enclaves
Oblivious shuffling algorithms produce random permuta-
tions of large data arrays via a sequence of public operations
on data batches—with each batch processed in secret, in
small, private memory—such that no information about the
permutation can be gleaned by observing those operations.
Due to the limited private memory of trustworthy hardware,
random permutations of large datasets must necessarily use
oblivious shuffling, with the bulk of the data residing en-
crypted, in untrusted external memory or disk. Therefore,
oblivious shuffling has received significant attention as in-
terest in trustworthy hardware has rekindled [20, 23, 57, 78].

A primitive shuffling operation consists of reading a
(small) fraction of records encrypted with some key Key1
into private memory, randomly shuffling those records in pri-
vate memory, and then writing them back out, re-encrypted
with some other key Key2 (see Figure 2). As long as Key1
and/or Key2 are unknown to the outside observer, the main
observable signal is the sequence of primitive shuffling op-
erations on encrypted-record subsets.

To be secure, the shuffler must apply enough primitive
shuffling operations to its input data array so that an ob-

448

Shuffler Enclave

a
Key1

b
Key1

c
Key1

b
Key2

a
Key2

c
Key2

Incoming Data Shuffled Data

abc bac

Figure 2: Primitive operation of an oblivious shuffler.

server of primitive shuffling operations gains no advantage
in recovering the resulting order compared to guessing at
random; this induces the security parameter, ε, which is de-
fined as the total variation distance between the distribution
of shuffled items and the uniform distribution. Typical values
range from the bare minimum of ε = 1/N to a cryptograph-
ically secure ε = 2−128.

To be efficient, the shuffler must perform as few prim-
itive shuffling operations as possible, since each such op-
eration imposes memory overhead (to bring a subset into
private memory, and write it back out again), cryptographic
overhead (to decrypt with Key1 and re-encrypt with Key2),
and possibly network overhead, if multiple computers are
involved in running primitive shuffling operations.

4.1.3 State of the Art in Oblivious Shuffling
We attempted to find existing oblivious-shuffling mecha-
nisms that produced cryptographically-secure random per-
mutations with sufficient scalability and efficiency.

As described below, we found no SGX oblivious shuffling
mechanisms adequate to our purposes, leading to the design
and implementation of our own algorithm, the Stash Shuffle
(§4.1.4). In terms of scalability, our RAPPOR experience
shows that we must handle tens to hundreds of millions of
items, with at least 64 bytes of data and an 8-byte integer
crowd ID, each, which in PROCHLO corresponds to a 318-
byte doubly-encrypted record. In terms of efficiency, our
driving constraint came from the relative scarcity of SGX-
enabled CPUs in data centers, resulting from SGX’s current
deployment only as a per-socket (not per-core) feature of
client-class CPU realizations. We defined our metric for
efficiency in terms of the total amount of SGX-processed
data, relative to the size of the input dataset; thus, at 2×
efficiency SGX would read, decrypt, re-encrypt, and write
out to untrusted memory each input data item two times.

Oblivious sorting is one way to produce an oblivious
shuffle: associate a sufficiently-large random identifier (say
64 bits) with every item, by taking a keyed hash of the item’s
contents, and then use an oblivious sorting algorithm to sort
by that identifier. Then the resulting shuffled (sorted) order
of items will be as random as the choice of random identi-
fier. Oblivious sorting algorithms are sorting algorithms that

choose the items to compare and possibly swap (inside pri-
vate memory) in a data-independent fashion.

Batcher’s sort is one such algorithm [8]. Its primitive op-
eration reads two buckets of b consecutive items from an ar-
ray of N items, sorts them by a keyed item hash, and writes
them back to their original array position. While not restrict-
ing dataset size, Batcher’s sort requires N/2b× (log2N/b)

2

such private sorting operations. With SGX, b can be at most
152 thousand 318-byte records. Thus, to apply Batcher’s sort
to 10 million records (a total of 3.1 GBytes), the data pro-
cessed will be 49× the dataset size (155 GBytes); corre-
spondingly, for 100 million records (31 GBytes), the over-
head would be 100× (3.1 TBytes). To complete this process-
ing within a reasonable time, at least each day, many SGX
machines would be required to parallelize the rounds of op-
erations: 33 machines for 10 million records, and 330 for
100 million—a very substantial commitment of resources
for these moderately small datasets.

ColumnSort is a more efficient, data-independent sort-
ing algorithm, improving on Batcher’s sort’s O((log2N)2)
rounds and sorting datasets in just exactly 8 rounds [44].
Opaque uses SGX-based ColumnSort for private-data ana-
lytics [78]. Unfortunately, any system based on ColumnSort
has a maximum problem size that is induced by the per-
machine private-memory limit [14]. Thus, while Column-
Sort’s overhead is only 8× the dataset size, it can at most
sort 118 million 318-byte records.

Sorting is a brute-force way to shuffle: instead of produc-
ing any unpredictable data permutation, it picks exactly one
unpredictable permutation and then sorts the data accord-
ingly. A bit further away from sorting lies the Melbourne
Shuffle algorithm [58]. It is fast and parallelizable, and has
been applied to privacy-data analytics in the cloud [57]. In-
stead of picking random identifiers for items and then sort-
ing them obliviously, the Melbourne shuffle picks a random
permutation, and then obliviously rearranges data to that or-
dering. This rearrangement uses data-independent manipu-
lations of the data array, without full sorting, which reduces
overhead. Unfortunately, this algorithm scales poorly, since
it requires access to the entire permuted ordering in private
memory. For SGX, this means that the Melbourne Shuffle
can handle only a few dozen million items, at most, even if
we ignore storage space for actual data, computation, etc.

Finally, instead of sorting, cascade-mix networks have
been proposed for oblivious shuffling (e.g., M2R [23]). With
SGX, such networks split the input data across SGX en-
claves, partitioned to fit in SGX private memory, and re-
distribute the data after random shuffling in each enclave. A
“cascade” of such mixing rounds can achieve any permuta-
tion, obliviously. Unfortunately, for a safe security parame-
ter ε = 2−64, a significant number of rounds is required [40].
For our running example, the overhead is 114× for 10 mil-
lion 318-byte records, and 87× for 100 million records.

449

4.1.4 The Stash Shuffle Algorithm
Since existing oblivious shuffling algorithms did not pro-
vide the necessary scalability, efficiency, or randomness of
the permutations, we designed and implemented the Stash
Shuffle. Its security analysis is in a separate report [50].

Our algorithm is inspired by the Melbourne Shuffle, but
does not store the permutation in in private memory. As
with other oblivious shuffle algorithms, it readsN encrypted
items from untrusted memory, manipulates them in buckets
small enough to fit in private memory, and writes them out
as N randomly-shuffled items, possibly in multiple rounds.
In the case of ESA, the input consists of doubly-encrypted
data items coming from encoders, while the output consists
of the inner encrypted data item only (without crowd IDs or
the outer layer of encryption).

Algorithm 1 The Stash Shuffle algorithm.
1: procedure STASHSHUFFLE(Untrusted arrays in, out,mid)
2: stash← φ
3: for j ← 0, B − 1 do
4: DISTRIBUTEBUCKET(stash, j, in,mid)

5: DRAINSTASH(stash, B,mid)
6: FAIL on ¬stash.Empty()
7: COMPRESS(mid, out)

Algorithm 1, the Stash Shuffle, considers input (in) and
output (out) items in B sequential buckets, each holding at
most D , dN/Be items, sized to fit in private memory.
At a high level, the algorithm first chooses a random output
bucket for each input item, and then randomly shuffles each
output bucket. It does that in two phases. During the Distri-
bution Phase (lines 2–6), it reads in one input bucket at a
time, splits it across output buckets, and stores the split-up
but as yet unshuffled, re-encrypted items in an intermediate
array (mid) in untrusted memory. During the Compression
Phase (line 7), it reads the intermediate array of encrypted
items one bucket at a time, shuffles each bucket, and stores
it fully-shuffled in the output array.

The algorithm gets its name from the stash, a private
structure, whose purpose is to reconcile obliviousness with
the variability in item counts distributed across the output
buckets. This variability (an inherent result of balls-and-
bins properties) must be hidden from external observers, and
not reflected in non-private memory. For this, the algorithm
caps the number traveling from an input bucket to an output
bucket at C , D/B + α

√
D/B for a small constant α. If

any input bucket distributes more than C items to an output
bucket, overflow items are instead stored in a stash—of size
S—where they queue, waiting to be drained into the chosen
output bucket during processing of later input buckets.

Figure 3 illustrates the distribution phase for the second
of four buckets, where B = 4, D = 6, and C = 2. In Step
1, the bucket is read into private memory and decrypted. It
is shuffled into the 4 destination buckets in Step 2, deposit-
ing three items in the first target bucket, one in the second,
none in the third, and two in the last. Since the stash already

Input Array Intermediate Array

shuffle

stash

im
po

rt

0 1 2 3

0 1 2 3

C
C

C
C

K

1

2

34

5

export

Figure 3: Distribution phase.

held one item for the third target bucket, that item is moved
into the third destination bucket, in Step 3. The first desti-
nation bucket got three items but it can only deposit two, so
the third item is stashed away in Step 4. Finally, the items
are re-encrypted and deposited out into the intermediate ar-
ray, filling in any empty slots with encrypted dummy items
to avoid leaking to the outside how items were distributed
(shown black in the figure), in Step 5.

Algorithm 2 Distribute one input bucket.
1: procedure DISTRIBUTEBUCKET(stash, b, Untrusted arrays in, mid)
2: output← φ
3: targets← SHUFFLETOBUCKETS(B,D)
4: for j ← 0, B − 1 do
5: while ¬output[j].Full() ∧ ¬stash[j].Empty() do
6: output[j].Push(stash[j].Pop())

7: for i← 0, D − 1 do
8: item← Decrypt(in[DataIdx(b, i)])
9: if ¬output[targets[i]].Full() then

10: output[targets[i]].Push(item)
11: else
12: if ¬stash.Full() then
13: stash[targets[i]].Push(item)
14: else
15: FAIL
16: for j ← 0, B − 1 do
17: while ¬output[j].Full() do
18: output[j].Push(dummy)

19: for i← 0, C − 1 do
20: mid[MidIdx(j, i)]← Encrypt(output[j][i])

Algorithm 2 describes the distribution in more detail,
implementing the same logic, but reducing data copies.
SHUFFLETOBUCKETS randomly shuffles theD items of the
input bucket, andB−1 bucket separators. The shuffle deter-
mines which item will fall into which target bucket, stored
in targets (line 3). Then, for every output bucket, as long as
there is still room in the maximum C items to output, and
there are stashed away items, the output takes items from
the stash (lines 4–6). Then the input bucket items are read in
from the outside input array, decrypted, and deposited either
in the output (if there is still room in the quotaC of the target
bucket), or in the stash (lines 7–15). Finally, if some output
chunks are still not up to the C quota, they are filled with
dummy items, encrypted and written out into the intermedi-
ate array (lines 16–20). Note that the stash may end up with

450

Intermediate Array Output Array

shuffle

W

filter

C
C

C
C

K

Figure 4: Compression phase.

items left over after all input buckets have been processed,
so we drain those items (padding with dummies), filling K
extra items per output bucket at the end of the distribution
phase (line 5 of Algorithm 1, which is similar to distributing
a bucket, except there is no input bucket to distribute). K
is set to S/B, that is, the size of the stash divided by the
number of buckets.

Algorithm 3 Compress intermediate items.
(L , min(W,B) is the effective window size, defined to account for
pathological cases where W > B.)

1: procedure COMPRESS(Untrusted arrays mid, out)
2: for b← 0, L− 1 do
3: IMPORTINTERMEDIATE(b,mid)

4: for b← L,B − 1 do
5: DRAINQUEUE(b− L,mid, out)
6: IMPORTINTERMEDIATE(b,mid)

7: for b← B − L,B − 1 do
8: DRAINQUEUE(b,mid)

Algorithm 3 and Figure 4 show the compression phase.
In this phase, the intermediate items deposited by the dis-
tribution phase must be shuffled, and dummy items must be
filtered out. To do this, without revealing information about
the distribution of (real) items in output buckets, the phase
proceeds in a sliding window of W buckets of intermediate
items. The window size W is meant to absorb the elasticity
of real item counts in each intermediate output bucket due to
the Binomial distribution. See

Algorithm 4 Import an intermediate bucket.
1: procedure IMPORTINTERMEDIATE(b, Untrusted array mid)
2: bucket← mid[MidIdx(b, 0..C ∗B +K − 1)]
3: Shuffle(bucket)
4: for i← 0, C ∗B +K − 1 do
5: item← Decrypt(bucket[i])
6: if ¬item.dummy then
7: queue.Enqueue(item)

As Algorithm 4 shows, an intermediate bucket is loaded
into private memory (C items per input bucket, plus another
K items for the final stash drain) in line 2, and shuffled
in line 3. Then intermediate items are decrypted, throwing
away dummies, and enqueued for export, D items at a time,

N B C W S log(ε) Overhead
10M 1,000 25 4 40,000 -80.1 3.50×
50M 2,000 30 4 86,000 -81.8 3.40×

100M 3,000 30 4 117,000 -81.9 3.70×
200M 4,400 24 4 170,000 -64.5 3.32×

Table 1: Stash Shuffle parameter scenarios, their security,
and relative processing overheads, assuming 318-byte en-
crypted items (64 data bytes and 8-byte crowd IDs).

into the output array in untrusted memory. In Figure 4, con-
tinuing in the same example, two intermediate buckets are in
private memory at steady state (i.e., W = 2), shuffled, and
streamed in their final order to the output array,D = 6 items
per output bucket, after filtering out dummies.

Even with the stash, the algorithm may fail. During dis-
tribution, the stash may fill up or fail to fully drain in the
end, and during compression the queue may fill up when im-
porting. Upon failure, the algorithm aborts and starts anew.
Since intermediate items are encrypted with an ephemeral
symmetric key, failed attempts leak no information about
the eventual successfully-shuffled order. However, failures
are possible because some permutations are infeasible to the
algorithm for given parameters. For example, the identity
permutation is infeasible unless C ≥ D, because it would
require all D items of every input bucket b to land in the
same C-sized chunk output [b] in Algorithm 2, line 10. The
security analysis for a choice of N , B, C, S, and W de-
termines the security parameter ε, which indirectly reflects
the fraction of infeasible permutations [50]. Table 1 shows a
few choices for our 318-byte encrypted items, the resulting
security parameter, and the processing overhead; in the Stash
shuffle’s case, we process N data items and B2C + S inter-
mediate items. Both scaling and efficiency are significantly
improved compared to prior work (§4.1.3).

The table shows problem sizes up to 200 million items, at
which point the algorithm as we defined it above reaches its
scalability limits for SGX (for 318-byte items and safe secu-
rity parameters). To scale to larger problems, the algorithm
can be modified to spill internal state to untrusted memory,
increasing overall processing overhead to roughly double, or
can be run twice in succession with smaller security param-
eters, which has the effect of boosting the overall security of
shuffling (this is a standard technique, presented as a default
choice for the Melbourne shuffle [58]).

Oblivious shuffling benefits from parallelism. Previ-
ous solutions, including the Melbourne shuffle, Batcher’s
sort, Column sort, and cascade-mix networks consist of 4,
(log2N/b)

2, 8, and O(logB), respectively, embarrassingly
parallel rounds, run sequentially. The Stash Shuffle Distribu-
tion phase parallelizes well, by replicating the stash to each
worker, and splitting a somewhat larger K among work-
ers. However, its Compression phase is largely sequential.
Thankfully, the sequential Compression phase is inconse-
quential in practice, since it involves only symmetric cryp-

451

tography, whereas the Distribution phase performs public-
key operations to derive the shared secret key Kshuffler with
which to decrypt the outer layer of nested encryption (§5.1).

The above description is aimed at giving the reader some
intuition. In our implementation, we took care to avoid mem-
ory copies in private memory, because they incur a crypto-
graphic cost due to SGX’s Memory Encryption Engine. For
example, we use only statically allocated private arrays or-
ganized as queues, stacks, and linked lists, rather than stan-
dard containers employing dynamic memory allocation; we
shuffle index arrays rather than arrays of possibly large data
items; and we overlay the distribution data structures in the
same enclave memory as the compression data structures.
We also took care to minimize side channels [12, 43, 76];
for example, we ensure that control paths involving real and
dummy items are the same, and write the same private mem-
ory pages. In terms of performance, our implementation is
untuned. For example, to avoid issuing system OCALLs
(i.e., calls out of the enclave into untrusted space to invoke
system functionality), we memory-map our three big arrays
(input batch, intermediate array, output batch) and let virtual
memory handle reading and writing from secondary storage.
Given the predictable access patterns of the stash shuffler
(sequential read of the input batch, sequential stride write
of the intermediate array, sequential read of the intermediate
array, sequential write of the output batch), we gain a benefit
from intelligent prefetching using madvise on the memory-
mapped ranges, to reduce the cost of I/O.

4.1.5 Crowd Cardinality Thresholding inside SGX
Thresholding from inside an enclave with limited private
memory requires some care. It must not reveal to the hosting
organization the distribution of data items over crowd IDs, or
the values of crowd IDs themselves; we chose to allow the
hosting organization to see the selectivity of the threshold-
ing operation (i.e., the number of data records that survived
filtering), since the analyzer would have access to this infor-
mation anyway.

To perform thresholding, the shuffler must perform two
tasks obliviously: counting data items with the same crowd ID,
and filtering out those with crowd IDs with counts below the
threshold. In the simpler case, the crowd ID domain—that
is, all distinct crowd ID values—is small enough that the
shuffler can fit one counter per value in private memory; for
SGX enclaves, those are crowd ID domains of about 20 mil-
lion distinct values. In that case, counting requires one pass
over the entire batch, updating counters in private memory,
and another pass to filter out (e.g., zero out) those data items
with crowd IDs with counts below threshold. If oblivious
shuffling has already taken place (§4.1.2), these two scans of
the shuffled data items reveal no information other than the
global selectivity of the thresholding operation. All of the
problems to which we have applied ESA have small-enough
crowd ID domains to be countable inside private memory
and can, therefore, be thresholded in this manner.

Should a problem arise for which the crowd ID domain
is too big to fit inside private memory, a more expensive
approach is required. For example, the batch can be obliv-
iously sorted (e.g., via Batcher’s sort) by crowd ID, and then
scanned one more time, counting the data items in a single
crowd, associating a running count with each item (via re-
encryption). In a final pass (in the opposite scanning direc-
tion), the count of each crowd ID is found in the first data
item scanned backwards, so all items by that crowd ID can
be filtered out. Since this approach requires oblivious sorting
anyway, it can be combined with the shuffling operation it-
self, obviating the need for something more efficient like the
Stash Shuffler; in fact, this is a specialized form of more-
general oblivious relational operators, such as those pro-
posed in Opaque [78]. More efficient approaches employ-
ing approximate counting (e.g., counting sketches) may lead
to faster oblivious thresholding for large crowd ID domains.
Nevertheless, we have yet to encounter such large crowd ID
domains in practice.

4.2 Encoding Using Secret-Sharing Cryptography
The ESA architecture enables applications of novel encod-
ing algorithms to further protect user data. One such encod-
ing scheme, constructed using secret sharing, can guaran-
tee data confidentiality for user data drawn from a distri-
bution with unique and hard-to-guess items, such as finger-
prints, or random URLs. (We call this secret sharing, instead
of threshold cryptography, so as to not overload the word
“threshold.”) This scheme composes well with randomized
thresholding at the shuffler (see §3.5). When combined with
the blinded crowd IDs discussed next (in §4.3), this scheme
provides strong privacy for for both easy-to-guess, limited-
domain data, as well hard-to-guess, unique data. These ben-
efits are demonstrated for a concrete example in §5.2.

First, recall the basic idea behind Shamir secret shar-
ing [68]: t-secret sharing splits a secret s in a field F into
arbitrary shares s1, s2, . . ., so that any t − 1 or fewer shares
statistically hide all information about s. Given any t shares
one can recover s completely, by choosing a (t − 1)-degree
polynomial P ∈ F[X] with random coefficients subject to
P (0) = s. A secret share of s is the tuple (x, P (x)) for ran-
domly chosen non-zero x ∈ F. Given t points on the curve,
Lagrange interpolation recovers P and s = P (0).

From the above, a novel t-secret share encoding of an
arbitrary string m with parameter t is a pair (c, aux) con-
structed as follows. Ciphertext c is a deterministic encryp-
tion of the message under a message-derived key [3,9] km =
H(m) and aux is a (randomized) t-secret share of km. It is
crucial to note that these secret shares can be computed in-
dependently by users, which enables its direct application as
an encoding scheme in the ESA architecture.

Correctness of this encoding is easy to see: with over-
whelming probability, given t independent shares corre-
sponding to the same ciphertext c, one can decrypt it to

452

recover m by first using secret shares aux 1, . . . , aux t to
derive km and then using km to decrypt c.

This encoding protects the secrecy of m with fewer in-
stances that t. With at most t − 1 independent shares cor-
responding to the same ciphertext c, the values 〈aux 1, . . . ,
aux t−1, c〉 reveal no information about m that cannot any-
way be guessed about m by an adversary a priori. The se-
curity analysis follows by combining statistical security of
Shamir secret sharing and by that of a message-derived key
[3, 9]. As noted before, if m comes from a distribution that
is hard to guess, no information about m is leaked until a
minimum of t encodings is collected.

4.3 Blinded Crowd IDs for Shuffler Thresholding
Using novel public-key cryptography, we enable threshold-
ing on private crowd IDs in PROCHLO, when a crowd ID
might itself be sensitive. Specifically, we have designed and
implemented a split shuffler, consisting of two non-colluding
parties, which together shuffle and threshold a dataset with-
out accessing a crowd ID in the clear. Rather than sending
the crowd ID encrypted to the shuffler’s private key, the en-
coder hashes the crowd ID to an element of a group of a
prime order p as µ = H(crowd ID). In our implementation
the group is the elliptic curve NIST P-256 [55] and in this
presentation, we use multiplicative notation for clarity. The
encoder computes an El Gamal encryption (gr, hr ·µ), where
(g, h) is Shuffler 2’s public key and r is a random value in
Zp. Shuffler 1 blinds the tuple with a secret α ∈ Zp to com-
pute (grα, (hr · µ)α), and then batches, shuffles, and for-
wards the blinded items (with the usual accompanying data)
to Shuffler 2. Shuffler 2 uses its private key, i.e., the secret
x such that h = gx, on input (u, v) to compute v/ux and
recovers µα = H(crowd ID)α.

At the cost of three extra group exponentiations, Shuf-
fler 2 now works with crowd IDs that are hashed and raised
to a secret power α. Critically, blinding preserves the equal-
ity relation, which allows comparison and counting.

Note that hashing alone would not have protected the
crowd ID from a dictionary attack. With blinded crowd IDs,
Shuffler 1 cannot mount such an attack, since it does not pos-
sess Shuffler 2’s private key, and Shuffler 2 cannot mount
such an attack, because it does not posses Shuffler 1’s secret
α. As long as Shufflers 1 and 2 do not collude, this mecha-
nism enables them to (jointly) threshold on crowd IDs with-
out either party having access to it in the clear.

This form of private thresholding is useful in several sce-
narios: (a) when crowd IDs involve ZIP code or other more
personal and identifying information that an adversary might
be able to guess well; (b) when collecting data as in §5.5
where low-frequency data points such as obscure movie rat-
ings do little to add utility but enable easy de-anonymization;
and (c) when secret-share encoding is applied to data that
might be easy to guess. §5.2 presents a comprehensive use
case combining blinded crowd IDs with secret-share encod-
ing for analyses with sensitive crowd IDs.

N Distribution Compression Total SGX Mem
10M 713 s 26 s 738 s 22 MB
50M 3,581 s 168 s 1.0 h 52 MB

100M 7,172 s 349 s 2.1 h 78 MB
200M 14,267 s 620 s 4.1 h 69 MB

Table 2: Stash Shuffle execution of the scenarios in Table 1.
Rows show input size; columns show per-phase and total ex-
ecution time and the maximum private SGX memory used.

4.4 Implementation
The PROCHLO framework is implemented in 1100 lines of
C++ using OpenSSL and gRPC [35, 73], with another 1600
lines of C++ and OpenSSL code for cryptographic hard-
ening. The Stash Shuffle is implemented in 2300 lines of
C++ code, using SGX enclaves in “pre-release” mode and a
combination of OpenSSL and the Linux SGX SDK crypto
libraries [37]. An open-source implementation is gradually
released at https://github.com/google/prochlo. An-
other implementation of the ESA architecture, eventually in-
tended to include all the features of PROCHLO, is at https:
//fuchsia.googlesource.com/cobalt.

5. Evaluation
We study four data pipelines that we have ported to PROCHLO.
In each case, we motivate a realistic scenario and describe
encoders, shufflers, and analyzers tailored to demonstrate
the flexibility of ESA. We seek to understand how the util-
ity of each analysis is affected by introducing ESA privacy.
We use consistent parameters for the thresholding and noisy
loss applied by the shufflers (§3.5). The thresholds are set to
20. Before thresholding is applied, the shufflers drop d items
from each bucket. The random variable d is sampled from
the rounded normal distribution

⌊
N (D,σ2)

⌉
, whereD = 10

and σ = 2. This guarantees (2.25, 10−6)-approximate dif-
ferential privacy for the multi-set of crowd IDs that the an-
alyzers receive. These settings are at least as strong as in
recent industrial deployments and in literature [4, 28, 70].
We first evaluate our SGX-based Stash Shuffler; the four
case studies that follow use non-oblivious shufflers.

5.1 Stash Shuffle
We measured the Stash Shuffler with datasets of 318-byte
items (corresponding to 64 bytes of data and 8 bytes of
crowd ID), on an SGX-enabled 4-core Intel i7-6700 pro-
cessor, 32 GB of RAM, and a Samsung 850 1-TB SSD.
The nested cryptography uses authenticated encryption, with
NIST P-256 asymmetric key pairs used to derive AES-128
GCM symmetric keys. Table 2, shows our measurement re-
sults, from single-threaded runs that form a basis for assess-
ing scalability. Although the two phases process roughly the
same amount of data, Distribution is far costlier, because of
public-key cryptography, but parallelizes well. Run with 10
SGX workers, approximate execution times would be 1.6,
8.8, 17.8, and 34.1 minutes, respectively.

453

https://github.com/google/prochlo
https://fuchsia.googlesource.com/cobalt
https://fuchsia.googlesource.com/cobalt

5.2 Vocab: Empirical Long-tail Distributions
We consider a corpus of three billion words that is represen-
tative of English-speaking on-line discussion boards. Char-
acteristically, the distribution follows the power-law (Zip-
fian) distribution with a heavy head and a long tail, which
poses a challenge for statistical techniques such as random-
ized response. To demonstrate PROCHLO’s utility into recov-
ering a stronger signal further into the tail of the distribution,
we performed the following four experiments to privately
learn word frequencies on samples of size 10K, 100K, 1M,
and 10M drawn from the same distribution. In each experi-
ment, we measured the number of unique words (which can
be thought of as unique candidate URLs or apps in other ap-
plications) we could recover through our analysis.

In experiment Crowd, clients send unencoded words
along with a hash of the word as the crowd ID to a single
shuffler. Against the analyzer, this hides all words that occur
infrequently and allows decoding of words whose frequency
is above the threshold. However, a malicious shuffler may
mount a dictionary attack on the words’ hashes, and there is
no privacy against the shuffler and analyzer colluding.

Experiment Secret-Crowd builds on Crowd, but clients
encode their reported words using one-out-of-t secret shar-
ing, setting t to be 20, like the shuffler’s crowd threshold T .
At a minimal computational cost to clients (less than 50 µs
per encoding), privacy is significantly improved: uncommon
words and strings drawn from hard-to-guess data sources
(such as private keys, hash values, love letters, etc.) are pri-
vate to the analyzer. Alas, the shuffler can mount dictionary
attacks and statistical inference on crowd IDs.

Experiment NoCrowd uses the same secret sharing as
Secret-Crowd, but uses the same, fixed crowd ID in all client
reports. This protects against a malicious shuffler, as it no
longer can perform statistical inference or dictionary attacks
on crowd ID word hashes. Also, this slightly improves utility
by avoiding the small noise added by the shuffler during
the thresholding step. However, lacking a crowd to hide
in, clients now have less protection against the analyzer: it
will now receive reports even of the most uncommonly-used
words, and can attempt brute-force attacks on them.

Experiment Blinded-Crowd offers the most compelling
privacy story. In addition to secret-share encoding of words,
clients use blinded crowd IDs, with two-shuffler randomized
thresholding (§4.3). Assuming no collusion, neither the shuf-
flers nor the analyzer can successfully perform attacks on
the secret-shared words or the blinded crowd IDs. Even if
all parties collude, private data from a hard-to-guess distri-
bution (such as keys and unique long-form text) will still be
protected by the secret-share encoding.

For each experiment, we compute a histogram and mea-
sure utility based on the number of unique words recovered
in the analysis. Finally, we compare PROCHLO with RAP-
POR [28] and its variant where collected reports are parti-
tioned by small crowd IDs a few bits long (see the discus-

10K 100K 1M 10M

100

101

102

103

104

105

4062

18665

57500
91260

46

578

5921
28821

#
of

un
iq

ue
w

or
ds

re
co

ve
re

d

32

371

3730

21972

17

222

828

2

15

122

240

Ground truth (no privacy)
NoCrowd (no DP, t=20)

∗-Crowd (ε=2 1
4
, δ=10−6)

Partition (ε=2 1
4
, δ=10−6)

RAPPOR (ε=2, δ=0)

Figure 5: A log-log-graph of the number of unique words re-
covered (Y-axis) on samples of 10 thousand to 10 million Vocab
words (X-axis). Using results in The ∗-Crowd line results from us-
ing word hashes as the crowd-IDs, whereas NoCrowd offers less
privacy, using a naı̈ve threshold of 20 and no crowds. For compari-
son, RAPPOR and Partition show how pure local-differential pri-
vacy offers far less accuracy and much higher variance (error bars)
even when augmented with partitions as described in §2.2.

sion of local differential privacy in §2.2). This translates to
between 4 and 256 partitions for the sample sizes in the ex-
periment. The results are summarized in Figure 5.

Several observations are in order. The experiment of-
fering the highest utility is NoCrowd which performs no
crowd-based thresholding, but also provides no differential
privacy guarantees, unlike the other experiments. Encourag-
ingly, the ∗-Crowd experiments show the utility loss due to
noisy thresholding to be very small compared to NoCrowd.
Both experiments recover a large fraction of the ground-truth
number of unique words computed without any privacy.

The challenge of using randomized response for long-
tailed distributions is made evident by the RAPPOR results,
whose utility is less than 5% that of our PROCHLO exper-
iments. The Partition results also show that the limitations
of local differential privacy cannot be mitigated by follow-
ing §2.2. and partitioning based on word hashes. For the Vo-
cab dataset, and the studied sample sizes, partitioning im-
proves RAPPOR’s utility only by between 1.13× to 3.45×,
at the cost of relaxing guarantees from 2-differential privacy
to (2.25, 10−6)-differential privacy.

Table 3 gives wall-clock running time for the Vocab ex-
periment across varying problem sizes. Performance was
measured on an 8-core 3.5 GHz Intel Xeon E5-1650 pro-
cessor with 32 GB RAM, with multiple processes commu-
nicating locally via gRPC [35]. We note that these numbers
demonstrate what we naturally expect in our system design:
performance scales linearly with the number of clients and
the dominating cost is public-key crypto operations (roughly
3, 6, and 2 operations for each column, respectively).

454

clients Encoder+Shuffler 1 Shuffler 2
{Secret-C,NoC,C} Blinded-C Blinded-C

10K 8 s 15 s 7 s
100K 71 s 153 s 64 s

1M 713 s 0.4 h 643 s
10M 2.0 h 4.1 h 1.8 h

Table 3: Execution time for the Vocab experimental setup for
one shuffler and for two shufflers (with blind thresholding).

5.3 Perms: User Actions Regarding Permissions
Consider monitoring new feature adoption in the Chrome
Web browser—a rich platform with hundreds of millions
of users. For some Chrome features, Web pages are re-
quired to ask users for access permissions; users may re-
spond to those requests by accepting, denying, dismissing,
or ignoring them. To measure feature adoption and detect
Web-page abuse, these requests must somehow be moni-
tored by Chrome developers. PROCHLO provides new means
for monitoring with both high utility and strong privacy.

From existing monitoring data, we crafted a dataset for
the Geolocation, Notifications, and Audio Capture permis-
sions. The millions of 〈page, feature, action bitmap〉 tuples
in the dataset use bitmap bits for the Grant, Deny, Dismiss,
and Ignore user actions, since a user sometimes gives mul-
tiple responses to a single permission prompt. The entire
dataset is privacy-relevant, since it involves the Web pages
visited, features used, and actions taken by users.

In our experiments, we performed one simple analysis of
this dataset: for each of the 3 × 4 feature/user-action com-
binations, find the set of Web pages that exhibited it at least
100 times. As described in Fanti et al. [30], such multidimen-
sional analysis over long-tail distributions (of Web pages) is
a poor fit for local differential privacy methods. Confirming
this, we were unable to recover more than a few dozen Web
pages, in total, when applying RAPPOR to this dataset.

As shown in Table 5.4, using PROCHLO improves util-
ity of this simple analysis by several orders of magnitude,
compared to the above RAPPOR baseline. Also, PROCHLO
greatly simplifies software engineering by materializing
a database of Web page names, instead of RAPPOR’s
noisy statistics. Most encouragingly, PROCHLO can offer
at least (ε=1.2, δ=10−7)-differential privacy, which com-
pares very favorably. This is achieved by the PROCHLO
shuffler using a threshold of 100, with Gaussian noise
σ = 4, and crowd IDs based on blinded, secret-shared
encryption of 〈page, feature〉. Furthermore, with proba-
bility 10−4, each bitmap bit is flipped in the encoded
〈page, feature, action bitmap〉 tuples of PROCHLO reports,
providing plausible deniability for user actions.

5.4 Suggest: Predicting the Next Content Viewed
Next we consider a use case that concerns highly privacy-
sensitive input data and existing, hard-to-change analysis
software, in the context of YouTube. For this use case, the

Geolocation Notification Audio
Naı̈ve Thresh. 6,610 12,200 620
Granted 5,850 8,870 440
Denied 5,780 8,930 430
Dismissed 5,860 9,465 440
Ignored 5,850 11,020 530

Table 4: Number of Web pages recovered using a naı̈ve
threshold or, for each user action, a noisy crowd threshold.

analysis is custom code for training a multi-layer, fully-
connected neural network that predicts videos that users may
want to view next, given their recent view history. Content
popularity follows a long-tail distribution, and the input data
consists of longitudinal video views of different users. The
resulting state-of-the-art deep-learning sequence model is
based on ordered views of the half-million most popular
videos, each with at least tens-of-thousands of views.

Similar sequence prediction models are common, and
can be widely useful (e.g., for predicting what data to load
into caches based on users’ software activity). However,
sequence-prediction analysis is inherently at odds with pri-
vacy: its input is a longitudinal history of individual users’
data—and some parts of that history may be damaging or
embarrassing to the user, while other parts may be highly
identifying. In particular, for the video view input data, any
non-trivial sequence of n views is likely close to unique, as
it forms an ordered n-tuple over 500,000-item domain.

For this example use case, it is neither possible to mod-
ify existing, complex analysis code nor to remove the inher-
ently identifying sequence ordering upon which the analysis
relies. Therefore, to protect users’ privacy, we implemented
a PROCHLO encoding step that fragmented each user’s view
history into short, disjoint m-tuples (m � n), and relied on
PROCHLO shuffling to guarantee that only such tuples could
be analyzed—i.e., only anonymous, disassociated very short
sequences of views of very popular videos.

This construction is appealingly simple and provides a
concrete, intuitive privacy guarantee: for small-enough m
(i.e., as m approaches 1), any single m-tuple output by the
encoder can be identifying or damaging, but not both. Thus,
privacy can be well protected by the shuffler preventing as-
sociations from being made between any two disjoint tuples.

Fortunately, because recent history is the best predictor
of future views, a model trained even with 3-tuples cor-
rectly predicts the next view more than 1 out of 8 times,
with around 90% of the accuracy of a model trained with-
out privacy. Training each model to convergence on about
200 million longitudinal view histories takes two days on a
small cluster with a dozen NVIDIA Tesla K20 GPUs, us-
ing TensorFlow [2]. Even more relevant is that this privacy-
preserving model has equivalent quality as the best-known
YouTube model for this task from about a year ago—when
evaluated using an end-to-end metric that models presenting
users with multiple suggestions for what to view next.

455

5.5 Flix: Collaborative Filtering
We next consider a prediction task without the strong local-
ity inherent to our good results for next-viewed content in
the previous section. This task is to infer users’ ratings for
content given the set of each user’s content ratings. Work
on this problem was supercharged by the $1M Netflix Prize
challenge for improving their proprietary recommender sys-
tem. Famously, Narayanan and Shmatikov [54] managed to
deanonymize users in the challenge’s large corpus of train-
ing data by exploiting auxiliary data and the linkability of
users’ movie preferences. Their successful attack led to the
cancellation of a followup competition.

We demonstrate that the ESA architecture permits collec-
tion of data that simultaneously satisfies dual (and dueling)
objectives of privacy and utility for collaborative filtering.
As in the previous example, sending a complete vector of
movie ratings exposes users to linking attacks. The equally
unsatisfying alternative is to guarantee privacy to all users
by randomizing their vectors client-side. Since the ratings
and the movies are sensitive information, both need to be
randomized, effectively destroying data utility.

To enable utility- and privacy-preserving collection of
data we identify sufficient statistics that can be assembled
from anonymized messages drawn from a small domain. We
observe that many of the most relevant analysis methods of
collaborative filtering comprise two distinct steps: (i) com-
puting the covariance matrix capturing item-to-item interac-
tions, and (ii) processing of that matrix, e.g., for factorization
or de-noising. Computation on the sensitive data of users’
movie ratings is performed only in the first step, which can
be supported by the ESA architecture, as described below.

Let the rating given to item i by user u be rui, the set
of items rated by user u be I(u) and the set of users who
rated item i be U(i). Towards the goal of evaluating the
covariance matrix we compute two intermediate item-by-
item matrices S and A defined as Sij = |U(i) ∩ U(j)|
and Aij =

∑
u∈U(i)∩U(j) ruiruj . An approximation to the

covariance matrix is given by (Aij/Sij).
We describe how A is computed (S is treated anal-

ogously). By pivoting to users, we represent A as fol-
lows: Aij =

∑
u

∑
i,j∈I(u) ruiruj . Thus, it is sufficient for

each user to send its contribution to A that consists of all
(i, rui, j, ruj) four-tuples where i, j ∈ I(u) (by symmetry
only tuples where i ≤ j are needed).

Even though most four-tuples are unlikely to lead to re-
identification, a truly unique item-rating four-tuple could
allow linking all of the items of the contributing user. To
minimize this possibility we pursue three complementary
approaches. First, only a random set of four-tuples is sent
by each user, capped in cardinality. Second, users replace
a fixed fraction (10% in our experiments) of the movie
identifiers in their reports with a randomly sampled one
(this alone affords 2.2-differential privacy for the set of
rated movies). Third, each four-tuple (i, rui, j, ruj) is tagged

Movies # Users # Reports Score (RMSE)
no privacy PROCHLO

200 90K 1.77M 0.9579 0.9595†

2K 353K 335M 0.9414 0.9420
18K 480K 22.6B 0.9222 0.9242

Table 5: Utility of the Flix evaluation; lower numbers are
better. (†To account for sparsity, the threshold was set to 5.)

with two crowd IDs, one for (i, rui) and one for (j, ruj),
adding a layer of nested encryption and a second shuffler
to the pipeline. This way, each item-rating combination that
reaches the analysis server appears more than a threshold
number of times.

We perform our experiments on a dataset whose charac-
teristics precisely match that of the Netflix Prize dataset: the
number of users is 480K, the number of movies is 18K, the
ratings are integers between 1 and 5. Utility is measured as
the root mean square error (RMSE) and reported relative to
the same benchmark used as part of the competition. Two
smaller datasets (200 and 2,000 movies) are selected ran-
domly from the main set. As seen in Table 5, the RMSE with
and without PROCHLO privacy is similar across datasets.

6. Conclusions
Although a long-standing issue, the privacy of users’ soft-
ware monitoring data has recently become a pressing con-
cern. Fortunately, those concerns can be addressed in a man-
ner that simultaneously permits high-utility analysis, is com-
patible with standard software engineering practice, and pro-
vides users with strong privacy guarantees.

This paper has described how to address those privacy
concerns in the context of the ESA architecture, and its
PROCHLO implementation. To offer good means of balanc-
ing privacy and utility, and to minimize trust, PROCHLO in-
troduces both new cryptographic primitives and a new algo-
rithm for oblivious shuffling, and also relies on the advanced
technologies of trusted computing and differential privacy.
Even so, PROCHLO remains a relatively simple, easy-to-
understand system, and a straightforward realization of the
ESA architecture. However, as a framework for balancing
privacy and utility, ESA is flexible enough to permit many
implementations, and the use of the most appropriate tech-
niques for different data-collection and analysis scenarios.

Acknowledgments
This paper is dedicated to the memory of Andrea Bittau, our
colleague who wrote much of PROCHLO. We thank Kunal
Talwar for his help analyzing Stash Shuffle’s security prop-
erties. We thank the anonymous reviewers for their detailed
feedback, and Martı́n Abadi, Johannes Gehrke, Lea Kissner,
Noé Lutz, and Nicolas Papernot for their valuable advice on
earlier drafts. Our shepherd, Nickolai Zeldovich, provided
invaluable help with this final paper version.

456

References
[1] ABADI, M. Trusted Computing, Trusted Third Parties, and

Verified Communications. In Security and Protection in In-
formation Processing Systems (2004), pp. 291–308.

[2] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS,
A., DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING, G.,
ISARD, M., KUDLUR, M., LEVENBERG, J., MONGA, R.,
MOORE, S., MURRAY, D. G., STEINER, B., TUCKER, P.,
VASUDEVAN, V., WARDEN, P., WICKE, M., YU, Y., AND

ZHENG, X. Tensorflow: A system for large-scale machine
learning. In Proc. of 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2016), pp. 265–
283.

[3] ABADI, M., BONEH, D., MIRONOV, I., RAGHUNATHAN,
A., AND SEGEV, G. Message-Locked Encryption for Lock-
Dependent Messages. In Advances in Cryptology–CRYPTO
(2013), pp. 374–391.

[4] ABADI, M., CHU, A., GOODFELLOW, I., MCMAHAN,
H. B., MIRONOV, I., TALWAR, K., AND ZHANG, L. Deep
Learning with Differential Privacy. In Proc. of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-
curity (CCS) (2016), pp. 308–318.

[5] ABADI, M., ERLINGSSON, Ú., GOODFELLOW, I., MCMA-
HAN, H. B., PAPERNOT, N., MIRONOV, I., TALWAR, K.,
AND ZHANG, L. On the Protection of Private Information
in Machine Learning Systems: Two Recent Approaches. In
Proc. of IEEE 30th Computer Security Foundations Sympo-
sium (CSF) (2017), pp. 1–6.

[6] AVENT, B., KOROLOVA, A., ZEBER, D., HOVDEN, T., AND

LIVSHITS, B. BLENDER: Enabling Local Search with a
Hybrid Differential Privacy Model. In Proc. of the 26th
USENIX Security Symposium (2017), pp. 747–764.

[7] BASSILY, R., NISSIM, K., STEMMER, U., AND THAKURTA,
A. Practical Locally Private Heavy Hitters. CoRR abs/1707.04982
(2017). http://arxiv.org/abs/1707.04982.

[8] BATCHER, K. E. Sorting Networks and their Applications.
In AFIPS Spring Joint Computer Conference (1968), vol. 32,
pp. 307–314.

[9] BELLARE, M., KEELVEEDHI, S., AND RISTENPART, T.
Message-Locked Encryption and Secure Deduplication. In
Advances in Cryptology—EUROCRYPT (2013), pp. 296–
312.

[10] BINDSCHAEDLER, V., SHOKRI, R., AND GUNTER, C. A.
Plausible Deniability for Privacy-Preserving Data Synthesis.
PVLDB 10, 5 (2017), 481–492.

[11] BONAWITZ, K., IVANOV, V., KREUTER, B., MARCEDONE,
A., MCMAHAN, H. B., PATEL, S., RAMAGE, D., SEGAL,
A., AND SETH, K. Practical Secure Aggregation for Privacy
Preserving Machine Learning. In Proc. of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity (CCS) (2017).

[12] BULCK, J. V., WEICHBRODT, N., KAPITZA, R., PIESSENS,
F., AND STRACKX, R. Telling Your Secrets without Page
Faults: Stealthy Page Table-Based Attacks on Enclaved Exe-
cution. In Proc. of 26th USENIX Security Symposium (2017),
pp. 1041–1056.

[13] BUSE, R. P. L., AND ZIMMERMANN, T. Information Needs
for Software Development Analytics. In Proc. of the 34th
International Conference on Software Engineering (ICSE)
(2012), pp. 987–996.

[14] CHAUDHRY, G., HAMON, E. A., AND CORMEN, T. H. Re-
laxing the Problem-Size Bound for Out-Of-Core Column-
Sort. In Proc. of the Fifteenth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA) (2003),
pp. 250–251.

[15] CHEN, R., REZNICHENKO, A., FRANCIS, P., AND GEHRKE,
J. Towards Statistical Queries over Distributed Private User
Data. In Proc. of the 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI) (2012), pp. 169–
182.

[16] CHROMIUM PROJECTS. RAPPOR (Randomized Aggre-
gatable Privacy Preserving Ordinal Responses). https://

www.chromium.org/developers/design-documents/

rappor, 2017.

[17] CITO, J., LEITNER, P., FRITZ, T., AND GALL, H. C. The
Making of Cloud Applications: An Empirical Study on Soft-
ware Development for the Cloud. In Proc. of the 2015
10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE) (2015), pp. 393–403.

[18] CORRIGAN-GIBBS, H., AND BONEH, D. Prio: Private,
Robust, and Scalable Computation of Aggregate Statistics. In
Proc. of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NDSI) (2017), pp. 259–282.

[19] CORRIGAN-GIBBS, H., BONEH, D., AND MAZIÈRES, D.
Riposte: An Anonymous Messaging System Handling Mil-
lions of Users. In Proc. of the 2015 IEEE Symposium on
Security and Privacy (2015), pp. 321–338.

[20] DANG, H., DINH, T. T. A., CHANG, E.-C., AND OOI, B. C.
Privacy-Preserving Computation with Trusted Computing via
Scramble-then-Compute. Proceedings on Privacy Enhancing
Technologies, 3 (2017), 18–35.

[21] DEMETRIOU, S., MERRILL, W., YANG, W., ZHANG, A.,
AND GUNTER, C. A. Free for All! Assessing User Data
Exposure to Advertising Libraries on Android. In Proc. of
the 23nd Annual Network and Distributed System Security
Symposium (NDSS) (2016).

[22] DENNING, D. E. R. Cryptography and Data Security.
Addison-Wesley, Boston, MA, USA, 1982.

[23] DINH, T. T. A., SAXENA, P., CHANG, E.-C., OOI, B. C.,
AND ZHANG, C. M2R: Enabling Stronger Privacy in MapRe-
duce Computation. In Proc. of the 24th USENIX Security
Symposium (2015), pp. 447–462.

[24] DOUCEUR, J. R. The Sybil attack. In The First International
Workshop on Peer-to-Peer Systems (IPTPS) (2002), pp. 251–
260.

[25] DWORK, C. Differential Privacy: A Survey of Results. In In-
ternational Conference on Theory and Applications of Mod-
els of Computation (TAMC) (2008), pp. 1–19.

[26] DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH, A.
Calibrating Noise to Sensitivity in Private Data Analysis. In
Proc. of the Third Conference on Theory of Cryptography
(TCC) (2006), pp. 265–284.

457

http://arxiv.org/abs/1707.04982
https://www.chromium.org/developers/design-documents/rappor
https://www.chromium.org/developers/design-documents/rappor
https://www.chromium.org/developers/design-documents/rappor

[27] DWORK, C., AND ROTH, A. The Algorithmic Foundations
of Differential Privacy. Found. Trends Theor. Comput. Sci. 9,
3–4 (Aug. 2014), 211–407.

[28] ERLINGSSON, Ú., PIHUR, V., AND KOROLOVA, A. RAP-
POR: Randomized Aggregatable Privacy-Preserving Ordinal
Response. In Proc. of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2014),
pp. 1054–1067.

[29] EVFIMIEVSKI, A., GEHRKE, J., AND SRIKANT, R. Limiting
Privacy Breaches in Privacy Preserving Data Mining. In Proc.
of the Twenty-second ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems (PODS) (2003),
pp. 211–222.

[30] FANTI, G., PIHUR, V., AND ERLINGSSON, Ú. Building a
RAPPOR with the Unknown: Privacy-Preserving Learning of
Associations and Data Dictionaries. Proceedings on Privacy
Enhancing Technologies, 3 (2016), 41–61.

[31] GABOARDI, M., HONAKER, J., KING, G., NISSIM, K.,
ULLMAN, J., AND VADHAN, S. P. PSI (Ψ): A Private data
Sharing Interface. CoRR abs/1609.04340 (2016). http:

//arxiv.org/abs/1609.04340.

[32] GANTA, S. R., KASIVISWANATHAN, S. P., AND SMITH, A.
Composition Attacks and Auxiliary Information in Data Pri-
vacy. In Proc. of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD)
(2008), pp. 265–273.

[33] GEHRKE, J., HAY, M., LUI, E., AND PASS, R. Crowd-
Blending Privacy. In Advances in Cryptology—CRYPTO
(2012), pp. 479–496.

[34] GLERUM, K., KINSHUMANN, K., GREENBERG, S., AUL,
G., ORGOVAN, V., NICHOLS, G., GRANT, D., LOIHLE, G.,
AND HUNT, G. Debugging in the (Very) Large: Ten Years
of Implementation and Experience. In Proc. of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP) (2009), ACM, pp. 103–116.

[35] GOOGLE. gRPC: A High Performance, Open-Source Univer-
sal RPC Framework. http://grpc.io, 2017.

[36] Intel R© Software Guard Extensions Programming Refer-
ence. https://software.intel.com/sites/default/

files/managed/48/88/329298-002.pdf, Oct. 2014.

[37] Intel R© Software Guard Extensions (Intel R© SGX) SDK.
https://software.intel.com/en-us/sgx-sdk, 2017.

[38] JOHNSON, N., NEAR, J. P., AND SONG, D. Towards Practi-
cal Differential Privacy for SQL Queries. CoRR abs/1706.09479
(2017). https://arxiv.org/abs/1706.09479.

[39] JOVIC, M., ADAMOLI, A., AND HAUSWIRTH, M. Catch
Me if You Can: Performance Bug Detection in the Wild. In
Proc. of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications
(OOPSLA) (2011), pp. 155–170.

[40] KLONOWSKI, M., AND KUTYŁOWSKI, M. Provable Anonymity
for Networks of Mixes. In Information Hiding: 7th Interna-
tional Workshop (2005), pp. 26–38.

[41] KOERNER, B. I. Inside the Cyberattack That Shocked
the US Government. Wired (Oct. 2016). https://www.

wired.com/2016/10/inside-cyberattack-shocked-

us-government/.

[42] LAURIE, B. Certificate Transparency. Commun. ACM 57,
10 (Oct. 2014), 40–46. https://github.com/google/

certificate-transparency.

[43] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND

PEINADO, M. Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing. In Proc. of the 26th
USENIX Security Symposium (2017), pp. 557–574.

[44] LEIGHTON, T. Tight Bounds on the Complexity of Parallel
Sorting. IEEE Trans. Comput. 34, 4 (Apr. 1985), 344–354.

[45] LI, N., QARDAJI, W., AND SU, D. On Sampling, Anonymiza-
tion, and Differential Privacy or, k-anonymization Meets Dif-
ferential Privacy. In Proc. of the 7th ACM Symposium on
Information, Computer and Communications Security (ASI-
ACCS) (2012), pp. 32–33.

[46] LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND

JORDAN, M. I. Scalable Statistical Bug Isolation. In Proc.
of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (2005), pp. 15–26.

[47] LIE, D., AND MANIATIS, P. Glimmers: Resolving the Pri-
vacy/Trust Quagmire. In Proc. of the 16th Workshop on Hot
Topics in Operating Systems (HotOS) (2017), pp. 94–99.

[48] MACHANAVAJJHALA, A., KIFER, D., GEHRKE, J., AND

VENKITASUBRAMANIAM, M. l-diversity: Privacy Beyond
k-anonymity. ACM Trans. Knowl. Discov. Data 1, 1 (Mar.
2007).

[49] MANIATIS, P., AND BAKER, M. Secure History Preserva-
tion Through Timeline Entanglement. In Proc. of the 11th
USENIX Security Symposium (2002), pp. 297–312.

[50] MANIATIS, P., MIRONOV, I., AND TALWAR, K. Oblivious
Stash Shuffle. CoRR abs/1709.07553 (2017). https://

arxiv.org/abs/1709.07553.

[51] MCSHERRY, F., AND MAHAJAN, R. Differentially-Private
Network Trace Analysis. SIGCOMM Comput. Commun. Rev.
40, 4 (Aug. 2010), 123–134.

[52] MCSHERRY, F. D. Privacy Integrated Queries: An Extensible
Platform for Privacy-Preserving Data Analysis. In Proc. of
the 2009 ACM SIGMOD International Conference on Man-
agement of Data (2009), pp. 19–30.

[53] MOHAN, P., THAKURTA, A., SHI, E., SONG, D., AND

CULLER, D. GUPT: Privacy Preserving Data Analysis Made
Easy. In Proc. of the 2012 ACM SIGMOD International Con-
ference on Management of Data (2012), pp. 349–360.

[54] NARAYANAN, A., AND SHMATIKOV, V. Robust De-anony-
mization of Large Sparse Datasets. In Proc. of the 2008 IEEE
Symposium on Security and Privacy (2008), pp. 111–125.

[55] NATIONAL INSTITUTE OF STANDARDS AND TECHNOL-
OGY. Digital Signature Standard (DSS). FIPS PUB 186-2,
Jan. 2000.

[56] NEWMAN, L. H. How to Protect Yourself from that Mas-
sive Equifax Breach. Wired (Sept. 2017). https://www.

wired.com/story/how-to-protect-yourself-from-

that-massive-equifax-breach/.

458

http://arxiv.org/abs/1609.04340
http://arxiv.org/abs/1609.04340
http://grpc.io
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/en-us/sgx-sdk
https://arxiv.org/abs/1706.09479
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://github.com/google/certificate-transparency
https://github.com/google/certificate-transparency
https://arxiv.org/abs/1709.07553
https://arxiv.org/abs/1709.07553
https://www.wired.com/story/how-to-protect-yourself-from-that-massive-equifax-breach/
https://www.wired.com/story/how-to-protect-yourself-from-that-massive-equifax-breach/
https://www.wired.com/story/how-to-protect-yourself-from-that-massive-equifax-breach/

[57] OHRIMENKO, O., COSTA, M., FOURNET, C., GKANT-
SIDIS, C., KOHLWEISS, M., AND SHARMA, D. Observing
and Preventing Leakage in MapReduce. In Proc. of the 22nd
ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2015), pp. 1570–1581.

[58] OHRIMENKO, O., GOODRICH, M. T., TAMASSIA, R., AND

UPFAL, E. The Melbourne Shuffle: Improving Oblivious
Storage in the Cloud. In Automata, Languages, and Pro-
gramming: 41st International Colloquium, ICALP 2014, Part
II (2014), pp. 556–567.

[59] OLINER, A. J., IYER, A. P., STOICA, I., LAGERSPETZ, E.,
AND TARKOMA, S. Carat: Collaborative Energy Diagnosis
for Mobile Devices. In Proc. of the 11th Conference on
Embedded Networked Sensor Systems (SenSys) (2013), ACM,
pp. 10:1–10:14.

[60] PAPADOPOULOS, E. P., DIAMANTARIS, M., PAPADOPOU-
LOS, P., PETSAS, T., IOANNIDIS, S., AND MARKATOS,
E. P. The Long-Standing Privacy Debate: Mobile Websites vs
Mobile Apps. In Proc. of the 26th International Conference
on World Wide Web (WWW) (2017), pp. 153–162.

[61] RAVINDRANATH, L., PADHYE, J., AGARWAL, S., MAHA-
JAN, R., OBERMILLER, I., AND SHAYANDEH, S. AppIn-
sight: Mobile App Performance Monitoring in the Wild. In
Proc. of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI) (2012), pp. 107–120.

[62] REIS, C., BARTH, A., AND PIZANO, C. Browser Security:
Lessons from Google Chrome. Commun. ACM 52, 8 (Aug.
2009), 45–49.

[63] ROY, I., SETTY, S. T. V., KILZER, A., SHMATIKOV, V.,
AND WITCHEL, E. Airavat: Security and Privacy for MapRe-
duce. In Proc. of the 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2010), pp. 297–
312.

[64] SALTZER, J. H., AND SCHROEDER, M. D. The Protection
of Information in Computer Systems. Proc. of the IEEE 63, 9
(1975), 1278–1308.

[65] SAMARATI, P. Protecting Respondents’ Identities in Micro-
data Release. IEEE Trans. on Knowl. and Data Eng. 13, 6
(Nov. 2001), 1010–1027.

[66] SAMARATI, P., AND SWEENEY, L. Generalizing Data to
Provide Anonymity when Disclosing Information (Abstract).
In Proc. of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS)
(1998), p. 188.

[67] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS,
C., PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH,
M. VC3: Trustworthy Data Analytics in the Cloud Using
SGX. In Proc. of the 2015 IEEE Symposium on Security and
Privacy (2015), pp. 38–54.

[68] SHAMIR, A. How to Share a Secret. Comm. of the ACM 22,
11 (1979), 612–613.

[69] SPENSKY, C., STEWART, J., YERUKHIMOVICH, A., SHAY,
R., TRACHTENBERG, A., HOUSLEY, R., AND CUNNING-
HAM, R. K. SoK: Privacy on Mobile Devices—It’s Compli-
cated. Proc. on Privacy Enhancing Technologies, 3 (2016),
96–116.

[70] TANG, J., KOROLOVA, A., BAI, X., WANG, X., AND

WANG, X. Privacy Loss in Apple’s Implementation of Dif-
ferential Privacy on macOS 10.12. arXiv:1709.02753 (2017).
https://arxiv.org/abs/1709.02753.

[71] VALLINA-RODRIGUEZ, N., SUNDARESAN, S., RAZAGH-
PANAH, A., NITHYANAND, R., ALLMAN, M., KREIBICH,
C., AND GILL, P. Tracking the Trackers: Towards Under-
standing the Mobile Advertising and Tracking Ecosystem.
CoRR abs/1609.07190 (2016). http://arxiv.org/abs/

1609.07190.

[72] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZEL-
DOVICH, N. Vuvuzela: Scalable Private Messaging Resistant
to Traffic Analysis. In Proc. of the 25th Symposium on Oper-
ating Systems Principles (SOSP) (2015), pp. 137–152.

[73] VIEGA, J., CHANDRA, P., AND MESSIER, M. Network
Security with OpenSSL, 1st ed. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2002.

[74] WANG, T., BLOCKI, J., LI, N., AND JHA, S. Locally Differ-
entially Private Protocols for Frequency Estimation. In Proc.
of the 26th USENIX Security Symposium (2017), pp. 729–
745.

[75] WARNER, S. L. Randomized Response: A Survey Technique
for Eliminating Evasive Answer Bias. J. of the American
Statistical Association 60, 309 (1965), 63–69.

[76] XU, Y., CUI, W., AND PEINADO, M. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operat-
ing Systems. In Proc. of the 2015 IEEE Symposium on Secu-
rity and Privacy (2015), pp. 640–656.

[77] ZHANG, L., BILD, D. R., DICK, R. P., MAO, Z. M.,
AND DINDA, P. Panappticon: Event-Based Tracing to Mea-
sure Mobile Application and Platform Performance. In
Proc. of the Ninth IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) (2013), pp. 33:1–33:10.

[78] ZHENG, W., DAVE, A., BEEKMAN, J. G., POPA, R. A.,
GONZALEZ, J. E., AND STOICA, I. Opaque: An Oblivious
and Encrypted Distributed Analytics Platform. In Proc. of the
14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2017), pp. 283–298.

459

https://arxiv.org/abs/1709.02753
http://arxiv.org/abs/1609.07190
http://arxiv.org/abs/1609.07190

	Introduction
	Motivation and Alternatives
	A Systems Use Case for Software Monitoring
	Privacy Approaches, Experience, and Refinements

	The Encode-Shuffle-Analyze Architecture
	Keys, Trust, and Attack Models
	Encoder
	Shuffler
	Analyzer
	Privacy Guarantees

	Prochlo Implementation and Hardening
	Higher Assurance by using Trustworthy Hardware
	SGX Attestation for Networked Shuffler Services
	Oblivious Shuffling within SGX Enclaves
	State of the Art in Oblivious Shuffling
	The Stash Shuffle Algorithm
	Crowd Cardinality Thresholding inside SGX

	Encoding Using Secret-Sharing Cryptography
	Blinded Crowd IDs for Shuffler Thresholding
	Implementation

	Evaluation
	Stash Shuffle
	Vocab: Empirical Long-tail Distributions
	Perms: User Actions Regarding Permissions
	Suggest: Predicting the Next Content Viewed
	Flix: Collaborative Filtering

	Conclusions

