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In current commodity systems, applications have no way of limiting their trust in the

underlying operating system (OS), leaving them at the complete mercy of an attacker

who gains control over the OS. In this work, we describe the design and implementation of

Proxos, a system that allows applications to configure their trust in the OS by partitioning

the system call interface into trusted and untrusted components. System call routing

rules that indicate which system calls are to be handled by the untrusted commodity OS,

and which are to be handled by a trusted private OS, are specified by the application

developer. We find that rather than defining a new system call interface, routing system

calls of an existing interface allows applications currently targeted towards commodity

operating systems to isolate their most sensitive components from the commodity OS

with only minor source code modifications.

We have built a prototype of our system on top of the Xen Virtual Machine Monitor

with Linux as the commodity OS. In practice, we find that the system call routing rules

are short and simple – on the order of 10’s of lines of code. In addition, applications in

Proxos incur only modest performance overhead, with most of the cost resulting from

inter-VM context switches.
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Chapter 1

Introduction

While significant effort has been invested into making our computing infrastructure more

secure, the number of security incidents continues to increase at an alarming pace. The

CERT Coordination Center reports that the number of security incidents increased ap-

proximately six-fold in the three years between 2000 and 2003, after which they indicate

that incidents had become so commonplace that they were not even worth reporting [5].

Despite these statistics, businesses and individuals continue to put increasing trust in

computers to store and secure sensitive information, such as financial data, health records,

and recently, votes for government elections [22].

Though a great deal of work goes into making operating system kernels more secure,

in the vast majority of cases the vulnerabilities being exploited are not in the kernel, but

in privileged applications running as user processes. The problem lies not in the reliability

of kernel code, but in the overly permissive interface that commodity operating systems

(OSs) export, which a privileged application can abuse to make the operating system

kernel read or modify the state of any other application. On the other hand, many

applications require such privileges to run on a commodity operating system, providing

the attacker with many opportunities to take control of the operating system interface. As

a result, it seems appropriate that applications that perform security-sensitive operations

1



Chapter 1. Introduction 2

should have little or no trust in the kernel that lies on the other side of a commodity OS

interface.

There have been several attempts to address this situation. One solution is to use

a microkernel [1], which minimizes the amount of code running in supervisor mode.

However, changing the underlying architecture of the OS kernel without changing the

interface that applications use will not give applications any more protection than they

currently have. On the other hand, narrowing the application-OS interface requires a

large amount of effort to port or rewrite applications currently targeted towards a broad

commodity OS interface [35]. There have also been attempts to restrict the interface

in existing commodity OSs such as Linux with fine-grained access controls [25]. While

effective in principle, the ability to have such controls means that the policy description

must be equally fine-grained, making it very complex and time consuming to configure

such systems correctly [19]. A third solution is to run the security-sensitive application

in its own private OS on a virtual machine (VM) executing on top of a virtual machine

monitor (VMM), and thus completely remove all other applications from the trusted

computing base (TCB) of the system [13]. This private OS would only support the

one application and be specially tailored to its needs. The problem that arises is that

applications typically share data and interact with other applications through operating

system facilities such as files and pipes. Therefore, short of changing the way applications

communicate, we are forced to move the other applications into the private OS as well.

As a result, the security-sensitive application is made to tolerate other applications in its

TCB that it needs to interact with, but does not necessarily trust.

In this work, we attempt to address these issues by building a system that allows an

application developer to choose what operating system facilities should be provided by

an untrusted commodity OS, and what facilities need to be provided by a trusted private

OS. In this way, applications may continue to use functionality in the commodity OS

to communicate with other programs, and avoid having to duplicate functionality in the
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private OS that does not have to be trusted. This ability is provided by running both

commodity and private OSs on a VMM, and using a thin operating system proxy, called

Proxos, which we have designed. Proxos is a small library that mimics an operating

system by handling system calls made by the application.

Proxos takes a novel approach to allowing applications to specify their trust in an

operating system. Rather than requiring that the application developer partition the

application code into components based on whether they trust the commodity OS or

not [35], Proxos only requires the developer to partition the system call interface into

system calls that must be trusted and those that need not. Using high-level system call

routing rules specified by the application developer, Proxos transparently routes each

system call made by the application to the commodity OS if the request does not need

to be trusted, or to the private OS if it does. Specifying trust by partitioning the system

call interface has the benefit that applications currently implemented for commodity OSs

can be easily ported to Proxos with very little effort (typically by only modifying on the

order of several hundred lines of code). Consequently, the application developer is able

to remove the entire commodity OS from the TCB of their application while maintaining

reasonable performance.

In this research, we make three main contributions. First, we have designed a language

that allows developers to configure trust relationships using short and simple system call

routing rules. In practice, we find that routing rules can usually be specified in 50 lines

or less. Second, we have designed and implemented a prototype of Proxos on top of

the Xen VMM [3], with Linux as the commodity OS. We describe the modifications we

made to Xen and Linux and evaluate the amount of code that these modifications add

to each component. Finally, we demonstrate the utility of our system by porting three

existing applications: a web browser that protects user privacy, an SSH authentication

server, and an SSL certificate service used by the Apache web server. We describe the

security of the new applications, the issues we encountered in porting them to Proxos,
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as well as the performance impact of moving to Proxos. This project [36] also appears

in the Proceedings of the 7th USENIX Symposium on Operating Systems Design and

Implementation, November 2006 (OSDI 2006). The author contributed to the novelty of

the system and was also responsible for most of the implementation.

The next chapter will give some background on VMMs and how they are used in

security architectures. Next, we will give a high-level description of the system architec-

ture needed to run Proxos applications, as well as a description of the Proxos routing

language in Chapter 3. Chapter 4 follows with an explanation of our prototype, and

gives details on modifications we made to Xen and Linux, details on our Proxos imple-

mentation, and details on some example private OS functions we have written. To show

what applications one might run on Proxos, we describe three representative applications

we have ported to Proxos in Chapter 5, and evaluate the performance impact of Proxos

against a vanilla Xen/Linux system in Chapter 6. Finally, we finish with related work in

Chapter 7, and give our conclusions in Chapter 8.



Chapter 2

Background

This chapter gives an overview of virtual machine monitors (VMM). It first gives a

definition of a VMM followed by an overview of how virtualization is implemented. Next,

the security characteristics of a VMM are explored and the application of VMMs in some

recent projects is described. Finally, we conclude this chapter with a brief comparison

between VMMs and microkernels.

2.1 Definition

A virtual machine monitor (VMM) is a thin software layer that sits between an operating

system (OS) and the hardware. The VMM virtualizes the physical hardware into virtual

machine (VM) compartments. An operating system that executes inside a virtual ma-

chine has the illusion that it is running directly on the bare hardware. VMMs typically

virtualize a physical host into multiple VM compartments each running a distinct OS

instance that we call a guest OS. Guest OSs are oblivious of other guest OSs running on

the same physical host. They have the illusion that they are in complete control of the

underlying hardware, they run independently and are isolated from one another. VMMs

such as Xen [3] can concurrently execute multiple guest OSs such as Linux and Windows

XP.

5



Chapter 2. Background 6

2.2 Hardware virtualization

It is the VMM’s responsibility to virtualize the underlying hardware and to multiplex the

resources across the guest OSs. For instance, the physical hard drive could be divided

into smaller virtual subdisks and each guest OS is assigned to one subdisk. In another

example, the network interface card (NIC) is virtualized into several virtual NICs which

are then assigned to each guest OS. In addition, the physical memory of the system has

to be subdivided into distinct memory regions and the VMM must constrain each guest

OS to its own physical memory region.

In order to virtualize the hardware and confine a guest OS within its VM compart-

ment, the VMM executes at the processor’s highest privilege level. The VMM validates

and interposes on all privileged instructions that the guest OS executes to change the

state of the underlying hardware. However, virtualization is expensive without proper

hardware support. Some architectures, such as the Intel x86 architecture, are known to

for their lack of virtulization support [30]. For instance, the x86 instruction set contains

a subset of privilege instructions that fail silently instead of raising an exception when ex-

ecuted from a low privilege level. To improve the performance of VMMs, modern VMMs

take a number of different approaches. VMWare ESX [38] performs dynamic binary

rewriting of the OS binary image to convert non-virtualizable instructions into virtual-

izable ones. Xen [3] uses an invasive approach called paravirtualization which involves

modifying the guest OS. The operating system source code is rewritten and optimized

to run within the virtual machine environment.

The following sections describe how the various system resources are virtualized.

2.2.1 Virtualizing memory

Guest OSs must be constrained to use their allocated memory and the VMM must

prevent one guest OS from tampering with the memory allocated to other VMs. To
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virtualize memory, the VMM must validate and interpose on all privileged instructions

that manipulate the page tables and translation lookaside buffers (TLB) of the processor’s

memory management unit (MMU). Shadow page tables [7] is a commonly employed

technique whereby the guest OS is allowed to manipulate a set of fake page tables that

are made invisible to the processor’s MMU. The VMM is then responsible for validating

the entries of the fake page tables and to propagate the values to the MMU-visible

shadow page tables. Other VMMs such as Xen [3] rely on paravirtualization and employ

a different approach. The source code of the guest OS is modified so that all page table

modifications are made by first trapping into the VMM. The VMM then validates the

entries before applying the changes.

2.2.2 Virtualizing devices

To multiplex I/O devices among multiple guest OSs, VMMs typically split device drivers

into a frontend interface and a backend driver. The backend driver has direct access to

the physical device and multiplexes the I/O requests from the guest OSs. The backend

driver typically executes inside the VMM or in a special VM compartment reserved for

hosting device drivers [23, 12]. The frontend interface could be either a special driver

that runs inside the guest OS or a virtualized interface that emulates the physical device.

The main function of the frontend interface is to forward I/O requests made by the guest

OS to the backend driver.

2.2.3 Virtualizing the CPU, interrupts and exceptions

VMMs share the CPU among guest OSs in a way similar to the way conventional OSs

share the CPU among several user-space processes. The VMM keeps track of the execu-

tion state of each guest OS and schedules the CPU among the VMs.

Virtualizing interrupts and exceptions is also done in a straightforward manner. Since

the VMM executes at the highest privilege level of the processor, it receives all interrupts
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and exceptions that occur on the system. When an interrupt is raised, the VMM records

the interrupt and if necessary, it can jump to the interrupt handler routine inside the

appropriate guest OS.

2.3 Security properties of VMMs

This section describes the properties of VMMs that make them appealing to the imple-

mentation of security architectures.

2.3.1 Strong isolation property

As seen from the previous section, a VMM maintains a strong isolation across the VM

compartments. Each guest OS is assigned its own private set of virtual resources: virtual

devices, virtual CPU and physical memory. In addition, by validating and interposing on

resource access, the VMM prevents one guest OS from tampering with the resources of

another VM. This strong isolation property is an important aspect in the implementation

of secure systems as the effect of a compromise of an application is contained within the

confines of a VM compartment and does not affect the whole system.

VMMs pave the way for the design of more robust security mechanisms. Traditional

security mechanisms that are implemented on top of conventional operating systems

typically rely on the integrity of the kernel and are rendered useless if the OS kernel is

compromised. VMMs allow security mechanisms to be implemented outside of a guest

OS and to be resistant to a full compromise of the guest OS.

2.3.2 High security assurance

The main function of the VMM is to isolate and multiplex the hardware resources among

the VM compartments. As a result, the code size of a VMM is typically simpler and

smaller than conventional monolithic operating systems. The inclusion of device drivers
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inside the VMM could potentially increase the complexity and size of the VMM. However,

Fraser et al. [12] and LeVasseur et al. [23] demonstrate that untrusted device drivers could

be safely implemented outside of the VMM code base.

In addition to its small code size, a VMM only exports a very narrow interface to

the guest OSs. This interface is generally restricted to the isolation and allocation of

resources. The small code size reduces the risk of the VMM containing an exploitable

bug and the narrow interface limits number of ways a malicious guest OS could exploit

a bug inside the VMM. Those two factors combined allow a VMM to provide for a high

level of security assurance.

2.4 VMMs in security architectures

Since the VMM is unlikely to be subverted, one can trust the VMM to always enforce

the strong isolation across the VMs running on the same physical host. This section

reviews some recent security-related projects that leverage the isolation and high assur-

ance of a VMM. Terra [13] uses a VMM to execute multiple applications with diverging

security requirements on the same physical machine by isolating each security-sensitive

application in their separate VM. Collapsar [20] and Potemkin [37] use VMMs to host

high-interaction honeypot farms to study malicious attackers. VMMs allow them to host

multiple honeypots on a few physical hosts, which facilitates deployment and adminis-

tration, while maintaining strong isolation between the honeypots. Traditional intrusion

detection systems (IDS) that are implemented on a conventional operating system are

vulnerable if the underlying OS kernel is compromised. Asrigo et al. [2] use a VMM to

host the IDS outside of the guest OS making the system resistant against a full operating

system compromise.
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2.5 VMMs in non-security architectures

Although VMMs are very appealing for implementing secure systems, they are also used

in other non-security-related systems. A VMM provides a clean separation between hard-

ware and software by encapsulating all the software state of an OS and its applications

within a VM. This allows for the efficient live migration [6] of an entire OS between phys-

ical hosts with minimal downtime. A VMM is logically located below the OS. Hence, it

allows for the complete visibility of what is going on inside the OS. TTVM [21] uses a

VMM to help developers efficiently debug operating systems. It allows for the determin-

istic replay of OS execution and the insertion of breakpoints to pause the execution of

the OS.

2.6 VMMs and microkernels

In this section, we give an overview of microkernels and provide a brief comparison

between VMM and microkernel architectures. Traditional OS kernels are typically large

and include many services. Such OS kernels, known as monolithic kernels, are difficult

to maintain and extend. Microkernels [24] were developed as a response to improve the

design of monolithic kernels. The microkernel approach tries to keep the kernel as small

as possible by implementing many of the services commonly provided by a monolithic OS

outside of the kernel. Services such as the file system, networking, device drivers and even

memory paging are all implemented outside of the kernel in separate protection domains.

The microkernel itself is restricted to provide one primitive mechanism: inter-process

communication (IPC) among the protection domains.

VMMs and microkernels share similar goals [14] as they both try to refactor systems

into separate components. However, the two architectures differ in a number of ways.

First, while IPC is a fundamental mechanism for microkernels to enable controlled com-

munication between protection domains, VMMs instead focus on maintaining isolation
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between VMs. Hence, IPC between VMs is not part of the design of pure VMM architec-

tures. A more important difference between VMMs and microkernels is the granularity

at which the two architectures try to divide the system into separate compartments. Mi-

crokernels focus on dividing the functional units of a monolithic operating system into

separate protection domains and export to each domain the narrow IPC interface of the

microkernel. In contrast, VMMs execute entire guest OSs in separate VMs and export

to each guest OS a virtualized interface of the underlying hardware.

Despite the differences, the distinction between VMMs and microkernels has often

been blurred as numerous projects deviate from pure-VMM or pure-microkernel designs

to offer hybrid solutions. For instance, the L4 microkernel has been adapted to execute

an entire Linux OS within one protection domain [15]. Another example, Fraser et al. [12]

isolate device drivers in separate VMs and extend the Xen VMM with IPC facilities to

give guest OSs access to the device drivers. Finally, in this research project we used

a VMM to implement our prototype and we extended the VMM with IPC facilities to

allow guest OSs to make remote procedure calls (RPC) to other guest OSs. However, we

want to point out that nothing in this work is VMM-specific. We believe that a modified

microkernel could also have been used as our experimental substrate.



Chapter 3

Overview

In this chapter, we describe the overall architecture of the system, as well as a description

of the security guarantees our system provides. Then, we give a description of the Proxos

system call routing language.

3.1 System Architecture

The architecture of our system is illustrated in Figure 3.1. The system consists of several

VMs running on top of a VMM that enforces memory isolation between the VMs and

allocates CPU execution time to the VMs. VMs can make hypercalls to the underlying

VMM to access resources such as disks and other devices, or to signal or create other

VMs. A commodity OS VM runs a commodity OS that provides the facilities usually

found in a standard operating system, such as file system implementations, a network

stack and a user interface. An administrative VM (not shown in the diagram) contains

management tools used to create and manage other VMs. Applications that want to

be isolated from the commodity OS are run inside their own private VM along with a

Proxos instance. We call such applications private applications. A set of methods inside

the private VM implement a private OS, whose purpose is to handle system calls the

private application does not trust the commodity OS with.

12
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Xen VMM

Commodity OS VMPrivate VM

Private
Application

Private OS
Methods

Commodity OS Kernel

Other
Applications

Untrusted system 
calls are routed to 
the commodity OS 

kernel

Trusted system 
calls are routed 
to private OS 

methods

Host Process

Private apps can interact 
with other apps via the 

host process

All apps can access 
commodity OS resources

Proxos

Figure 3.1: The Proxos System Architecture. Proxos handles all system calls the private

application makes by routing them to either the commodity OS or the private OS.

Proxos handles all system calls made by the application. Depending on the routing

rules configured by the application developer, Proxos will route non-security-sensitive

system calls to the commodity OS via inter-VM remote procedure calls (RPCs), and

security-sensitive system calls to methods in the private OS. Both Proxos and the private

OS are implemented as libraries that are statically linked with the application. As a

result, all system calls are converted into subroutine calls to Proxos. The application,

along with Proxos and the private OS run on the bare VMM. Since only one application

runs in each private VM, all code in a private VM runs in the same protection domain.

To run a commodity application as a private application, the developer first identifies

which operating system objects the application uses and that need to be protected from

a compromised commodity OS. With this knowledge, the developer identifies the system

calls that access these objects and specifies that they are to be forwarded to the private

OS using the routing language described in Section 3.3. The private OS methods can

be implemented especially for the application by the developer, or even obtained from a

library of generic private OS methods provided by a third-party. Section 4.3 describes

some private OS methods that we have implemented.

The developer may then have to perform application source code modifications in
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order to compile it statically, and have it use the facilities that Proxos provides. However,

since Proxos exports the same system call interface as the commodity OS, these changes

are generally minor. For instance, we were able to port the Glibc library (version 2.3.3)

to Proxos with only 218 lines of source code modifications. Next, the private application,

the private OS methods, the routing rules and Proxos are all compiled into a single binary,

which can be loaded into an empty VM. The developer gives this binary image to the

VMM administrator, who registers the new private application with the VMM using the

administrative VM. Because the private application binaries are stored directly on the

VMM, they are safe from tampering by an adversary who has subverted the commodity

OS.

To run a private application, a user on the commodity OS invokes a host process, which

requests the VMM to instantiate a new VM containing the private application. From

this point on, the host process becomes the embodiment of the private application on the

commodity OS. The commodity OS attributes any forwarded system call it receives from

the private application to the host process that instantiated it. The commodity OS uses

the user ID of this host process to make decisions about what operating system objects

(such as files or sockets) the application is allowed to access, and also attributes resources

used by the forwarded system calls to the host process. In this way, the commodity OS

ensures fairness and security between requests made by private applications and requests

made by applications running natively on the commodity OS.

Through its host process, a private application can interact with other applications

running in the commodity OS by using facilities provided by the commodity OS. For

example, by configuring Proxos to forward mknod and open system calls to the commodity

OS, a private application can create a named pipe between it and a commodity OS

application. Then, by routing read and write system calls to the commodity OS, it can

communicate with the commodity OS application by making those system calls on the

named pipe. For a communication channel to be created, cooperation is required from
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both applications, who must agree to communicate, and from the commodity OS, who

must agree to fulfill the system call requests made by both applications.

3.2 Security Guarantees

While the commodity OS may at some point become under the complete control of an

attacker, we assume that the underlying VMM cannot be subverted and that it continues

to enforce isolation between VMs. We also rely on the application developer to properly

specify what sensitive components of the interface between the application and the oper-

ating system must be protected from the commodity OS. Based on these assumptions, our

system maintains the confidentiality and integrity of sensitive private application data

even in the face of a compromised commodity OS. The isolation property of the VMM

prevents the compromised OS from directly interfering with the private application. The

compromised commodity OS can only tamper with system calls that are routed to it by

Proxos. However, since these system calls were identified as non-security-critical by the

developer, the compromised OS should not be able to affect the private application in any

security-critical way. We point out that if the routing rules are specified incorrectly, or if

a bug in the application causes it to send sensitive data to an interface that the developer

believes should have only held non-sensitive data, then sensitive data could be leaked to

the commodity OS. In addition, while the confidentiality and integrity of sensitive pri-

vate application data are maintained, a compromised OS can impact the availability of

a private application by not performing the system calls that are forwarded to it.

So far, we have considered protecting the private application from a potentially ma-

licious OS. However, one could envision the case of a buggy private application that

could negatively affect the commodity OS through the system calls it forwards to the

OS. However, our design restricts the capabilities of the private application within the

commodity OS to that of its host process. Since the private application only has the
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rights of the user who invoked it, our system does not weaken any existing mechanism

that guarantees fairness among users and processes running on the commodity OS.

3.3 The Proxos Routing Language

Proxos may route each invocation of a particular system call differently depending on

rules specified by the application developer. For example, Proxos may route read system

calls differently depending on what file is being read. We wish to provide a simple

and intuitive way for an application developer to partition the system call interface. In

principle, one could specify a routing rule for each of the over 200 system calls that

a commodity OS like Linux provides, but this would be complex and time consuming.

Further, we do not believe it necessary in most cases to have such fine-grained control over

system call routing. We organize system calls by the resources they access and create a

Proxos routing language with which the developer can specify routes for those resources.

In this language, the operating system provides six resource classes to an application:

persistent storage (disk), user interface, network, randomness, system time, and memory.

Peripheral devices such as printers, USB devices, etc, are abstracted by the OS into file

objects and are thus part of the persistent storage category.

While it is possible to provide routing rules for all six resources, we have found that

this is unnecessary. An application may choose to forward system requests to the com-

modity OS for two reasons: either it wants to use the resource as a communication channel

with another application, or it does not need the resource to be trusted and thus wishes

to include the resource outside of its TCB. As a result, persistent storage, user interface

and the network are routed by Proxos because these are resources that applications either

use to communicate, or may not need to trust. System time and randomness are never

routed because they cannot be used as communication channels, and are provided by

the underlying VMM without increasing the application’s TCB. Finally, memory related
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# Rules Section
# route accesses to /etc/secrets to private OS
DISK:("/etc/secrets", priv_fs)
# route accesses to UNIX domain socket bound
# to /tmp/socket and TCP socket bound to peer
# 192.100.0.4 port 1337 to private OS
NETWORK:("unix:/tmp/socket", priv_unix),

("tcp:192.100.0.4:1337", priv_tcp)
# route all accesses to stdin, stdout
# and stderr to private OS
UI: (*,priv_ui)

# Methods Section
# individual methods in the private OS
# that are bound to system calls
priv_fs = {
.open = priv_open,
.close = priv_close,
.read = priv_read,
.write = priv_write,
.lseek = priv_lseek

}

Figure 3.2: Routing Example. This example shows a simple set of routing rules that pro-

tects operations on a particular file, two network sockets, and the standard I/O streams.

system calls (such as brk and mprotect) are used to indirectly manipulate page table

entries. However, a private application would never trust a commodity OS with control

of its page tables since this would imply granting the commodity OS access to the private

application’s memory. Therefore, it does not make sense to route memory-related system

calls. All non-routable system calls are directed to functions provided by Proxos.

Based on this model of operating system resources, we have designed a simple language

that allows the application developer to specify which system calls will be routed to the

commodity OS, and which to the private OS. Figure 3.2 shows a stripped-down example

of a routing specification in our language. Lines prefixed with a “#” are comments. The

Rules section consists of three declarations, one for each of the routable resource classes.

The specifications for the disk and network resource classes are a list of tuples, where each

tuple describes the particular resource, and a table of function pointers used to access the

resource. In this case, the specification for the user interface (UI) has “*” as a resource
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description because the application wants to route all three standard I/O streams (i.e.

stdin, stdout, and stderr) to the private OS. The example also specifies that access to

any file with name /etc/secrets should be handled by methods in the private OS. The

same is true for system calls to any UNIX domain socket bound to /tmp/socket and to

any TCP socket with a peer IP address of 192.100.0.4 on port 1337. By default, Proxos

will route all system calls to resources that do not match any rule to the commodity OS.

The Methods section defines which methods in the private OS will handle system calls

from the application. When the application attempts to open the file /etc/secrets,

Proxos will call the priv open method in the private OS to handle the request and

return a file descriptor. All subsequent system call operations (such as close, read,

write and lseek) on the file descriptor associated with that file will also be forwarded

to the associated private OS method in the table. On the other hand, any system call on

the file that is not in priv fs will be forwarded to the commodity OS. Method tables for

priv ui, priv unix and priv tcp are not shown in the figure, but must also be specified

by the application developer.

Rather than specifying trust policies by partitioning code, or by restricting abilities,

specifying policies by partitioning interfaces to resources results in a more compact and

intuitive policy description. Further, our specification language allows the application

developer to use the same names for resources as those in the source code, making the

routing rules easier to write and understand.



Chapter 4

Implementation

There were several requirements that dictated which underlying system we chose to

implement our Proxos prototype on. First, we needed a way of “hoisting” a commodity

OS to a lower privilege level and inserting our own privileged code beneath it. Second,

the system had to provide isolation between the private applications and the commodity

OS, but at the same time allow some controlled communication between them. In light

of these requirements, we eventually settled on using the Xen VMM [3] and Linux as our

commodity OS for our experimental substrate. However, we believe that the features

required by our system could be provided by any VMM or microkernel.

In this chapter, we describe the three main components we implemented in building

our prototype. First, we describe our modifications to Xen and Linux to provide support

for starting private applications, and to forward system calls between VMs. Second,

we describe our Proxos operating system proxy prototype, which routes system calls to

either the commodity Linux kernel or to private OS methods. Finally, we describe some

private OS methods that we have implemented.

19
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1. Host process makes 
pr_execve(app_name)
system call.

pr_execve system call
2. Linux allocates a shared 

communication buffer.
3. Linux passes the name of the 

application and addr of the 
buffer to VMM, and starts the 
private application.

Create VM hypercall
4. VMM creates the private 

VM and passes the addr
of the buffer to the VM.

5. VMM associates the buffer
with the new VM ID.  This
is used later in (9).

6. VMM returns VM ID back 
to Linux.

Proxos/VM start-up
8. Proxos maps the buffer 

into its address space 
with a hypercall.

Host Process Linux Kernel VMM Private VM
(Running Proxos)

Hypercall return
7. Linux associates the new 

VM ID with the PID of the 
host process.  Future system 
calls from this VM ID will be 
executed with this PID.

Mapping request hypercall
9. VMM checks that the 

VM ID requesting the 
mapping matches the 
VM ID created in (4) and 
saved in (5).  

Figure 4.1: Private Application Start-up Sequence. The steps are arranged into columns

with the titles at the top indicating what system component each step takes place in.

4.1 Modifications to the VMM and the Commodity

OS

Modifications made to Xen and the Linux kernel can be categorized into three compo-

nents: the start-up and shutdown of private applications, a facility for forwarding system

calls between VMs, and a trusted path facility.

Since the Linux kernel and private applications do not trust each other, the private

application start-up process must make several guarantees. First, the private application

must not be able to gain any privileges beyond those of its host process. This implies

that the Linux kernel must always be able to attribute system calls routed to it to the

host process that initiated the private application forwarding the system call. Second,

a compromised commodity OS should not be able to initialize a private application in
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an unsafe state. Finally, the private application should not be able to access any Linux

kernel memory that the kernel has not authorized it to.

The VMM administrator registers private applications with the VMM via a configura-

tion file. This file assigns a name to each private application and sets start-up parameters

for each private VM. Later, when the host process starts a private application, it will

use this name to indicate to the VMM which private application to start. Figure 4.1

describes the private application start-up process used in our prototype in detail.

In Step 1, private applications are started using the pr execve system call that we

added to the Linux kernel. pr execve is the private application analog to the execve

system call and, like execve, takes the name of the private application to be started as

its argument. pr execve causes the current process to become the host process for the

private application.

In Step 2, the Linux kernel allocates a shared buffer that is used later for system call

arguments forwarded to it from the private application. The kernel passes the address

of this buffer to the VMM in Step 3, and at the same time signals the administrative

VM to start a new VM for the private application with a hypercall we introduced. The

administrative VM will only start the private VM with parameters set by the system

administrator, ensuring that even a compromised Linux OS can only start private appli-

cations from a known, safe state. Note that a compromised Linux OS may start a private

application different from the one the host process requested and attempt to get the user

to use the wrong private application. To detect this, Proxos relies on application level

safeguards such as the trusted path used in our web browser or cryptographic keys used

in our SSH private server. We will discuss both of these applications in chapter 5.

In Steps 4 to 7, the VMM creates a new private VM for the application, informs

the Proxos in the private VM of the location of the shared communication buffer, and

informs the Linux OS of the identity of the new VM (by giving it a VM ID). Then, in

Step 8, Proxos tries to map the shared buffer into its address space via another hypercall.
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Originally a privileged hypercall, we modified this hypercall so that private VMs may use

it. However, we also added an extra check to ensure that the VM making the mapping

request in Step 9 is the same as the one to which the VMM originally passed the shared

buffer address in Step 4.

Private application shutdown is much simpler as there are no security guarantees to

be made. If the private application initiates the shutdown, then it informs the VMM

via a standard hypercall. We extended this hypercall to notify the Linux kernel, so that

the kernel may terminate the host process accordingly. Even if the private application

has not terminated, the kernel may still forcibly destroy the host process (by killing the

process). However, the kernel does not have the privileges to force the private applica-

tion to shutdown, so by killing the host process, the kernel can only revoke the private

application’s ability to access commodity OS resources.

Another set of modifications allow private applications to forward system calls to the

Linux OS. The goal is to reduce the latency of forwarded system calls by reducing the

number of domain crossings. Xen already provides a facility that allows VMs to send

events to each other. By combining this with the shared buffer between the Linux OS

and the private application, we were able to add a simple RPC mechanism to Xen. We

then made modifications to the Linux kernel to allow it to efficiently execute forwarded

system calls. When the Linux kernel receives the system call arguments, it determines the

appropriate host process to wake up by examining the source of the RPC and comparing

that to information it recorded in Step 7 of the start-up sequence. As the host process

is about to be scheduled, a trip into user-space can be saved by placing the system call

arguments in the appropriate registers and transferring control directly to the system

call handler in the kernel. When the system call handler completes, the kernel sends the

return value back to the private application via an RPC response message and returns

the host process to the queue it was in before the forwarded system call arrived. As a

result, our prototype handles forwarded system calls without any domain crossings in
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the Linux OS.

Finally, we also needed the VMM to provide a trusted path facility so that private

applications can communicate directly with the user without having to trust the com-

modity Linux OS. This would prevent a compromised Linux OS from masquerading as

a private application, as well as prevent a compromised Linux OS from eavesdropping

on communication between a user and a private application. To support this, the VMM

provides user interface facilities such as a console driver and graphical window system.

If the private application wants to use these facilities, it routes system calls on standard

I/O streams (i.e. stdin, stdout and stderr) to private OS methods, which will forward

the requests to the VMM console driver. Similarly, it routes X window operations to pri-

vate OS methods that will translate them into the appropriate operations on the VMM

window system. The implementation of minimal trusted window systems on secure ker-

nelized systems has been studied in the literature [11, 34]. Rather than re-implement

these in our prototype, we simply provided an emulation of their functionality, but do

not make any effort to reduce the amount of code that is added to the VMM. We did

this by running an X server on Xen’s administrative VM and using nested X servers to

give each VM its own separate X interface.

We found that modifying Xen and Linux to allow private application start-up and

shutdown, as well as forwarded system calls, had very little impact on the size of the

Xen TCB. Many of the facilities needed were already present in the Xen VMM and we

only had to make these accessible to unprivileged VMs and add checks to make sure they

could not be abused. The only component that increases the code base of the VMM

significantly is the graphical user interface. A significant portion of this component can

be implemented outside of the trusted computing base of the VMM [11, 34], but exploring

the design of trusted window systems was not a goal of our prototype.
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4.2 The Proxos Prototype

Our prototype is derived from the Minimal OS example that comes with the Xen 2.0

source code. Proxos runs in a single address space and supports only one private appli-

cation. Our current implementation is also single-threaded, although we plan to support

threads in the future. Apart from providing basic memory and page table management,

Proxos also contains: a block driver that supports raw accesses to a private block device

exported by the VMM; and a console driver that provides direct access to the Xen con-

sole. Our prototype does not provide a TCP/IP stack or a network driver. We found

these unnecessary as many security-sensitive applications already assume the network is

not trustworthy and employ cryptographic safeguards such as SSL to protect network

communications. This allows us to safely reuse the network services of the commodity

OS.

Proxos uses operating system abstractions to determine where to route system calls at

run time. In the case of Linux, the abstraction used by applications to access resources is

a file descriptor. Initially a file descriptor is bound to a resource via a system call such as

open or socket. Subsequent operations on that resource are then performed by naming

the descriptor in the system call.

The design of Proxos is very simple, and is similar to the way virtual file system

methods are implemented in Linux. Routing rules for the application are converted into

lookup tables, which are then compiled into the Proxos library and linked with the private

application. When descriptors are created, Proxos compares the name of the resource

they are being bound to with the routing rules specified for the application. For example,

if a file descriptor is being created via an open system call to a file, Proxos compares the

name of the file being opened with the list of tuples provided in the DISK resource class.

If a match is found, Proxos uses methods from the method table specified in the matching

routing rule to handle subsequent system calls on the descriptor. Proxos provides a set

of default methods which route untrusted system calls to the Linux OS. If a routing rule
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specifies a private OS method to be called, Proxos transfers control to the appropriate

location in the private OS.

The private application uses file descriptors to name objects in both the private OS

and the commodity OS. File descriptors in the commodity OS are allocated from a name

space independent of the one the private application is using. Upon opening a new

file in the commodity OS, Proxos may find that the commodity OS has assigned a file

descriptor number that the private application is already using to name another object

in the private OS. As a result, Proxos translates between the file descriptors used by the

private application, and those used in the commodity and private OSs.

Most routable system calls can be routed transparently to the Linux OS. However, the

fork, execve and select system calls have slightly different semantics. When forwarded,

the fork system call will cause the host process in the Linux OS to fork. The forwarded

fork creates concurrency on the Linux OS side, but the application in the private VM

will still contain only a single thread of execution, so parent and child code must be

executed sequentially. After the fork, the private application specifies whether system

calls it forwards to the Linux OS should be executed by the parent process or the child

process. This is done by setting the target PID flag in Proxos to indicate the process

ID (PID) of the process that should be the recipient of system calls forwarded to the

Linux OS. The value of this flag accompanies every system call Proxos forwards to the

Linux OS. The Linux OS checks that the PID specified by the flag belongs to either

the host process, or a child of the host process. These semantics imply that forwarding

fork system calls requires the developer to make any concurrent code sequential in the

private application. To support standard fork semantics, the underlying VMM needs to

be capable of duplicating the address space of the private application (preferably using

copy-on-write for efficiency). While we did not support this in our prototype, we note

that others have proposed adding such functionality to Xen [37].

The semantics of forwarded execve system calls are also slightly different. If the
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execve system call is made without a fork, the host process will terminate and a new

program will take its place. If the new process is not willing to host system calls forwarded

to it, the private application will be unable to forward system calls to the Linux OS.

More commonly, a recently forked process will execute execve. In this case, the private

application will lose the ability to forward system calls to the child, but retain the parent

as the host process. More details on how fork and execve are used in private applications

will be given in the description of our port of the SSH server in Section 5.2.

Finally, select has a slightly different behavior under Proxos than its Linux coun-

terpart. select allows applications to listen on several file descriptors simultaneously

and notifies them when there is activity on any of the descriptors. In Proxos, an appli-

cation may execute a single select on file descriptors from both the commodity OS and

the private OS. However, Proxos forwards system calls by making synchronous inter-VM

RPCs. This limitation of our current prototype prevents Proxos from routing select

system calls to both OSs simultaneously, so it serializes them and imposes a time-out

on each select call. Proxos will alternate between which OS to execute select on first

to ensure no file descriptor is starved. The poll system call has the same behavior as

select in our system. The consequence of this is that events on file descriptors that

happen close together may not be delivered to the private application in the same order

that they occurred because Proxos may be polling the other OS instance when the first

event occurs. However, we have not seen this to be an issue and, to the best of our

knowledge, Linux makes no such ordering guarantees either.

4.3 Private OS Methods

In our prototype, we have implemented two example private OS components: one that

implements a private file system, and one that implements a trusted path by forwarding

standard I/O streams and X window messages to the VMM.
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A private file system allows the private application access to persistent storage that

is protected from tampering by the Linux OS. We wanted to implement this by adding

as little code to the private VM as possible, as any code we add increases the TCB of the

application. Rather than implement an entire file system, our private file system out-

sources most of its functionality to the commodity Linux OS through forwarded system

calls, but maintains the secrecy of any information stored by encrypting all data before

writing it to the Linux file system [18]. To protect the data from tampering and replay,

hashes of all files stored on Linux by the private file system are kept on a private block

device available directly from the underlying VMM. Doing this significantly simplifies

the file system implementation, as all that is needed are the cryptographic functions,

some code to manage file system buffers, and block device drivers to store the file sys-

tem hashes. The drawback is that a compromised Linux OS could potentially deny the

private application access to files that the private file system has saved. However, our

applications typically depend on the Linux OS for other services as well, so no forward

progress guarantees are broken by this.

In our prototype, the private OS implements a trusted path by routing operations on

standard I/O streams and the X server’s socket to the VMM. The private OS methods

translate system calls on standard I/O streams to operations on Xen’s console driver

and route system calls on the X server to the administrative VM. A host process on

the administrative VM then executes the routed system calls on a socket connected to a

nested X server instance that is separate from the one that the commodity Linux OS is

using.

4.4 Discussion

With the exception of modifications to the Linux kernel, all components implemented in

our prototype will be part of the application TCB. As a result, we placed a lot of emphasis
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Component Lines of Code

VMM modifications 656

Linux modifications 4380

Proxos 7348

Private File System 1817

Trusted Path 1313

Table 4.1: Number of lines of code in each component in our Proxos prototype. The

VMM modifications do not include the X server running in the administrative VM.

on keeping the impact on code size and complexity small, especially with respect to the

VMM. One caveat is that Proxos does not need to support every system call that Linux

exports. For example, Proxos does not support system administration calls, such as those

to control swap devices, or load and unload kernel modules, as private applications will

not need to make such requests. Out of the 289 system calls of the Linux 2.6.10 kernel,

our Proxos prototype only needs to support (either internally or by forwarding) 56 of

them to run most applications. However, we fully expect this proportion to increase as

Proxos matures. The size of the components in our prototype are given in Table 4.1.
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Applications

In this chapter, we describe three applications that we have ported to Proxos. We selected

applications that will benefit from partially trusting a commodity OS, and illustrate inter-

esting issues that arose when porting them. Our first application is a secure web browser

that protects user information. Our second application is an SSH server that protects

system-critical information such as passwords and host keys even if the commodity OS

is compromised, but still allows users who login to gain a full shell on the commodity

Linux OS. Our final application is an SSL certificate service that we use with an Apache

web server to implement SSL transactions. In this case, the private keys corresponding

to the certificate are protected.

5.1 Secure Web Browser

A serious threat to the security and privacy of users is spyware, which is malicious software

that is surreptitiously installed on machines and monitors the web surfing habits of users.

While the goal of most spyware is to collect usage data for marketing, spyware has been

shown to decrease the security of user system by recording and transmitting confidential

information that it has collected [27, 32].

Spyware collects information by either monitoring the user’s keystrokes, or by scraping

29
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files where web browsers have recorded user information. We ported Dillo [8], a simple

graphical web browser, to Proxos and configured the routing rules so that all user I/O is

directed to the trusted VMM user interface, thus creating a trusted path, and all sensitive

data that Dillo saves to disk is directed to our private file system. No other rules are

specified, and thus other network operations such as HTTP requests are routed to the

Linux OS by default (for extra security, the user should use HTTPS to encrypt traffic

between the browser and the web server to prevent any spyware on the Linux OS from

observing or tampering with it). Similarly, any documents or executables that the user

downloads from the Internet are saved to the Linux file system. In addition, any external

helper applications that Dillo invokes will be transparently created and executed on the

Linux OS.

For the most part, no source code modifications were required to port Dillo. The

only necessary modifications were due to Dillo’s use of graphical themes, which are im-

plemented as code that is dynamically loaded at run time based on the theme the user

selects. In our prototype, it is not safe to load code from the Linux OS, since an adver-

sary may have tampered with it. To support the default theme, we removed the code

that loads themes at run time and statically linked the default theme into the Dillo pri-

vate application. In theory, code could be safely loaded from the Linux OS if encrypted

and accompanied by a valid signature that the private application could verify, but our

current prototype does not support this.

5.2 SSH Authentication Server

Often when attackers compromise a system, the system administrator is not only forced

to rebuild the entire system from scratch to ensure that any malicious software has been

removed, but also to perform the arduous task of tracking down every user and ensuring

that they change their passwords in case the attacker has been able to learn some of
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the old passwords. Similarly, she must change any cryptographic host keys, which the

machine uses to authenticate itself, and distribute new keys to all parties that the machine

interacts with. Being able to ensure the secrecy of user passwords and the host keys of

a system after a security compromise would save the administrator significant time and

effort.

To demonstrate the utility of Proxos in protecting the secrecy of sensitive data, we

ported the OpenSSH authentication server (version 3.9p1) to Proxos. The OpenSSH

server accesses several sensitive resources including configuration files, the password file

and the host key file. We wrote routing rules to store the password file, host key, and

global configuration files on the private file system. The SSH server also performs network

operations, but no rules are specified for NETWORK resources since OpenSSH is designed to

function with an untrusted network. Other than the routing rules, only two modifications

involving the fork system call were required to implement a private SSH server applica-

tion. The architecture of our new private SSH server is shown alongside the architecture

of the original SSH server in Figure 5.1. One modification arose because the SSH server

requires some concurrency to allow multiple users to authenticate simultaneously. The

native version of SSH handles this by having a parent process listen on the SSH port, and

then spawning a child for every connection the parent receives. Our private SSH server

still has the listening parent as a native Linux application, but implements the children

as private applications. When the listening parent detects a new connection, it forks a

child (on the Linux OS), which then uses pr execve to instantiate a private SSH server

VM, and in doing so becomes the host process for the new VM.

The private SSH server starts-up and reads the sensitive data from the private file

system, and then proceeds with user authentication. If a user logs in using private key

authentication, the private SSH server will need to access the public keys the user has

placed in a file in their home directory on the Linux OS. Proxos provides access to the

user’s keys without any extra configuration – since the user’s key files do not match any



Chapter 5. Applications 32

Set up pipe & 
start shell

Linux OS

Encrypted 
Traffic

Linux OS

SSH listening
parent

SSH 
Server

Command
Shell

Network
Private Application VM

SSH listening
parent

SSH Host 
Process

Network

Private SSH 
Server

Command
Shell Linux 

Pipe

Linux 
Pipe

Encrypted 
Traffic

Native SSH Server Private SSH Server

Password 
File &

Host keys

Password 
File &

Host keys

Figure 5.1: Comparison of the original SSH server and our private SSH server.

routing rules, requests to them will be forwarded to the Linux OS by default. If the

user authenticates successfully, the native SSH server forks a child that will execute a

command shell. Before the child starts the command shell, the native SSH server creates

a pipe between itself and the command shell redirecting all input and output from the

shell to itself, so that it can encrypt any shell output before sending it to the network,

and decrypt any shell input coming from the network. In our version, the private SSH

server changes the Proxos target PID flag to point to the new child after the fork, and

then executes the child code, forwarding the system calls required to set up the pipe and

start the command shell. After this, it changes the target PID flag back to the parent

and executes the SSH server code. The shell will pipe all input and output through the
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host process to the private SSH server, which encrypts and decrypts data as appropriate

between the shell and the network.

5.3 SSL Certificate Service and Apache

Next, we explored the performance impact of Proxos on Apache with SSL. As in the SSH

server, the Apache server relies on concurrency so we only ported the crypto library

portion of the OpenSSL library to Proxos, and left the Apache web server on the Linux

OS. The crypto library uses confidential private keys stored in the SSL certificate, which

would be protected if the web server was compromised. Our port uses Apache version

2.0.52 and version 0.9.7g of the OpenSSL library.

To setup SSL sessions, Apache makes calls to the OpenSSL library, which uses the

OpenSSL “engine” interface to invoke the crypto library. We modified the engine in-

terface to spawn a private application that will use the private key in the server’s SSL

certificate to sign challenges during an SSL handshake. Unfortunately, this operation is

called on every HTTP request that uses SSL (i.e. an HTTPS request), and would give

very poor performance because each request results in the instantiation and shutdown of

a private VM. To remove the frequent instantiation and shutdown of the private VM, we

modified Apache to spawn a process when it starts-up, which will act as the host process

for a single private SSL certificate application. Apache was also modified so that a portion

of the shared buffer between the host process and the private application is mapped into

the address space of each Apache thread. To process an HTTPS transaction, a thread

enqueues the signing request on the shared buffer, sends a signal to Proxos for processing

and sleeps until the request has been processed. Since multiple Apache threads will be

accessing the shared buffer, we also added the appropriate synchronization between the

threads to prevent races.
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Application Rules LOC Modified

Dillo 53 22

SSH Server 35 108

Apache & OpenSSL 28 667

Glibc 218

Table 5.1: Size of routing rules and number of LOC modified for each application.

5.4 Discussion

The size of our routing rule descriptions, along with the lines of code that were modified

for each of the applications, as well as Glibc (version 2.3.3), is given in Table 5.1. In

porting these applications we found that what often takes some time are modifications

to application source code that are required to support operations like fork and execve

in the private SSH server, or to statically link in dynamic code in Dillo. Apache required

more effort since several threads could make challenge-signing requests simultaneously,

and this required careful arbitration and synchronization to preserve performance. We

find these results encouraging – Proxos enables the application developer to remove the

entire commodity OS kernel and privileged applications from the TCB of the private

application by modifying on the order of several hundred lines of code in the application,

and writing around 50 lines of routing rules.



Chapter 6

Evaluation

The performance of VMMs versus native operating systems has been well studied in the

literature [3, 4]. To ascertain the overhead introduced by Proxos, we compare the per-

formance of our system against a system running an unmodified Linux kernel executing

on an unmodified Xen VMM. We first use microbenchmarks to better understand the

components that contribute to the cost of making forwarded system calls from a private

application. Then we evaluate the performance of the SSH and Apache/SSL Certificate

applications described in chapter 5 on our system. All tests were performed on a machine

with a 3GHz Intel Pentium 4 processor, 1GB of RAM, a 7200 RPM Serial-ATA disk with

8.9 ms seek time, and a 100Mb Ethernet NIC. Our prototype is built on Xen 2.0, with

Fedora Core 3 Linux running a 2.6.10 kernel as the commodity OS, and its performance

is compared against vanilla versions of the same software. For our runs, 768MB of RAM

were allocated to the commodity OS, and the rest was used for Xen, the administrative

VM, and private applications.

6.1 Microbenchmarks

To analyze the overhead of a system call forwarded from the private application to the

Linux OS, we must first understand the individual components that make up a forwarded

35
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Figure 6.1: Breakdown of costs incurred in a forwarded system call.

system call. These costs are illustrated in Figure 6.1. In Step 1, Proxos sends an event to

the Linux kernel, notifying it of the forwarded system call, and then yields the processor,

causing a VMM context switch into the Linux OS VM. In the Linux kernel, a virtual

interrupt handler receives the event and enqueues the system call request on the process

descriptor of the host process. In Step 2, we wait until the host process is scheduled. On

a lightly loaded system, this incurs only the cost of another context switch within the

Linux kernel, but may take more time if the Linux kernel is heavily loaded. After the

Linux kernel executes the system call, it will not yield the processor back to the VMM

until either the VMM scheduler decides to preempt the Linux OS VM, or the kernel runs

out of runnable processes and schedules the idle task in Step 3. Finally, in Step 4, another

VM context switch occurs and Proxos can receive the result of the system call. While

this accounts for four context switches, there is actually a fifth context switch because

Xen will schedule the administrative VM in either Step 1 or Step 4.

We ran the system call latency benchmarks in the LMbench 2.5 microbenchmark

suite [26] in a private VM configured to forward all system calls to an idle Linux OS VM,

and summarize our results in Table 6.1. We also used the context switch microbenchmark

in LMbench and measured the minimum cost of a context switch to be 2.88µs on our
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Benchmark Linux Proxos Overhead

NULL system call 0.37 12.88 12.51

fstat 0.57 14.28 13.71

stat 8.76 25.98 17.22

open & close 14.57 47.18 32.61

read 0.45 13.51 13.06

write 0.42 13.24 12.82

Table 6.1: Forwarded system call latencies on LMbench microbenchmarks. All measure-

ments are given in µs.

machine. As a result, the expected five context switches would take approximately 14µs,

which tracks well with the measured results. This cost is added to every system call

except for stat and open, whose larger overhead can be explained by the fact that each

context switch changes virtual to physical page mappings, and causes a TLB flush. Since

both stat and open take a filename as an argument, the Linux kernel must make several

queries to the buffer cache to find the correct inode (LMbench ensures that the inodes

required to access the files are cached in memory), which will result in TLB misses. These

misses do not occur when the benchmarks are run directly on Linux because the kernel

never switches to another process, so no context switches occur.

6.2 Application Benchmarks

We now evaluate the overhead imposed on our private SSH server and SSL certificate

service. Like our microbenchmarks, applications incur overhead when system calls are

routed to the commodity OS. To evaluate the average overhead a forwarded system call

experiences, we used an SSH client to login to our private SSH server over the loopback

device and measured the time taken to copy files ranging from 32MB to 256MB over the
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SSH connection. Each file transfer was performed five times on both the private SSH

server and a native SSH server running on Xen. The standard deviation was less than

1.5% across our measurements. Figure 6.2 plots the average difference in time taken by

the private SSH server over the native SSH server to transfer a file, against the number

of forwarded system calls the private SSH server made. We perform linear regression on

the average values and found a correlation of 0.92, indicating that the overhead is well

correlated with the number of system calls. We then estimate the start-up component

to be 0.72s and the per-system call cost to be 15.7µs. For large files, where the cost of

start-up has been amortized, the private SSH server only takes 6.0% longer to transfer

the same file as the native SSH server. Note that since this overhead is comparable to the

variance in our measurements, the estimated system call overhead should not be taken

too literally, and is merely a rough approximation.

We suspected that a large part of the start-up cost for the private SSH server is due

to VM creation. We confirmed this by measuring the time to start an empty private VM,

which is approximately 0.35s. Starting a Xen VM requires the use of several user-space

scripts in the administrative VM, making it very expensive, and we have not made any

effort to optimize this operation. The remaining 0.37s is the time the private SSH server

uses for initialization, which includes the time it takes to read in sensitive data from the

private file system. This operation requires several cryptographic operations to decrypt

the data and verify the authenticity of files stored on the commodity OS file system.

To evaluate the performance impact of our private SSL certificate application, we used

Mindcraft’s Webstone benchmark [39] extended with SSL. We configured the benchmark

with 150 SSL clients, which was enough to fully load an Apache server on Xen. The same

number of clients was used to measure the amount of bandwidth our Proxos-enabled

web server could support. We expected the Proxos-enabled web server to introduce low

overhead because HTTPS transactions mainly perform computation and make very few

system calls. Our experiments show that there is actually a slight increase in throughput
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Linear Regression:
y  = 15.7*10-6x  + 0.72
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Figure 6.2: SSH benchmark. We plot the overhead of the private SSH server versus the

number of system calls forwarded to Linux.

– 5.04Mb/s for the Proxos-enabled web server as compared to the native web server’s

throughput of 4.75Mb/s. From this, we surmise that the overhead Proxos introduces is

very low and that the changes we made porting the system likely perturbed the system

in such a way as to produce a slight performance gain.



Chapter 7

Related work

We compare our work with other research projects along three axes. We begin by com-

paring our system with projects that provide applications with some degree of flexibility

in customizing their operating system. Next, we look at projects that enforce access

control policies to improve the security of operating systems. Finally, we explore recent

research projects that leverage the isolation properties of a VMM or a microkernel to

isolate security-sensitive applications.

7.1 Systems with flexible architectures

Traditional operating systems export generic abstractions that are used to support a

broad class of applications. However, by restricting applications to a generic interface,

traditional operating systems limit the functionality, performance and simplicity of appli-

cations. Exokernel [10] and Denali [40] provide a flexible architecture that allows appli-

cations to customize the underlying system to meet their specific requirements. Instead

of exporting traditional OS abstractions, the Exokernel system takes the unconventional

approach of directly exporting the low-level interface of the hardware to higher-level

applications. Similarly, Denali virtualizes the hardware and exports to higher-level ap-

plications a simplified VM abstraction that enhances performance and simplicity. An

40
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application running on those systems implements its own LibraryOS which contains ser-

vices such as virtual memory, scheduling, IPC and filesystem that have been tailored to

the application’s requirements. Exokernel and Denali are similar in structure to Proxos

as they both allow applications to customize and implement their own library of system

services. In Exokernel and Denali, applications customize their LibraryOS for perfor-

mance and functionality. In contrast, on Proxos, applications customize their LibraryOS

to provide for trusted services. As for services that do not need to be trusted, applica-

tions can exploit Proxos’s system call routing facilities to reuse the services found in the

commodity OS. Proxos also differs from these systems is in its objective. While the goal

of the former systems is to give applications some ability to customize the underlying OS

for performance and functionality, Proxos gives applications the ability to customize the

trust relationship between applications and the OS kernel.

7.2 Operating system security

Several projects try to enhance the security of operating systems by enforcing the princi-

ple of least privilege [31] where processes are assigned with the minimum set of privileges

required to perform their job. Eros [33] and KeyKOS [29] are capability-based operat-

ing systems that enforce the principle of least privilege. In a capability-based system,

all objects are accessed by means of a capability, which is a token that gives its holder

the ability to access a particular resource. In Eros and KeyKOS, processes are given

the minimum set of capabilities needed to perform their task. The capabilities are un-

forgeable and tamper-proof. All transfer of capabilities among processes is mediated by

a reference monitor that imposes access control rules. By restricting processes to their

minimum set of capabilities, capability-based systems limit the damage that can be done

by a compromised process.

Asbestos [9] is a new OS designed to control the flow of information in the sys-
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tem. In Asbestos, security labels are assigned to processes. Using the labels, Asbestos

can specify the interaction among processes and control the flow of information to en-

force mandatory access control (MAC) policies. To support high-performance services,

Asbestos introduces an event process abstraction that allows a single-process server to

service several concurrent users while still isolating the private data and states of the

users. Asbestos’s event process enhances the security of services by containing the effects

of an exploit to affect only one user’s data.

While the above systems provide useful mechanisms to contain the damage of an

exploit, they are all based on architectures that differ significantly from traditional com-

modity OS. Applications wishing to harness the security properties of those systems have

to be rewritten for the new architectures. In contrast, Proxos retains the same appli-

cation interface as a commodity OS and security-sensitive applications wishing to take

advantage of Proxos do not require extensive porting. Further, applications that do not

require the security advantages of Proxos can remain in the commodity OS and suffer no

overhead.

SELinux [25] implements MAC mechanisms in the Linux kernel that allow for the

enforcement of fine-grained MAC policies. With SELinux, each process is associated with

a domain and each object is associated with a type. A trusted security administrator

configures the system with a set of rules that dictates the allowable access of domains to

types and the allowable interaction between domains. SELinux does not suffer from the

shortcomings of traditional Linux systems that rely on setuid/setgid programs to access

privileged resources. By confining processes to domains, SELinux can restrict processes

to the minimum privileges necessary to do their job and hence contain the damage caused

by flawed or malicious programs.

The fine-grained access control offered by SELinux has its costs. SELinux policies

are large and complex – the size of the default policy set for the Fedora Core 3 Linux

distribution has over 290,000 rules and consumes more than 7MB of kernel memory. In
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contrast, Proxos’s interface routing configurations are typically around 50 lines long or

less. Aside from the difference in size, the configuration of SELinux and Proxos carries

a more subtle difference. The security of an SELinux system is dependent upon the

administrator to correctly configure all applications to execute with their least privileges.

On the other hand, to protect a security-critical application, Proxos only requires that

the rules for that one application to be configured correctly. The security of the private

application running on Proxos remains unaffected by the configuration state of all other

applications running on the untrusted commodity OS. Finally, SELinux also differs from

Proxos in that the former system still depends on the correctness of the kernel, while the

latter maintains the integrity and confidentiality of protected objects even in the face of

a full compromise of the Linux kernel.

7.3 Systems that provide isolation

Modern commodity OSes are becoming overly complex and typically run a myriad of

applications that are poorly isolated from one another. As a result, the compromise of

any one of the applications usually leads to a full system compromise. Several research

projects protect security-sensitive applications by isolating them from the rest of the

potentially untrusted system.

Terra [13] leverages the isolation properties of a VMM to isolate applications with

differing security needs. Terra exports two types of VMs: an open-box VM used to run

a general purpose commodity OS together with its typical set of applications; and a

closed-box VM used to run security-sensitive applications where the software stack can

be tailored to the security requirements of the applications. The isolation maintained

by Terra is coarse-grained as applications can either execute in the open-box VM or be

completely isolated in a closed-box VM. This coarse-grained isolation may not be suitable

in scenarios where the application running in the closed-box needs to use the services or
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interact with other applications running in the open-box. In such situations, Terra would

need to include those services and other applications in the closed-box. This leads to a

duplication of resources across VMs, an increase in the complexity and a reduction in the

security assurance of the software running in the closed-box. Proxos differs from Terra as

it allows security-critical applications running in a private VM to reuse the resources of

the commodity OS in a controlled fashion.

Other projects use a kernelized system approach to isolate applications. Perseus [28],

uses the Fiasco [17] microkernel to run a commodity operating system and security-

critical applications in separate protection domains. Perseus relies on the underlying

microkernel to restrict IPC and to isolate the protection domains. The Nizza project [35,

16], runs the L4Linux [15] commodity OS on the Fiasco microkernel. Nizza goes one step

further in securing Linux applications. Nizza requires a developer to analyze the source

code and to manually extract the security-sensitive components of the applications into

separate AppCore components, which are then executed in separate protection domains

on the microkernel. Nizza bears some similarity with Proxos as it allows the AppCore

components to communicate with and reuse the services of their untrusted counterparts.

Nizza and Proxos differ from each other in a number of ways. First, AppCores have to

be modified to run on the interface of the microkernel while Proxos exports the same pro-

gramming interface as the commodity OS, which facilitates the porting of applications.

Next, Proxos does not require the manual splitting of the applications and existing appli-

cations can run on Proxos with minimal source code modifications. Even though it is a

cumbersome task, the manual splitting of applications does provide developers with the

advantage of a finer-grained control over what to include in an application’s TCB. How-

ever, if not used judiciously, the AppCores could introduce heavy performance overheads.

Applications are typically composed of logically related components. As demonstrated

in our evaluation section, inter-VM communications are expensive. Nizza’s manual split-

ting of the source code could potentially separate components that have a tight coupling
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into different VMs, which would result in a lot of inter-VM interactions and a high per-

formance cost. Proxos does not involve the splitting of applications and hence avoids

such risks. Finally, Proxos and Nizza apply different approaches to distinguish between

trusted and untrusted components. While Nizza splits the source code of applications

into trusted and untrusted components, Proxos splits the interface between the appli-

cation and the OS into trusted and untrusted components. Those two approaches are

orthogonal and could be applied independently.
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Conclusion

Current commodity OSs export an interface that is too permissive to privileged applica-

tions, allowing compromised applications to gain control of the operating system kernel

and attack other applications. Proxos allows applications to partition the interface be-

tween them and the commodity OS kernel into trusted and untrusted components by

specifying system call routing rules. The end result is that Proxos allows application

developers to protect applications from a compromised kernel without having to make

major source code modifications.

By building a Proxos prototype and porting several representative applications, we

have found that specifying trust at the system call interface is a powerful and simple way

of isolating applications from the operating system. Proxos routing rule specifications

are short and simple, and can be expressed in 10’s of lines of code. Minor source code

modifications are also required to support applications, mainly due to the semantics of

the fork system call, and to remove any instances of dynamically loaded code that cannot

be eliminated by static linking. In cases such as our web server, where expensive VM

start-up and shutdown may become very frequent, further modifications are necessary

to preserve performance. We expect that in most cases, a single graduate student who

is familiar with an application can port it to Proxos in a day or two. With a modest

46
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cost in engineering time and a reasonable impact on application performance, system call

routing enables the developer to protect the secrecy and integrity of applications from a

compromised operating system.
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