
LMP: Light-Weighted Memory Protection with Hardware Assistance

Wei Huang Zhen Huang Dhaval Miyani David Lie
Department of Electrical and Computer Engineering

University of Toronto

Abstract
Despite a long history and numerous proposed defenses,
memory corruption attacks are still viable. A secure and
low-overhead defense against return-oriented programming
(ROP) continues to elude the security community. Cur-
rently proposed solutions still must choose between either
not fully protecting critical data and relying instead on in-
formation hiding, or using incomplete, coarse-grain checking
that can be circumvented by a suitably skilled attacker. In
this paper, we present a light-weighted memory protection
approach (LMP) that uses Intel’s MPX hardware extensions
to provide complete, fast ROP protection without having to
rely in information hiding. We demonstrate a prototype
that defeats ROP attacks while incurring an average run-
time overhead of 3.9%.

CCS Concepts
•Security and privacy→Malware and its mitigation;

Keywords
Stack Protection, CFI, ROP, MPX

1. INTRODUCTION
In languages such as C/C++, the programmers are ulti-

mately responsible for enforcing the memory safety of their
programs. However, inevitably, programmers produce code
with flaws that violate memory safety, and some of these
flaws result in memory corruption vulnerabilities that al-
low attackers to maliciously alter the control flow of pro-
grams [29], corrupt critical data [19], or cause sensitive in-
formation leakage [13].

There have been numerous proposed or deployed defenses
to mitigate memory corruption vulnerabilities. Despite this,
memory corruption vulnerabilities continue to be exploitable.
For example, ASLR (Address Space Layout Randomizat-
ion) [27] randomizes memory locations of code and data seg-
ments, but can be circumvented via vulnerabilities such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’16, December 05-09, 2016, Los Angeles, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2991079.2991089

address space leakage, timing side-channels [20] or attacks
such as just-in-time code reuse [32]. DEP (Data Execution
Prevention) [2] prevents injecting and executing new code
in vulnerable programs. However, it cannot prevent reusing
existing code in an application via a return-to-libc or ROP
(Return-Oriented Programming) attack [29].

To address ROP attacks, Abadi et al. propose Control-
Flow Integrity (CFI) [1]. CFI protection enforces both for-
ward-edge protection (i.e. indirect function calls) and back-
wards-edge protection (i.e. function returns) to ensure that
a memory corruption vulnerability does not allow an at-
tacker to corrupt a code pointer and redirect execution along
an edge not specified by the original program. While the
target of a forward-edge function call can be resolved to a
single or small number of targets statically, the target of a
backwards-edge function return cannot generally be deter-
mined with much precision using only static analysis. As a
result, backwards-edge protection generally requires a run-
time component. To determine and enforce backward-edges
precisely, shadow stacks are proposed in [1] and software-
based fault isolation (SFI) [37] is further used to protect
the contents of the shadow stacks from corruption by an
attacker. Unfortunately, the runtime overhead of the mem-
ory checking required to properly implement this runtime
component can be as high as 2× [9].

To reduce this overhead, various proposals weaken the
properties of the backwards-edge protection in return for
better runtime performance. For example, some propose
coarse-grain protections, which do not use a shadow stack
to precisely track backwards-edge targets. Since shadow
stacks are not used, there is no need for SFI, which avoids
the expensive checks required to implement memory protec-
tion for the shadow stacks. This coarse-grain approach is
taken by proposals such as kBouncer [26], ROPGuard [16],
ROPecker [6], which have significantly lower overheads rang-
ing from 1.59% to 2.60%. These coarse-grain methods are
imprecise in that they do not actually validate that the re-
turn address on a backwards-edge actually points to the orig-
inal caller; instead, they either only check that the return
address points to an instruction that follows some call in-
struction, or they heuristically check the number of returns
to detect gadgets executions. They have all been shown to
be circumventable [12, 18] and ineffective against a knowl-
edgeable attacker.

Information hiding is another way to mitigate the over-
head of complete CFI backwards-edge protection. In this
approach, rather than protecting the data in the shadow
stacks with memory access checks, the shadow stacks are

http://dx.doi.org/10.1145/2991079.2991089

placed at a random location in a 64-bit address space. Be-
cause the size of the address space is large, it is assumed in-
feasible for the attacker to guess the location of the shadow
stacks. One method called code-pointer integrity (CPI) [23]
is able to provide CFI protection with 2.9% overhead (on C
applications). However, information hiding techniques can
be broken by memory safety vulnerabilities that leak the
location of the shadow stacks [15]. Other work has also
shown that various side-channel attacks can be used to leak
information that can be used to find the hidden shadow
stacks [30, 33]. The lesson here is that ultimately informa-
tion hiding is not equivalent to memory protection, as they
are vulnerable to address information leakage, while memory
protection is not.

In this paper, we propose Light-Weighted Memory Pro-
tection (LMP), a new method that leverages Intel’s Mem-
ory Protection Extensions (MPX) to make backwards-edge
CFI both secure and efficient. LMP tackles two essential
problems that stand in the way of memory safety in system
software: critical memory region protection in backwards-
edge CFI approaches and non-trivial overheads in checking
memory access violations.

While hardware-supported memory checks are naturally
more efficient than software memory checking, which is also
proven in recent work on using customized hardware for CFI
enforcement [8,11], we find that the hardware extensions like
Intel MPX have to be applied carefully in order to truly reap
the performance benefits of specialized hardware. In par-
ticular, not all of the operations supported by Intel MPX
have low overhead. Therefore, we design LMP to minimize
the use of the high-overhead components of MPX and still
enable it to effectively protect shadow stacks from unautho-
rized modification.

We build a proof-of-concept prototype implementation of
LMP and measure the performance overhead with SPEC
2006 benchmarks. The LMP system introduces an aver-
age overhead of 3.90%, which is much less than the 2×
overhead from the reference implementation of the original
CFI [9]. In fact, LMP achieves roughly same overhead as
information hiding techniques [10,23], which have generally
about 3% overhead. LMP is also comparable with recent
coarse-grained CFI approaches, which have overheads be-
tween 1.59% (ROPGuard [16]) and 2.60% (kBouncer [26]).
However, LMP provides stronger security guarantees than
both information hiding and coarse-grain approaches, as it
is both not vulnerable to either side-channel leakage and
enforces a much stricter policy.

We summarize three main contributions this paper makes:

1. We propose an alternative use of hardware assisted
pointer checker with Intel MPX that is different from
the standard proposed use of MPX.

2. We provide the first stack protection solution that is
assisted by the available CPU feature of Intel MPX.

3. We achieve a low overhead among existing equivalent
solutions, while provide stronger protection than coarse-
grain backward-edge CFI approaches.

The rest of this paper is organized as follows: We present
background information about hardware assistance of Intel
MPX we depend on and threat model we assume in Sec. 2,
describe the method we use in Sec. 3 and details of imple-

mentation in Sec. 4, evaluate our results in Sec. 5, discuss
related work in Sec. 6 and conclude in Sec. 7.

2. BACKGROUND
Before describing our approach to protection, we first de-

scribe the base MPX hardware that LMP leverages. Intel’s
Memory Protection Extensions (MPX) are a set of exten-
sions to the x86-64 instruction set architecture in the Intel
Skylake processors. To check pointer references at runtime
and prevent illegal memory accesses, the idea was imple-
mented previously as the feature of Pointer Checker [17] in
the Intel compiler for debugging: a pair of bounds is cre-
ated whenever a pointer is made, then the compiler will
also generate code to check the bounds when the pointer is
used. Pointer Checker is fully software-based, while MPX
provides hardware acceleration for the bound checks that
Pointer Checker would have done in software. MPX has
software and hardware components.

MPX introduces several new registers and instructions to
the instruction set architecture:

• 4 bound registers: BND0-BND3. Each of the registers
is 128-bit, and they store the lower bound memory
address with 64 bits and the upper bound memory
address with 64 bits. Bound registers hold the upper
and lower bounds that memory accesses are checked
against.

• 2 configuration registers: BNDCFGU for user mode and
IA32_BNDCFGS for supervisor mode.

• 1 status register: BNDSTATUS which stores error code
when exception occurs.

• Bound management instructions: BNDLDX and BNDSTX

load BND registers from a table of object-specific ad-
dress bounds in memory. BNDMK and BNDMOV allow a
programmer to manually manage the BND registers.

• Bound check instructions: BNDCU and BNDCL are used
to check that a pointer meets the respective upper and
lower bound limits of a specific BND register. If the
pointer falls outside of the bounds, then the instruction
throws an exception, saving the need for an instruction
to explicitly check the result of the comparison.

For the software part, the MPX requires the following
system software support:

• MPX-enabled Compiler: The compiler is responsible
for inserting bound checks before pointer dereferences.
Because bound information must be loaded in a limited
number of BND registers before it can be used to check
a pointer, the compiler must also load and spill bounds
information between the BND registers and memory.
For now, Intel has added MPX support to GCC main
branch since version 5.0 for C/C++ and x86 targets
only.

• MPX Runtime: The MPX runtime library is linked
against program at compile-time. The library provides
an API that the application developer can use to con-
figure MPX hardware features, as well as functions to
help compiler generated code manage MPX registers.

; Load address from the

; bound table to register

BNDLDX BND0, [RAX+RBX]

...

; Compare address with

; with bound register

BNDCU RAX, BND0

BNDCL RAX, BND0
...

C Code

Binary

MPX Compiler

Exception Handler

Bound Table 0

...

Bound Table 1

Bound Table N

MPX Runtime

Bound 0

Bound 1

...

Bound 0

Bound 1

...

Bound 0

Bound 1

...

0x7ffffba0ac94 0x7ffffba0ac70

BND0

Figure 1: An example of how MPX works.

• Operating system: The OS, together with the com-
piler, needs to support the new MPX instructions. If
a bound check instruction fails, the OS must catch the
generated exception and signal the application.

We now give an example of how these MPX components
can be used to bound-check a small program. Consider a
program that declares and manipulates data in 5 arrays:

int A[10], B[20], C[30], D[40], E[50];

Anytime a pointer pointing into one of these arrays is deref-
erenced, the MPX compiler needs to insert bound-checks to
ensure that the pointer falls within one of these arrays. To
do this, the MPX compiler needs to determine which ar-
ray the pointer should be pointing into, load the upper and
lower bounds of the array into a BND register and then insert
the appropriate BNDCU and BNDCL checks before the pointer
dereference to check it against the upper and lower bounds
of the array. For example as showed in Figure 1, if array A
is stored at addresses 0x7ffffba0ac70-0x7ffffba0ac94, the
MPX compiler must first load the upper and lower bound ad-
dresses 0x7ffffba0ac70 and 0x7ffffba0ac94 into one of the
bound registers (say BND0). This is done using the BNDLDX

instruction, which loads the bound information from the
bound directory in memory to into the appropriate regis-
ter. Then the MPX compiler instruments bound checking
instructions to compare the pointer dereference with bound
values in BND0. If the dereference falls out of the bound, a
#BR exception will be generated by hardware and caught
by the exception handler in MPX runtime.

For a pointer into an array to be bound-checked, the
bounds for that array must be loaded into a BND register.
Since the arrays A, B, C, D and E are all located in different
regions in memory, the MPX compiler must load the appro-
priate array bounds into a BND register whenever a pointer is
used to dereference a location in a different array. Because
there are 5 arrays but only 4 BND registers, it is impossible
for the compiler to keep the bounds for all the arrays in a

BND register all the time. This results in many BNDLDX and
BNDSTX instructions being generated by the compiler to load
and spill the bounds information to and from memory.

The bound checking instructions (BNDCU and BNDCL) have
very low execution cost. However, the BNDSTX and BNDLDX in-
structions have to access to the 2-layer structured bound ta-
bles stored in the main memory, they are very slow compared
to bound checking instructions. To measure this cost, we
did an experiment comparing BNDCU with BNDSTX/BNDLDX in-
structions. We randomly generate 1000 memory addresses,
and use an address lower than them all to perform 1000
times BNDCU instructions, and made sure there are not bound
violations. Then we use BNDSTX to store the first 500 in-
structions into bound tables, and load them all back one by
one to a bound register BND0. The results of this experiment
show that the bound checking instruction, BNDCU, has almost
same execution time as a NOP instruction (1000 instructions
in 0.45ms), while the bound store+load instructions BND-

STX/BNDLDX cost almost 1000× more than NOP (1000 instruc-
tions in 432ms).

With real applications, the number of objects in the bound
table can become quite large. However, as the number of
BND registers is fixed at 4 in the hardware architecture, this
causes heavy use of the BNDSTX and BNDLDX instructions,
resulting in high overhead. To see this in practice, we used a
recent MPX-enabled version of GCC (version 6.1) to compile
the SPEC 2006 benchmarks and found that this imposed
2× to 4× runtime overhead. Thus, to ensure low overheads,
these result indicate that the number of BNDSTX and BNDLDX

instructions must be minimized. Ensuring this is one of the
main reasons LMP is able to provide low overhead.

3. METHODOLOGY

3.1 Threat Model
We assume a realistic attacker that can exploit memory

corruption vulnerabilities to change arbitrary memory loca-

tions (so long as they are permitted by the hardware) to
values of their choosing. We also assume that the attacker
is aware of the address locations of key data structures such
as pointers, stacks and meta-data and can arbitrarily target
them with the memory corruption vulnerability. We assume
the goal of the attacker is to corrupt a code pointer to com-
promise the control-flow integrity of a program.

Despite this powerful attacker, we do assume that the at-
tacker is limited in some realistic ways. For example, the
attacker cannot directly modify registers in CPUs or change
any memory that is marked read-only, such as the code
pages, as both would allow the attacker to remove or by-
pass the compiler-inserted instrumentation that LMP uses.
The attackers also cannot compromise the integrity of the
target program before it is loaded into the memory, which
means that attacks on the program loader and operating sys-
tem are out of scope for LMP. LMP is intended to mitigate
the exploitation of memory corruption vulnerabilities by re-
mote or unprivileged attackers for the purposes of privilege
escalation.

In general, there are two types of code pointers that need
to be protected: function-pointers (i.e. forward-edge) and
return addresses (i.e. backwards-edge). LMP focuses on
protecting against attacks on return addresses and assumes
use of an existing forward-edge CFI protection scheme to
protect functions pointers from being corrupted. There is a
rich body of literature addressing the problem of forward-
edge protection. For example, the virtual calls in C++
indirect-control transfers through VTables can be hijacked
by attackers [5] to redirect execution to malicious code. These
type of protections can be attained with low overhead by
previous work, such as VTV [34], VTable Interleaving [3]
and VTrust [40]. Our LMP system can work together with
current forward-edge CFI defenses to provide full CFI pro-
tection.

3.2 Memory Protection with MPX
LMP uses two components to protect return addresses:

the shadow stacks and the protected memory region alloca-
tor. First, standard shadow stacks are used to maintain a
second copy of return addresses. The shadow stack is up-
dated on a function call and checked when functions return.
An attacker would have to corrupt both the program stack
at function call site and the shadow stack to successfully cor-
rupt a return address. Thus, to prevent the attacker from
corrupting the shadow stack, MPX instructions are inserted
by LMP to ensure that only the instructions inserted by
LMP at function calls to update the shadow stack can write
to the shadow stack.

Based on the threat model described in Sec. 2, only store
operations could modify the shadow stack area, and the
code pages are read-only so an attacker could not remove
bound checks to store operations. An attacker could try to
jump directly to a store instruction and avoid executing the
bound-checks, but to do this, the attacker would have to
corrupt a code pointer, which the CFI provided by LMP a
complementary forward-edge CFI scheme prevents. Thus,
the backwards-edge protection LMP provides hinges on the
ability to protect the shadow stacks from corruption by a
memory safety vulnerability.

To protect the shadow stack, we instrument each store
instruction in the program to make sure that it cannot ac-
cess the memory region of shadow stacks even if the attacker

has modified the effective address that the instruction tar-
gets. Despite, there being many store instructions in the
program, they are all checked against the same bounds, as
LMP need only check that they do not target the shadow
stack. This is efficient since this avoids the need to use the
expensive BNDLDX and BNDSTX to modify the bounds that
LMP must check – LMP simply sets the upper and lower
bounds of a BND register to the lower and upper regions of
the shadow stack and proceeds to instrument each store in
the program to ensure that it does not fall within that re-
gion. However, in multi-threaded programs, there will be
one shadow stack for each thread. A näıve solution would
use a different BND register to store the upper and lower ad-
dresses for each stack, but this would require the expensive
BNDLDX and BNDSTX instructions to load and store the stack
bounds into the BND registers, hurting performance. Instead,
we observe that all shadow stacks are in the same protection
class – i.e. regardless of which thread a store is executing
in, it should not be able to access any of the shadow stacks.
This means that all shadow stacks can be placed in a con-
tiguous region of memory and protected with a single BND

register. Thus, the other component of LMP is a scheme
that allocates standard shadow stacks so that they are in
a single contiguous region of memory. In the same way, all
other auxiliary data structures that LMP employs are also
be protected from modification, by being allocated in the
protected region that is restricted by MPX instructions.

3.3 Using the Shadow Stack
In order to restrict return instructions, LMP records the

return address in the shadow stack upon each function call,
where it will be protected from corruption by an attacker.
We illustrate the idea of shadow stack layout of the LMP
system in Figure 2.

Another difference from the other shadow stack approaches
is that LMP compares function return address with the one
stored in the shadow stack using MPX bound checking in-
structions. It optimizes the overhead from compare/branch
instructions in standard shadow stack implementation and
details will be presented later in this section.

As mentioned earlier, the shadow stacks are all located
in a contiguous region of memory. Moreover, this region is
statically defined at program startup and since it is inac-
cessible to any memory instruction other than shadow stack
operations inserted by LMP, the region cannot be used to
store any other type of data other than shadow stacks. The
main difference between our shadow stack implementation
and other shadow stack or safe stack implementations [10]
is that LMP is not free to place shadow stacks any loca-
tion or offset-based region for convenience, but must instead
place them in the predefined shadow stack region. Since each
thread must have its own shadow stack, we must define a
mapping function that allows the shadow stack code to find
the shadow stack for any given thread, but also maps each
shadow stack into the predefined region.

One option is to make the predefined region as large as
the region where regular stacks can be allocated. This would
be efficient as each shadow stack could then be located at
a fixed offset from the thread’s regular stack. However, the
pthread interface permits stacks to be created anywhere in
a process’ virtual address space. As a result, we would have
to reserve one half of the virtual address space for the pre-
defined region. While this is likely acceptable in most cases

LMP Runtime

Return Address 0

Return Address 1

Return Address 2Return Address 2

Return Address N

Shadow Stack

Shadow Stack End

Real Call Stack

Return Address 0

Return Address 1

Return Address 2

Return Address N

Return Address 0

Return Address 1

Return Address 2

Return Address N

Return Address 0

Return Address 1

Return Address 2

Return Address N

Figure 2: The illustration of LMP shadow stacks

for 64-bit code, it can present problems if processes need to
allocate memory at a particular virtual address space.

Instead, a more costly, but flexible alternative is to dy-
namically allocate and map stack space from the predefined
region as threads and their corresponding shadow stacks
are created. While this might be slightly more expensive
than the fixed-offset approach, we show that it is still prac-
tical, and can give a more conservative estimate of the over-
head of different LMP implementation options. LMP uses
a mapping table that stores the offset between a thread’s
regular stack and corresponding shadow stack. Both the
function entry and function return instrumentation use the
mapping table to find the corresponding shadow stack for
the thread. The predefined region is then partitioned into
several fixed-sized shadow stacks, and another table records
which shadow stacks are in use and which are free. When
a thread is created, LMP finds an unallocated shadow stack
and updates the mapping table with the offset between the
thread’s regular stack and its newly allocated shadow stack.
When a thread is destroyed, the thread is deallocated and
the offset in the table is cleared. These allocation and deal-
location operations only occur during thread creation and
destruction.

LMP inserts instrumentation on function entry that stores
the return address into the shadow stack. Because this mem-
ory operation is inserted by LMP, it needs not be bound-
checked. At function return, LMP inserts instrumentation
that will find the corresponding return address in the shadow
stack and compare it against the address that control flow is
going to. In this way, the shadow stack can ensure that when
execution returns, the integrity of the return address is not
tampered with. A thread’s regular and shadow stack have
the same layout so a return address on the regular stack will
have the same offset from the base of the stack as the corre-
sponding return address’ offset from the base of the shadow
stack. Thus, only the offset between the regular stack base
and the shadow stack base needs to be stored in the map-

PUSH %rsp

CALL _map_table # find shadow stack via mapping table

return shadow stack address in %rax

MOV (%rsp), %rdx

MOV %rdx, (%rax) # copy ret addr to shadow stack address in %rax

...

(FUNCTION CALL BODY)

...

MOV (%rsp), %rdx # put function return address in %rdx

BNDMK %bnd0, [(%rax), 0] # put the address in shadow stack in a bnd

register %bnd0

BNDCU %rdx, %bnd0

BNDCL %rdx, %bnd0 # check return address with the one in shadow

stack

...

Figure 3: Assembly code example for instrumented function

entry/exit.

ping table. This design is different from RAD [7] which uses
a custom stack layout. Because of this, they must search
through the shadow stack to find a match, while LMP does
not.

We give an example of execution sequence in steps after
code instrumentation for shadow stack operations, and an
assembly code snippet in Figure. 3:

1. On function entry:

(1) prepare shadow stack address in register %rax

(2) copy return address in %rsp to shadow stack

2. Execute function call and body

3. On function return:

(1) copy return address in shadow stack to bound reg-
ister %bnd0

(2) use bound checking instruction to check return
address in %rsp and %bnd0

...

MOV (%rsp), %rcx

MOV %rcx, (%rax)

...

MOV (%rcx), %rdx

BNDCU %rdx, bnd0

BNDCL %rdx, bnd0

RET

...

C Code

Binary

LMP Compiler

Exception Handler

Ret Address 0

Ret Address 1

...

LMP Runtime

Figure 4: A flow chart of how LMP system works.

We use MPX bound checking instructions BNDCL and BNDCU

instead of a series of compare and jump instructions to do
the equality comparison. We set the return address in the
shadow stack as the upper and lower bound in the bound
register (BND0), then bound-check it against the function
return address. Using MPX instructions to check the re-
turn address improves performance the same way the MPX
instructions improve memory bound-checks – the MPX in-
structions avoid extra branch and check instructions that
would normally be needed to check the result of the com-
parison. Instead, MPX instructions will throw an exception
if the check fails.

3.4 Execute a Program with LMP
We give an illustration of our LMP system conceptual de-

sign by providing a simple example of how the LMP system
works with a user program, as shown in Figure. 4.

The LMP-enabled compiler instruments the application
source code at compile-time. When the program starts, the
LMP runtime prepares the shadow stack memory region and
stores its lower boundary and upper boundary to the bound
register BND1. This is for the protection of the shadow stack
from any illegal modification. When the program is run-
ning, it stores return addresses to the shadow stack when a
function call happens and the return address is pushed to
the normal call stack. When the function returns, two ad-
dresses stored in the normal stack and in the shadow stack
is compared. Throughout the program, whenever there is a
memory operation that stores values to a memory address,
we instrument the code to verify that the address is not in
the range of the shadow stack using bound checking instruc-
tions.

Under certain special cases, such as C++ exception han-
dling, the call stack will unwind due to setjmp/longjmp in-

structions causing function call and return mismatching. In
the method we propose with LMP, as long as the compiler
does not change the original call stack with exception infor-
mation (e.g., GCC stores it in another side-table), the return
addresses in original call stacks and in shadow stacks cor-
respond to the same offset to the stack top addresses, thus
the stack unwinding by exception handling operations is not
affected.

While we have not implemented it, we believe LMP can
be extended to provide backward-edge protection for binary-
only CFI. With a control-flow graph (CFG) generated through
disassembly analysis of a binary and some changes to pthread
library functions, the LMP system can also work with binary-
only CFI approaches that employ binary-rewriting to add
CFI instrumentation.

4. IMPLEMENTATION
The LMP system has two main parts: The LMP-enabled

compiler and the LMP runtime library. For the compiler
part we modify the register transfer language (RTL) passes
for instrumenting boundary checking to ensure that there
can be no unauthorized writes to the memory region where
the shadow stacks is stored. The LMP runtime is responsible
for managing the allocation of shadow stack and store of the
return addresses from function call stacks.

4.1 LMP-enabled Compiler
The implementation of LMP-enabled compiler is based

on GCC 5.2.0 with approximately 600 lines of code modi-
fied/added to the RTL passes. The main reason for modify-
ing the compiler and adding new RTL passes is to do code
instrumentation at the assembly level. Both shadow stack
operations and code to protect the shadow stack memory
region from being modified are instrumented by the LMP
compiler.

In the GCC RTL passes, we modify the source code in fi-

nal.c and insn-output.c that take care of assembler code
output for functions. Among them, final_end_function()
helps emit assembly code in function exit, we add our code
here to do instrumentation for shadow stack operations.

To implement shadow stacks, at each function call stack
operation when the function pushes return address, the com-
piler instruments the code to get the address and save a copy
to the thread’s shadow stack. The location of the shadow
stack is found by indexing into the stack region using the
calling thread’s Thread ID, which is retrieved via the sys-
tem call gettid(). At first, it might seem like a system call
would be overly expensive, but such operations are highly
optimized and our measurements show that the cost of get-
tid() on modern Linux kernels is negligible. At each return
instruction, the compiler instruments the code to get the
Thread ID and ask the LMP runtime for the return address
stored in the shadow stack. If the address in the return in-
struction does not match the one in the shadow stack, it
sends a bound violation message to LMP runtime. In the
GCC passes, we identify the function calls by looking for the
RTL expression code call_insn, with the format:

(call (mem : fm addr) nbytes)

where the addr is the address of that subroutine.
For bound checking of memory operations, we change

the RTL passes of GCC to find RTL expressions contain-
ing memory operations that store values to main memory

 ...

4007b5: ADD $0xc,(%rax)

...

Before

 4005e1: ADD $0xc,(%rax)

 4005e5: BNDCU %rax,%bnd1

 4005ea: BNDCL %rax,%bnd1

...

After

Figure 5: An example of LMP instrumentation for store in-

struction.

address. The address is taken to compare with the upper
and lower boundary addresses of the shadow stack, which is
stored in the bound register BND1, where the bounds of the
memory region where the shadow stacks reside is stored. A
bound violation will be triggered if the address falls into the
memory range of the shadow stack which means the pointer
that the memory store uses as its target may have been cor-
rupted by an attacker.

We give an example of the code instrumentation results in
Figure. 5 to show the assembly code before and after instru-
mentation. The add instruction writes to main memory, and
the instrumented assembly code bndcu and bndcl checks if
the memory address to be changed is within the protected
shadow stack region.

4.2 LMP Runtime
The LMP runtime is implemented with approximately 700

lines of C source code. As this is a proof-of-concept proto-
type design, we allocate a virtual memory region of 2GB for
the shadow stacks. The reason behind the number of mem-
ory size is that in our test environment the OS has maximum
number of 62057 threads (from /proc/sys/kernel/threads-

max), and for each possible thread we give 32KB to the
shadow stack, which we believe is more than enough as the
benchmarks we used never exceed 8KB per thread in call
stack. In our implementation, both the numbers of maxi-
mum threads and the space for each shadow stack are tun-
able. Since the shadow stacks are allocated in the 64-bit
virtual address space, they only take a tiny fraction of it.
Also, because most of the shadow stacks may never be writ-
ten to, they only consume virtual address space and the
operating system never needs to actually allocate physical
memory to back them.

We could have also dynamically allocated shadow stacks
in memory, which would allow the shadow stack region to be
dynamically extended and reduced in size to accommodate
growth and reduction in shadow stack usage. This would
likely add some overhead in exchange for better virtual ad-
dress space utilization. However, given that virtual address
space is generally not a limiting factor on 64-bit architec-
tures, we do not believe that this extra overhead is justified.

When the instrumented program needs the LMP runtime
to store a function return address to the shadow stack, the
runtime takes the offset between the base of the call stack
and the address that stores the return address, and a Thread
ID to process them in function LMP_push_ss(return_addr,

offset, threadID), then finds the shadow stack prepared
for that thread and stores the function return address in
the shadow stack. When the program function returns and
the address needs to be compared with the one stored in
the shadow stack, it calculates the offset between the base

perlbench
bzip2

gcc
mcf

gobmk
hmmer

sjeng
libquantum

h264ref
0

160

320

480

640

800

960

1120

1280
BaselineBaseline LMPLMP

E
xe

cu
tio

n
 T

im
e(

s)

Figure 6: LMP overhead by comparison of execution time be-

tween baseline and LMP.

of the call stack and the address that stores the function
return address and uses return_addr=LMP_pop_ss(offset,

threadID), then LMP runtime will get the return address
stored in the shadow stack.

5. EVALUATION
In this section we evaluate the effectiveness and different

aspects of overheads of our LMP system. We run our exper-
iments on an Intel i5-6600K with 4 cores @3.5GHz in 64-bit
mode with 8G RAM. The benchmarks are run on Fedora 22
with Linux kernel 4.1.7.

5.1 Performance Overhead
We evaluate the overheads of the LMP system using CINT

2006 benchmarks. All results are 5-time average numbers
that gathered from the non-reportable mode of SPEC bench-
mark. We compare the results with the baseline without ap-
plying LMP. As shown in Figure. 6, the average performance
overhead of LMP in comparison to the baseline performance
is 3.90%. The h264ref benchmark has the highest overhead
of 12.55%, mainly because it has many more function calls
and RET instructions than others. Without the h264ref

benchmark the average overhead is only 2.12%.
To justify the main sources of overheads introduced by

the LMP system, we further separate them into three parts
of the system: context settings, bound-checking and shadow
stack operations. Context settings includes the runtime li-
brary initialization, retrieving ThreadID via system calls etc.
Bound-checking involves the time that spent by MPX bound
instructions. Shadow stack operations consist of all opera-
tions dealing with the shadows stacks.

We measure how much each component contributes to the
overall overhead by removing the other 2 components and
measuring the overhead with only one component added
to each benchmark. Over all the CINT 2006 benchmark
results, the average overhead of context settings is 0.1%,
bound checking is 0.52% and shadow stack operations is
3.27%. From Figure 7 we can find that context setting
and bound-checking almost contribute negligible amount of
overheads. Shadow stack operations are the main contrib-
utor, which on average accounts for 84% of all the over-
heads. The performance penalty of the memory protec-
tion is only 15% of the overall overhead and the remain-
ing 1% can be attributed to infrequent setup and stack al-
location/deallocation operations. The results here are in-
line with other heavily optimized shadow stack implemen-

perlbench
bzip2

gcc
mcf

gobmk
hmmer

sjeng
h264ref

0

3

6

9

12
ContextContext Bound CheckingBound Checking Shadow StackShadow Stack

O
ve

rh
ea

d
 (

%
)

Figure 7: Overhead components of LMP.

perlbench
bzip2

gcc
mcf

gobmk
hmmer

sjeng
libquantum

h264ref
0

6

12

18

24

30

36

42

48

54

C
od

e
ex

pa
ns

io
n

%

Figure 8: Code Expansion of LMP.

tations [10] that claim a few variants of shadow stacks per-
formance overheads around between 2% and 10% for the
same benchmark set. As a result, we believe this overhead
is representative of the costs of LMP on current processors.

5.2 Code Expansion
LMP-enabled GCC emits assembly code to instrument the

target program in the RTL passes, so there is an increase in
code size. We directly compare the sizes of the binaries of
each benchmark and calculate the percentage of code expan-
sions that LMP introduces.

From Figure. 8, we can see that across the 9 benchmarks
we have run, the code at assembly level expands by 39.27%
in average. There is some variance among the code expan-
sion numbers of the benchmarks, while the majority of which
is contributed by the bound checking instructions, when
there are more function calls/returns and memory store in-
structions of the benchmark, the more bound checking in-
structions are instrumented. We note that our prototype in-
cludes some extra debugging code which could be removed
to further reduce code expansion.

5.3 Memory Overhead
The memory overhead introduced to the benchmarks on

average is 19.3MB per program, and the average percentage
of the maximum resident memory overhead is 9.73%. The

memory overhead is mainly from the runtime library part
of LMP system which manages the shadow stacks. As men-
tioned in Sec. 4 the memory allocation is not optimized in
this research prototype implementation and we belive that
there is likely space for improvement. We expect the mem-
ory overhead could be decreased significantly by adding dy-
namically allocating the mapping table as needed instead
of pre-emptively allocating it for the maximum number of
threads.

6. RELATED WORK
We review literature in the area of defense technologies to

protect programs from control flow hijacking attacks.
Traditional attack methods using stack-smashing and code

injection [28] can be protected by applying recent adoption
of data execution prevention (DEP) [2]. Hardware support
for DEP is present in virtually all x86 processors as a non-
execute bit (NX bit, or called XD/XN bit depending on
processor architecture), such that code in the data segment
cannot be executed.

To counter the protection above, attackers have developed
more sophisticated methods that do not rely on injecting
new code, and that instead, rely on using existing code in the
program. One of the early examples is return-into-libc at-
tack [35], which can redirect program execution flow through
libc functions. Similar exploitations such as return-oriented
programming (ROP) attack [29] can also execute arbitrary
computations by using a chain of existing code after chang-
ing return address at the function call stack. The latter has
been shown to be Turing-complete.

Randomization is practical in hiding information about
the memory layout of a program from attackers. Address
Space Layout Randomization (ASLR) [27] has been pro-
posed to defend against ROP attacks by mapping program
processes and dynamic libraries into random virtual address
space every time. Address Space Layout Permutation (ASLP)
further re-orders sub-routines at the code segments on the
basis of the randomization provided by ASLR [22]. However,
the implementations of ASLR were soon to be found inef-
fective against de-randomization attack [31], costing only an
few hundred seconds of additional time to compromise the
target program. Similarly, ASLP is also vulnerable to de-
randomization attacks [24].

CFI (Control Flow Integrity) [1] is introduced to guaran-
tee that indirect control-flow transfers point to legitimate
locations. To ensure that the return addresses in function
call stacks are not tampered with, shadow stacks to store
copies of return addresses are suggested. However, the per-
formance overhead of original CFI is reported as high as 2×
if the exact policy is enforced, so there are variants of coarse-
grained CFI proposed with changes to the original policy.
kBouncer [26] uses the Last Branch Record (LBR) x86 reg-
ister that stores recent branches that CPU executed. It vali-
dates if the return address points to an instruction follows a
call instruction, so the procedure is actually a heuristic mit-
igation of ROP attack. Using the same LBR register and
similar policy as kBouncer, the work of ROPecker [6] adds
additional static analysis to speculate future execution of a
program to defend against ROP gadgets running, unfortu-
nately however, is by-passible too [12]. The ROPGuard [16]
proposes to check if the stack pointer points to a memory
address outside of the stack, so the system would not allow
ROP attackers execute payloads on the heap, however, be-

fore the target function is called the adversaries could still
modify the stack pointer. The above defenses are also vul-
nerable to attacks that leverage hooks and hide malicious
code within non-control data [36], if critical memory region
is not protected at runtime. O-CFI [25] explores random-
ization approach to conceal program control-flow graph and
applies MPX in bound-checking for guarding the branch in-
structions. However, it is still a coarse-grained CFI method
and only provides probabilistic security guarantees since it
does not fully protect function return addresses. Our LMP
approach sticks to the original CFI policy in backward-edge
protection, i.e., checking every function return address and
ensuring the return address points to the function caller.

For forward-edge CFI protection, the paper that proposes
VTV [34] finds out more than 90% indirect calls are virtual
calls. Their method aims at protecting VTables from be-
ing hijacked, validates at runtime that the target VTables
in a legit set, before a virtual method call is made. Per-
formance of VTV depends on the size of legit VTable set,
so the complexity of C++ class hierarchy would affect the
overhead. On the basis of the idea, VTrust [40] and VTable
Interleaving [3] improve the performance of VTV without
needing global class hierarchy, and prevent VTable hijack-
ing attacks. Our LMP system does not provide protection
with forward-edge CFI, because with above mentioned ap-
proaches, the LMP can be easily combined with them by
applying patches to the LMP-enabled compiler, thus a full-
CFI protection is possible.

There are CFI variants proposed with different security
targets. The techniques of original CFI have been used
for the purpose of enforcing software-based fault isolation
(SFI) [39]. XFI [14] also employs CFI policies with the help
of debugging information in Windows PDB files to defend
against ROP attacks. Data-flow Integrity (DFI) [4] follows
CFI approach to prevent non-control data attacks. Hyper-
safe [38] is similar to fine-grained CFI protection. It has
a target table for indirect branches and aims at protecting
control-flow integrity of hypervisor.

Code-Pointer Integrity (CPI) [23] explores a security mech-
anism that divides process memory into two parts: safe
memory region and regular memory region. Through static
analysis, memory objects that have pointers including code
and data pointers are put into a safe memory region for
protection against illegal tampering. However, flaws of CPI
approach have been pointed out [15] because its safe mem-
ory region is not well-protected. The essential idea of LMP
is also guarding the memory region where shadow stacks lo-
cated. We use new hardware feature of fast memory bound-
ary checking to ensure the allocated shadow stack region is
protected effectively and efficiently.

Other hardware-based CFI approaches have recently been
proposed, e.g., HCFI [8] and HAFIX [11] have their sys-
tem implemented running on customized FPGA board or
SPARC embedded system. In comparison, LMP is the first
system with hardware-assisted memory protection compat-
ible with commercially available CPU and other hardware.
Control-Flow Enforcement Technology (CET) [21] was an-
nounced in a technology preview as of June 2016. CET in-
troduces a new exception class (#CP) with interrupt vector
21 and a new ENDBRANCH ISA instruction to help mark legal
targets for an indirect branch or jump. It also uses hard-
ware protections to limit access to the shadow stack to only
function call and return instructions so that regular mem-

ory stores are prohibited from modifying the shadow stack.
Since CET was only recently announced, and no hardware
is available, we are unable to evaluate the overhead of CET
against LMP at this time.

7. CONCLUSION
Memory protection is a keystone of all defense techniques

against memory corruption attacks. Without properly pro-
tecting the shadow stack, CFI approaches cannot effectively
prevent ROP attackers and have been proven to be insecure
in general. Our work proposes a light-weighted memory pro-
tection system to prevent critical memory region storing re-
turn addresses of function call stacks, namely the shadow
stacks. Leveraging recent available MPX hardware features,
our approach achieves low overhead in enforcing only legal
accesses to the protected region is allowed, so that return ad-
dresses cannot be tampered with by an attacker. For future
work, we will complete the LMP protection on forwarding-
edge and explore the possibility of applying LMP without
the limitation of recompilation of the program, for exam-
ple, use the help of binary re-writing to perform the shadow
stack functions for protection.

Acknowledgement
We would like to thank Professor Ding Yuan, Mariana D’Angelo,
Michelle Wong, Beom Heyn Kim, Afshar Ganjali, Sukwon
Oh, Diego Bravo Velasquez and Peter Sun for their valuable
feedback. We also thank the anonymous reviewers for their
comments and help in improving the quality of this paper.
The research in this paper was supported by an NSERC
Discovery Grant.

8. REFERENCES
[1] Abadi, M., Budiu, M., Erlingsson, U., and

Ligatti, J. Control-flow integrity. In Proceedings of
the 12th ACM Conference on Computer and
Communications Security (Alexandria, Virginia,
2005).

[2] Andersen, S., and Abella, V. Data execution
prevention. https://technet.microsoft.com/en-us/
library/bb457155.aspx, 2004. Last accessed:
2016-09-01.

[3] Bounov, D., Kici, R. G., and Lerner, S.
Protecting C++ dynamic dispatch through VTable
interleaving. In Proceedings of the 23rd Annual
Networked & Distributed System Security Symposium
(NDSS) (San Diego, California, 2016).

[4] Castro, M., Costa, M., and Harris, T. Securing
software by enforcing data-flow integrity. In
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (Seattle,
Washington, 2006).

[5] Checkoway, S., Davi, L., Dmitrienko, A.,
Sadeghi, A.-R., Shacham, H., and Winandy, M.
Return-oriented programming without returns. In
Proceedings of the 17th ACM Conference on Computer
and Communications Security (Chicago, Illinois,
2010).

[6] Cheng, Y., Zhou, Z., Yu, M., Ding, X., and Deng,
R. ROPecker: A generic and practical approach for
defending against rop attacks. In Proceedings of the

https://technet.microsoft.com/en-us/library/bb457155.aspx
https://technet.microsoft.com/en-us/library/bb457155.aspx

21st Annual Networked & Distributed System Security
Symposium (NDSS) (San Diego, California, 2014).

[7] Chiueh, T.-C., and Hsu, F.-H. RAD: A
compile-time solution to buffer overflow attacks. In
Proceedings of the The 21st International Conference
on Distributed Computing Systems (Washington, DC,
2001).

[8] Christoulakis, N., Christou, G.,
Athanasopoulos, E., and Ioannidis, S. HCFI:
Hardware-enforced control-flow integrity. In
Proceedings of the 6th ACM Conference on Data and
Application Security and Privacy (2016).

[9] Criswell, J., Dautenhahn, N., and Adve, V.
Virtual Ghost: Protecting applications from hostile
operating systems. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS) (Salt Lake City, Utah, 2014).

[10] Dang, T. H., Maniatis, P., and Wagner, D. The
performance cost of shadow stacks and stack canaries.
In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security
(Singapore, 2015).

[11] Davi, L., Hanreich, M., Paul, D., Sadeghi, A.-R.,
Koeberl, P., Sullivan, D., Arias, O., and Jin, Y.
HAFIX: Hardware-assisted flow integrity extension. In
Proceedings of the 52nd Annual Design Automation
Conference (2015).

[12] Davi, L., Sadeghi, A.-R., Lehmann, D., and
Monrose, F. Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity
protection. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (San Jose,
California, 2014).

[13] Durumeric, Z., Kasten, J., Adrian, D.,
Halderman, J. A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., and
Paxson, V. The matter of heartbleed. In Proceedings
of the 2014 Conference on Internet Measurement
Conference (Vancouver, BC, Canada, 2014).

[14] Erlingsson, U., Abadi, M., Vrable, M., Budiu,
M., and Necula, G. C. XFI: Software guards for
system address spaces. In Proceedings of the 7th
Symposium on Operating Systems Design and
Implementation (Seattle, Washington, 2006).

[15] Evans, I., Fingeret, S., Gonzalez, J.,
Otgonbaatar, U., Tang, T., Shrobe, H.,
Sidiroglou-Douskos, S., Rinard, M., and
Okhravi, H. Missing the point(er): On the
effectiveness of code pointer integrity. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(San Jose, California, 2015).

[16] Fratrić, I. ROPGuard: Runtime prevention of
return-oriented programming attacks. http://www.
ieee.hr/ download/repository/Ivan Fratric.pdf, 2012.
Last accessed: 2016-09-01.

[17] Ganesh, K. Pointer checker: Easily catch
out-of-bounds memory accesses.
https://software.intel.com/sites/products/
parallelmag/singlearticles/issue11/7080 2 IN
ParallelMag Issue11 Pointer Checker.pdf. Last
accessed: 2016-09-01.

[18] Göktas, E., Athanasopoulos, E., Bos, H., and
Portokalidis, G. Out of control: Overcoming
control-flow integrity. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (San Jose,
California, 2014).

[19] Hu, H., Shinde, S., Sendroiu, A., Chua, Z. L.,
Saxena, P., and Liang, Z. Data-oriented
programming: On the expressiveness of non-control
data attacks. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (San Jose,
California, 2016).

[20] Hund, R., Willems, C., and Holz, T. Practical
timing side channel attacks against kernel space
ASLR. In Proceedings of the 34th IEEE Symposium on
Security and Privacy (Washington, D.C., 2013).

[21] Intel. Control-flow enforcement technology preview,
Document Number: 334525-001, Revision 1.0. https:
//software.intel.com/sites/default/files/managed/4d/
2a/control-flow-enforcement-technology-preview.pdf,
June 2016. Last Last accessed: 2016-09-01.

[22] Kil, C., Jim, J., Bookholt, C., Xu, J., and Ning,
P. Address space layout permutation (ASLP):
Towards fine-grained randomization of commodity
software. In Proceedings of Computer Security
Applications Conference (ASAC) (Miami Beach,
Florida, 2006).

[23] Kuznetsov, V., Szekeres, L., Payer, M., Candea,
G., Sekar, R., and Song, D. Code-pointer integrity.
In Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation
(Broomfield, Colorado, 2014).

[24] Liu, L., Han, J., Gao, D., Jing, J., and Zha, D.
Launching return-oriented programming attacks
against randomized relocatable executables. In
Proceedings of the 10th International Conference on
Trust, Security and Privacy in Computing and
Communications (TrustCom) (Changsha, China,
2011).

[25] Mohan, V., Larsen, P., Brunthaler, S., Hamlen,
K. W., and Franz, M. Opaque control-flow integrity.
In Proceedings of the 22nd Annual Networked &
Distributed System Security Symposium (NDSS) (San
Diego, California, 2015).

[26] Pappas, V., Polychronakis, M., and Keromytis,
A. D. Transparent ROP exploit mitigation using
indirect branch tracing. In Proceedings of the 22nd
USENIX Security Symposium (Washington, D.C.,
2013).

[27] PaX-Team. PaX ASLR (address space layout
randomization).
http://pax.grsecurity.net/docs/aslr.txt, 2003. Last
Last accessed: 2016-09-01.

[28] Pincus, J., and Baker, B. Beyond stack smashing:
recent advances in exploiting buffer overruns. IEEE
Journal of Security and Privacy 2, 4 (July 2004),
20–27.

[29] Roemer, R., Buchanan, E., Shacham, H., and
Savage, S. Return-oriented programming: Systems,
languages, and applications. ACM Transaction on
Information and System Security 15, 1 (March 2012),
2:1–2:34.

http://www.ieee.hr/_download/repository/Ivan_Fratric.pdf
http://www.ieee.hr/_download/repository/Ivan_Fratric.pdf
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://pax.grsecurity.net/docs/aslr.txt

[30] Seibert, J., Okhravi, H., and Söderström, E.
Information leaks without memory disclosures:
Remote side channel attacks on diversified code. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (2014).

[31] Shacham, H., Page, M., Pfaff, B., Goh, E.-J.,
Modadugu, N., and Boneh, D. On the effectiveness
of address-space randomization. In Proceedings of the
11th ACM Conference on Computer and
Communications Security (Washington, D.C., 2004).

[32] Snow, K. Z., Monrose, F., Davi, L., Dmitrienko,
A., Liebchen, C., and Sadeghi, A.-R. Just-in-time
code reuse: On the effectiveness of fine-grained
address space layout randomization. In Proceedings of
the 34th IEEE Symposium on Security and Privacy
(Washington, D.C., 2013).

[33] Strackx, R., Younan, Y., Philippaerts, P.,
Piessens, F., Lachmund, S., and Walter, T.
Breaking the memory secrecy assumption. In
Proceedings of the Second European Workshop on
System Security (2009).

[34] Tice, C., Roeder, T., Collingbourne, P.,
Checkoway, S., Erlingsson, U., Lozano, L., and
Pike, G. Enforcing forward-edge control-flow integrity
in GCC & LLVM. In Proceedings of the 23rd USENIX
Security Symposium (San Diego, California, 2014).

[35] Tran, M., Etheridge, M., Bletsch, T., Jiang,
X., Freeh, V., and Ning, P. On the expressiveness
of return-into-libc attacks. In Proceedings of the 14th
International Conference on Recent Advances in
Intrusion Detection (Menlo Park, California, 2011).

[36] Vogl, S., Gawlik, R., Garmany, B., Kittel, T.,
Pfoh, J., Eckert, C., and Holz, T. Dynamic
hooks: Hiding control flow changes within non-control
data. In Proceedings of the 23rd USENIX Security
Symposium (San Diego, California, 2014).

[37] Wahbe, R., Lucco, S., Anderson, T. E., and
Graham, S. L. Efficient software-based fault
isolation. SIGOPS Operating System Review 27, 5
(Dec. 1993), 203–216.

[38] Wang, Z., and Jiang, X. HyperSafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In Proceedings of the 31st IEEE Symposium
on Security and Privacy (San Jose, California, 2010).

[39] Zeng, B., Tan, G., and Morrisett, G. Combining
control-flow integrity and static analysis for efficient
and validated data sandboxing. In Proceedings of the
18th ACM Conference on Computer and
Communications Security (Chicago, Illinois, 2011).

[40] Zhang, C., Carr, S. A., Li, T., Ding, Y., Song,
C., Payer, M., and Song, D. VTrust: Regaining
trust on virtual calls. In Proceedings of the 23rd
Annual Networked & Distributed System Security
Symposium (NDSS) (San Diego, California, 2016).

	Introduction
	Background
	Methodology
	Threat Model
	Memory Protection with MPX
	Using the Shadow Stack
	Execute a Program with LMP

	Implementation
	LMP-enabled Compiler
	LMP Runtime

	Evaluation
	Performance Overhead
	Code Expansion
	Memory Overhead

	Related Work
	Conclusion
	References

