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With the rise of mobile devices such as smart phones and IoTs and emerging new application

areas such as fitness and sport aid, smart home, and augmented reality, computer systems have

become a critical part of our daily lives. Our reliance on computer systems make software

security and reliability extremely important. However, software security and reliability are

threatened by software vulnerabilities and configuration errors.

Manually fixing software vulnerabilities and configuration errors is a tedious and time-

consuming task. Automating the task has gained intense interest. This dissertation addresses

three challenges in automating the task: 1) mitigating software vulnerabilities rapidly and

safely, 2) generating sound security patches and 3) troubleshooting complex configuration er-

rors that involve dependent configuration settings. We make the following contributions.

First, we consider mitigating software vulnerabilities. Inspired by configuration workarounds,

a fast alternative of security patches, we design Security Workaround for Rapid Response

(SWRR) that works similarly to configuration workaround but has substantially larger cov-

erage than configuration workarounds. We implement a prototype Talos that automatically

produces SWRRs and instruments SWRRs into applications. SWRRs generated by Talos can

cover 2.1× software vulnerabilities than configuration workarounds.

Second, we consider generating sound security patches. With a design specifically targeting

three of the most common and severe software vulnerabilities: buffer overflow, bad offset, and

integer overflow, we combine program analysis techniques to generate semantically correct
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security patches. Our prototype implementation called Senx successfully generates correct

security patches for 76.2% of 42 real-world software vulnerabilities.

Third, we compare the strengths and drawbacks of Talos and Senx qualitatively and quan-

titatively. On one hand, Senx has the strength in applicability. On the other hand, Talos has

the strength in scalability and usability. We find that Talos and Senx have complementary

applicability. Combining them, we can address 90.5% of the 42 software vulnerabilities.

Finally, we consider troubleshooting and fixing configuration errors involving dependent

configuration settings. We leverage unsupervised machine learning to understand the depen-

dency among configuration settings and use automated GUI testing to enable regular users to

troubleshoot and fix configuration errors with ease. We implement a prototype called Ocasta

and conduct a user study on Ocasta. We find that Ocasta can correctly identify 88.6% of depen-

dent configuration settings and significantly save user time and effort in troubleshooting and

fixing configuration errors.
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Chapter 1

Introduction

To date, computer systems have evolved into an indispensable tool to our daily lives. Indeed,

almost all aspects of our daily lives such as work, education, communication, entertainment,

health and fitness depend on computer systems. Our highly reliance on computer systems

makes software security and reliability of paramount importance. Nowadays it is not uncom-

mon for a single security breach or service outage to cause massive personal and corporate

loss. Equifax, one of the three largest credit agencies in the U.S, suffered a security breach

in 2017 that leaked highly sensitive privacy information such as social security numbers and

driver’s license numbers of 145.5 million consumers [35]. Also in 2017, Comcast Internet, the

largest home Internet service provider in the U.S, had a national wide outage of their Internet

service for around 90 minutes due to a configuration error by an enterprise ISP that provides

the backbone for other Internet providers [34].

When software security or reliability issues are discovered in computer systems, it is press-

ing to troubleshoot and fix them to avoid further personal or corporate loss. However, trou-

bleshooting and fixing them is usually a tedious and time-consuming task for software devel-

opers or system administrators. To remedy this situation, many techniques have been proposed

to aid or automate this task [43, 70, 82, 83, 89, 125, 129–131, 141]. Unfortunately, they have

various limitations and are rarely adopted in practice. The best-practice methods still largely
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rely on the manual effort of software developers and system administrators.

This dissertation focuses on the topic of the automation of troubleshooting and fixing

software security and reliability issues. We propose approaches that automatically generate

workarounds and patches for software vulnerabilities, and automatically troubleshoot complex

configuration errors. We show that our approaches are efficient and applicable to a variety of

software vulnerabilities and configuration errors.

1.1 Software Vulnerabilities

Software vulnerabilities is a pressing issue for software security. They play an essential role

in the security of computer systems. Indeed, they are software bugs that can be exploited to

mount security attacks on computer systems. Since the very early days of Internet, they have

been frequently leveraged to comprise computer systems [37]. The recent wide propagation of

WannaCry ransomware is also largely attributed to a vulnerability in the Microsoft Windows

systems [91].

As a result, it is critical to patch vulnerabilities immediately after they are discovered, in

order to prevent attackers from exploiting them to subvert computer systems. However, it

commonly takes as long as tens to hundreds of days to release patches to fix software vulnera-

bilities [80]. To understand the bottleneck of releasing security patches, we study the life cycle

of software vulnerabilities and the complexity of security patches. We find that the bottleneck

of releasing patches to software vulnerabilities often lies in developing such patches. Simi-

lar to other types of software bugs, it is not uncommon for software developers to make even

several attempted patches before the correct patch for a software vulnerability [6]. We present

this study in Chapter 3. To remedy the delays in releasing patches, a faster alternative called

configuration workaround is commonly used to mitigate software vulnerabilities.



CHAPTER 1. INTRODUCTION 3

1.1.1 From Configuration Workarounds to SWRRs

Configuration workarounds leverage existing configuration options in applications to disable

code relevant to software vulnerabilities in order to mitigate them. Because configuration op-

tions are readily present in applications, configuration workarounds can be used by users in

production without the need for patches. Thereby some large software vendors such as Mi-

crosoft and VMWare routinely publish configuration workarounds for newly discovered vul-

nerabilities to allow users to immediately mitigate the vulnerabilities before software vendors

are able to release the patches [31–33, 36].

The security provided by configuration workarounds does not come for free. When they

are used, the functionality provided by the code disabled by them are lost regardless whether

the inputs to the software will actually trigger the software vulnerabilities. Therefore they are

usually used only when the lost functionality is not critical.

However, configuration workarounds can be used to protect only a fraction of software vul-

nerabilities. Our study shows that only 25.2% of vulnerabilities have configuration workarounds [62].

This is probably because configuration options are usually designed for giving users the flex-

ibility to adapt the functionality of a software to different usages rather than for mitigating

software vulnerabilities.

Inspired by the idea of configuration workarounds, we introduce the concept of Security

Workarounds for Rapid Response (SWRR). SWRRs mitigate software vulnerabilities in a man-

ner similar to configuration workarounds by disabling executions of vulnerable code. And they

can be instrumented into applications before the release of the applications so that they can be

activated by users in production just like configuration workarounds. By design, SWRRs can

be automatically synthesized and instrumented into applications and they protect aginst more

than 2.1x of vulnerabilities than configuration workarounds. We present the design, implemen-

tation, and evaluation of SWRRs in Chapter 4.
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1.1.2 Security Patch Generation

Automatic Patch Generation (APR) aims to automate the process of generating software patches

in order to alleviate the burden on software developers. A large number of APR techniques tar-

geting generic bugs have been proposed in recent years [67, 68, 70, 82, 83, 88, 89, 129, 131].

APR techniques can be broadly categorized as search-based and semantic-based. Search-

based techniques search patch candidates within a search space and validate the correctness

of the patch candidates with test cases [70, 82, 129]. They can make arbitrary code changes

and are applicable to a wide range of bugs. On the contrary, semantic-based techniques

leverage semantic information collected from program analysis and follow rules to produce

patches [88, 89, 95]. They tend to produce correct patches but are less applicable because they

are constrained by the applicability of the program analysis they use.

Unlike patches for generic software bugs, the patches for software vulnerabilities require

more strict guarantees on correctness and security. However, the vast majority of APR tech-

niques heavily depend on the comprehensiveness of test cases to generate correct patches, and

hence they generate incorrect patches most of the time due to the incompleteness of test cases

or error-prone approaches to validating patch candidates [102]. As a result, they are ill-suited

for software vulnerabilities.

To address this limitation, we propose a novel approach, called Security Patch Genera-

tion, that is specifically designed to generate patches for software vulnerabilities, i.e. secu-

rity patches. Our approach uses program analysis techniques to produce patches for three of

the most common types of software vulnerabilities: buffer overflow, bad offset, and integer

overflow. We specifically design program analysis techniques targeting these three types of

software vulnerabilities and thereby our design achieves semantically soundness and high ap-

plicability. Particularly our design deals with software vulnerabilities involving complex code

and data structures. We describe the details of this approach in Chapter 5.



CHAPTER 1. INTRODUCTION 5

1.1.3 SWRRs v.s. Security Patch Generation

SWRRs and Security Patch Generation address software vulnerabilities with different design

goals. SWRRs mitigate vulnerabilities at the cost of functionality loss, so they are intended

to be a short-term solution. In contrast, Security Patch Generation produces security patches

to fix vulnerabilities without any loss of functionality, which are intended to be a long-term

solution.

Because of their different design goals, SWRRs and Security Patch Generation have dif-

ferent applicability to software vulnerabilities. On one hand, SWRRs can work with any type

of software as long as there exist error-handling code for them to gracefully abort the execu-

tion of vulnerable code, but they can cause obtrusiveness, i.e. major functionality loss, if the

vulnerable code happen to implement critical functionality.

On the other hand, Security Patch Generation works only with the software vulnerability

types that it is designed to work with, but the patches that it generates will not cause obtrusive-

ness because they are designed to preserve correct functionality. Unfortunately its applicability

to software vulnerabilities is further limited by the applicability of the program analysis tech-

niques it employs.

To understand further the different applicability of SWRRs and Security Patch Generation,

we conduct experiments to evaluate their applicability on th same set of real-world software

vulnerabilities. We present and evaluate the evaluation results in Chapter 6.

1.2 Configuration Errors

Configuration errors is one of the major causes of software reliability and security issues. In-

deed, they are a leading cause of computer system failures and unavailability [55]. Recent

studies have shown that the prevalence of configuration errors is mainly due to the increasing

complexity of configurations [132] and error-prone configuration design and handling [133].

There has been a large body of work on troubleshooting configuration errors [43, 75, 125,
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126, 130]. Using rollback-recovery to diagnose configuration errors is one of the pioneering

approaches [130]. It keeps a history of previous configuration states and searches backward

in the history to find a working configuration state. But existing rollback-recovery approaches

can fail in many situations. First, they cannot fix configuration errors involving dependent con-

figuration settings, where the dependency among configuration settings must be maintained,

because they do not take into account the dependency among configuration settings. Second,

they can cause unexpected changes to configuration settings irrelevant to configuration errors

because they do not distinguish individual configuration settings. And they are only available

to expert users because they rely on scripts or programs written by users to determine whether

configuration errors are fixed.

Other approaches consider the state of individual configuration settings and uses statisti-

cal anomaly detection to identify abnormal configuration settings [75, 125, 126] or white-box

dynamic analysis to link erroneous code path to particular configuration settings [43, 141].

However, none of them takes into account the dependency among configuration settings and

thus they cannot fix configuration errors involving only one single configuration setting. Un-

fortunately a significant number of configuration errors (14.9% - 34.7%) can be fixed only by

changing all dependent configuration settings together [135].

To tackle configuration errors involving dependent configuration settings, we propose an

original approach that leverages unsupervised machine learning to understand the dependency

among configuration settings and uses rollback recovery that considers a set of dependent con-

figuration settings as a unit for rollback. It also makes the rollback recovery usable for regular

users by employing automated GUI testing facility to remove the burden on users in writing

probes. In Chapter 7, we present the details of this approach.
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1.3 Dissertation Outline

This dissertation addresses the challenges of the automation of troubleshooting and fixing soft-

ware security and reliability issues. For software security, we focus on mitigating and fixing

software vulnerabilities. For software reliability, we focus on troubleshooting and fixing con-

figuration errors. We illustrate that a novel combination of program analysis techniques can

automatically mitigate or fix software vulnerabilities, and unsupervised machine learning cou-

pled with automated GUI testing can automatically fix configuration errors.

In Chapter 2, we discuss related work. We then present our study on the lifecycle and

complexity of security patches in Chapter 3, which motivates our work on mitigating and fixing

vulnerabilities.

As we have mentioned, Chapter 4 and Chapter 5 respectively present Talos and Senx, two

approaches that address software vulnerabilities, followed by Chapter 6 that compares the

strengths and drawbacks of Talos and Senx. Chapter 7 then presents Ocasta, our approach

that fixes configuration errors. Finally, we conclude and propose directions for future work in

Chapter 8.



Chapter 2

Related Work

In this chapter, we discuss previous work related to my thesis. We first discuss work on software

vulnerabilities, which is related to my work on mitigating and fixing vulnerabilities. We then

discuss work on configuration errors, which is related to my work on troubleshooting and fixing

configuration errors. After that, we discuss work on failure recovery, because both my work on

vulnerabilities and my work on configuration errors utilize failure recovery techniques. Finally

we discuss work on machine learning, because my work on configuration errors leverages

unsupervised machine learning.

2.1 Software Vulnerabilities

This section discusses work related to Talos and Senx, the systems that I built to mitigate and fix

vulnerabilities, respectively. We first discuss work on characterizing vulnerabilities, because

we believe that a good understanding of vulnerabilities is the first step towards addressing

vulnerabilities. We then discuss work on mitigating vulnerabilities, which is related to Talos.

Finally we discuss work on automatic patch generation, which is related to Senx.

8
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2.1.1 Characterizing Software Vulnerabilities

We consider characterizing vulnerabilities as the first step towards addressing vulnerabilities.

Characterizing vulnerabilities allows us to understand how existing best practice methods ad-

dress vulnerabilities and what major challenges they face and what major limitations they have.

To answer these questions, we have conducted a study on the lifecycle of vulnerabilities. We

describe this study in Chapter 4. This section discusses other studies on vulnerabilities.

Since software vulnerabilities are such a major source of security threats, there have been

a lot of studies on characterizing and understanding software vulnerabilities to determine in-

dicators that might predict their presence [39, 94, 112]. They measured characteristics such

as vulnerability density, defect density, vulnerability discovery rate, structural complexity of

code, code churns, and developer activities on code; and built models based on the relationships

between them. We mention these as they served as an inspiration for us to study configuration

workarounds to mitigate such vulnerabilities.

A recent study on the life cycle of software releases [50] indicates that the rapid-release

methodology used by Mozilla Firefox does not increase the ratio of vulnerabilities in the code,

somewhat contrary to the popular belief that frequent code changes result in less secure soft-

ware. Another study has measured characteristics such as evolution of vulnerabilities over the

years, impacts of vulnerabilities, and access required for exploits over vulnerabilities and their

implications on software design, development, deployment, and management [111].

2.1.2 Mitigating Vulnerabilities

This section discusses work related to Talos, the system that I built to mitigate vulnerabilities.

We first discuss techniques that rectify or filter malicious inputs, because they have the same

goal as Talos of preventing the triggering of vulnerabilities. We then discuss techniques that

detect and prevent the execution of exploits. Finally we discuss techniques that try to find

configuration workarounds from existing configuration space to avoid failures.
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Rectifying Inputs. Talos prevents vulnerabilities from being triggered in the first place. With

the same goal, some techniques rectify malicious program inputs so that they cannot trigger

vulnerabilities. With taint analysis, SOAP learns constraints on input by observing program

executions with benign inputs [81]. From the constraints that it has learnt, it identifies input

that violates the constraints and tries to change the input to make it satisfy the constraints. By

doing so, it not only renders the input harmless but also allows the desired data in the rectified

input to be correctly processed

A2C exploits the observation that exploit code embedded in inputs is often fragile to any

slight changes. By encoding inputs with an one-time dictionary and decoding them only when

the program execution goes beyond the often vulnerable code, it disables the embedded exploit

code and turns it into a program termination [74].

Filtering inputs. An alternative to prevent the triggering of vulnerabilities is to detect and

filter malicious inputs. In general, these techniques perform analysis of the application source

code to generate a vulnerability-specific input filter that will detect inputs that could reach the

specified vulnerability. Some proposals detect and drop such inputs [51, 84, 117, 124], while

others convert malicious inputs into benign inputs [81, 107].

For example, Bouncer uses static analysis, combined with dynamic symbolic analysis, on

programs to infer the conditions that inputs must satisfy to exploit a vulnerability and then

craft filters based on these conditions [51]. HEALERS protects library functions by generating

wrappers on them, which intercept malicious inputs and return an error condition instead of

executing the vulnerable function [117]. It uses static analysis-guided fault injection to infer

predicates on the input arguments to a function that can cause the function to crash. HEALERS

only works on libraries with a well defined error specification in their API. In contrast, Talos

works on arbitrary internal functions in an application, and thus must infer error paths and

values since it does not assume they are specified. Shields [124] uses statically extracted infor-

mation to generate network filters, which then drop the network packets that might potentially

trigger a vulnerability.
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Preventing Exploits from Hijacking Program Execution. Rather than preventing the trig-

gering of vulnerabilities, some systems are proposed to prevent exploits to hijack program

execution after vulnerabilities are triggered. For example, Software Fault Isolation (SFI) [123]

and similar techniques [93, 134] instrument memory operations with bounds checks to make

sure even erroneous code cannot corrupt memory. Another approach is to validate every con-

trol flow transfer with Control Flow Integrity (CFI) [38, 52, 96, 97, 121, 139, 140]. Comparing

to the code instrumentation used by Talos, the code instrumentation used by these systems is

either more complex in the case of CFI or needs to be called more frequently in the case of

SFI. As a result, these hardening approaches generally have a higher performance overhead.

The major difference between Talos and these approaches is that they all require some

malicious input, i.e. proof-of-concept exploit, that can trigger a vulnerability. However, we

find that most of times a proof-of-concept exploit is not publicly available for a disclosed

vulnerability, probably due to security concerns. On the contrary, Talos does not require a

proof-of-concept exploit and requires only the name of a vulnerable function, which is usually

publicly available in vulnerability databases.

Finding existing workarounds for failures. A recently emerging area is searching the con-

figuration space of an application for workarounds for a specific failure. REFRACT searches

for configuration workaround for program failures [118]. Given a model of the configuration

space of a program and strategies to avoid failures, REFRACT tries to find a configuration

workaround that can avoid the failures caused by malicious inputs, by repeatedly replaying

inputs that trigger the failures to the program using different sample configurations. For 6 of 7

Firefox bugs, it successfully found configuration workarounds. Unlike Talos, REFRACT relies

on the existing configuration space of a program to workaround a vulnerability. However, our

findings show that configurations often do not provide sufficient coverage to workaround most

security vulnerabilities. Talos avoids this limitation by instrumenting a program with SWRRs,

which are designed specifically to protect the program from being exploited.
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2.1.3 Automatic Patch Generation

This section discusses work related to Senx, the system that I built to generate security patches

that fix vulnerabilities. There are three major directions in generating patches: leveraging fix

patterns, using program mutations, and learning from correct code. We first discuss work in

these major directions. We then discuss work that uses symbolic execution and constraint

solvers. Finally we discuss work on honey-patch, which is generated from regular patch but

serves the purpose of misleading attackers.

Leveraging fix patterns. Similar to Senx, some automatic patch generation (APR) techniques

also leverage fix patterns or models to generate patches.

By observing common human-developer generated patches, PAR generates patches using

fix patterns such as altering method parameters, adding a null checker, calling another method

with the same arguments, and adding an array bound checker [70]. PAR is able to generate

patches for 23% of the 119 bugs from six Java projects. Senx differs from PAR in two aspects.

First, PAR is unable to generate a patch when the correct variables or methods needed to

synthesize a patch are not accessible at the faulty function or method. Second, PAR uses a

trial-and-error approach that tries out not only each fixing pattern upon a given bug, but also

variables or methods that are accessible at the faulty function or method to synthesize a patch.

On the contrary, Senx employs a guided approach that identifies the type of the given bug and

chooses a corresponding patch model to generate the patch for the bug and systematically finds

the correct variables to synthesize the patch based on semantic information provided by a patch

model.

Focusing on memory leak bugs, LeakFix defines a fix as the only deallocation statement

for a memory chunk which must be executed after the allocation statement of the memory

chunk and after any use of the memory chunk [57]. By labelling program statements related to

memory allocation, deallocation, and usage, and abstracting a program into a CFG containing

only those related program statements, LeakFix transforms the problem of finding a fix for a

leaked memory chunk into searching for an edge where a pointer expression always points to
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the memory chunk can be constructed, no execution path covering the edge has a dealloction

statement for the memory chunk, and no use of the memory chunk exists on the outgoing path

of the edge. LeakFix successfully generates patches for 28% of the 89 reported leaks in the

SPEC2000 benchmark.

SPR fixes a defect with transformation schemes [82]. For a defect, it identifies a statement

in a target program as a repairing target, then selects a transformation schema, from a list

of transformation schemes, to modify the statement by associating an abstract function with

it. After that, it repeatedly runs the modified program to discover the correct values that this

abstract function should return for both inputs triggering the defect and inputs not triggering

the defect. By recording the values of all variables accessible at the identified statement, it tries

to find an expression involving a subset of the variables to act as the abstract function. This

expression is then used to synthesize a patch.

Using program mutations. GenProg is a pioneering work that induces program mutations, i.e.

genetic programming, to generate patches [129]. Leveraging test suites, it focuses on program

code that is executed for negative test cases but not for positive test cases and utilizes program

mutations to produce modifications to a program. As a feedback to its program mutation

algorithm, it considers the weighted sum of the positive test cases and negative test cases that

the modified program passes. Treating all the results of program mutations as a search space,

its successor improves the scalability by changing to use patches instead of abstract syntax

trees to represent modifications and exploiting search space parallelism [78].

Based on an analysis on the patches generated by state-of-the-art generate-and-validate

APRs, including GenProg [129], RSRepair [101], and AE [128], Kali generates patches that

only delete functionality [102]. The analysis finds that the test suites used by those patch

generators to determine whether a patch correctly fixes a bug often fail to do so because the test

suites do not even check whether the patched program produces correct output. By augmenting

the test suites with checks on program output, they find that the vast majority of the patches

claimed to be correct by these patch generators are actually incorrect. This indicates that
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relying merely on test suites to verify the correctness of automatically generated patches can

cause misleading results.

Learning from correct code. Prophet learns from existing correct patches [83]. It uses a

parameterized log-linear probabilistic model on two features extracted from the abstract trees

of each patch: 1) the way the patch modifies the original program and 2) the relationships

between how the values accessed by the patch are used by the original program and by the

patched program. With the probabilistic model, it ranks candidate patches that it generated for

a defect by the probabilities of their correctness. Finally it uses test suites to test correctness of

the candidate patches. Like other generate-and-validate APRs, its effectiveness depends on the

quality of the test suites.

Unlike Prophet, CodePhage intends to borrow code from the binary code of a donor pro-

gram and translate it into a source code patch for a defect in a target program [115]. A donor

program is a program that reads the same inputs as the target program, and correctly handles

both the input that can trigger the defect in the target program and the input that do not trigger

the defect. CodePhage searches for a donor program from its list of donor programs. After

finding a donor program for the defect, CodePhage searches for a check in the donor program

that returns opposite values for the two inputs and considers it as a candidate check. It then runs

the donor program to produce expressions that denote the check as a function that determines

the values of some input fields. Finally it searches for locations in the target program where the

expressions can be translated to valid source code as a patch for the target program to check

against the same input fields.

The way that CodePhage borrows code from one program and translates the code into an-

other program is analogous to the expression translation used by Senx, which instead translates

between different scopes of one program.

Using constraint solvers. SemFix uses constraint solving to find the needed expression to

repair the right hand side of an assignment statement or the condition checked by an if state-

ment [95]. By executing a target program symbolically with both inputs triggering a defect and
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inputs not triggering the defect, it identifies the constraints that the target program must satisfy

to process both kinds of inputs correctly. It then synthesizes a patch using component-based

program synthesis, which combines components such as variables, constants, and arithmetic

operations to synthesize an expression that can make the target program satisfy the identified

constraints.

Similar to SemFix, Angelix runs the target program symbolically with concrete inputs

to discover the constraints that a target program should satisfy to fix a defect and then uses

component-based program synthesis to generate a patch [89]. Different from SemFix, it con-

siders more than one statements in a target program so that it is capable of generating a patch

that modifies more than one statements in the target program.

Honey-patch. On top of fixing vulnerabilities, a recent work aims to misinform attackers about

whether an exploit works or not by transforming a regular patch into a honey-patch, which adds

additional logic to redirect malicious inputs to a vulnerable version of a program, so that the

exploit targeting the patched vulnerability appears to be successful to attackers [42].

2.2 Configuration Errors

This section discusses work related to Ocasta, the system that I built to troubleshoot and fix

configuration errors. We first discuss work on inferring related configuration settings, because

Ocasta aims to address configuration errors involving related configuration settings. We then

discuss work on diagnosing configuration errors, which shares the same goal as Ocasta. Finally

we discuss work on detecting and simulating configuration errors.

2.2.1 Inferring Related Configuration Settings

Few previous studies automatically infer relations among configuration settings. Zheng et

al. [142] deduce dependency among configuration settings by experimentally testing the im-

pact of changing configuration settings. Ocasta’s clustering algorithm avoids the overhead of
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experimental tests by using observed application accesses to configuration settings. Glean [75]

infers relations among configuration settings by analyzing hierarchical structure of configura-

tion settings, while Ocasta’s clustering algorithm does not require the existence of hierarchical

structure for configuration settings.

2.2.2 Diagnosing Configuration Errors

There has been a large body of work on diagnosing configuration errors. In this section, we

first discuss techniques that identify erroneous configurations with statistics. We then discuss

techniques that leverage program analysis to find the cause of configuration errors, after which

we discuss techniques that learn from human-generated solutions. Finally we discuss search-

based techniques.

Identifying errors with statistics. Of the work that focuses on diagnosing configuration er-

rors, Ocasta is most closely related to Strider [126] and PeerPressure [125]. Both PeerPressure

and Strider use a genebank of common configurations and apply statistical methods to deter-

mine where the error might lie. These systems assume homogeneity across machines and also

have privacy implications as users must share their configurations with the genebank. Ocasta

only requires information collected locally from the machine with the error and thus does not

have the drawbacks of a genebank.

Leveraging program analysis. ConfAid [43] takes a “white-box” approach by using taint-

analysis to try to identify the configuration setting that causes a configuration error. ConfAid

ranks configuration settings that affect the path taken to reach the configuration error as more

likely to be configuration keys that can fix the error. Another “white-box” approach, Failure-

Context-Sensitive analysis [104] extracts the mapping between configuration settings and the

source code lines that can be affected by these configuration settings, from the source code of

an application. These mappings can be used to identify the configuration setting that causes

configuration errors, when the source code lines of the errors are available, for example from

an application’s error message. More recent work, ConfDiagnoser, combines static analysis of
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an application’s source code and execution profiling to rank configuration settings that causes

executions to deviate from pre-generated correct executions [140]. Because these approaches

are white-box, they require application source code. In contrast, Ocasta treats applications as

black-boxes and only requires access to the application’s key-value store.

Learning from human-generated solutions. Kardo [73] and Autobash [116] are both systems

that take a human-generated solution for a configuration error, perform analysis on the solution

to find the minimum set of actions that make up the configuration fix and generalize it so it can

be applied to a wider set of machines. Ocasta does not require human-generate solutions.

All above work focuses on identifying a single configuration setting that causes configu-

ration errors. With the clustering provided by Ocasta, their techniques can be leveraged to

diagnose configuration errors caused by more than one configuration settings.

Search-based solutions. Chronus [130] maintains a history of entire system states and focuses

on using binary search to find the optimal recovery point in an application’s history. Chronus

logs at the disk block layer and as a result, many of the historical states it generates can corrupt

file systems and thus cannot be used for recovery.

2.2.3 Detecting and Simulating Configuration Errors

Like Ocasta, CODE [137] analyzes the accesses patterns that applications make to the Windows

registry. CODE uses a rule learning algorithm to identify normal key access patterns of an

application and flags anomalous access patterns as possible configuration errors. CODE detects

configuration errors, but unlike Ocasta, it does not fix the errors, nor does it try to identify

relationships between keys other than the access patterns.

Conferr is a tool for quantifying system manageability and resilience to configuration er-

rors [47, 69]. It uses simulated human models to try to generate realistic configuration errors.

Both CODE and Conferr can be viewed as complementary to Ocasta.
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2.3 Failure Recovery

Both my work on software vulnerabilities and my work on configuration errors leverage failure

recovery techniques. This section discusses work on the failure recovery techniques that are

related to the ones used by my work.

2.3.1 Resuming Execution After Faults

Some techniques try to improve fault tolerance by allowing an application to continue execu-

tion after a fault has occurred [49,56,85,100,106,113]. In general, these do not have the same

level of security as Talos as they cannot guarantee that the recovered application is secure, but

they follow the same principle of detecting an erroneous application state and redirecting it to

some non-erroneous state that Talos uses with SWRRs.

Failure-Oblivious Computing is proposed to improve the resilience of server applications

after an attack has triggered memory errors, by augmenting an application to ignore memory

errors [106]. For out-of-bounds memory writes, it simply discards them. For out-of-bounds

memory reads, it redirects them to a preallocated buffer that contains pre-defined values that

are likely to reduce the possibility of a crash or infinite loop. Recently, this work was followed

by RCV, which further limits the propagation of the manufactured values within an application

by skipping any system call that tries to use them [85]. Like Talos, these approaches seek to

trigger error-handling code in the application. The main difference is that these approaches

are simpler in that they guess the values that will cause this to happen, while Talos uses static

analysis on the application source code to discover the location of error-handling code and

the appropriate place to intercept and redirect execution to the error-handling code. Another

difference is that these approaches focus on executing past out-of-bounds memory accesses,

while Talos, which disables individual functions, can handle a broader set of software faults.

A technique has been proposed to abort the execution of a function when it overruns a

memory buffer, as a consequence of malicious inputs, and resume the execution right after the



CHAPTER 2. RELATED WORK 19

call to the offending function after making a best effort to undo any side-effect caused by the

offending function such as changing global variables [113]. Their evaluation also indicates that

the program can continue run in many situations. The challenge of this work is that many times

it is difficult if not impossible to infer what side-effects the partial execution of a function has

caused and how to correctly undo them. Talos avoids this problem by not executing any part

of a function and simply forcing the function to return an error code to its caller.

2.3.2 Time Travel and Roll Back

The concept of time travel and roll back has been used for debugging and system recovery from

intrusions. Time-travel virtual machines [72] enables deterministic replay of whole machines

to simplify OS debugging. Taser [59] and Retro [71] use system-level tracking and perform

selective recovery after an intrusion. Rx [103] uses repeated roll backs to find an execution

where bugs do not occur, but does not try to find the root cause or attempt to permanently fix

the bug. Like Ocasta, these systems use roll back recovery but focus on fixing other types of

faults while Ocasta focuses specifically on configuration errors.

2.4 Machine Learning

My work on troubleshooting and fixing configuration errors leverages machine learning to

understand the dependency among configuration settings. In this section, we discuss work that

leverages similar machine learning techniques.

2.4.1 Hierarchical Clustering

Many previous studies have used hierarchical clustering for software clustering [40, 108, 122],

including program comprehension, reverse engineering, and software reengineering, cluster

different levels of abstractions of software artifacts, such as variables, functions, and source

files. Prior work has also used hierarchical agglomerative clustering to improve the efficiency
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of finding software failures during software testing [53] or categorizing software failures [54].

They cluster profiles of an application’s executions.

Ocasta uses the maximum linkage criterion, which as been found by other prior work [41,

87] to provide better performance than other linkage criterion. Ocasta augments the hierar-

chical agglomerative algorithm to be able to partition clusters using an adjustable clustering

threshold, which is more flexible and intuitive for our purposes of clustering configuration

settings.



Chapter 3

Study on Security Patches

This chapter presents our study on security patches. We focus on the characteristics and cause

of pre-patch window, the time between a vulnerability is discovered and the time a patch is

issued. This study motivates our work on mitigating and fixing software vulnerabilities. In

this chapter, we first study the lifecycle of security patches. We then study the complexity of

security patches.

3.1 Lifecycle of Security Patches

We begin with a study of the lifecycle for recent security vulnerabilities. The vulnerabili-

ties used in our study were collected from various sources, including common vulnerabil-

ity databases [10, 12, 17, 25], vendor-specific security bulletins [4, 11, 16], and software bug

Table 3.1: Security patch statistics.

Application #Vulnerabilities Delay (Days) SLOC #Functions #Files
lighttpd 27 54 49 2 2
apache 30 61 47 2 2
squid 46 73 64 6 3
proftpd 16 9 95 4 2
sqlite 12 62 17 4 3
AVERAGE 26 52 54 4 2

21
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databases [9, 14, 23].

For our study, we need information on the disclosure date of vulnerabilities, the release/-

commit date of patches, and the source code of the patches. Hence we choose open-source

applications that are popular, reasonably complex, mature, being actively developed and main-

tained, and have a decent number of vulnerabilities. For each application, we selected as many

vulnerabilities as possible that have the required information for manual examination. Our

results are shown in Table 3.1. Column “#Vulnerabilities” shows the number of examined

vulnerabilities. Column “Delay” shows the average number of days between the disclosure

of security vulnerabilities and the release of corresponding software patches. We obtain the

date when a vulnerability is disclosed from either an official vulnerability disclosure or the bug

report for the vulnerability. For some vulnerabilities, we could not find an official disclosure

date, so we approximate this using the earliest dated document in which they are referenced.

From the collected data, we can see that it takes considerable time to release a patch and the

size of the pre-patch vulnerability window is significant, averaging around 1.5 months after the

vulnerability is disclosed.

We find that 43.4% of the vulnerabilities were patched within 7 days after the vulnerabilities

were disclosed, 23.3% of them were patched between 7 days and 30 days, and 33.3% of them

were patched after 30 days. Similarly, a recent study on the lifecycle of security vulnerabilities

in operating systems and web browsers shows that among open source vendors, 65% of the

vulnerabilities were patched within 7 days, 9% of them were patched between 7 days and 30

days, and 18% of them were patched after 30 days [111]. Both our study and their study

indicate that a significant number of vulnerabilities were patched after 30 days.

To understand the bottleneck in releasing a patch, we break the task of releasing a patch

into steps including vulnerability triage, constructing a patch, and regression test. We define

constructing a patch as developers’ effort in developing a patch after acquiring one or more

test cases to trigger a vulnerability. In general, vulnerabilities are reported to software vendors

with such test cases, particularly when they are discovered via fuzzing test. We study the time
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spent in each step by examining the bug report of vulnerabilities. Unfortunately, we were only

able to locate the bug reports for 21 of the vulnerabilities that are shown in Table 3.1.

Because most of these bug reports do not contain the time when a developer was assigned

or when a tester was assigned, we conservatively assign the period of time between when the

bug is reported and when the first patch attempt is created as the time spent for vulnerability

triage, the period of time between when the first patch attempt is created and when the last

patch attempt is created as the time spent to construct a patch, and the period of time between

when the last patch attempt is created and when the patch is committed as the time spent for

regression test.

For these vulnerabilities, we find that the time and effort spent in constructing a patch is

very significant. For the 8 vulnerabilities that took more than one day to create a patch, 89%

of the time was spent in constructing a patch. And 9 of the vulnerabilities took between two to

six attempts to patch correctly. Particularly the bug report of one proftpd vulnerability (CVE-

2012-6095 [6]) contains five attempts of patch, of which the last patch attempt was created 96

days after the first patch attempt was created, and 29 comments from the developer and the

testers, of which the comments from the developer along the time line include "This updates

the previous patch ...", "This patch builds on the previous one ...", "I’ve just committed more

changes ...", "Hopefully the combination of ... addresses the remaining issues.", "Unfortunately

I don’t have a good/easy fix/solution for this yet.", and one of the very last comments from the

testers is still "I’m afraid I found a bug in ...".

3.2 Complexity of Security Patches

To understand further why constructing a patch is non-trivial, we further study the complexity

of the patches, which are available for all the vulnerabilities shown in Table 3.1. We use

column “SLOC” to show the number of lines of source code in patches, column “#Functions”

to show the number of functions that are changed by patches, and column “#Files” to show
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the number of source code files that are changed by patches. We find that on average patches

consist of 54 lines of source code and span 4 functions in 2 source code files. This suggests

that on average, patches involve non-trivial changes to the application code. As a result, the

vulnerability window is likely inherent to patches, as time must be spent by human engineers to

understand the vulnerability, design and implement the fix, and finally test and review the patch

before release. Due to our need for detailed bug reports and source code patches in performing

this study, we were restricted to open-source applications. However, we found no evidence that

these conclusions are restricted to open-source projects, and so we believe they should apply

equally to both open- and closed-source applications.



Chapter 4

Neutralizing Vulnerabilities with SWRRs

To address the problem of pre-patch window presented in Chapter 3, we propose an approach

to preventing vulnerabilities from being triggered. This approach uses a novel mechanism that

can be automatically synthesized and integrated into target applications either at the release of

these applications or as patches after the release of these applications. Particularly when it is

integrated in the former manner, it allows users to prevent vulnerabilities from being triggered

without the need of patches and thus substantially reduces or eliminates the pre-patch window.

This chapter describes the details of this approach and our prototype implementation.

4.1 Introduction

Patches are the commonly-accepted solution for completely preventing a security vulnerability

from being exploited. Patches fix security vulnerabilities and, in most cases, do so with no loss

of functionality or performance for the application. However, despite their benefits, patches

are not perfect.

An often ignored drawback of patches is the pre-patch window of vulnerability that exists

between the time a vulnerability is discovered and the time a patch is issued. This vulnerability

window is inherent to security patches because patches must be manually created and tested,

which takes time and effort to do correctly. Although a large number of techniques have been

25
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proposed to automatically generate patches to fix vulnerabilities [78,79,95,100,110,127,129],

they have not been widely adopted in practice. As a recent study [111] and our own findings

in Section 4.2 demonstrate, the length of this window can be significant, and is unlikely to

decrease due to the average complexity of a security patch. While the risk of exploitation during

the pre-patch window can be reduced by keeping the vulnerability secret, this is just security-

through-obscurity. As the highly active market of zero-day vulnerabilities demonstrates, there

is no shortage of instances where attackers may be aware of and able to exploit vulnerabilities

during this window [44].

While the period before a vulnerability is known can be reduced by better vulnerability

detection and software engineering practices, we believe we can address the window of vulner-

ability that exists between the time the vulnerability is known to the developer (or to the public)

and when the patch is issued. To do this, we take inspiration from configuration workarounds,

which are a commonly used mechanism to address the pre-patch window of vulnerability. Con-

figuration workarounds disable functionality related to the vulnerable code so that it cannot be

triggered by an attacker. The recent high-profile Android Stagefright bug is a perfect example

of this. This remote code execution vulnerability, which affected almost 1 billion devices, was

discovered as early as April 2015, although not publicly disclosed until July. A patch was not

available until August, several months after the vulnerability was discovered, and even at the

time of writing, many smartphones models still do not have a usable patch [98,99]. Fortunately,

the worst methods of exploitation via a malicious MMS can be prevented by configuring the

MMS client on the phone to not automatically download media files from MMS messages. In

exchange for some minor loss of functionality, the configuration workaround protects the user

from the exploitation of a very serious vulnerability.

However, configuration workarounds are far from ideal for mitigating security vulnera-

bilities. Again, as we show in Section 4.2, configuration workarounds have low coverage –

there are many vulnerabilities for which no configuration workaround exists because there is

no configuration option that can disable the vulnerability. Configuration options are designed
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to allow users to easily alter the behaviour of a program, and thus only cover functionality that

most users would like to enable or disable. Thus it is hardly surprising that very few vulnerabil-

ities have configuration workarounds, and it seemingly becomes a matter of serendipity when

a vulnerability can be neutralized with a configuration workaround.

Motivated by the problems of the pre-patch vulnerability window and the low coverage of

configuration workarounds, we propose Security Workarounds for Rapid Response (SWRRs),

workarounds that can be mechanically generated to address a large percentage of vulnerabil-

ities. The main challenge in designing SWRRs is that they must work in a broad range of

circumstances. By their nature, vulnerabilities are not known a priori, and thus SWRRs must

work for any vulnerability that can occur. Another challenge is that vulnerabilities can occur

anywhere in an application, and be related to almost any type of functionality, but an SWRR

must ensure that the application continues to work after the SWRR is applied. Thus, we design

SWRRs to be simple and generic, relying on very few assumptions about either applications or

vulnerabilities. The cost of this generality is that like configuration workarounds, users must be

willing to accept some minor loss of functionality in return for protection from a vulnerability

until a patch is issued.

Our key insight for making SWRRs generic and cheap to deploy is that application error-

handling code, whose purpose is to gracefully return an application to a good state when an

unexpected error arises, can be found mechanically and invoked using static analysis. Based

on this insight, we designed and implmented a system called Talos, which detects such error-

handling code using static analysis and adds SWRRs into a given application. Each SWRR

prevents the execution of code where a vulnerability is located, and calls the error-handling

code instead. With Talos, developers can deploy SWRRs either as patches or in-place as part

of an application so that they can be activated with run-time loadable configurations.

In summary, SWRRs provide benefits for both software developers and users at a small

cost. For the cost of having to run Talos and issue the resulting patch, software developers

benefit by having a solution that protects their users; this affords them more time and less
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immediate pressure to create, test, and deploy a patch. Users benefit by having a solution that

protects them during the pre-patch vulnerability window at the cost of having to accept some

loss of functionality. In addition, in cases where users cannot install a patch for compatibility

reasons or where no patch exists because the software is no longer supported, users can still

use an SWRR to protect themselves.

This chapter makes the following contributions:

1. We propose SWRRs, which provide a low-cost way for software developers to quickly

protect users during the pre-patch vulnerability window.

2. We design and implement a software tool called Talos to demonstrate that SWRRs can be

practically deployed. To safely continue the execution of an application, Talos heuristi-

cally identifies error-handling code in the program and transfers execution to those paths

to avoid having to execute vulnerable code.

3. We evaluate the effectiveness and coverage of the SWRRs inserted by Talos into 5 pop-

ular applications. When tested against 11 vulnerabilities, SWRRs generated by Talos

successfully neutralize the vulnerabilities in all cases. Empirical tests on 320 Talos-

generated SWRRs show that they can achieve an effective coverage that is 2.1× that of

traditional configuration workarounds.

We begin in Section 4.2 with a study based on data we collected that demonstrates the

motivation behind SWRRs. Then we give an overview of SWRRs in Section 4.3 and describe

Talos, our tool for automatically inserting SWRRs into application source code, in Section 4.4.

We provide details about the implementation of Talos in Section 4.5. We then evaluate the

SWRRs that Talos instruments into applications in Section 4.6. We discuss the limitations and

other issues of SWRRs in Section 4.7. We then provide a comparison with related work in

Section 2.1 and conclude in Section 4.8.
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Table 4.1: Configuration workaround statistics.

Application #Options #Vulnerabilities Workaround Period
lighttpd 88 27 14.8% 2005-14
apache 74 42 16.7% 2002-14
squid 174 30 6.7% 2001-15
proftpd 28 20 20.0% 2004-13
IE 33 31 54.8% 2000-14
Office 325 32 37.5% 2000-11

4.2 Configuration Workaround

Since configuration workarounds represent the current best solution for mitigating the vulner-

ability window, we present our study of configuration workarounds for recent security vulner-

abilities. We define a configuration workaround as any vulnerability mitigation that involves

modifying the configuration of the application (i.e., configuration options supported by the

application) and exclude many other common fixes such as patching the application binary,

disabling the application, or placing the vulnerability out of the reach of attackers (e.g., tight-

ening firewall rules).

4.2.1 Configuration Workaround Coverage of Vulnerabilities

For this study, we use the same set of open-source applications that are used in Chapter 3

and add two popular closed-source applications: Internet Explorer and Microsoft Office. We

also exclude sqlite because sqlite does not support any configuration options. For each ap-

plication, we again randomly select a number of vulnerabilities and search both the software

vendors’ websites and Internet to determine if a configuration workaround is available. We

tabulate the percentage of vulnerabilities examined for which we were able to find a configura-

tion workaround as well as the time period over which the manually examined vulnerabilities

were reported. We also tabulate the number of configuration options for each application. Ta-

ble 4.1 presents the results. Column “#Options” shows the number of configuration options

that each application has. Column “Workaround” shows the percentage of vulnerabilities that
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have configuration workarounds. Column “Period” shows the earliest and latest time when

the vulnerabilities are reported. For IE and Office, we cite the number of configuration op-

tions measured by Ocasta [63]. For other applications, we obtain the list of their configuration

options from their source code using either static analysis, manual examination, or user docu-

mentation. While it is difficult to say whether a small number of configuration options indicates

that each option covers a large amount of code, in general we can see that the number of con-

figuration options is usually small.

We observe several trends in the results of our study. First, configuration workarounds are

listed for every application in our study. This shows that the use and disclosure of configura-

tion workarounds is widespread across software projects. Second, the percentage of vulnera-

bilities that have workarounds is relatively low – a weighted average (by # of vulnerabilities)

shows that only 25.2% of the vulnerabilities have configuration workarounds. As a result, the

instances in which a security vulnerability can be neutralized with an existing configuration

workaround is low.

Qualitatively, we find that many configuration workarounds disable an entire “module” of

functionality that was associated with the vulnerable code. This suggests that many configu-

ration workarounds cause some collateral damage; they not only disable the vulnerable code,

but may also unnecessarily disable other non-vulnerable functionality as well. For example,

vulnerability CVE-2011-4362 in lighttpd [15] is the result of an incorrect bounds check in the

code that is only called during base64 decoding of credentials for HTTP basic authentication.

However, the posted configuration workaround disables all types of authentication because it

is the only configuration option that can prevent the vulnerable code from being executed. This

means that other types of authentication that do not rely on base64 decoding, such as digest and

NTLM authentication, are unnecessarily disabled. In general, the coarseness of the configu-

ration options means that the configuration workarounds frequently disable more functionality

than is strictly necessary.

Objectively speaking, it is not a complete surprise that configuration workarounds, while
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widespread in their usage across applications, are generally applicable to a minority of vul-

nerabilities and might only be able to disable code at a coarse granularity. Having fewer con-

figuration options simplifies testing and generally improves usability, motivating developers to

minimize the configurability of their applications. There are likely many regions of code that

cannot be disabled by the limited number of configuration options, resulting in many vulnera-

bilities for which there is no configuration workaround.

4.3 Overview

4.3.1 SWRR Objectives

From our study of configuration workarounds we found that while configuration workarounds

are commonly used, they have very low coverage of vulnerabilities thus reducing their utility.

Despite this, the reason why configuration workarounds are still used is that they impose no

additional effort on the part of the developer. In essence, they provide a small, but tangible

benefit for free. While it might seem obvious that a special purpose mechanism like SWRRs

can improve on the coverage of configuration workarounds, we remain cognizant that, to be

competitive, they must at the same time impose little or no engineering cost. Furthermore, as

a temporary alternative to a patch, they must be quick to generate as compared to construct

a patch. We achieve low-effort by automatically generating SWRRs with Talos. However, if

designed improperly, an automatically generated SWRR may do more harm than a manually

created configuration workaround. As a result, we state the following objectives for our design

of Talos and the SWRRs it creates:

• Security: An SWRR should neutralize its intended vulnerability and, in doing so, it

should not introduce new bugs or vulnerabilities.

• Effective Coverage: SWRRs should be able to cover many more vulnerabilities than

configuration workarounds. Effective coverage is a product of two components: (1)
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the number of vulnerabilities whose code SWRRs can disable (which we call “basic

coverage”), and (2) the number of SWRRs that, when enabled, result in a minor loss of

functionality similar to what would be expected from a configuration workaround.

• Low Cost: SWRRs are mechanically inserted into an application using Talos, thus min-

imizing the engineering effort required to use SWRRs. In cases where a binary SWRR

patch cannot be issued, it should be possible to deploy SWRRs in-place like configura-

tion workarounds with minimal performance overhead.

Configuration workarounds are very unlikely to introduce new bugs or vulnerabilities since

they have been tested; we expect the same behaviour from SWRRs, however, we limit our

security objective to avoiding vulnerabilities that can compromise the confidentiality and in-

tegrity of a program. It is possible and acceptable for Talos to create an SWRR that causes the

application to terminate, even though this creates a potential denial-of-service vulnerability.

We believe this is acceptable because most state-of-the-art vulnerability mitigation techniques

(such as Address Space Layout Randomization (ASLR), Control Flow Integrity (CFI), and

non-executable stacks) aim to turn memory corruption exploits or malicious control flow trans-

fers into program crashes, which also result in the termination of the program [38, 90, 109,

121,138,139]. As a result, our design of SWRRs aims to completely avoid confidentiality and

integrity vulnerabilities in exchange for some (small) probability of introducing a denial-of-

service vulnerability.

Regarding the effort to generate an SWRR, more effort is always required to generate a

full patch than a SWRR. This is because a full patch must preserve all the functionality of the

application while SWRRs explicitly allow some loss of functionality. As described in the third

paragraph of Section 4.3.2, Talos only requires the function that contains the vulnerable code,

which can be obtained from a crash report for example. On the contrary, to create a full patch, a

developer needs to understand the exact cause of the vulnerability and all the conditions under

which the vulnerability is triggered. In addition, the developer needs to devise new code that

retains all desired functionality of the old code but does not contain the vulnerability.
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While generating a full patch always takes more effort than generating an SWRR, the dif-

ference in effort is dependent on the complexity of the vulnerability. The more complex the

vulnerability is, the larger the difference in effort will be. In contrast the amount of effort to use

a SWRR is fairly independent of the complexity of the vulnerability, as it just requires know-

ing the function that contains the vulnerable code. For simple vulnerabilities, the difference in

effort might be small, but our result in Table 3.1 indicates that a fair number of vulnerabilities

can be quite complex.

4.3.2 SWRR Deployment

There are two possible deployment methods for SWRRs. In the first deployment method of

SWRR, which we call in-place deployment, Talos is run on the application code base before it

is released. Talos inserts an SWRR check into every function in the application. Each SWRR

check reads and checks a corresponding SWRR option in an accompanying SWRR configura-

tion file. This allows the application developer to selectively disable code in an application

without having to replace the binary by pushing out a new SWRR configuration file instead.

Alternatively, the user may change the configuration file to enable the appropriate SWRR if

they know which function the vulnerability occurs in. In-place SWRR deployment is useful in

scenarios where runtime performance is not critically concerned or where replacing application

binaries is difficult, such as in smart phones and other embedded devices.

In the second deployment method of SWRR, which we call patch-based deployment, the

application developer will run Talos on the application code base when they learn of a new

vulnerability, passing Talos the information it requires about the vulnerability. Talos will then

insert code that will disable the vulnerable function(s). The application developer will then

compile the instrumented code and issue the resulting binary as a temporary patch to users.

The application developer can perform minimal testing on the temporary patch as SWRRs are

unlikely to cause serious loss of functionality in most cases, which is shown in our evaluation.

Because the SWRR patch is simply a return statement added to the very beginning of a
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function, Talos can even use binary rewriting to directly overwrite the binary of an application

with a return instruction at the start of a function rather than modifying the source code of the

application.

Using an SWRR requires that the location of the vulnerability be known. We argue that

this is a reasonable requirement – by the time a vulnerability is discovered and confirmed, the

location of the vulnerable code is generally known, albeit a proof-of-concept exploit is often

not publicly available. For example, many of the CVE vulnerability reports we used in our

experiments specifically list the function in which the vulnerability is located.

Each of the two SWRR deployment methods has its own pros and cons. The pros of

in-place deployment include no need to generate and roll out an SWRR, and not requiring re-

compilation, but its cons include slight increase of code size and very small loss of runtime

performance, as we will show in Section 4.6. The pros of patch-based deployment include

minimum increase of code size and no loss of runtime performance, but its cons include the

need to generate and roll out an SWRR and requiring re-compilation.

As the main goal of SWRR is to provide a rapid response when a vulnerability is newly

discovered, we use Figure 4.1 to illustrate the commonalities and differences between the two

SWRR deploy methods and the conventional approach of releasing a full patch, when they

are used to address a newly discovered vulnerability. In the figure, the workflows of different

approaches are distinguished with the use of different types of arrows. The legends used in the

figure are explained in the dotted box at the bottom of the figure.

When a vulnerability is newly discovered, each approach starts with vulnerability triage

and finding the location of the vulnerability. After that, each approach consists of different

steps. First, releasing a patch requires software developers to find the cause of the vulnerability

and to construct a patch, which can demand a considerable amount of effort and time, testers

to perform regression test to ensure the patch does not break any functionality, the vendor to

release the patch, and end-users to apply the patch to their installed application. Second, the

in-place SWRR deployment requires developers to identify the SWRR that can mitigate the
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Figure 4.1: Different approaches to addressing a newly discovered vulnerability.

vulnerability, which can be done by simply running Talos, and end-users to activate the SWRR,

which is simply to change the application’s configuration, because the SWRR has already been

built into the application before the application is released. Finally, the patch-based SWRR

deployment requires developers to generate an SWRR specifically for the vulnerability, which

is also done by running Talos, vendors to release the SWRR as a patch, and end-users to apply

the generated SWRR to their installed applications, which is similar to apply a patch. Note that

at the end, the conventional approach of releasing a patch will fix the vulnerability, while both

SWRR deployment methods only mitigate the vulnerability. However, SWRR deployment

methods take less steps and requires much less effort and time.
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4.3.3 The Error-handling Code Intuition

Talos must insert SWRRs so that they can neutralize vulnerable functions without violating

security and without needing to understand complex program-specific semantics. Talos is al-

most completely application-agnostic, requiring only a small amount of application-specific

information from developers. The key questions are then what application characteristic (1) is

present and similar across all or nearly all applications, and (2) can allow Talos to recover from

the unexpected redirection of execution away from the vulnerable code?

Our intuition is that code whose purpose is to handle unexpected or abnormal error condi-

tions fits these requirements. First, error-handling is found in nearly every type of application.

Essentially any sufficiently complex application that interacts with its environment must grace-

fully handle unexpected situations such as invalid inputs, inadequate resources, or unexpected

delays that it encounters; this is generally accomplished with what we generically refer to as

error-handling code. Second, error-handling code is designed to be invoked when the appli-

cation encounters these unexpected or abnormal situations and thus, by nature, it must conser-

vatively return the application back to a known state. In fact, the majority of error-handling

code takes great pains to try to avoid violating confidentiality by leaking sensitive information

or violating integrity by corrupting data. Instead, most error-handling code remedies an ab-

normal situation by aborting the current task and cleaning up any intermediate state or, in the

worst case, gracefully halting the application if continuation is not possible. As a result, the

intuition behind the goals of error-handling code fits well with the security goal of protecting

the confidentiality and integrity of applications.

If an application does not have existing error handling code for a vulnerable function, it is

possible for Talos to instrument new error handling code designed for the vulnerable function

into the application and use the new error handling code in the SWRR for the vulnerable func-

tion. However, it will require deeper understanding of the code of the callers of the vulnerable

function or even changes to the code of the callers to ensure that the new error handling code

does not introduce new bugs.
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A keen reader might raise the question on the reliability of existing error handling code.

Indeed it is possible that an SWRR happens to use some error handling code that is rarely

used in practice and contain some bug. In such case, the bug might manifest when the SWRR

is activated. However, our evaluation on the rate of unobtrusiveness for 320 SWRRs across

different applications in Section 4.6.2 indicates that the vast majority of existing error handling

code is reliable.

4.4 Design

We now describe how Talos inserts SWRRs into application code without introducing new

security vulnerabilities. First, we explain how Talos sets about instrumenting an application

with SWRRs. Then, we detail the heuristics Talos uses to identify error-handling code within

an application for the purposes of SWRR instrumentation.

4.4.1 Inserting SWRRs

There are two design decisions to be made when Talos inserts SWRRs into an existing code

base. First, we must decide the granularity of code that each inserted SWRR should enable or

disable. The granularity of code that is protected by each SWRR has a bearing on its security

and unobtrusiveness. This is because error-handling code can broadly be classified into two

categories: intra-procedural error-handlers that operate completely within a function, and inter-

procedural error-handlers that are unable to completely handle the error within the function

and must expose the error to the function’s caller. The error handlers in the former category

are difficult for Talos to use as they are tightly coupled with the path within the function used

to invoke the error-handling path. For example, they may free memory that they know was

allocated on the path leading to the error-handling code, or conversely fail to free memory since

they know the paths leading to the error-handling code did not allocate it. If Talos redirects

execution to such an error-handling path without understanding the internal semantics of the
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function, it could result in a double-free bug.

However, error-handling code that exposes the error to the caller must be more conservative

because it must be written in such a way that correctness guarantees are met independently of

the calling context. As a result, such error-handling code often seeks to ensure that modifi-

cations made to application state by the function are undone and that an appropriate value is

returned to the caller so that the caller can then handle the failure. For example, an input sani-

tization function that fails due to an out-of-memory error might free any resources acquired up

to that point and then return an error code to the caller so that the caller can conservatively re-

ject the unsanitized input. This intuition implies that functions that contain such error-handling

code can safely do nothing as long as the caller is notified that the function has encountered an

error. As a result, Talos instruments SWRRs to enable or disable code at the granularity of a

function. While there is no guarantee that this intuition is always true, we find that it does hold

for a large number of cases allowing Talos to instrument applications with SWRRs that are se-

cure and provide better effective coverage than configuration workarounds as we demonstrate

in our evaluation in Section 4.6.

Given that an SWRR option should control the execution of a function, instrumenting a

function with an SWRR is fairly straightforward. To instrument a function, Talos adds the

code in Listing 4.1 or Listing 4.2 to the function, depending on whether in-place deployment

or patch-based deployment is used. For in-place deployment, a check is first performed on

line 3 to determine whether the corresponding SWRR option (SWRR_option) is enabled; if it

is, the entire function body is skipped and the error code (error_code) that has been statically

extracted from the error-handling code is returned to the caller on line 4. In this section, the

text will mostly assume in-place deployment since it is the slightly more complex of the two

options, however, we expect that in most cases patch-based deployment will be preferable.

Since a suitable error code must be found for each function instrumented with an SWRR,

Talos can only instrument a function if: (1) it can determine if the function has inter-procedural

error-handling code, and (2) it can extract the value that the error-handling code returns to
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procedure FIND_FUNCTIONS(Functions)
to_instrument← /0
SWRR_map← /0
for f ∈ Functions do. Apply 2 main heuristics

if error_logging(f) then
to_instrument←{ f ,error_code( f )}
SWRR_map←{ f ,new_option()}
remove(Functions, f )

else if NULL_return(f) then
to_instrument←{ f ,NULL}
SWRR_map←{ f ,new_option()}
remove(Functions, f )

end if
end for
for f ∈ Functions do . Apply 2 extension heuristics

if f ′ = propagate( f , to_instrument) then
SWRR_map← f ,new_option()}
to_instrument←{ f ,error_code( f ′)}
remove(Functions, f )

end if
end for
for f ∈ Functions do

if f ′ = indirect( f , to_instrument) then
SWRR_map←{ f ,option( f ′)}

end if
end for
return {to_instrument,SWRR_map}

end procedure

Figure 4.2: Talos algorithm for identifying functions to instrument.
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1 int example_function (...) {
2 /* SWRR inserted at top of function */
3 if (SWRR_enabled(<SWRR_option >))
4 return < e r r o r _ c o d e >;
5
6 /* original function body */
7 ...
8 }

Listing 4.1: SWRR instrumentation - In-place Deployment

1 int example_function (...) {
2 /* SWRR inserted at top of function */
3 return < e r r o r _ c o d e >;
4
5 /* original function body */
6 ...
7 }

Listing 4.2: SWRR instrumentation - Patch-based Deployment

be used as the error code. While other work has used dynamic profiling to try to identify

error-handling code [114], this requires a comprehensive suite of test inputs to find all error-

handling code. We assume this is not always available, so to maintain a low deployment cost,

Talos relies exclusively on static analysis. Talos thus uses several heuristics based on common

programming idioms that are indicative of error-handling code.

The procedure Talos uses for deciding which functions in an application to instrument has

several stages as illustrated in Figure 4.2. The procedure takes as input the set of all functions

in the application; it returns a set of functions capable of being instrumented as well as a map

of functions to their corresponding SWRR options. Talos first iterates over each function,

applying the two main heuristics used to statically detect if the function has error-handling

code. If such code is detected, then Talos adds the function along with the error_code extracted

from the error-handling code to the set of functions it will instrument and removes it from

further consideration. In addition, Talos creates a new SWRR option for the function and adds

it to the SWRR option-to-function map it maintains. After all functions have been checked

with the two main heuristics, Talos then applies the two “extension” heuristics to identify cases

where it can extend error-handling code into a function’s caller or callee. Talos uses the error

propagation heuristic to identify cases where the error code for a function can be used in an
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SWRR for the callers of the function, even if the callers themselves do not have error-handling

code. Finally, Talos also uses the indirect heuristic to identify any remaining cases where a

function doesn’t have error-handling code but can be disabled by a caller (or callers) that have

been instrumented by an SWRR. In these cases, the SWRR map is updated so that this function

is also associated with the SWRR option of its caller(s).

When a function has more than one piece of error handling code, Talos needs to decide

which error handling code to use. To make the decision, Talos assigns different ranks to heuris-

tics and chooses to use the error handling code detected with the heuristic with the highest rank.

Talos assigns the main heuristics with the highest rank, the error propagation heuristic with the

second highest rank, and the indirect heuristic with the lowest rank. If more than one piece of

error handling code are identified with heuristics of the same rank, Talos chooses to use the

error handling code closest to the entry of the function.

4.4.2 Main Heuristics

We first describe the two main heuristics Talos uses to identify error-handling code in functions.

We will then describe the two extension heuristics.

Error-logging function heuristic

The first heuristic is used to identify program paths that call error-logging functions. Error-

logging functions are called to log information when the application encounters an error. To use

this heuristic, Talos requires developers to specify the error-logging functions in an application.

For each of the surveyed applications, Table 4.2 lists the total number of functions and the

number of error-logging functions, where we have manually identified the latter by inspecting

the source code. We can see that, even in fairly large applications with hundreds or thousands

of functions, many applications have very few and, in many cases, only one error-logging

function. Anecdotally, we also find that if there is more than one function, they are still often

easy to find because they are all declared within a single header-file in the application source
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Table 4.2: Number of functions and number of error-logging functions.

Application #Functions #Error-logging Functions
lighttpd 665 1
apache 2,082 4
squid 1,346 1
proftpd 1,092 1
sqlite 1,562 3

code. Thus, we feel that the effort required for developers to specify the error-logging functions

in an application is quite reasonable.

The presence of an error-logging function is indicative of error-handling code. However,

recall that Talos requires the error-handling code to be inter-procedural, which means that

it must also signal the error to the function’s caller. Thus, to identify such code using an

error-logging function, Talos requires the following: (1) the error-handling code must call

an error-logging function, (2) the error-handling code must return a constant value, and (3)

the error-logging function and return statement must be guarded by a conditional branch. A

conditional check that dominates the error-logging function indicates that the path will only

be taken under specific circumstances and a constant return value is required for the current

function to signal to its caller that it terminated with an abnormal condition. Listing 4.3, which

shows error-handling code in Apache 2.2.19, illustrates how real code fits this heuristic. The

error-handling code is only executed when condition (name == NULL) is true. It then calls

the logging function ap_log_error() and returns the constant value APR_EBADF to its caller,

which indicates that it cannot proceed because of a bad filename.

Talos instruments such functions to always return a constant return value consistent with

the error-handling code when the SWRR is activated (i.e. in place of error_code) in Listing 4.1.

NULL return heuristic

If the error-logging heuristic does not identify the presence of error-handling code, Talos next

uses the NULL return heuristic. The intuition behind this heuristic is that when a function
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1 if (name == NULL) {
2 /* Apache 's error logging function */
3 ap_log_error(APLOG_MARK , APLOG_ERR , 0, NULL , "Internal error: pcfg_openfile ()

called with NULL filename");
4 return APR_EBADF; /* indicates to caller that error occured */
5 }

Listing 4.3: Error-logging code example from Apache

that normally returns a pointer returns NULL instead, it indicates that the function could not

successfully perform its normal operation. This may happen due to an unexpected error or due

to an invalid input.

Talos would instrument such functions with an SWRR that returns NULL as its error code.

However, Talos must be conservative because not all functions can legally return a NULL

to their callers. If an SWRR were to force such a function to return NULL, the caller may

dereference the value without checking for NULL and crash the program. To infer whether a

function can return NULL or not, Talos checks that there is at least one instance of a call to

the function where the caller checks the return value against NULL. The reason Talos does not

do this for all call sites is that in some cases, the check for NULL may be hard to detect. For

example, consider the case where the caller writes the returned pointer value to a linked list

and then the value is only checked against NULL when it is dequeued from the linked list.

Due to this limited check, it is possible for an SWRR returning NULL to crash the program

if no code ever checks for NULL after executing the SWRR. In this case, the SWRR essentially

turns the vulnerability into a denial-of-service, but still prevents more severe consequences of

exploiting the vulnerability such as elevating privilege or hijacking program execution.

4.4.3 Extension Heuristics

We now discuss the two heuristics that Talos uses to extend coverage from functions that have

identified error-handling code to those that do not.
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Error propagation heuristic

This heuristic is based on the observation that many times the error code returned by a function

is used as a return value by the caller of such functions. This has the effect of propagating error

codes up the call chain and, as a result, can be used to detect the correct error codes for both

callees and callers of a function.

This error propagation manifests in three ways. First, we find that some functions have

an execution path that calls another function and simply uses the return value of the function

call as their own return value. As illustrated by a simplified code snippet from lighttpd in

Listing 4.4, config_insert_values_global calls config_insert_values_internal and

uses the return value of the callee as its own return value at line 3. As a consequence, the error

code of -1 for config_insert_values_internal, identified by Talos using the error-logging

heuristic at line 10, can be used as the error code for config_insert_values_global.

Second, the error code can also be translated before it is propagated up the call chain, as

illustrated again in Listing 4.4. Here, mod_secdownload_set_defaults checks the return

value of a call to config_insert_values_global at line 17 and returns a constant value

HANDLER_ERROR at line 18 if the return value from config_insert_ values_global indi-

cates an error. Unlike in the first case, mod_secdownload_set_defaults does not use the

return value of config_insert_values_global directly, but translates it to its own error

code if the callee returns an error. To identify this kind of error propagation, Talos looks for a

statement that returns a constant and is control-dependent on the return value of a function call.

Talos then checks: (1) whether the function in the predicate has been previously identified as

having error-handling code, and (2) whether the identified error code can satisfy the predicate

of the control dependency. If so, the returned value becomes the error code for the function

and Talos marks the function as eligible for SWRR instrumentation. In the example, Talos

identifies HANDLER_ERROR as the error code for mod_secdownload_set_defaults.

Third, the error code can be inferred down the call chain as shown in the code of http_request_parse

in Listing 4.4. http_request_parse has an error path that calls an error logging function
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1 int config_insert_values_global (....) {
2 ....
3 return config_insert_values_internal (....);
4 }
5
6 int config_insert_values_internal (....) {
7 ....
8 if (....) {
9 log_error_write (....); // error logging

10 return -1;
11 }
12 ....
13 }
14
15 SETDEFAULTS_FUNC(mod_secdownload_set_defaults) {
16 ....
17 if (0 != config_insert_values_global (....)) {
18 return HANDLER_ERROR;
19 }
20 ....
21 }
22
23 int http_request_parse (....) {
24 ....
25 if (0 != request_check_hostname (....)) {
26 log_error_write (....); // error logging
27 return 0;
28 }
29 ....
30 }

Listing 4.4: Error propagation example from lighttpd

when the return value of the call to request_check_hostname is not zero. From this, Talos

infers that the error code of request_check_hostname must be a non-zero value. To identify

this kind of error propagation, Talos checks if any identified error path is control dependent

on the value of a predicate involving the return value of a function call. If it is, Talos tries to

find a constant value that can satisfy the predicate and then uses that constant value as the error

code of the callee of the function. For this example, Talos identifies 1 as the error code for

request_check_hostname.

Indirect heuristic

If a function is only called by functions that have been identified as eligible for instrumentation,

Talos takes advantage of the fact that by disabling all the callers of the function, the function

itself can be disabled by SWRRs. In these cases, Talos does not insert any instrumentation into

these functions, but simply updates the SWRR map to indicate that the function in question
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Figure 4.3: Workflow of Talos

can be disabled by activating one or more other SWRRs.

4.5 Implementation

We have implemented a prototype of Talos. Due to the fact that Talos needs a program’s

call graph to find locations for SWRR insertion, our prototype instruments a program in two

phases, as shown in Figure 4.3. The first phase analyzes the source code of the program and is

implemented as an analysis pass of LLVM using 1,823 lines of C/C++ code, while the second

phase adds SWRRs to the source code and is implemented using 1,852 lines of Python code.

In the first phase, Talos takes as input the source code of a program and the annotation of

the error logging functions of the program, analyzes the source code using static analysis, and

outputs: the program’s call graph, the control dependency of each statement of the program,

whether each statement is followed by a return, the start line number of each function, and the

line number of each statement. In the second phase, it adds SWRRs to as many functions as

possible in the source code based on the output of the first phase.

During our implementation, we found that function calls using function pointers are fre-

quently used by applications, particularly to invoke the functionality of loadable modules.

Loadable modules are often used as a configuration workaround for vulnerabilities, so we

expect that SWRRs should work for these as well. We note that these kinds of function calls
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usually use function pointers embedded as fields of some C/C++ structures. To identify the

caller and callee of a function call using a function pointer, we match a call to a function

pointer field of a structure, by identifying the assignment or initialization of the same field.

This method is imprecise, but we did not notice any issue with it in practice.

To identify error-handling code that can be used for SWRRs, we need to find out whether

a call to an error logging function is followed by a return statement. At first, we tried to label

such cases when a call is followed by a return statement within the same basic block of the

call. However, we found that LLVM merges all occurrences of return statements within a

function into a single return at the end of the function and replaces all other return statements

with branch statements. Sometimes a return is translated into a chain of unconditional branch

statements that lead to the only return statement of a function. Hence a call to an error logging

function and the return statement following it sometimes do not belong to the same basic block.

Furthermore, some applications’ error logging function is actually a macro defined as an if

statement, so the call to the error logging function and the return statement belong to two

different basic blocks. As a consequence, we label a call as being followed by a return when

the call is on a path that unconditionally leads to a return statement.

4.6 Evaluation

We evaluate how well SWRRs created by Talos meet the three objectives we laid out in Sec-

tion 4.3. First, we evaluate the security of SWRRs, i.e. whether SWRRs can successfully

prevent exploits of real-world vulnerabilities. We search among the vulnerabilities that we

study in Table 3.1 for those that have public proof-of-concept exploits. And we find 11 vul-

nerabilities that can be exploited in our testing environment. The information on the official

patches for these vulnerabilities are shown in Table 4.3. The average pre-patch window for

these vulnerabilities is 54 days. We then evaluate the effective coverage by measuring the ba-

sic coverage of SWRRs and the rate of unobtrusive SWRRs. We define “unobtrusive SWRR”
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Table 4.3: Evaluated vulnerabilities.

CVE ID Delay (Days) SLOC #Functions #Files
lighttpd-CVE-2011-4362 25 2 1 1
lighttpd-CVE-2012-5533 2 4 1 1
lighttpd-CVE-2014-2323 N/A 21 2 2
apache-CVE-2014-0226 223 20 2 2
squid-CVE-2009-0478 5 23 2 2
squid-CVE-2014-3609 105 6 1 1
sqlite-CVE-2015-3414 N/A 24 4 4
sqlite-OSVDB-119730 N/A N/A N/A N/A
proftpd-OSVDB-69562 4 4 1 1
proftpd-CVE-2010-3867 13 74 1 1
proftpd-CVE-2015-3306 N/A 104 5 1
AVERAGE 54 28 2 2

as an SWRR that only disables minor application functionality while leaving the majority of

an application’s functionality intact, much like a configuration workaround, and an “obtrusive

SWRR” as an SWRR that disables the majority of an application’s functionality, making it

unusable. Thus, the basic coverage of SWRRs is reduced to their effective coverage by the

percentage of SWRRs that are obtrusive. Finally, we evaluate the performance cost of SWRRs

when using in-place deployment.

All our evaluations were conducted on a 4-core 3.4GHz Intel Core i7-2600 workstation,

with 16GB RAM, 3TB of SATA hard drive and running 64-bit Ubuntu 12.04.

4.6.1 Security

This evaluation answers the question: “Do SWRRs successfully neutralize vulnerabilities

without introducing new vulnerabilities?" To test an SWRR, we need one vulnerability that

is covered by the SWRR; to check whether an SWRR neutralizes a vulnerability, we also need

an exploit for that vulnerability. These two requirements are challenging to meet for many

SWRRs and it also requires non-trivial manual effort to check whether new vulnerabilities are

introduced. Nevertheless, we make our best effort to find as many vulnerabilities as possible
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that could be used for this evaluation. The resulting 11 vulnerabilities, disclosed between 2010

and 2015, are used to evaluate the five popular applications as shown in Table 4.4.

To validate security, we check if the SWRR neutralizing the vulnerability successfully

thwarts an exploit of the vulnerability. To test whether the exploit is neutralized or not, we

either use a published exploit or create a proof-of-concept exploit if no published exploit is

available. We verify that the exploit works on the unprotected application and then enable pro-

tection using the appropriate SWRR option and try the exploit again. If the exploit fails, we

say the SWRR has protected the security of the application.

We can also test whether an SWRR is unobtrusive or not. To do this, we first classify

the functionality of each application into two categories, major and minor, by studying its user

documentation. We then design two sets of test inputs, major and minor, to exercise as much the

application’s major functionality and minor functionality as possible. For each application, we

make use of the existing test suite of an application if such a test suite is available. Otherwise

we make our best effort to create our own sets of test inputs and test suite. We then use this

test suite to determine if no or only minor functionality is lost, in which case the SWRR is

unobtrusive; if major functionality is also lost, the SWRR is obtrusive.

Our results are summarized in Table 4.4, which also gives the heuristic used to instrument

the SWRR that neutralizes the vulnerability, as well as whether availability is violated. Column

“Security?” shows whether the exploit against a vulnerability is successfully neutralized by

SWRR without introducing new vulnerabilities. Column “Unobtrusive?” shows whether the

SWRR is unobtrusive. SWRRs successfully neutralize the exploits for all 11 vulnerabilities

and in 8 cases there is no or only minor loss of functionality, making these SWRRs unobtru-

sive. We provide details on all 11 cases below. For the 3 cases where a posted configuration

workaround also exists for the vulnerability, we compare the SWRRs unobtrusiveness with that

of the configuration workaround.

lighttpd-CVE-2011-4362. This vulnerability allows a remote attacker to cause an out-of-

bounds memory error [15]. The function base64_decode takes an untrusted char* and per-
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Table 4.4: Security of SWRRs.

CVE ID Heuristics Security? Unobtrusive?
lighttpd-CVE-2011-4362 NULL Return Yes Yes
lighttpd-CVE-2012-5533 Indirect Yes No
lighttpd-CVE-2014-2323 Error-Propagation Yes No
apache-CVE-2014-0226 Error-Logging Yes Yes
squid-CVE-2009-0478 Indirect Yes No
squid-CVE-2014-3609 Error-Logging Yes Yes
sqlite-CVE-2015-3414 Error-Propagation Yes Yes
sqlite-OSVDB-119730 Error-Logging Yes Yes
proftpd-OSVDB-69562 Error-Propagation Yes Yes
proftpd-CVE-2010-3867 Error-Logging Yes Yes
proftpd-CVE-2015-3306 Error-Logging Yes Yes

forms a base 64 decode during HTTP basic authentication by using each character in the

untrusted string as a lookup into a table in memory. As char* is signed, an attacker could

specify negative values and read memory from outside of the table. base64_decode has error-

handling code that returns NULL, so Talos instruments the function with an SWRR that returns

NULL, which successfully neutralizes the vulnerability. Since base64 decoding is disabled,

all requests for basic HTTP authentication fail as if the password failed to decode properly.

However, lighttpd functions completely normally (including other forms of authentication) as

long as basic HTTP authentication is not used. This imposes less loss of functionality than

the posted configuration workaround, which disables all forms of authentication. Thus, Talos

provides security and provides an unobtrusive SWRR for the vulnerability.

lighttpd-CVE-2012-5533. This vulnerability allows a remote attacker to cause an infinite loop

via a specially crafted HTTP connection header. The function http_request_split_value

splits the fields in an HTTP connection header into an array, but can get into an infinite loop

due to the vulnerability. http_request_split_value does not have error-handling code,

but its caller does have error-handling code that returns 0; Talos instruments the caller and

successfully neutralizes the vulnerability, however, the side-effects of this are severe, as it

causes all HTTP requests to be denied, because the caller is the main function that processes
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HTTP requests. As a result, while the SWRR provides security, because the SWRR is enabled

for all HTTP requests, lighttpd is unable to respond to any HTTP request so there is a major

loss of functionality.

lighttpd-CVE-2014-2323. This vulnerability allows a remote attacker to execute an arbitrary

SQL command via a specially crafted hostname in the host header of an HTTP request. The

vulnerable function request_check_hostname checks the validity of hostnames, but it fails

to deny hostnames that contain SQL commands. The caller of the function has an error path

that calls an error logging function when the return value of the function is not zero, so Talos

instruments the function with an SWRR that returns 1, which successfully neutralizes the vul-

nerability. As a side-effect of activating the associated SWRR, any HTTP request that specifies

a hostname (as opposed to an IP address) will receive a “400 - Bad Request” error response.

While the SWRR provides security, because the vulnerable code is used for all HTTP requests

with a hostname, which is in most cases the vast majority of requests, there is a major loss of

functionality.

apache-CVE-2014-0226. A race condition in the mod_status module of apache httpd server

allows an attacker to retrieve sensitive information [5]. The function status_handler displays

administrative information about a web server, such as the web server’s performance and over-

head, as a web site. It does not synchronize the use of data that can be modified concurrently

by a different thread. status_handler has error-handling code that calls an error logging

function and returns HTTP_INTERNAL_SERVER_ERROR, so Talos instruments the function with

an SWRR that returns the error code, which successfully neutralizes the vulnerability. As a

side-effect, all requests to the mod_status module return an error because status_handler

is called in response to all requests to the module, but the application will continue to ex-

ecute and respond to other requests normally. This vulnerability has a posted configuration

workaround, which disables the entire mod_status module, with the exact same loss of func-

tionality as Talos’ automatically generated SWRR. As a result, Talos provides security with an

unobtrusive SWRR for this vulnerability.
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squid-CVE-2009-0478. An integer overflow vulnerability allows a remote attacker to cause

a denial-of-service by sending an HTTP request with a crafted HTTP protocol version num-

ber [27]. The function httpMsgParseRequestLine converts the HTTP version number of an

HTTP request from a string to an integer, but it uses a signed integer to store the converted ver-

sion number. As a result, a very large version number will cause an integer overflow and crash

the server. httpMsgParseRequestLine does not have error-handling code, but its caller does

(returns NULL); Talos instruments the caller, which successfully neutralizes the vulnerability.

However, the side-effects of this are severe, as it causes all HTTP requests to be denied as

every request must be parsed by httpMsgParseRequestLine and calls to this function always

generate an error with the SWRR enabled. While the SWRR provides security, because the

vulnerable code is used for all HTTP requests, squid is unable to respond to any HTTP request

so there is a major loss of functionality.

squid-CVE-2014-3609. A missing validity check on the byte range specification of an HTTP

request allows a remote attacker to cause a denial-of-service by sending an HTTP request with a

specially crafted byte range specification [28]. The function httpHdrRangeSpecParseCreate

parses the byte range specification of HTTP requests, but it does not correctly check the valid-

ity of the length calculated from certain byte range specifications and can cause the server to

crash. httpHdrRangeSpecParseCreate has error-handling code that calls an error logging

function and returns NULL, so Talos instruments this function with an SWRR that returns

NULL, which successfully neutralizes the vulnerability. This causes the server to ignore the

byte range specification from the client and always serve the full-length of the content. No

confidential information is leaked since the client would have received the full-length content

anyways if it had not specified a byte range. This vulnerability has a posted configuration

workaround, which implements a filter that rejects requests with suspicious byte ranges. The

loss of functionality is similar to the SWRR – only requests that specify byte ranges are affected

in either case. Talos preserves security in this case with an unobtrusive SWRR.

sqlite-CVE-2015-3414. A vulnerability in the code that parses collation-sequence names in
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SQL commands allows an attacker to cause memory corruption. The function sqlite3ExprAddCollateString

allocates memory for parsed collation-sequence names, but may use uninitialized memory

when parsing a specially crafted collation-sequence name. sqlite3ExprAddCollateString

does not have error-handling code and simply uses the return value of function sqlite3ExprAddCollateToken

as its own return value. Due to imprecise static analysis, Talos incorrectly identifies that

sqlite3ExprAddCollateToken could return NULL, although it is carefully written to always

return a valid pointer. As a consequence, Talos instruments the function with an SWRR that

returns NULL. Since sqlite3ExprAddCollateString should not be able to return NULL,

the caller does not check the return value before dereferencing it causing sqlite to crash. If

collation is not used, sqlite continues to operation normally, and since collation is not part of

the core functionality of sqlite, we call this a minor loss of functionality. If restarted, sqlite

continues to function normally.

sqlite-OSVDB-119730. An attacker can cause a memory error in sqlite with the meta com-

mand trace, which turns on or off the tracing of the execution of commands. The func-

tion do_meta_command processes all meta commands, which allows users to specify differ-

ent settings when executing commands. It does not set a pointer to NULL after the memory

which it references has been deallocated, and thus can cause a use-after-free memory error.

do_meta_command has error-handling code that calls an error logging function and returns 1,

so Talos instruments the function with an SWRR that returns 1; this causes sqlite to return an

error to the meta command request. As a result, Talos protects the security of sqlite against

this vulnerability. However, because do_meta_command is disabled, all other meta commands

will also return an error, and thus the availability of all meta commands is violated. However,

because this is only confined to meta commands, which are not part of the core functionality

of sqlite, this SWRR is unobtrusive.

proftpd-OSVDB-69562. A backdoor that allows a remote attacker to access a root shell was

planted into the source code of ProFTPD when ProFTPD’s FTP server and mirrors were com-

promised [21]. The backdoor was added to function pr_help_add_response, which creates
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responses to HELP command, so that a HELP command with a specific argument would cause

ProFTPD to execute a shell that can be accessed remotely. The caller of the function has

error-handling code that calls an error logging function when the return value of the function

is not zero, so Talos instruments the function with an SWRR that returns 1, which successfully

neutralizes the vulnerability. As a result, the security and availability of the application are

preserved. However, as in the previous case, ProFTPD will respond to all HELP commands

with the error message “Unknown command" thus impacting the availability of the HELP fa-

cility. However, all other FTP commands continue to function normally. As a result, this is

considered an unobtrusive SWRR.

proftpd-CVE-2010-3867. Multiple vulnerabilities in the mod_site_misc module allow a

remote attacker to perform various directory and file operations using mod_site_misc com-

mands without authentication. All vulnerable functions, such as site_misc_mkdir that cre-

ates a directory on the server upon users’ requests, have error-handling code that calls an error

logging function and returns NULL; Talos instruments each of these functions with an SWRR

that returns NULL and when all of the SWRRs corresponding to these functions are enabled,

ProFTPD returns an error for all the vulnerable mod_site_misc commands. Other than this

side-effect, users can continue to use all other FTP commands and thus the SWRRs provide

security and are unobtrusive.

proftpd-CVE-2015-3306. Multiple vulnerabilities in the mod_copy module allow a remote

attacker to read and write arbitrary files with mod_copy commands without authentication.

Similar to CVE-2010-3867, all vulnerable functions (such as copy_copy, which copies files

between different locations on the server) have error-handling code that calls an error logging

function and returns NULL; Talos instruments each of these with an SWRR that returns NULL

when enabled. Again, when the SWRR is activated, ProFTPD returns an error in response to all

the vulnerable mod_copy commands. There are no other side effects and ProFTPD continues

to work as expected, thus the SWRR provides security and is unobtrusive.
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Table 4.5: Basic coverage of SWRRs.

Application Protected Error Logging Return Pointer Propagation Indirect
lighttpd 89.8% 23.6% 1.5% 17.6% 47.1%
apache 77.5% 14.0% 11.9% 20.7% 30.9%
squid 76.6% 18.1% 5.6% 6.3% 46.4%
proftpd 86.1% 32.7% 13.6% 12.9% 26.9%
sqlite 45.3% 2.0% 6.5% 14.4% 22.4%
AVERAGE 75.1% 18.1% 7.8% 14.4% 34.7%

4.6.2 Effective Coverage

In this section, we aim to answer the question “What is the percentage of vulnerabilities

that can be mitigated with an unobtrusive SWRR?” To answer this question, we perform

a quantitative measurement of the two components that make up the effective coverage of

SWRRs: the basic coverage and the rate of unobtrusive SWRRs.

Basic Coverage. To evaluate basic coverage, we measure the number of functions where

Talos can find an error-handling path and identify an error-handling code to return, which is

used to insert an SWRR. This measurement across the five applications is shown in Table 4.5.

The first “Protected” column shows the total percentage of functions that are protected by

SWRRs in each application. The remaining four columns then provide a breakdown by the

percentage of functions that are protected by each of the four heuristics. If we assume that

potential vulnerabilities are uniformly distributed across functions in the application, then the

percentage in the Protected column gives the basic coverage for the application, which is the

likelihood that a potential vulnerability can be disabled by an SWRR.

As Talos uses error-handling to infer the value that should be returned by an activated

SWRR, the coverage depends very heavily on how much error-handling code is present in the

application and how well Talos’ heuristics can identify the error-handling code. Among the

five applications, sqlite has the lowest basic coverage of 45.3% as well as a very low percent-

age of error-logging paths. In addition, sqlite has the lowest percentage of functions that can
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be protected indirectly. This is likely because sqlite has a simpler call graph than the other

applications.

On the other hand, lighttpd has the highest basic coverage of 89.8% because it has a partic-

ularly high percentage of error logging paths as well as a high percentage of functions that can

be protected indirectly. Unlike lighttpd, proftpd (the application that has the second highest

coverage) has a high percentage of error-logging paths and NULL-returning functions, but has

a lower percentage of functions that can be protected indirectly.

Overall, we can see that Talos has a basic coverage of 75.1% across all applications and that

each technique used by Talos plays an essential role in achieving the high coverage, although

each one might have a different impact on the coverage for different applications. We also find

that the majority of the functions can be directly protected by Talos.

Rate of unobtrusive SWRRs. We wish to evaluate the unobtrusiveness of SWRRs over a large

number of SWRRs. To do this, we perform an experiment where we enable a large number of

SWRRs and test whether they result in minor, major, or no loss of functionality. To make it

easy to test a large number of SWRRs, we instrument each application for in-place deployment

so that we can activate each SWRR simply by changing configurations. To ensure that all the

SWRRs under our test are indeed executed, we first find out which functions are executed for

the major and minor functionality test inputs used in Section 4.6.1, and then randomly choose

approximately 25% of the SWRRs corresponding to the executed functions to focus on in the

interests of time. In total we choose 320 SWRRs across all of the applications, as shown in

Table 4.6. We then individually enable each of the selected SWRRs and run the test suite for the

application. If the application passes both sets of test inputs or passes the major test inputs but

fails the minor test inputs, we consider that the SWRR is unobtrusive. Otherwise, we consider

the SWRR is obtrusive.

The results are tabulated in Table 4.6. Column “#SWRRs” shows the number of tested

SWRRs for each application. Column “Unobtrusiveness” shows the percentage of tested

SWRRs that are unobtrusive. A weighted average shows that 71.3% of the SWRRs tested are
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Table 4.6: Rate of unobtrusive SWRRs.

Application #SWRRs Unobtrusive
lighttpd 40 70.0%
apache 85 88.2%
squid 65 69.2%
proftpd 90 64.4%
sqlite 40 55.0%
AVERAGE 64 71.3%

unobtrusive, and thus preserve the major functionality of the application. No application had a

rate of unobtrusive SWRRs below 50% indicating that the majority of SWRRs are unobtrusive.

While one might believe that the rate of unobtrusive SWRRs is a function of the choice

to use SWRRs to disable entire functions or the use of indirect protection, our analysis of

some of the results indicates that this is not a major factor. Rather, if the vulnerability is

located in the core functionality of an application, it is unlikely that disabling code, even at

a finer granularity, will preserve the major functionality of the application. Thus, the main

factor for unobtrusiveness is the location of the vulnerability, which is out of Talos’ control.

Essentially, our findings indicate that commonly executed code tends to have a higher rate of

error-handling code, meaning there are more SWRRs located in commonly executed code with

major functionality.

In combining the average basic coverage with the average rate of unobtrusive SWRRs, we

arrive at an effective coverage of 53.5%, which gives the percentage of potential vulnerabili-

ties that have an unobtrusive SWRR. This is a significant 2.1× improvement over the 25.2%

coverage currently offered by configuration workarounds.

4.6.3 Overhead

When SWRRs are instrumented for in-place deployment, they can incur runtime overhead

because they will check whether their corresponding configuration is activated at runtime every

time the function into which they are instrumented is executed. When SWRRs are instrumented
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Table 4.7: Overhead of SWRR.

Application LOC Added LOC #Files #Modified Files Overhead
lighttpd 46,792 1.9% 79 92.4% 0.6%
apache 135,856 2.2% 191 75.9% 2.3%
squid 70,407 2.4% 119 84.0% 1.5%
proftpd 69,808 2.9% 64 93.8% 1.2%
sqlite 153,020 0.8% 2 100% 1.0%
AVERAGE 95,176 2.0% 91 89.2% 1.3%

for patch-based deployment, there is no additional runtime overhead because there is no such

check. Table 4.7 gives the overhead of SWRRs for in-place deployment, measured by the

number of lines of source code added by Talos and the number of corresponding source files

modified by Talos. Column “App.” shows the name of the application. Column “LOC” and

“#Files” show the number of lines of code and the number of original source files, respectively.

Column “Added LOC” shows the percentage of the lines of source code added by Talos, and

column “#Modified Files” shows the percentage of corresponding source files modified by

SWRRs. Column “Overhead” shows the runtime performance overhead of SWRRs. The last

row shows the average for all columns.

On one hand, we can see that Talos adds on average 2% more lines of source code to

implement SWRRs in applications. Given the high coverage achieved by Talos, this indicates

that Talos has a very small footprint for each SWRR. On the other hand, the percentage of

source files changed by Talos in order to add SWRRs, is on average 89%. This indicates that

the functions protected by SWRRs are distributed among most of the source files.

To measure the runtime performance overhead of SWRRs, we use standard benchmarks

for each application if a standard benchmark is available, otherwise we write our own bench-

mark. For each application, we compare the performance of a version of the application that

is hardened by SWRRs with a version that is not. We run each benchmark three times for

each application and use the average of the three measurements. To have a fair comparison,

we run the hardened version of each application with all SWRRs disabled, which has the same
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functionality of the original application but with the added execution of the SWRRs.

For web servers including lighttpd and apache, we use ApacheBench [3]. For the squid

cache proxy, we also use ApacheBench, but we enable the use squid as web proxy in its settings.

We use the throughput as the performance metric for these three applications. Roughly SWRRs

reduce their throughput by 2%.

For ftp servers including proftpd, we use the ftp benchmark included with pyftpdlib [22],

which measures the transfer rate for both file uploads and downloads. SWRRs reduce the

transfer rate for file uploads by only 1.2%, and have a negligible impact on file downloads.

For sqlite, we created our own benchmark, which is based on the description of a series of

SQL database performance tests on sqlite’s official web site [13]. It consists of over 70,000

SQL commands to create table, drop table, insert data, update data, query data, delete data,

and perform database transactions. The benchmark measures the total execution time of all

these SQL commands on sqlite database tables containing from 10,000 to 25,000 records of

data. SWRRs incur a performance overhead of 1.0% on sqlite. On average SWRRs have a very

small runtime performance overhead of 1.3% for all five applications.

4.7 Discussion

We begin by discussing the the limitations of SWRRs and then other operational issues associ-

ated with the deployment of SWRRs.

4.7.1 Limitations

The ability of SWRRs to neutralize vulnerabilities without security violations is limited by the

assumption that applications correctly implement error-handling code. Naturally, this is not the

case – applications developers may fail to identify and handle errors, or even if they do handle

them, they may handle them incorrectly, as previous work has shown [61,136]. Unfortunately,

there is little that Talos can do if the error-handling code it calls contains bugs. We hope, as
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previous work has also implored, that developers should pay more attention to the correctness

of error-handling code. While it is not invoked very often, when unexpected errors arise, it is

the last defense the application has against catastrophic failures.

As an alternative to using existing error handling code, it is possible for Talos to add a new

error type exclusively for SWRRs and instrument new error-handling code into applications to

handle this new error type. However, it is a more intrusive approach as the new error handling

code will need to be instrumented for any caller functions on the call chain to a function in-

strumented with an SWRR to handle the new error type properly. It will also need information

from application developers on how to handle the new error type. We leave this as a future

work.

Another obvious limitation is that Talos has no control over where vulnerabilities occur.

As illustrated in lighttpd (CVE-2012-5533) and squid (CVE-2009-0478), if the vulnerability

occurs in a key function that is used in many operations, then the availability of the application

will be severely impacted. Fortunately, this appears to be the less common case (only 3 out of

11 cases in our experiments). We speculate that this is likely due to bugs and vulnerabilities

occurring in less commonly executed code, as that code receives fewer opportunities for testing

and has less chance of having a bug triggered in production use.

Currently Talos does not leverage the structured exception handling that is used in pro-

gramming languages such as C++ and Java. However, Talos can be easily extended to do so,

because it is even easier for Talos to locate error handling code utilizing structured exception

handling. Talos can look for a type of exception that can be safely used to abort the execution

of a function and generate an SWRR that throws the exception as the mechanism to prevent

the execution of the function. To identify the exception that can be used, Talos can examine

which exception is caught by existing exception handlers in the function or which exception is

thrown by the function. If Talos cannot locate this kind of exception in the function itself, it

can look for it in the callers of the function.
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4.7.2 Other Issues

Another question is whether SWRRs and their use can decrease the security of an application

in other ways, or whether the SWRRs themselves can be circumvented by an attacker even

when activated. For example, even if the user activates an SWRR, an attacker can still corrupt

the value of an SWRR option and re-enable the vulnerable code. While this is possible, we

believe it sufficiently raises the bar for the attacker, as she must have a memory corruption

vulnerability that is not in the function(s) disabled by the activated SWRR(s). In those cases,

it is likely a zero-day unknown vulnerability, which requires more effort for an attacker to find

and exploit. Given the nature of most memory corruption vulnerabilities, it would be likely

that an attacker who has access to such a vulnerability would just use it to compromise the

application directly rather than use it to disable an SWRR.

In the rare instance that a memory corruption vulnerability doesn’t allow remote code ex-

ecution but can still corrupt an SWRR option, the attacker now has the ability to activate or

deactivate SWRRs, allowing them to re-enable disabled functions or disable enabled ones. As

discussed above, they could thus silently re-enable vulnerabilities, or they could prevent code

from being executed if the application has no known vulnerabilities. However, as we have

shown in this chapter, activated SWRRs generally do not cause security vulnerabilities, and

only impact availability. Thus, the most the attacker can do is to cause a denial of service

attack with a memory corruption vulnerability – which is something they could likely already

do even if SWRRs were not present.

4.8 Summary

This chapter describes the design and implementation of Talos, a system that enables safe and

precise SWRRs to protect software vulnerabilities from being exploited by attackers. Our main

conclusion is that SWRRs are a rapid, secure, and low-cost solution to enable applications to

continue to be used until a patch becomes available. To arrive at this conclusion we test 320
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SWRRs in five real world applications and find that the majority of them are unobtrusive and

that 75.1% of potential vulnerabilities can be disabled by an SWRR. This indicates that SWRRs

can be effective in 2.1× more vulnerabilities than traditional configuration workarounds. We

also reproduce 11 vulnerabilities and their exploits and try them on the applications with and

without SWRRs instrumented by Talos. We find that in all 11 cases, the security of the applica-

tion is upheld and that in 8 cases, the applications retains either all or most of its functionality

(with the exception of the vulnerable code).

We view Talos as a first step towards addressing the pre-patch vulnerability window. Given

its simple implementation and conservative assumptions, we find these results encouraging.

We believe the best avenue for improving the effectiveness of SWRRs is improving the identi-

fication of error-handling code or other safe code paths that SWRRs can redirect execution to,

which will give SWRRs better basic coverage and thus also increase their effective coverage.



Chapter 5

Semantically Correct Patch Generation

for Vulnerabilities

Chapter 4 presents SWRR, a mechanism to preventing vulnerabilities from being triggered.

SWRR is designed as a rapid response to vulnerabilities, in order to address the problem of

pre-patch window described in Chapter 3. SWRR trades off rapid response with functionality

loss. To tackle its drawback of causing functionality loss, we propose an approach to auto-

matically generating security patches that fix vulnerabilities without causing functionality loss.

We consider this approach and SWRR complement to each other because they have different

applicability on vulnerabilities. In this chapter, we present the details of the approach and our

prototype implementation.

5.1 Introduction

Fixing security vulnerabilities in a timely manner is critical to protect users from security com-

promises and to prevent vendors from losing user confidence. A recent study has shown that

creating software patches is often the bottleneck of the process of fixing security vulnerabil-

ities [62]. As a result, an entire line of research inquiry into automated patch generation has

arisen to try to address this challenge [57, 70, 82, 83, 89, 95, 101, 102, 128, 129].

63
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1 char * f o o _ m a l l o c ( x , y ) {
2 re turn ( char *) ma l lo c ( x * y + 1) ;
3 }
4
5 / / p r i n t a f l a t t e n e d a r r a y i n
6 / / 2−d i m e n s i o n a l f o r m a t
7 i n t foo ( char * i n p u t ) {
8 / / i n p u t f o r m a t : RRCCDDD . . . . DDD
9 / / RR : number o f rows

10 / / CC: number o f columns
11 / / DDD . . . DDD: f l a t t e n e d a r r a y da ta
12 / /
13 / / b e n i gn i n p u t : 0203123456
14 / / o u t p u t :
15 / / 1 2 3
16 / / 4 5 6
17
18 i n t s i z e = s t r l e n ( i n p u t ) ;
19 char *p = i n p u t ;
20 i n t rows = e x t r a c t _ i n t ( p ) ;
21 p +=2;
22 s i z e −= 2 ;
23 i n t c o l s = e x t r a c t _ i n t ( p ) ;
24 p +=2;
25 s i z e −=2;
26+ i f ( ( double ) ( c o l s +1) * ( s i z e / c o l s ) >
27+ rows * ( c o l s + 1) + 1)
28+ re turn −1;
29 char * o u t p u t = f o o _ m a l l o c ( rows , c o l s + 1 ) ;
30 i f ( ! o u t p u t )
31 re turn −1;
32 b a r ( p , s i z e , c o l s , o u t p u t ) ;
33 p r i n t f ( "%s \ n " , o u t p u t ) ;
34 f r e e ( o u t p u t ) ;
35 re turn 0 ;
36 }
37
38 void b a r ( char * s r c , i n t s i z e , i n t c o l s , char * d e s t ) {
39 char *p = d e s t ; char *q = s r c ;
40 whi le ( q < s r c + s i z e ) {
41 f o r ( unsigned j = 0 ; j < c o l s ; j ++)
42 *( p ++) = *( q ++) ;
43 * ( p ++) = ' \ n ' ;
44 }
45 *p = ' \ 0 ' ;
46 }

Listing 5.1: A buffer overflow CVE-2012-0947 with a patch (prefixed with ’+’).
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Automatic patch generation approaches broadly break down into two categories: search-

based and semantics-based. Search-based approaches try various arbitrary code changes and

use a battery of test cases to check whether any of the changes succeeded in fixing the bug [70,

82, 129]. Because search-based techniques can generate unconstrained code changes, they

are applicable to a wide variety of bugs, but the correctness of the generated patches can be

uneven, and depend heavily on the comprehensiveness of the test cases [92, 102]. In contrast,

semantics-based techniques use code analysis (e.g. static analysis and symbolic execution) to

produce patches that attempt to address the underlying bug rather than change the code just

enough to satisfy the test cases [89, 95]. As a result, semantics-based techniques are more

likely to produce correct patches, but are less applicable, since they are constrained to cases

where the code analysis is able to analyze the defective code.

When used to fix security vulnerabilities, the requirements that patches work correctly is

even more pressing, as falsely believing that a vulnerability has been addressed when in fact

it has not, may lead a user to disable other mitigating protections, such as removing configu-

ration workarounds or firewall rules. In this chapter, we propose Senx, which aims to create

semantically correct patches for common security vulnerabilities, such as buffer overflows, in-

teger overflows and memory corruption due to bad-offset calculations using semantics-based

analyses. However, many of these vulnerabilities involve complex code structures that code

analysis techniques traditionally find challenging. For example, buffer overflows often involve

complex loop structures. In addition, formulating a check to test a memory access is within

the memory-range of the data-structure, may require the patch generation system to synthesize

interprocedural code if the allocation of the memory and the faulty memory access occur in

different functions.

To concretely illustrate these challenges, consider the buffer overflow vulnerability CVE-

2012-0947 [24] from libav in Listing 5.1. The vulnerability arises because the code copies

user-provided data into a buffer whose allocation size is computed based on the number of

rows and columns specified in the input, but the amount of data copied is based on the size of
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the data provided. For reference, the correct patch is provided on lines 26-29, which consists of

checking if the amount of data to be copied ((cols+1)×(size/cols)) by the nested loop in

bar is greater than size of the buffer (rows×(cols+1)+1) allocated by foo_malloc, in which

case the patch returns an error to foo’s caller. To generate this patch, Senx must correctly

identify the pointer p used to write to the buffer dest in bar and infer the memory access

range of p from the nested loops. Further, Senx must detect that the allocation of dest is

actually performed in another function foo_malloc and symbolically compute its allocation

size. Finally, Senx must identify foo as the common caller of both bar and foo_malloc and

translate the expression for both the memory access range of p from bar and the allocation size

of dest from foo_malloc into the scope of foo so that the patch can be generated.

Senx accomplishes this with the introduction of three novel patch generation techniques.

First, rather than try to statically analyze arbitrarily complex loops, Senx attempts to clone

the loop code to be used in the patch predicate, but slicing out any code that may have side

effects from the cloned loop so that the loop only computes the memory access range of the

pointers in the loop. We call this technique loop cloning. For loops where code that has side

effects that cannot be safely removed – for example, the loop execution depends on the result

of a function call, which Senx cannot safely slice out – Senx falls back on a symbolic analysis

technique we developed, called access range analysis. Finally, to identify and place the patch

in a function scope where all expressions required in the predicate are available, Senx uses

expression translation, which uses the equivalence between function arguments and parameters

to generate a set of equivalent expressions. This enables Senx to generate patches where the

defective code is spread across multiple functions. This overcomes a limitation of all previous

semantics-based patch generate systems that we are aware of, which can only generate patches

for defects that are enclosed entirely within in a single function [70, 82, 89, 95].

Because Senx creates patches for security vulnerabilities, Senx places a higher emphasis on

correctness than previous systems. Unlike previous patch generation systems that rely on test

cases to determine the correctness of the patch, Senx explicitly identifies instances where its
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analysis may be incorrect and aborts patch generation in those cases. In our experiments, Senx

generates 32 correct patches out of 42 vulnerabilities, and in the remaining 9 cases, correctly

detects that it will not be able to generate a patch and aborts instead of generating a patch

that does not actually fix the vulnerability. We call this property of Senx’s patches semantic

correctness.

This chapter makes the following main contributions:

• We describe the design of Senx, an automatic patch generation system for buffer overfow,

integer overflow and bad-offset vulnerabilities.

• We propose three novel program analysis techniques: loop cloning, access range analysis

and expression translation.

• We describe a systematic approach to extract source code expressions of a program by

decompiling the binary of the program dynamically. Senx implements its own symbolic

ISA that is optimized for translating low level instructions back into source code expres-

sions, so that source code patches can be easily generated. Particularly, Senx supports

decompilation of complex expressions involving array indicies and C/C++ structs and

classes.

• We describe the implementation of a Senx prototype on top of the LLVM [120] frame-

work and KLEE [46] symbolic execution engine. We plan to make Senx open-source so

that others may build on our work or deploy it to automatically create security patches.

• We evaluate Senx on a corpus of 42 vulnerabilities across 11 popular applications, in-

cluding PHP interpretor, sqlite database engine, binutils utilities for creating and man-

aging binary programs, and various tools or libraries for manipulating graphics/media

files. Senx generates correct patches in 32 of the cases and aborts the remainder because

it is unable to determine semantic correctness in the other cases. The evaluation demon-

strates that all three techniques are required to generate patches, and that failure to find a

common function scope in which to place a patch is the most frequent reason for failure.
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5.2 Problem Definition

We begin by defining the types of vulnerabilities Senx can currently handle below, as well as

what a Senx patch is and what semantically correct means.

Integer overflow. An integer overflow occurs when an integer is assigned a value larger or

smaller than can be represented. This manifests as a large value that is increased and becomes

a small value, or a small value that is decreased and becomes a large value. Integer overflows

usually become vulnerabilities when the integer is subsequently used as an index into an array,

which enables an attacker to corrupt or access arbitrary memory locations. Senx handles integer

overflows that lead to memory corruptions.

Buffer overflow. A buffer overflow occurs when series of memory accesses traversing a buffer

in a loop crosses from an allocated buffer to a memory location outside of the buffer. We use

the term buffer in the broad sense to refer to either a bounded memory region (such as a struct

or class object) or an array. The memory access can be the result of an array dereference or

pointer dereference. Senx handles both the case where the memory access exceeds the upper

range of the buffer and when falls below the lower range (sometimes called a buffer underflow).

Bad Offset. A bad offset vulnerability occurs when a memory access is computed off a base

pointer, and exceeds the upper bound of the object the base pointer points to. Some causes

of bad offset vulnerabilities include an incorrect calculation of an array index or a casts of a

pointer to the incorrect object type. A bad offset vulnerability may also be called a non-linear

buffer overflow in the literature.

Patch. Senx uses vulnerability condition [45] to capture the semantic of correct patches. A

vulnerability condition denotes the program state when a vulnerability will be triggered. Senx

generates patches in one of two forms: a) a single if statement that checks a predicate, which

evaluates a vulnerability condition and is satisfied if and only if the vulnerability is about to be

triggered or b) an added data type cast to an evaluation such as addition or multiplication that

could otherwise lead to an integer overflow. In the first form, if the predicate evaluates to true,
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control is transferred to error handling code that avoids executing the vulnerable code, treats

the current input as an error, and returns the application back to a known state. In the second

form, the cast avoids integer overflows by ensuring that the evaluation is performed using the

correct data type.

Semantic correctness. We say a patch is semantically correct if it prevents the execution of the

vulnerable code if and only if inputs that will trigger the vulnerability is given to the program.

In other words, the patch predicate must only evaluate to true on all vulnerability-triggering

inputs while evaluating to false on all other inputs. For a given vulnerability condition, the

patch generated by Senx is both sound and complete.

5.3 Design

5.3.1 Overview

Senx generates a patch in the following five steps. First, Senx perform a dynamic decompila-

tion of the program using the vulnerability-triggering input. During this decompilation, Senx

uses a custom expression builder to generate expressions involving program variables.

Second, Senx uses the results of the execution to classify the vulnerability according to

the three definitions given in Section 5.2. Specifically, if any variable had an integer overflow

during the execution, then the vulnerability is classified as an integer overflow. If it is not

an integer overflow, Senx inspects the symbolic variables to see if an out-of-bounds memory

access occured outside of an allocated region. If the out-of-bounds access occurs in a loop

and is dependent on the number of iterations of the loop, it is classified as a buffer overflow.

Otherwise, Senx checks if the out-of-bounds access is an offset of a base pointer, and if so

classifies it as a bad offset.

Third, based on the type of vulnerability, Senx either generates the patch predicate that will

detect if the input given to the program will trigger the vulnerability or identifies the correct

data type to cast to a evaluation to avoid integer overflow. The predicate or cast is generated
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from a template specific to the type of vulnerability identified in the previous step.

Fourth, Senx finds a location in the source code where error handling code exists and all

the terms of the predicate are available. In some cases, the predicate may contain variables

from different function scopes, so that a single statement generated using those variables could

not be evaluated at any one place in the program. For example, in Listing 5.1, the size of

buffer dest is defined by the an expression over the variables x and y in foo_malloc, which

are not available in the scope of function bar where the loop that overflows occurs. In these

cases, Senx uses expression translation to translate those variables into expressions that are in

the scope of a common caller or callee of the functions. For example, in Listing 5.1, Senx

recognizes that funciton foo is a common caller of both foo_malloc and bar and translates

all the terms of the predicate into expressions over variables available in the scope of foo.

Finally, Senx synthesizes a patch that checks the patch predicate and calls the error han-

dling code if the predicate evaluates to true. Senx uses Talos [62] to find and select the error

handling code to call. In each of steps, Senx will not generate a patch if it cannot guarantee

semantic-correctness. For example, if Senx is unable to properly identify the vulnerability,

cannot generate a predicate, or cannot successfully place the patch it will halt and not generate

a patch. During decompilation, it also performs a reachability analysis combined to ensure that

the definitions checked in the predicate also reach the point where the vulnerability occurs. If

this is not the case, Senx cannot be sure that the predicate checked at the patch holds at the

point of the vulnerability and also does not generate a patch. Senx’s reachability analysis is

enhanced with DSA alias analysis [77] to ensure that there are no aliases that might alter a

reaching definition. The pointer analysis returns a confidence category that can be either “must

alias”, “must not alias” or “may alias”. To be conservative, Senx treats “may alias” the same

as “must alias”.
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Table 5.1: Pseudo instructions supported by Senx.

Instruction Semantic Description
val = Load var val← var read from var
val = Load ∗p val←∗p read via pointer p
Store var,val1 p← val1 write val1 to var
Store ∗p,val1 ∗p← val1 write via pointer p
val = GetElement var, f ield val← StructOp(var, f ield) read from a struct field
val = GetElement var, index val← ArrayOp(var, index) read from an array element
val = BinOp val1,val2 val← BinOp(val1,val2) binary operations
val = CmpOp val1,val2 val← CmpOp(val1,val2) comparisons
val = Allocate size val← Allocate(size) allocate a local variable
Branch label PC← label unconditional branch
Branch cond, label1, label2 PC← label1 if cond conditional branch

PC← label2 if ¬cond
val = Call f (a, . . .) val← f (a, . . .) call function f with a, . . .
Ret val1 val← val1 && return val1 to caller

caller.val← val1

5.3.2 Expression Builder

We leverage dynamic decompilation to build expressions used for synthesizing a patch for a

target program. While we base our decompilation engine on KLEE [46], we do not use the

symbolic representation that KLEE uses as it is heavily tied to maximizing path exploration,

and does not store enough information to easily translate expressions back into source code to

construct patches. As a result, we design our own symbolic representation for a set of pseudo

instructions defined in Table 5.1.

The instructions include Load and Store memory access instructions, BinOp binary op-

erations such as arithmetic operations and CmpOp comparison operations such as > and ≥,

StructOp struct operations that access a field of a struct, ArrayOp array operations that access

an element of an array, Allocate for local variable allocation, Branch for unconditional and

conditional branches, Call for function calls and Ret for function returns. Each instruction can

have an optional label denoted as label. The decompilation uses a program counter that points

to the current instruction, which is referred to as PC in the table. For each instruction presented

in Column “Instruction”, the decompilation interprets it using the semantic operation indicated
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Table 5.2: Rules for building expressions.

Instruction Rule to build expression
val = Load var RHS := getExpr(var)
val = Load ∗p RHS := makeDeref(getExpr(p))
Store var,val1 RHS := getExpr(val1), LHS := var
Store ∗p,val1 RHS := getExpr(val1), LHS := makeDeref(p)
val = GetElement var, f ield RHS := makeStructOp(var, f ield)
val = GetElement var, index RHS := makeArrayOp(var, index)
val = BinOp val1,val2 RHS := makeBinOp(getExpr(val1), getExpr(val2))
val = CmpOp val1,val2 RHS := makeCmpOp(getExpr(val1), getExpr(val2))
val = Allocate size RHS := getName(val)
Branch label N/A
Branch cond, label1, label2 N/A
val = Call f (a, . . .) RHS := makeCall(getName( f ), getExpr(a), . . . )
Ret val1 RHS := getExpr(val1) &&

caller.RHS := getExpr(val1)

in Column “Semantic”. The results of these operations are stored in Single Static Assignment

(SSA) form such that each instruction instance has a unique variable associated with it. The

execution makes not distinction between registers and memory.

Source code expressions are generated using the rules defined in Table 5.2. Based on the

rules presented in Column“Rule to build expression”, the expression builder builds one or

more semantic expressions for the corresponding instruction. Each semantic expression is of

the form LHS := RHS, where LHS and RHS are the left side and right side of an assignment

respectively. An explicit LHS is used only for Store instructions. The LHS for all other in-

structions is the SSA value associated with each instruction. The decompilation maintains a

call stack so that each Ret instruction sets a value in its caller, denoted by caller, with the

return value.

The expression builder uses several helper functions as described in Table 5.3. Each of these

functions generate an expression according to their description. For example, makeDeref("p")

returns "*p", where ∗ represents pointer dereference. In keeping with SSA, the expressions

generated for an instruction are stored along with the instruction. In this way, the expressions

associated with an instruction can easily be retrieved by referring to the instruction.
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Table 5.3: Operations performed by expression builder.

Operation Description
getExpr get the expression associated with an

instruction or the name of a variable
getName get the name of a variable
makeDeref build an expression to denote dereference
makeBinOp build an expression to denote a binary

operation including arithmetic operations, bitwise logic
operations, and bitwise shift operations

makeCmpOp build an expression to denote a comparison
including <,>,=, 6=,≥,≤

makeStructOp build an expression to denote an access
to a struct field directly or via a pointer

makeArrayOp build an expression to denote an access
to an array element

makeCall build an expression to denote a function call
including the name of the function and all the
arguments

Complex Data Types. Because the patch generated by Senx is in the form of the source code of

a target program, the expressions must conform to the proper language syntax of the program.

Expressions for simple data types such as char, integer, or float, are generated in a rather

straightforward way. However, expressions for complex data types such as C/C++ structs and

arrays are more challenging. For example, a field of a struct must be attached to its parent

object, and the generated syntax changes depending on whether the parent object is referenced

using a pointer or with a variable holding the actual object. Arrays and structs can also be

nested and the proper syntax must be used to denote the level of nesting relative to the top level

object.

To address the challenge, we include the GetElement instruction, which reads a field from

a struct or an element from an array, in Senx’s symbolic instruction set. The expression builder

leverages the GetElement instructions and debug symbols that describe the ordered list of

struct fields to construct expressions denoting access to complex data types including arrays

and structs. GetElement is overloaded, but since the expression builder maintains the data

type of each variable, it calls the appropriate version based on the type passed in var. To gen-
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erate valid C/C++ code for a symblic expression, it retrieves the variable expression associated

with var. If var is an array, it uses the helper function makeArrayOp, which recursivly gen-

erates code associated with the index argument. If var is a struct, it calls the helper function

makeStructOp , which returns the name of the field in the struct. To determine whether an

access to the struct is via a pointer or directly to an object, it checks witherh var is a result of

a Load instructino or not, and generates the expression accordingly.

In order to build expressions for complex data access involving nested complex data types,

both makeArrayOp and makeStrutOp use the expression for the variable var, which can be

the result of a previous Load instruction or GetElement instruction. In this way, expressions

for complex data access such as foo→f.bar[10], where foo is a pointer to a struct that has a

field f and bar is an array belonging to f, can be constructed.

5.3.3 Loop Cloning

To generate a predicate for a buffer overflow vulnerability, Senx must compare the memory

range a loop may read or write to with the size of the buffer being read or written. The latter

is extracted by the expression builder, so we focus on loop cloning and access range analysis

to describe how the memory range of a loop is calculated. Both loop cloning and access range

analysis are functions in Senx that take as input a function F in the program and an instruction

inst that performs the faulty access in the buffer overflow and returns the symbolic memory

access range [A1,An] of inst. This symbolic access range can then be converted into source

code and compared with the allocated buffer range in the predicate.

The key idea of loop cloning is to produce new code that can be called safely at runtime

to return the access range without causing any side-effects, i.e. changing program state or

affecting program input/output. The new code is constructed from existing code, referred to as

cloning, and will be called at a location where the buffer range is available so that the access

range returned by the new code can be compared against the buffer range.

Because the patch must be inserted into a function where both the access range and buffer
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1 i n t decode ( c o n s t char * in , char * o u t ) {
2 i n t i ;
3 char c ;
4 i = 0 ;
5 whi le ( ( c = *( i n ++) ) != ' \ 0 ' ) {
6 i f ( c == ' \ 1 ' )
7 c = *( i n ++) − 1 ;
8 o u t [ i ++] = c ;
9 }

10 re turn i ;
11 }
12
13 char * udf_decode ( c o n s t char * da ta , i n t d a t a l e n ) {
14 char * r e t = m a l loc ( d a t a l e n ) ;
15 i f ( r e t && ! decode ( d a t a +1 , r e t ) ) {
16 f r e e ( r e t ) ;
17 r e t = NULL;
18 }
19 re turn r e t ;
20 }

Listing 5.2: A complex loop involving a complex loop exit condition and multiple updates to
loop induction variable on multiple execution paths.

1+ void d e c o d e _ c l o n e ( c o n s t char * in , char * out , char ** s t a r t , char ** end ) {
2 char c ;
3+ * s t a r t = i n ;
4 whi le ( ( c = *( i n ++) ) != ' \ 0 ' ) {
5 i f ( c == ' \ 1 ' )
6 c = *( i n ++) − 1 ;
7 }
8+ * end = i n ;
9 }

10
11 char * udf_decode ( c o n s t char * da ta , i n t d a t a l e n ) {
12 char * r e t = m a l loc ( d a t a l e n ) ;
13+ char * s t a r t , * end ;
14+ d e c o d e _ c l o n e ( d a t a +1 , r e t , &s t a r t , &end ) ;
15 i f ( r e t && ! decode ( d a t a +1 , r e t ) ) {
16 f r e e ( r e t ) ;
17 r e t = NULL;
18 }
19 re turn r e t ;
20 }

Listing 5.3: A cloned and sliced loop that no longer contain any statements that have side-
effects and returns the number of iterations. Statements prefixed with ’+’ are added or modified
by Senx to count and return the number of loop iterations.
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range are available, loop cloning first searches on the call chain that leads to F to find such

function. The search starts from the immediate caller of F and stops at the first function Fp in

which the buffer range is available.

If no such function can be found, Senx will not be able to generate a patch. If such function

is found, loop cloning then clones each function Fi along the call chain from F until Fp into the

new code that returns the access range. As a result, each Fi is either a direct or indirect caller

of F or F itself.

Loop cloning needs to satisfy two requirements: 1) F must compute the access range and

pass the access range to its caller; 2) any direct or indirect caller of F must pass the access

range that it receives from its callee upwards to the next function along the call chain. Each Fi

is cloned using the following steps.

1. Loop cloning clones the entire code of Fi into Fi_clone.

2. Using program slicing, it removes all statements that are not needed in order to computer

the access range or pass the access range to Fp. If Fi is F, it retains statements on which

the execution of inst is dependent. If Fi is a direct or indirect caller of F, it retains

statements on which the call to F is dependent.

3. It changes the return type of Fi_clone to void and removes any return statement in

Fi_clone.

4. It adds two output parameters start and end to Fi_clone. If Fi is F, it inserts statements

immediately before the (nested) loops to copy the initial value of the pointer or array

index used in the faulty access into start, and statements immediately after the loops to

copy the end value of such pointer or array index into end. If Fi is a caller of F, it changes

the call statement to include the two output parameters in the list of call arguments.

After cloning each Fi, loop cloning inserts a call to the last cloned function into Fp, which

returns the access range in start and end. Subsequently a patch will be synthesized to leverage

the returned access range.
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To see how loop cloning works, consider the example in Listing 5.2, which presents a loop

adopted from a real buffer overflow vulnerability CVE-2007-1887 [20] in PHP, a scripting

language interpreter. The buffer overflow occurs in function decode. The loop features a

complex loop exit condition and multiple updates to loop induction variable in that depend on

the content of the buffer that in points to. The result of loop cloning is shown in Listing 5.3.

Loop cloning is invoked with decode as F, and the faulty access at line 5 as inst. It first

finds that function udf_decode is on the call chain to decode and in which the buffer range is

available. Because udf_decode directly calls decode, it needs to clone decode only.

It then clones function decode into decode_clone, after which it applies program slicing

to decode_clone with line 5 and variable c and in that are accessed at line 5 as the slicing

criteria. decode also has a potential write buffer overflow at line 8, but in this example, we

focus on generate a predicate that will check whether in can exceed the end of the buffer it is

pointing to. The program slicing uses a backward analysis and removes all statements that are

irrelevant to the value of c and in at line 5, including line 2, 4 and 8.

After program slicing, it changes the return type of decode_clone into void and removes

all return statements. And it adds two output parameters start and end to the list of parameters

of decode_clone.

Then it inserts a statement at line 3 to copy the initial value of in to start before the loop

and a statement at line 8 to copy the end value of in to end after the loop. Finally it inserts into

function udf_decode a call to decode_clone at line 14 and a statement to declare start and

end at line 13.

5.3.4 Access Range Analysis

Access range analysis takes as input a function f and a memory access instruction inst in f ,

and outputs the range of the memory access [A1,An] as a pair of expressions.

Using LLVM’s built-in loop canonicalization functionality [48], access range analysis com-

putes the access range of normalized loops. Loop canonicalization seeks to convert the loop
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into a standard form with a pre-header that initializes the loop iterator variable, a header that

checks whether to end the loop, and a single backedge. Extracting the access range for a single

loop in this way is fairly straight forward. The main difficulty is extending this to handle nested

loops.

Access range analysis is implemented for nested loops using the algorithm described in

Algorithm 1. It analyzes the loops enclosing inst starting with the innermost loop and iterating

to the outermost, accumulating increments and decrements on the loop induction variables

including the pointer used by inst.

Since the loop in bar of Listing 5.1 can be normalized, we use it as an example of how

Algorithm 1 can be applied to a nested loop. So f is bar and inst is the memory write using

pointer p at line 42. For each loop, it first retrieves the loop iterator variable and the bounds of

it by calling helper function find_loop_bounds, and the list of induction variables of the loop

along with the update to each of them, which we refer to as the fixed amount that is increased

or decreased to an induction variable on each iteration of the loop, by calling another helper

function find_loop_updates. In our example, we have iter = j, initial = 0,end = cols and

j 7→ 1,p 7→ 1,q 7→ 1 in updates for the innermost for loop from lines 41-42.

Algorithm 1 then symbolically accumulates the update to each induction variable to a data

structure referred to by acc, which maps each induction variable to an expression denoting the

accumulated update to the induction variable. As for the example, it will store j 7→ 1,p 7→

1,q 7→ 1 into acc for the innermost for loop. After that, it synthesizes the expression to denote

the total number of iterations for the loop. At line 16 of the algorithm, we will have count =

cols which is simplified from (cols-0)/1.

Having the total number of iterations, it multiplies the accumulated update for each induc-

tion variable by the total number of iterations. So acc will have j 7→ cols,p 7→ cols,q 7→ cols

after the loop from line 18 to 22 in Algorithm 1.

Once this is done, it moves on to analyze the next loop enclosing inst, which in List-

ing 5.1 is the while loop enclosing the inner for loop. As a consequence, we will have
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Algorithm 1 Finding the access range of a memory access.
Input: f : a function

inst: a memory access instruction
Output: acc_initial: initial address acccessed by inst

acc_end: end address accessed by inst
1: procedure ANALYZE_ACCESS_RANGE

2: . acc: accumulated updates to induction variables
3: acc← /0
4: innermost_loop← innermost_loop(inst)
5: outermost_loop← outermost_loop(inst)
6: visited← /0
7: for l ∈ [innermost_loop,outermost_loop] do
8: iter, initial,end ←find_loop_bounds( f , l)
9: updates,visited←find_loop_updates(l,visited)

10: . Symbolically add up induction updates
11: for var,upd ∈ updates do
12: acc{var}← sym_add(acc{var},upd)
13: end for
14: . Symbolically denote the number of iterations of l as count
15: upd_iter← updates{iter}
16: count←sym_div(sym_sub(end, initial),upd_iter))
17: . Symbolically multiply induction updates by the number of iterations of l
18: for var,upd ∈ acc do
19: if ¬is_initialized_in_last_loop(var) then
20: acc{var}←sym_mul(acc{var},count)
21: end if
22: end for
23: end for
24: ptr←get_pointer(inst)
25: f irst_inst←loop_head_instruction(outermost_loop)
26: . Find the definition of ptr that reaches f irst_inst
27: acc_initial←reaching_definition( f , f irst_inst, ptr)
28: acc_end←sym_add(acc_initial,acc{p})
29: return acc_initial,acc_end
30: end procedure
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iter = q, initial = src,end = src+size and p 7→ 1 in updates at line 10 of the algorithm,

j 7→ cols,p 7→ cols+1,q 7→ cols in acc and count = size/cols at line 17 of the algorithm,

and finally j 7→ cols,p 7→ (cols+1)*(size/cols),q 7→ size in acc. Note that the algorithm

will not multiply the number of iterations of the loop to j because j is always initialized in the

last analyzed loop, the innermost for loop.

After analyzing all the loops enclosing inst, the algorithm gets the pointer ptr used by inst

and performs reaching definition dataflow analysis to find the definition that reaches the be-

ginning of the outermost loop. As for the example, we will have ptr = p and the assignment

p=dest at line 39 of bar as the reaching definition for p. From this reaching definition, it

extracts the initial value of p, acc_initial = dest. Finally it gets the end value of p, acc_end =

dest+(cols+1)*(size/cols) by adding the initial value dest to the accumulated update of

p, (cols+1)*(size/cols) from acc. Hence it returns [dest,dest+(cols+1)*(size/cols)]

as the expressions denoting the access range [A1,An].

5.3.5 Expression Translation

When generating predicates, sometimes the buffer allocation and size is computed in one func-

tion scope, while the memory access range or bad offset is computed in a different function

scope. However, since the patches Senx generates are source code patches, the predicate of

the patch must be evaluated in a single function scope. One possible solution is to send the

expression valid in a source function scope as a call argument to a destination function scope

where the expression is not valid. This approach requires adding a new function parameter to

the the destination function, and adding a corresponding call argument at every call site of the

destination function. We decided not to use this approach because it requires code changes to

any function on the call chain from the source function to the destination function. In addi-

tion, unrelated functions that call any of the changed functions will also have to be changed,

resulting in a very intrusive patch.

Expression Translation solves this problem by translating an expression exps from the scope
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of a source function fs to an equivalent expression expd in a scope of a destination function

fd . It does not need adding new function parameters nor call arguments like the aformentioned

solution. Senx uses expression translation to translate both the buffer size expression and mem-

ory access range expression into a single function scope where the predicate will be evaluated.

We call this process converging the predicate.

At a high level, expression translation can be considered as a form of lightweight function

summarization [60]. While function summarization establishes the relations between the inputs

to a function and the outputs of a function, expression translation establishes the relations

between the inputs to a function and a subset of the local variables of the function. It works

by exploiting the equivalence between the arguments that are passed into the function by the

caller and the parameters that take on the argument values in the scope of the callee. Using

this equivalence, expression translation can iteratively translate expressions that are passed

to function invocations across edges in the call graph. Formally, expression translation can

converge the comparison between a expression expa , the symbolic memory access location in

fa and exps, buffer size expression in fs iff along the set of edges E connecting fa and fs in

the program call graph, an expression equivalent to either expa or exps form continuous sets of

edges along the path such that expa and exps can be translated along those sets into a common

scope.

Note that variables declared by a program as accessible across different functions such as

global variables in C/C++ do not require the substitution, although the use of such kind of

variables is not very common. We refer to both function parameters and these kind of variables

collectively as nonlocal variables. And we refer to an expression consists of only nonlocal

variables as a nonlocal expression.

The low-level implementation of expression translation in Senx consists of two functions.

One, translate_se_to_scopes, identifies all candidate functions along the call stack of a

function to translate a particular expression to. For example, in Listing 5.1, it would trans-

late the arguments to malloc at line 2 to the scope of it’s caller foo at line 29, and re-
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peatedly do this for foo’s caller. translate_se_to_scopes relies on a helper function

make_nonlocal_expr, which for each scope, translates a local expression into an equiva-

lent expression that consists only of references to nonlocal expressions (i.e. global variables or

function parameters). Together, these two functions produce equivalent expressions for every

caller in a function’s call stack.

Function translate_se_to_scopes listed in Algorithm 2 is the core of expression trans-

lation. It translates an expression expr to the scope of each function on the call stack stack.

We illustrate how it works with the code in Listing 5.1. For simplicity, we use source code line

numbers to represent the corresponding instructions.

Algorithm 2 Translating an expression to the scope of each function on the call stack.
Input: stack: a call stack consists of an ordered list of call instruction

expr: the expression to be translated
inst: the instruction to which expr is associated

Output: translated_exprs: the translated expr in the scope of each caller function on the call
stack

1: procedure TRANSLATE_SE_TO_SCOPES

2: . Translate expr to an expression in which all the variables are the parameters of
f unc

3: f unc←get_func(inst)
4: expr←make_nonlocal_expr( f unc, inst,expr)
5: if expr 6=∅ then
6: for call ∈ stack do
7: . Substitute each parameter variable in expr with its correspondent argument

used in call
8: expr←substitute_parms_with_args(call,expr)
9: f unc←get_func(call)

10: translated_exprs[ f unc]← expr
11: expr←make_nonlocal_expr( f unc,call,expr)
12: if expr =∅ then
13: break
14: end if
15: end for
16: end if
17: return translated_exprs
18: end procedure

To translate the buffer size involved in the buffer overflow, Senx finds that the buffer is al-
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located from a call to malloc at line 2 from the call stack that it associates with each memory

allocation, and invokes translate_se_to_scopes with stack =[line 29], expr =“x*y+1”,

inst =line 2, f unc = foo_malloc. The function first converts “x*y+1” into a definition in

which variables are all parameters of foo_malloc, which we call a nonlocal definition, if

such conversion is possible. This conversion is done by function make_nonlocal_expr listed

in Algorithm 3, which tries to find a nonlocal definition for each variable in expr and then

substitutes each variable with its matching nonlocal definition. make_nonlocal_expr relies

on find_nonlocal_def_for_var, which recursively finds reaching definitions for local vari-

ables in a function, eventually building a definition for them in terms of the function parameters,

global variables or the return values from function calls. Note that a nonlocal definition can

only be in the form of an arithmetic expression without involving any functions. In this case,

the resulting expr is also “x*y+1” because both x and y are parameters of foo_malloc.

Algorithm 3 Making a nonlocal expression.
Input: f : a function

inst: an instruction in f
expr: the RHS expression associated with inst

Output: nonlocal_expr: the nonlocalized expr
1: procedure MAKE_NONLOCAL_EXPR

2: . mapping stores the nonlocal definition for each variable within expr
3: mapping← /0
4: for var ∈ expr do
5: if ¬ is_var_nonlocal( f ,var) then
6: de f ←find_nonlocal_def_for_var( f , inst,var)
7: if de f =∅ then
8: . We cannot find a nonlocal definition for var
9: return ∅

10: else
11: mapping[var]← de f
12: end if
13: end if
14: end for
15: . Substitute the occurrence of each variable with its nonlocal definition
16: nonlocal_expr←substitute_vars(expr,mapping)
17: return nonlocal_expr
18: end procedure
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It then iterates each call instruction in stack, starting from line 29. For each call instruc-

tion, it substitutes the parameters in expr with the arguments used in the call instruction. For

line 29, it substitutes x with rows and y with cols+1, respectively, by calling helper function

substitute_parms_with_args. As a consequence, “x*y+1” becomes “rows*(cols+1)+1”.

Hence it associates “rows*(cols+1)+1” with function foo and stores the association in expr_translated,

because line 29 exists in function foo. After that, it tries to convert “rows*(cols+1)+1” into

a nonlocal definition in respect to foo. At this point, it halts because both rows and cols are

assigned with return values of calls to function extract_int. Otherwise, it will move on to

the next function on the call stack and continue the translation upwards the call stack. However,

in this case, expression translation is also able to translate the memory access range expression

from the scope of bar into the scope of foo. Thus, Senx uses expression translation to place

the patch predicate in foo.

5.4 Implementation

We have implemented Senx as an extension of the KLEE LLVM execution engine [46]. Like

KLEE, Senx works on C/C++ programs that are compiled into LLVM bitcode [120].

We re-use the LLVM bitcode execution portion of KLEE, and as described in Section 5.3.2,

to implement our own decompilation engine.

For simplicity and ease of debugging, we represent our expressions as text strings. To

support arithmetic operations and simple math functions on expressions, we leverage GiNaC,

a C++ library designed to provide support for symbolic manipulations of algebra expressions

[58].

We implement a separate LLVM transformation pass to annotate LLVM bitcode with in-

formation on loops such as the label for loop pre-header and header, which is subsequently

used by access range analysis. This pass relies on LLVM’s canonicalization of natural loops to

normalize loops [48]. We extend LLVMSlicer [29] for loop cloning. To locate error handling



CHAPTER 5. SEMANTICALLY CORRECT PATCH GENERATION FOR VULNERABILITIES 85

code, we use Talos [62].

Our memory allocation logger uses KLEE to interpose on memory allocations and stores

the call stack for each memory allocation. Senx extends KLEE to detect integer overflows and

incorporates the existing memory fault detection in KLEE to trigger our patch generation. For

alias analysis, Senx leverages DSA pointer analysis [77].

Senx is implemented with 2,543 lines of C/C++ source code, not including the Talos com-

ponent used to identify error handling code. Half of the source code is used to implement

expression builder, which forms the foundation of other components of Senx.

5.5 Evaluation

First, we evaluate the effectiveness of Senx in fixing real-world vulnerabilities. Second, we

manually examine the produced patches for correctness and compare them to the developer

created patch. For the sake of space, we only describe two of the patches in detail. Last, we

measure the applicability of loop cloning, access range analysis, and expression translation

using a larger dataset.

5.5.1 Experiment Setup

We build a corpus of vulnerabilities for Senx to attempt to patch by searching online vulnerabil-

ity databases [10,12,17], software bug report databases, developers’ mailing groups [7,19,23],

and exploit databases [18]. We focus on vulnerabilities that fall into one of the three types of

vulnerabilities Senx can currently handle. We then select vulnerabilities that meet the following

three criteria: 1) an input to trigger the vulnerability is either available or can be created from

the information available, 2) the vulnerable application can be compiled into LLVM bitcode

and executed correctly by KLEE, and 3) the vulnerable application uses malloc to allocate

memory as Senx currently relies on this to infer the allocation size of objects. Applications

that use custom memory allocation routines are currently not supported by Senx. We obtain
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Table 5.4: Applications for testing real-world vulnerabilities.

App. Description SLOC
autotrace a tool to convert bitmap to vector graphics 19,383
binutils a collection of programming tools for managing and creating bi-

nary programs
2,394,750

libming a library for creating Adobe Flash files 88,279
libtiff a library for manipulating TIFF graphic files 71,434
php the official interpretor for PHP programming language 746,390
sqlite a relational database engine 189,747
ytnef TNEF stream reader 15,512
zziplib a library for reading ZIP archives 24,886
jasper a codec for JPEG standards 30,915
libarchive a multi-format archive and compression library 158,017
potrace a tool for tracing bitmap graphics 20,512
Total N/A 3,817,268

the vulnerability-triggering inputs or information about such inputs from the blogs of security

researchers, bug reports, exploit databases, mailing groups for software users, or test cases

attached to patch commits [1, 2, 8, 18, 26, 30].

From this, we construct a corpus of 42 real-world buffer overflow, integer overflow and

bad-offset vulnerabilities to evaluate the effectiveness of Senx in patching vulnerabilities. The

vulnerabilities are drawn from 11 applications show in Table 5.4, which include 8 media and

archive tools and libraries, PHP, sqlite, and a collection of programming tools for managing

and creating binary programs. The associated vulnerabilities consit of 19 buffer overflows, 13

integer overflows, and 10 bad-offset vulnerabilities.

All our experiments were conducted on a desktop with 4-core 3.40GHz Intel i7-3770 CPU,

16GB RAM, 3TB SATA hard drive and 64-bit Ubuntu 14.04.

5.5.2 How Effective is Senx in Patching Vulnerabilities?

For each vulnerability of an application, we run the corresponding program under Senx with a

vulnerability-triggering input. If Senx generates a patch, we examine the patch for correctness.

To determine if a patch is correct, we apply the three following tests a) we check for semantic
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equivalence with the official patch released by the vendor if available and semantic correctness

by analyzing the code, b) we apply the patch and verify that the vulnerability is no longer

triggered by the input and c) we check as best we can that the patch does not interfere with

regular operation of the application by using the application to process benign inputs. If Senx

aborts patch generation, we examine what caused Senx to abort.

Our results are summarized in Table 5.5 and Table 5.6. Column “Type” indicates whether

the vulnerability is a 1© buffer overflow, 2© bad-offset, or 3© integer overflow. Column “Ex-

pressions” shows whether Senx can successfully construct all expressions that are required to

synthesize a patch, as some code constructs may contain expressions outside of the theories

Senx supports in its symbolic ISA. “Loop Analysis” describes whether loop cloning or access

range analysis (ARA) is used if the vulnerability contained a loop. “Patch Placement” lists the

type of patch placement: “Trivial” means that the patch is placed in the same function as the

vulnerability and “Translated” means that the patch must be translated to a different function.

“Data Access” describes whether or not the patch predicate involves complex data access such

as fields in a struct or array indicies. Finally, “Patched?” summarizes whether the patch gener-

ated by Senx fixes a vulnerability. The 10 vulnerabilities where Senx aborts generating a patch

are highlighted in red.

Over the 42 vulnerabilities, Senx generates 32 (76.2%) patches, all of which are correct

according to our 3 criteria. Of the 14 patched buffer overflows, loop analysis is roughly split

between loop cloning and access range analysis (6 and 8 respectively). Senx elects not to use

loop cloning mainly due to two causes. First, due to an imprecise alias analysis that does not

distinguish different fields of structs correctly, the program slicing tool utilized by Senx may

include instructions that are irrelevant to computing loop iterations into slices. Unfortunately

these instructions calls functions that can have side-effects so the slices cannot be used by Senx.

Second, for a few cases the entire body of the loops is control dependent on the result of a call

to a function that has side-effects. For example, the loops involved in CVE-2017-5225 are only

executed when a call to malloc succeeds. Because malloc can make system calls, Senx also
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Table 5.5: Patches generation by Senx

CVE ID Type Expressions Loop Analysis
sqlite-CVE-2013-7443 3© Determinate —
sqlite-CVE-2017-13685 3© Determinate —
zziplib-CVE-2017-5976 1© Determinate Cloned
zziplib-CVE-2017-5974 3© Determinate —
zziplib-CVE-2017-5975 3© Determinate —
Potrace-CVE-2013-7437 2© Determinate —
libming-CVE-2016-9264 3© Determinate —
libtiff-CVE-2016-9273 1© Indeterminate —
libtiff-CVE-2016-9532 1© Determinate Cloned
libtiff-CVE-2017-5225 1© Determinate ARA
libtiff-CVE-2016-10272 1© Determinate ARA
libtiff-CVE-2016-10092 3© Determinate —
libtiff-CVE-2016-5102 3© Determinate —
libtiff-CVE-2006-2025 2© Determinate —
libarchive-CVE-2016-5844 2© Determinate —
jasper-CVE-2016-9387 2© Determinate —
jasper-CVE-2016-9557 2© Determinate —
jasper-CVE-2017-5501 2© Determinate —
ytnef-CVE-2017-9471 1© Determinate Cloned
ytnef-CVE-2017-9472 1© Determinate Cloned
ytnef-CVE-2017-9474 1© Determinate Failed
php-CVE-2011-1938 1© Determinate ARA
php-CVE-2014-3670 1© Determinate ARA
php-CVE-2014-8626 1© Determinate Cloned
binutils-CVE-2017-15020 1© Determinate ARA
binutils-CVE-2017-9747 1© Determinate Cloned
binutils-CVE-2017-12799 3© Determinate —
binutils-CVE-2017-6965 3© Determinate —
binutils-CVE-2017-9752 3© Determinate —
binutils-CVE-2017-14745 2© Determinate —
autotrace-CVE-2017-9151 1© Indeterminate —
autotrace-CVE-2017-9153 1© Indeterminate —
autotrace-CVE-2017-9156 1© Determinate ARA
autotrace-CVE-2017-9157 1© Determinate ARA
autotrace-CVE-2017-9168 1© Determinate Failed
autotrace-CVE-2017-9191 1© Determinate ARA
autotrace-CVE-2017-9161 2© Determinate —
autotrace-CVE-2017-9183 2© Determinate —
autotrace-CVE-2017-9197 2© Determinate —
autotrace-CVE-2017-9198 2© Determinate —
autotrace-CVE-2017-9199 2© Determinate —
autotrace-CVE-2017-9200 2© Determinate —
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Table 5.6: Patches generation by Senx (continued)

CVE ID Patch Placement Data Access Patched?
sqlite-CVE-2013-7443 Failed — 7

sqlite-CVE-2017-13685 Trivial Simple 3

zziplib-CVE-2017-5976 Translated Complex 3

zziplib-CVE-2017-5974 Translated Complex 3

zziplib-CVE-2017-5975 Translated Complex 3

Potrace-CVE-2013-7437 Trivial Complex 3

libming-CVE-2016-9264 Trivial Simple 3

libtiff-CVE-2016-9273 — — 7

libtiff-CVE-2016-9532 Trivial Complex 3

libtiff-CVE-2017-5225 Trivial Simple 3

libtiff-CVE-2016-10272 Translated Simple 3

libtiff-CVE-2016-10092 Translated Simple 3

libtiff-CVE-2016-5102 Trivial Simple 3

libtiff-CVE-2006-2025 Trivial Complex 3

libarchive-CVE-2016-5844 Trivial Complex 3

jasper-CVE-2016-9387 Trivial Complex 3

jasper-CVE-2016-9557 Trivial Complex 3

jasper-CVE-2017-5501 Failed — 7

ytnef-CVE-2017-9471 Trivial Simple 3

ytnef-CVE-2017-9472 Trivial Simple 3

ytnef-CVE-2017-9474 — — 7

php-CVE-2011-1938 Translated Simple 3

php-CVE-2014-3670 Translated Complex 3

php-CVE-2014-8626 Trivial Simple 3

binutils-CVE-2017-15020 Translated Simple 3

binutils-CVE-2017-9747 Translated Simple 3

binutils-CVE-2017-12799 Trivial Simple 3

binutils-CVE-2017-6965 Failed — 7

binutils-CVE-2017-9752 Translated Simple 3

binutils-CVE-2017-14745 Failed — 7

autotrace-CVE-2017-9151 — — 7

autotrace-CVE-2017-9153 — — 7

autotrace-CVE-2017-9156 Trivial Simple 3

autotrace-CVE-2017-9157 Trivial Simple 3

autotrace-CVE-2017-9168 — — 7

autotrace-CVE-2017-9191 Failed — 7

autotrace-CVE-2017-9161 Trivial Simple 3

autotrace-CVE-2017-9183 Trivial Complex 3

autotrace-CVE-2017-9197 Trivial Complex 3

autotrace-CVE-2017-9198 Trivial Complex 3

autotrace-CVE-2017-9199 Trivial Complex 3

autotrace-CVE-2017-9200 Trivial Complex 3
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cannot clone the loops.

Senx must place 23.8% of the patches in a function different from where the vulnerability

exists. This is particularly acute for buffer overflows (46.2% of cases), which have to compare

a buffer allocation with a memory access range. This illustrates that expression translation con-

tributes significantly to the patch generation ability of Senx, particularly for buffer overflows,

which make up the majority of memory corruption vulnerabilities. Senx’s handling of com-

plex data accesses is also used in 48.5% of the patches, indicating this capability is required to

handle a good number of vulnerabilities

Senx aborts patch generation for 10 vulnerabilities. The dominant cause for these aborts is

that Senx is not able to converge to a function scope where all symbolic variables in the patch

predicate are available. There is also one case (jasper-CVE-2017-5501) where Senx cannot find

appropriate error-handling code to synthesize the patch. In these cases, the patch requires more

significant changes to the application code that are beyond the capabilities of Senx. In other

cases, Senx detects that there are multiple reaching definitions for patch predicates that it does

not have an execution input for. Currently, Senx only accepts one execution path executed by

the single vulnerability-triggering input. In the future we plan to handle these cases by allowing

Senx accept multiple inputs to cover the paths along which the other reaching definitions exist.

Finally, Senx aborts for a couple of vulnerabilities because both loop cloning and access range

analysis fail.

5.5.3 Patch Case Study

Out of the 32 generated patches, we select 2 patches to describe in detail.

libtiff-CVE-2017-5225. This is a heap buffer overflow in libtiff, which can be exploited via a

specially crafted TIFF image file. The overflow occurs in a function cpContig2SeparateByRow

that parses a TIFF image into rows and dynamically allocates a buffer to hold the parsed image

based on the number of pixels per row and bits per pixel. By using an inconsistent bits per

pixel parameter, the attacker can cause libtiff to allocate a buffer smaller than the size of the
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pixel data and cause a buffer overflow.

When Senx captures the buffer overflow via running libtiff with a crafted TIFF image file,

it first identifies that the buffer is allocated using the value of variable scanlinesizein and

the starting address of the buffer is stored in variable inbuf. Hence it uses [inbuf, inbuf +

scanlinesizein] to denote the buffer range. Senx then finds that the buffer overflow occurs

in a 3-level nested loop and that the pointer used to access the buffer is dependent on the loop

induction variable. Senx classifies the vulnerability as a buffer overflow.

Loop cloning fails because the loop slice is dependent on a call to _TIFFmalloc, which

subsequently calls malloc. Thus, Senx applies access range analysis. Access range analysis

detects that only the outer and inner-most loops affect the memory access pointer and from the

extracted induction variables, computes the expression [inbuf, inbuf+spp*imagewidth] to

represent the access range.

Because both the buffer range and the access range starts at inbuf, Senx synthesizes the

patch predicate as spp*imagewidth > scanlinesizein. Senx then finds that cpContig2SeparateByRow

contains error handling code, which has a label bad, and generates the patch as below. As the

buffer allocation and overflow occur in the same function, Senx puts the patch immediately

before the buffer allocation.

i f ( spp * imagewid th > s c a n l i n e s i z e i n )

goto bad ;

The official patch invokes the same error handling and is placed at the same location as

Senx’s patch. However, the official patch checks that “(bps != 8)”. From further analysis, we

find that both patches are equivalent, though the human-generated patch relies on the semantics

of the libtiff format, while Senx’s patch directly checks that the loop cannot exceed the size of

the allocated buffer.

libarchive-CVE-2016-5844. This integer overflow in the ISO parser in libarchive can re-

sult in a denial of service via a specially crafted ISO file. The overflow happens in function

choose_volume when it multiplies a block index, which is a 32-bit integer, with a constant



CHAPTER 5. SEMANTICALLY CORRECT PATCH GENERATION FOR VULNERABILITIES 92

number. This can exceed the maximum value that can be represented by a 32-bit integer and

overflow into a negative number, which is then used as a file offset.

Senx detects the integer overflow when it runs libarchive’s ISO parser with a crafted ISO

file. It generates an expression of the overflown value as as the product of 2048 and vd→location.

Further Senx detects that the overflown value is assigned to a 64-bit variable skipsize, thus

classifying this as a repairable integer overflow. Senx patches the vulnerability by casting the

32-bit value to a 64-bit value before multiplying:

− s k i p s i z e = LOGICAL_BLOCK_SIZE * vd−> l o c a t i o n ;

+ s k i p s i z e = 2048 * ( i n t 6 4 _ t ) vd−> l o c a t i o n ;

The official patch is essentially identical to the patch generated by Senx. The only differ-

ence is that the official patch uses the constant LOGICAL_BLOCK_SIZE rather than its equivalent

value 2048 in the multiplication.

5.5.4 Applicability

We evaluate how applicable of loop cloning, access range analysis and expression translation

are across a larger dataset. To generate such a dataset, we extract all loops that access memory

buffers and the allocations of these buffers from the 11 programs in coreutils, regardless of

whether they contain vulnerabilities or not. We then apply Senx’s loop analysis to all loops

and find that loop cloning can be applied to 88% of the loops and access range analysis can

be applied to 46% of the loops. This is in line with our results from the vulnerabilities. We

measure how often expression translation is able to converge the memory access range and

buffer allocation size into a single function scope, and find that it is able to do so in 85% of the

cases.

We use 11 programs from the coreutils as listed in Table 5.7 to evaluate the applicability

of our analysis techniques. The most common reasons for Senx’s access range analysis to be

aborted is that loops cannot be normalized by LLVM. For example, the number of times a loop

that parses string input iterates depends on the content of the string. Such a string cannot be
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Table 5.7: Programs for evaluating applicability.

Program Type SLOC LLVM bitcode
sha512sum data checksum 581 135KB
pr text formatting 1,723 194KB
head text manipulation 761 109KB
dir directory listing 3,388 418KB
od file dumping 1,368 237KB
ls directory listing 3,388 418KB
base64 data encoding 238 91KB
wc text processing 784 120KB
cat file concatenating 495 182KB
sort data sorting 3,251 433KB
printf format and print data 694 198KB
AVG N/A 1,516 230KB

symbolically analyzed by access range analysis.

To understand the reasons that can cause expression translation to abort, we try to converge

the buffer size and memory access range for the loops that we could successfully analyze and

tabulate the results in Table 5.8. The “Access Range” column tabulates the average percentage

of functions in the loop’s call stack that expression translation could translate the memory

access range into and “Buffer Range” tabulates the average percentage of functions in the

buffer allocation’s call stack that expression translation could translate the buffer allocation

size into. Finally “Converged” indicates out of all loops, what percentage could expression

translation find a common function scope in which to place the patch. As we can see, it seems

that the buffer allocation size frequently takes parameters that are calculated fairly close in the

call stack to the allocation point, and those values are not available higher up in the call chain,

thus limiting the functions scopes many of these cases could be converged to.
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Table 5.8: Convergence of expression translation.

Program Access Range Buffer Range Converged
pr 100% 10% 100%
head 100% 25% 100%
tr 86% 36% 100%
od 54% 16% 58%
cat 100% 33% 100%
dir 71% 14% 57%
ls 42% 33% 34%
base64 100% 33% 100%
md5sum 100% 33% 100%
sha512sum 97% 80% 97%
sort 91% 10% 90%
AVG. 85% 29% 85%

5.6 Summary

This chapter presents the design and implementation of Senx, a system that automatically

generates patches for buffer overflow, bad offset, and integer overflow vulnerabilities. Senx

can synthesize patches in one of two forms.

For a program that manifests a buffer overflow or a bad offset, Senx synthesizes a patch in

the first form that uses a predicate to check whether a faulty memory access is about to occur

and prevents the faulty memory access by steering the program execution to error handling

code, similar to a patch written by human developers. For a program that manifests an integer

overflow, Senx can synthesize a patch in the second form that adds a data type cast to avoid the

integer overflow or a patch in the first form which checks if the integer overflow is imminent

and invokes error handling code.

Senx leverages three novel techniques, expression translation, loop cloning, and access

range analysis, to construct a patch. Enabled by the three techniques, Senx generates patches

correctly for 32 of the 42 real-world vulnerabilities.



Chapter 6

SWRR v.s. Security Patch Generation

6.1 Overview

In this Chapter, we compare the two approaches that we propose to addressing software vulner-

abilities: Talos, which produces and instruments SWRRs as described in Chapter 4, and Senx,

which generates security patches as described in Chapter 5. We first compare the advantages

and disadvantages of them qualitatively. Then we quantitatively measure their applicability on

addressing software vulnerabilities.

6.2 Qualitative Comparison

With different design goals, Talos and Senx have different advantages and disadvantages. We

compare their advantages and disadvantages in five criteria: security, unobtrusiveness, usabil-

ity, robustness, and scalability.

Security. We define the security of SWRRs produced by Talos and security patches generated

by Senx as whether they can address software vulnerabilities.

Unobtrusiveness. We consider SWRRs and security patches exhibit unobtrusiveness if they

do not affect the application functionality irrelevant to the software vulnerabilities that they

95
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Table 6.1: Advantages and disadvantages of Talos and Senx.

Approach Security Unobtrusiveness Usability Robustness Scalability
Talos Yes Low, Medium, High High High High
Senx Yes High Medium Medium Low

aim to address. We consider SWRRs and security patches as obtrusive, if they cause loss of

functionality irrelevant to the software vulnerabilities.

Usability. Talos and Senx require different sets of inputs to work. We measure their usability

based on how hard it is to obtain such inputs. The more difficult to acquire inputs the lower the

usability is.

Robustness. Talos and Senx employ different sets of program analysis techniques. Either

by their design or the properties of the underlying techniques on which they are built, these

techniques have different target problem space. We consider techniques that have larger target

problem space as having higher robustness.

Scalability. We define the scalability of Talos and Senx as the degree of manual effort that

is required to enable them to work with new software vulnerability types. The more manual

effort is required the lower the scalability.

We summarize the results of our comparison in Table 6.1. For security, we label the result

as either “Yes” or “No”. For unobtrusiveness, usability, robustness, and scalability, we label

the results as “High”, “Medium”, and “Low” based on an approximate categorization of the

results.

Because both SWRRs and security patches effectively prevent software vulnerabilities from

being exploited, we consider they all provide security.

For unobtrusiveness, we consider SWRRs can have a varying degree of unobtrusiveness

depending on the functionality disabled by them. And we consider security patches to have

high degree of unobtrusiveness because they disable vulnerable code only for malicious inputs.

For usability, we consider Talos to have higher usability than Senx because Senx further
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Table 6.2: Number of functions and number of error-logging functions.

Application Functions Error Funcs.
libtiff-tiffsplit 333 1
libtiff-tiffcrop 622 1
libtiff-gif2tiff 453 1
binutils-nm-new 399 6
binutils-readelf 771 6
binutils-objdump 963 6
autotrace 176 1
zziplib 32 1
ytnef 53 1

requires proof-of-concept exploits or vulnerability-triggering inputs from users. Other than this

requirement, Senx does not need human interference so we consider its usability as “Medium”.

Besides the program analysis techniques employed by Talos, Senx employs additional pro-

gram analysis techniques that target narrower problem space so we label its robustness as

“Medium” rather than “High” for Talos.

For scalability, we consider Senx to have “Low” scalability because it relies on manual anal-

ysis of vulnerabilities to generate security patches. As a result, it might require further man-

ual analysis to work with new vulnerability types. In contrast, Talos is largely vulnerability-

agnostic so we consider Talos to have “High” scalability.

6.3 Quantitative Comparison

To quantitatively compare the applicability of Senx and Talos, we focus on the unobtrusiveness

of the SWRRs produced by Talos and the security patches generated by Senx. We evaluate

them on the same set of real-world vulnerabilities. To make it easier for the comparison, we

choose to use the set of software vulnerabilities evaluated in Chapter 5. We list the applications

that are introduced in that Chapter in Table 6.2.

We use the same definition of unobtrusiveness and the same experimental methodology

used in Chapter 4. Briefly, we use two sets of test inputs, covering major functionality and
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minor functionality respectively, for each application to measure the unobtrusiveness of each

SWRR. If no or only minor functionality is lost after activating an SWRR or applying a security

patch, we consider the SWRR or security patch is unobtrusive. If major functionality is lost,

we consider the SWRR or security patch is obtrusive.

The results are shown in Table 6.3. We categorize the vulnerabilities into four different

types of applicability based on the results: 1) both Talos and Senx are applicable to a vulner-

ability because both the SWRR produced by Talos and the security patch generated by Senx

are unobtrusive; 2) only Senx is applicable because the SWRR produced by Talos is obtrusive

but the security patch generated by Senx is unobtrusive; 3) only Talos is applicable because

the SWRR produced by Talos is unobtrusive but Senx cannot generate a security patch; 4) nei-

ther Talos nor Senx is applicable because the SWRR produced by Talos is obtrusive and Senx

cannot generate a security patch. We label the applicability type in Column “Applicability”.

As we can see, both Talos and Senx are applicable to 45.2% of the 42 vulnerabilities.

For 33.3% of the vulnerabilities, only Senx is applicable. For 14.2% of the vulnerabilities,

only Talos is applicable. While Senx is substantially more applicable than Talos, 14.2% of

the vulnerabilities can only be addressed by Talos. Combining Talos and Senx, 90.5% of the

vulnerabilities can be mitigated or fixed.

6.4 Summary

We compare the advantages and disadvantages of Talos and Senx. Qualitatively we consider

that both the SWRRs produced by Talos and the security patches generated by Senx provide

security. On one hand, SWRRs have a varying degree of unobtrusiveness, while the security

patches consistently have high unobtrusiveness. On the other hand, Talos have higher usability

and robustness and particularly higher scalability than Senx.

From a quantitative evaluation on a common set of real-world vulnerabilities, we find that

for nearly half of the vulnerabilities both Talos and Senx are applicable with high unobtru-
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Table 6.3: Applicability of Talos and Senx

Application CVE# Talos Senx Applicability
sqlite CVE-2013-7443 No No 4

CVE-2017-13685 Yes Yes 1
zziplib CVE-2017-5976 Yes Yes 1

CVE-2017-5974 No Yes 2
CVE-2017-5975 No Yes 2

Potrace CVE-2013-7437 No Yes 2
libming CVE-2016-9264 No Yes 2
libtiff-tiffsplit CVE-2016-9273 No No 4
libtiff-tiffcrop CVE-2016-9532 Yes Yes 1
libtiff-tiffcp CVE-2017-5225 Yes Yes 1
libtiff-tiffcrop CVE-2016-10272 Yes Yes 1
libtiff-tiffcrop CVE-2016-10092 Yes Yes 1
libtiff-gif2tiff CVE-2016-5102 No Yes 2
libtiff-tiffcp CVE-2006-2025 No Yes 2
libarchive CVE-2016-5844 No Yes 2
jasper CVE-2016-9387 Yes Yes 1

CVE-2016-9557 Yes Yes 1
CVE-2017-5501 No No 4

ytnef CVE-2017-9471 No Yes 2
CVE-2017-9472 Yes Yes 1
CVE-2017-9474 Yes No 3

php CVE-2011-1938 No Yes 2
CVE-2014-3670 No Yes 2
CVE-2014-8626 Yes Yes 1

binutils-nm-new CVE-2017-15020 No Yes 2
binutils-objdump CVE-2017-9747 Yes Yes 1
binutils-objdump CVE-2017-12799 Yes Yes 1
binutils-readelf CVE-2017-6965 Yes No 3
binutils-objdump CVE-2017-9752 Yes Yes 1
binutils-objdump CVE-2017-14745 No No 4
autotrace CVE-2017-9151 Yes No 3

CVE-2017-9153 Yes No 3
CVE-2017-9156 Yes Yes 1
CVE-2017-9157 Yes Yes 1
CVE-2017-9168 Yes No 3
CVE-2017-9191 Yes No 3
CVE-2017-9161 No Yes 2
CVE-2017-9183 No Yes 2
CVE-2017-9197 Yes Yes 1
CVE-2017-9198 Yes Yes 1
CVE-2017-9199 Yes Yes 1
CVE-2017-9200 Yes Yes 1
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siveness. For the rest of the vulnerabilities, Senx is remarkably more applicable than Talos.

However, Talos is applicable to a significant number of vulnerabilities where Senx is not ap-

plicable. Combining the strength of Talos and Senx, we can mitigate or fix the vast majority of

the vulnerabilities. As a result, we consider that Talos and Senx are complement to each other.



Chapter 7

Clustering Configuration Settings For

Error Recovery

Aside from software vulnerabilities, configuration errors are also a major cause of system un-

availability. This chapter presents my work on troubleshooting and fixing configuration errors.

7.1 Introduction

Configuration errors are a leading cause of failure and unavailability for desktop applications

[55]. Fixing such errors has essentially two steps: identifying the configuration settings causing

the error, and replacing the faulty settings with values that fix the configuration error.

To facilitate the first step, proposals in the literature have tried to pinpoint the time the

configuration error first appeared [130], used statistical anomaly detection to detect abnormal

configuration settings [75, 125, 126], or used white-box dynamic analysis to find the particular

configuration setting that causes the application to execute an erroneous code path [43]. Of

these three approaches, only the last two try to identify the configuration setting that causes the

error and even then, they only work if the error is the result of a single configuration setting.

Unfortunately, this can be a serious drawback since a recent study found that a significant

number of configuration errors (14.9%-34.7%) require changing more than one configuration

101
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Application: MS WORD 2010 
…\File MRU\Max Display: 20 
 
…\File MRU\Item 1: \Path\To\ Document1 
… 
…\File MRU\Item 20: \Path\To\ Document20 
 
Description: The “Max Display” setting 
determines the number of recently accessed 
documents stored in the “Item” settings. 

(a) MS Word

Application: Acrobat Reader 
…/InlineAutoComplete: true 
 
…/RecordNewEntries: true 
…/ShowDropDown: true 
 
Description: The “InlineAutoComplete” setting 
enables/disables the “auto complete” feature 
when user fills a form. The other settings specify 
how the “autocomplete” feature should behave. 

(b) Acrobat Reader

Application: Evolution Mail 
…/mail/display/mark_seen: true 
 
…/mail/display/mark_seen_timeout: 15 
 
 
Description: When the setting “mark_seen” is 
set to true, Evolution marks an email as “seen” 
after the email is opened for the time specified in 
the setting “mark_seen_timeout”. 

(c) Evolution Mail

Figure 7.1: Examples of dependencies among configuration settings
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setting to fix [135], because some configuration settings are related.

One example of related configuration settings is illustrated in Figure 7.1a: the number of

“Item” settings should never exceed the value of Max Display setting. Microsoft Word auto-

matically maintains this relationship. For instance, if a user reduces the maximum number of

recently accessed documents from the Preference menu, Microsoft Word not only reduces the

value of Max Display setting, but also deletes extra Item settings. Consequently, if the user

wants to undo the effect of reducing the maximum number of recently accessed documents,

both the old value of Max Display and the deleted Item settings need to be recovered.

In this chapter, we present a novel technique that uses hierarchical agglomerative cluster-

ing [119] to identify clusters of related configuration settings, relying only on the ability to

observe application accesses to its configuration store, and is thus language, binary and OS in-

dependent. We implemented this technique in Ocasta, which treats applications as black-boxes

and is able to work on a wide range of applications and environments.

To evaluate the effectiveness of Ocasta, we collected traces of application usage from both

Windows and Linux machines ranging from 18 to 76 days in length and then use Ocasta to

identify clusters of related configuration settings in 11 different application in across 4 different

OS flavors. Using this data and 16 real-world configuration errors, we show that Ocasta’s

clustering is able to accurately identify 88.6% of the clusters of related configuration settings.

To further evaluate Ocasta, we added a simple GUI-based configuration error repair tool

that, with user input, uses the clustering information from Ocasta to automatically search for

and fix settings causing configuration errors. The Ocasta search tool requires the user to provide

a GUI-action script that triggers the error, which it then uses to automatically search historical

values of the clusters of configuration settings found by Ocasta for a fix. A screenshot of the

result is recorded after each search and the user is asked to select a screenshot that shows that

the symptoms of the configuration have been treated.

Configuration error repair in general is very hard and while Ocasta’s proof of concept tool

is able to fix the symptoms of all of our configuration errors, it cannot guarantee that the
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selected fix does not introduce new hidden errors, nor can it fix errors that do not have any

visible symptoms. In general, studies have shown that even trained humans may fail to fix

configuration errors completely, create new errors in the process troubleshooting or fixing an

existing error, or have to resort to resetting the application back to its defaults to remove the

symptoms of a configuration error [66]. Our evaluation demonstrates that Ocasta’s method for

inferring related configuration settings broadens the range of errors automated configuration

error repair tools can handle by providing with clustering information. We believe that even

when automated tools fail, the clustering information provided by Ocasta will still be valuable

to human troubleshooters.

Our contributions are:

• We characterize the types and reasons of for relationships between configuration settings

by manually inspecting and analyzing over 500 configuration settings across 11 applica-

tions.

• We present the design and prototype implementation of Ocasta, which uses black-box

statistical clustering of application behavior to identify related configuration settings.

Ocasta has been implemented on both Linux and Windows and evaluated on both systems

using data collected from machines used by real people.

• We further evaluate the usability of Ocasta’s clustering with a proof-of-concept tool that

given a set of actions that recreates a configuration error, automatically searches histori-

cal values of clusters of configuration settings for a fix. We demonstrate the effectiveness

of our tool against 16 real-world configuration errors. We also provide a user study show-

ing the effectiveness of Ocasta’s configuration repair tool.

We study relations between configuration settings and defining the problem solved by Ocasta

in Section 7.2. We then describe Ocasta’s high-level design in Section 7.3 and give imple-

mentation details in Section 7.4. We describe how we collected our traces in Section 7.5 and



CHAPTER 7. CLUSTERING CONFIGURATION SETTINGS FOR ERROR RECOVERY 105

evaluate Ocasta in Section 7.6. Finally, we discuss related work in Section 2.2 and conclude in

Section 7.7.

7.2 Problem Definition

Similar to relationships between program variables [86], relationships between configuration

settings are a common, though not often documented phenomenon that applications exhibit.

We begin by describing 3 representative examples of related configuration settings that we

found by manually inspecting over 500 configuration settings that were accessed by 11 different

Windows and Linux applications in our traces (trace statistics given in Table 7.1).

In Figure 7.1a, to control the number of documents listed in the recently opened documents

list in Microsoft Word, Max Display limits the number of document names stored in the Item

settings (e.g. Item 1, Item 2). In Figure 7.1b, Acrobat Reader uses InlineAutoCompelete

to determine whether to enable the “auto complete” feature when user fills a form, while

RecordNewEntries and ShowDropDown specify how the “auto complete” feature works, in-

cluding whether to record user-entered data and whether to display the list of previously

recorded data in a dropdown box. Finally, in Figure 7.1c, Evolution will automatically mark an

opened email as “seen” after an email has been opened by the user for the time interval spec-

ified by the value of mark_seen_timeout, but only when mark_seen is set to “true”. These

examples illustrate that related configuration settings exist when one or more settings controls

the validity or meaning of another group of settings.

Because related configuration are designed to work together, applications are likely to up-

date related configuration settings together, in order to satisfy their relation as illustrated in

our 3 examples. In addition, users tend to change related configuration settings together. For

example, a user will probably set the value of mark_seen_timeout and change the value of

mark_seen to “true” together, in order to enable Evolution to automatically mark an opened

email. In contrast, independent configuration settings are unlikely to be changed together.
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Table 7.1: Summary of trace statistics.

Trace Days Reads Writes #Keys TTKV Size
Windows 7 42 6.76M 67.72K 4,611 85MB
Windows Vista 53 3.46M 20.5K 14,673 29MB
Windows Vista-2 18 15.08M 224.64K 1,123 6.3MB
Windows XP 25 22.80M 311.9K 14,667 24MB
Windows XP-2 32 26.76M 268.96K 19,501 46MB
Linux-1 25 91.52K 3.34K 1,660 6MB
Linux-2 84 8.15K 0.48K 35 0.1MB
Linux-3 46 52.41K 0.44K 706 0.7MB
Linux-4 64 507.07K 5.43K 751 6.4MB

Based on this intuition, Ocasta identifies the relations among configuration settings by observ-

ing the access correlations among them and uses hierarchical agglomerative clustering to group

together configuration settings based on access correlations.

Limitations Ocasta has several limitations. First, independent configuration settings can

be accidentally updated simultaneously and cause the hierarchical agglomerative clustering

algorithm that Ocasta uses to incorrectly identify them as dependent. Similarly, partial update

of dependent settings may be legal in some cases causing Ocasta to incorrectly infer that related

settings should be in separate clusters. Ocasta’s clustering can be tuned to handle such cases,

but this tuning may require some manual intervention. Ultimately, Ocasta can only perform as

well as the quality and amount of data available to it. Second, Ocasta must be able to intercept

and record accesses to the individual keys where the application stores its persistent settings.

We have implemented and tested such capabilities for OS-provided key-value stores like the

Windows Registry and GConf in Linux. While many applications use OS-provided stores,

some applications use their own files to store configurations. Thus we have also implemented

custom parsers for several common file formats, such as XML, JSON, PostScript, INI and plain

text.

Ocasta’s proof-of-concept error repair tool has some additional limitations. First, a fix for

the configuration error must exist in the application’s recorded history. Our tool cannot fix

applications that have always been misconfigured or where the configuration error arose due
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to a change in an external dependency. Second, the configuration error must occur determin-

istically, because our tool only performs one trial execution per historical cluster value in its

search. Finally, because the user must be able to identify a fixed application from its screenshot,

the configuration error must be visually observable on the display.

7.3 Overview

7.3.1 Clustering Configuration Settings

Ocasta improves configuration troubleshooting and repair by heuristically identifying clusters

of related configuration settings. Ocasta abstracts configurations into key-value pairs, with the

key being the name of the configuration setting and the value being the content of the setting.

As we see in Section 7.4, many application configurations naturally fit into this abstraction.

It is important that the clusters of configuration settings that Ocasta extracts from observing

application behavior be accurate. On one hand, extracting undersized clusters can create clus-

ters that do not contain all the configuration keys necessary to fix a configuration error. Even

worse, attempting to fix an error with an undersized cluster can, in some cases, break depen-

dencies between configuration settings, leading to a non-working application configuration.

On the other hand, extracting oversized clusters causes unrelated configuration settings to

be clustered together, and can lead to extraneous configuration changes when trying to repair

errors. As an extreme example, repairs that reset an application configuration back to its de-

faults, or copy a configuration from a previous snapshot or a different user, essentially treat the

application’s configuration as a single, large, oversized cluster.

Ocasta uses the property that related configuration keys are much more likely to be mod-

ified together than unrelated keys to infer which keys are related. To determine whether keys

have been modified together, Ocasta uses a sliding time window and considers all keys written

within the window to have been modified together. Ocasta uses a default sliding window of 1

second, which can be increased if needed by the user. Some keys are modified very frequently,



CHAPTER 7. CLUSTERING CONFIGURATION SETTINGS FOR ERROR RECOVERY 108

so the chances of such a key being modified concurrently with unrelated keys is high. Conse-

quently, Ocasta only clusters together keys that are often modified together, but rarely modified

individually on their own or with other keys. To do this, we define a correlation metric between

each pair of keys:

Correlation =
|A∩B|
|A|

+
|A∩B|
|B|

A and B denote the set of all writes to keys A and B respectively, and the intersection of A and

B denotes the set of writes where both keys were written together. The correlation metric is

maximized at 2 when both keys are always modified together and minimized at zero when both

keys are never modified together. The larger the correlation, the more related the pair of keys.

Note that the correlation is only defined when both keys have a non-zero number writes. Since

Ocasta assumes that the application worked initially, any key that has not been modified from

its initial value cannot cause a configuration error, and is thus excluded from Ocasta’s search

for a configuration fix.

Hierarchical agglomerative clustering [119] takes as input a set of points, distances between

each pair of points, and a linkage criterion that defines how distances between clusters are

computed. It then iteratively merges clusters together, forming a hierarchy with larger clusters

at the top of the hierarchy. In Ocasta, we use the “maximum linkage criterion”, which defines

the distance between a pair clusters as the maximum distance between any two keys across

the clusters. Hierarchical clustering has the advantage over other types of clustering, such

as k-means or centroid-based clustering, in that it does not require the number of clusters to

be specified in advance. To perform hierarchical clustering, distances need to be smaller as

keys become more related, so we use the inverse of our correlation metric as the distance for

Ocasta’s clustering. To decide when to stop clustering, Ocasta provides a tune-able threshold,

which defines the maximum distance between any two clusters. By default, Ocasta uses a

threshold equivalent to a correlation value of 2 (i.e. a distance of 0.5), which only clusters

keys that are always modified together. If the user finds that configuration repair fails due to

undersized clusters, she may decrease the threshold to allow Ocasta to cluster together keys
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that are modified together most of the time.

Like any black-box heuristic, Ocasta can fail under certain circumstances, particularly for

configuration settings that have had very few modifications from which Ocasta can learn. For

example, the user may modify several unrelated settings at once, causing the application to

store those changes together into its configuration store. Unless, these settings are later mod-

ified separately, Ocasta will incorrectly infer that they are related, resulting in an oversized

cluster. Similarly, it is possible that a user makes a single change to an application that causes

a change to only one level of hierarchically dependent configuration keys. For example, she

may disable the feature completely, which would only change the higher-level key, modify the

lower-level keys without changing the higher-level key, or only modify a subset of the lower-

level keys. Again, if this was the only instance of modifications to the key, then Ocasta may

infer an undersized cluster that separates related keys from each other into different clusters.

While only using black-box information makes Ocasta more broadly applicable, Ocasta can

only work with the information it observes and as a result, can be misled when there is inade-

quate history for its clustering to work.

7.3.2 Automated Repair

Ocasta’s automated repair tool uses the clustering information to aid the user in fixing configu-

ration errors. For example, configuration error #15, described in Table 7.3, causes the menu bar

to disappear when certain PDF documents are opened in Acrobat Reader. To use Ocasta, the

user must first create a trial, which tells Ocasta how to recreate the error and makes the symp-

toms of the error visible on the screen. For example, in the case of error #15, the user starts

Acrobat Reader and uses it to open the PDF document that causes the error. Since the menu

bar disappears once the document is opened, the error is visible on the screen. The user thus

ends the trial with the menu bar missing and document open on the screen. Ocasta records the

UI actions the user made in the trial and automatically extracts the identity of the application

or applications that were used.
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Ocasta’s repair tool then asks the user to specify an optional start time and an optional end

time. The start time is the earliest time the user believes the configuration error could have

been introduced, and allows Ocasta to limit how far back in time it searches for the cluster

that causes the error, which we call the offending cluster. If the user doesn’t specify a bound,

Ocasta will search all the cluster versions in the recorded history of the application. The end

time is the latest time the user believes the configuration error could be introduced and should

roughly coincide with time the configuration error is first discovered. This is useful if the user

might have tried to fix the error themselves and thus may have made spurious configuration

changes that might slow down the search. If the user does not specify an end time, Ocasta uses

all recorded values up to the end of the recorded history.

In some cases Ocasta can identify a large number of clusters in an application (as many

as 220 in our measurements). As a result, recovery will be significantly faster if Ocasta sorts

clusters so that the ones that are likely to be configuration clusters are checked before the

ones that are likely to be non-configuration clusters. We use the intuition that changes to

configuration settings should be infrequent because for them to change, the user must explicitly

modify a configuration setting, which also happens infrequently. Ocasta thus sorts the clusters

by the number of times they have been modified over the application’s history.

Ocasta then executes the user-provided trial on the historical values of the clusters by rolling

back an entire cluster of configuration settings at a time and running the trial in a sandbox,

which prevents the execution to leave any persistent changes. Ocasta can be configured to

perform either a breadth-first (BFS) or depth-first (DFS) search on the historical values of each

cluster. In DFS, Ocasta executes the trial on all the historical values of a cluster before moving

onto the next cluster. In BFS, Ocasta executes the latest historical value of each cluster before

moving onto the next historical value. DFS works well if Ocasta’s sort algorithm successfully

prioritizes the offending cluster early in the sort, while the BFS algorithm provides performance

that is less influenced by how well the sort worked.

After each trial execution, the tool takes a screenshot. Ocasta discards the screenshot if it
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is identical to either the erroneous screenshot or any previous screenshots it has recorded. The

user can periodically check on the recorded screenshots recorded to see if any of them display

a fixed configuration. When she see a fixed configuration, Ocasta permanently rolls back the

cluster to its corresponding value and returns back to recording mode. A video demonstrating

the use of Ocasta is available online for viewing 1.

7.4 Implementation

In this section we describe implementation details of Ocasta’s prototype. Ocasta works on both

Windows and Linux. Ocasta supports applications that use the Windows registry or the GConf

configuration system, as well as applications that store configuration state in XML, JSON,

PostScript, INI and plain text files. We describe the implementation of the Ocasta time travel

key-value store, the logger, as well as the clustering and repair components of Ocasta.

7.4.1 Time Travel Key-value Store

Ocasta records configuration key-value activity in a time travel key-value store (TTKV). We

implemented Ocasta’s TTKV using Redis, a commonly used key-value store [105]. Redis maps

each key in the application to a record that contains the number of writes and deletions, as well

as a list of historical values of the key including timestamps. A special type of value is used to

represent deletions of the key, which are also recorded in the value history.

During regular application use, Ocasta’s loggers (described in the next section) intercept ac-

cesses by applications to their configuration store and record information about these accesses

in the TTKV. Ocasta then uses the information stored in the TTKV to compute the clustering

information for the keys. In addition, Ocasta’s configuration error repair tool uses historical

values in the TTKV when performing its search for a configuration error fix.

1http://youtu.be/aRvJlTj-0F0
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7.4.2 Logger

The primary purpose of the logger is to intercept accesses an application makes to its persistent

storage and abstract those into key-values that can be stored into the TTKV. As a result, the

logger is necessarily dependent on the way the application stores its application state. Below

we detail the implementation of Ocasta loggers for the Windows registry, GConf configuration

system, and various file formats used by the applications we tested.

Windows registry

The Windows registry is a key-value store provided by the Windows OS. Applications write

keys in the Windows registry using a well-documented API provided by the OS. We imple-

mented the Windows registry logger as a user-space shared library. To intercept registry API

calls made by applications, we use the Windows debug APIs to inject the shared library into

Explorer, the Windows shell. Once injected into Explorer, the shared library intercepts each

Windows registry API by hooking the first five bytes of the instructions of the API call in a

way similar to Detours [65]. The shared library also injects itself into new processes created

by the process it is loaded into by intercepting the Windows API call that creates new pro-

cesses. Virtually all regular applications are started via the Explorer shell, which implements

all the common methods for starting applications such as the Start Menu, desktop shortcuts,

taskbar shortcuts, or double-clicking an executable in a folder. As a result, the Ocasta logger is

able to monitor every application a user uses. We note that the Windows registry logger only

captures registry activity by user applications, not by system services or the Windows kernel,

so our current prototype cannot fix configuration errors in those components.

GConf configuration system

The GConf configuration system, commonly found on Linux systems, implements the handlers

for its APIs in a shared library. We used the standard approach of intercepting shared library

calls on Linux by using the LD_PRELOAD environment variable to load our own shared library
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into the address space of every process. Our library exports a set of shared library calls that

is identical to the set of shared library APIs exported by the GConf shared library. By speci-

fying our library in the LD_PRELOAD environment variable, our library is always loaded before

the GConf library and thus all calls to those APIs will invoke our functions, which will then

subsequently call the real functions in the GConf shared library after logging the events to the

TTKV.

Application-specific file formats

Applications that don’t use OS-provided key-value storage facilities such as the Windows Reg-

istry or GConf generally implement their own file-based key-value store. We conducted a small

study on the common file formats used for configuration storage and found applications gener-

ally use standard file format: JSON, XML, PostScript, or one of two key-value lists that both

had the format “key = value”, which we called INI if it is hierarchical and plain text if it is flat.

We elide the details of the implementation of our application-specific file parsers for the

sake of space. One inherent shortcoming of Ocasta when dealing with application-specific file

formats is that applications typically read the entire file into an in-memory key-value store. The

applications then perform writes on the in-memory store and flush the in-memory store back to

disk. To infer which keys are changed, Ocasta compares the files before and after each flush.

In practice, we observe that applications typically flush their in-memory store after each key

modification to guarantee persistence, but if they do not, Ocasta will not be able to tell if a key

was modified several times between flushes. As shown in Section 7.6, despite the coarser level

of information available to Ocasta for applications that use application-specific files, Ocasta is

still able to offer good clustering performance for these applications.

7.4.3 Ocasta Clustering and Repair Tool

Ocasta’s clustering algorithm is based on an open source clustering library [76]. However, the

hierarchical clustering API provided by this library does not allow a cluster threshold to be
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used to restrict clustering. Hence, we added functionality to prune the results returned by the

hierarchical clustering API according to a specified threshold.

Ocasta’s repair tool has three main components – a UI record and replay tool, which records

the user-provided trial and re-executes it on the application, a screenshot tool, which takes and

records screenshots of the application and a controller, which coordinates the entire recovery

search. We have implemented the repair tool on both Windows and Linux. To save time and

effort, we made judicious use of various open-source libraries and packages for recording UI

actions, as well as capturing and manipulating screenshots.

A limitation with our current implementation of the repair tool is that it deterministically

replays trials and thus does not guarantee the same trial can be replayed correctly across dif-

ferent configuration settings. A robust adaptive replay can probably address this limitation,

but the current focus of our work is to demonstrate the benefits of clustering. Nonetheless, we

found our repair tool works well in our evaluation and user study.

7.5 Data Collection

We deployed Ocasta on 24 Linux desktop computers running Debian 6 and 5 Windows desktop

computers. Ocasta intercepts and records reads, writes and deletions of settings into application

configuration stores such as the Windows registry, GConf database and application configura-

tion files. Configuration settings are abstracted into keys and stored into a key-value store

called the Time Travel Key Value Store (TTKV). Table 7.1 summarizes the characteristics of

the traces from these deployments, which we use in this chapter. The period of deployments

range from one month to over two months. All the computers were actively used during the

deployment.

All the Linux desktop computers are from four undergraduate computing laboratories ad-

ministrated by our department. To reduce bias in the selection of the computers, we choose 6

computers from each laboratory. These computers are used mainly on site by undergraduate



CHAPTER 7. CLUSTERING CONFIGURATION SETTINGS FOR ERROR RECOVERY 115

students for their course work, and remotely by graduate students and faculty members in our

department. This study was approved by our institutional ethics review board.

Because these machines are shared among many users, we link usage of applications by the

same user regardless of what machine they are using – traces from one machine by a particular

user will be combined with traces from another machine by the same user. Our ethics review

board required us to only instrument a fraction of the computers in any one lab to give students

who did not wish to participate in the study ample opportunity to select an uninstrumented

machine. Unfortunately, this meant that we only got a sampling of user-behavior since a student

would not be likely to use an instrumented machine every time they were in the lab.

The 5 Windows desktop computers are personal computers used by four graduate students

and one faculty member. They run a variety of Windows OS including Windows 7, Windows

Vista, and Windows XP.

7.6 Evaluation

We evaluate 3 aspects of our Ocasta prototype. First, we evaluate the accuracy of the clusters

that Ocasta extracts. Second, we evaluate the effectiveness and performance of Ocasta, and the

benefits of using clustering at recovering from configuration errors. Finaly, we perform a user

study to evaluate how easy it is for a user to generate a trial, identify the screenshot showing

a fixed application, and use Ocasta in general. All Windows experiments were performed on

an Intel Core Duo Dual-Core laptop with 2 GB of memory running Windows 7 and all Linux

experiments were performed on a Intel Core 2 Quad-Core desktop with 4 GB of memory

running Debian 6. We used 11 popular desktop applications in our evaluations, as listed in

Table 7.2.
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Table 7.2: Applications and their clusters Identified by Ocasta.

Application Description #Keys #Clusters %Accuracy
MS Outlook E-mail Client 182 33/82 97.0%
Evolution Mail E-mail Client 183 18/65 38.9%
Internet Explorer Web Browser 33 9/12 66.7%
Chrome Browser Web Browser 35 1/34 100%
MS Word Word Processor 143 18/110 100%
GNOME Edit Word Processor 10 1/7 0.0%
MS Paint Image Editor 66 2/8 50.0%
Eye of GNOME Image Viewer 5 0/5 N/A
Acrobat Reader Document Reader 751 120/550 95.8%
Explorer Windows Shell 298 32/91 84.4%
Windows Media Player Media Player 165 21/41 90.5%
Total N/A 1,871 255/1,005 88.6%

7.6.1 Clustering Analysis

To evaluate the accuracy of Ocasta’s clustering algorithm, we manually examined all 255 clus-

ters, each of which contains more than one configuration setting, across all applications used

in our evaluations. First, we try to confirm whether configuration settings are correlated by

examining their names and values. We identify relations of configuration settings from their

hierarchical names [75] and verify their relations from their values. Second, we individually

change configuration settings in a cluster and check whether the corresponding application runs

properly after the change. We conservatively consider a cluster as correctly identified if and

only if there is a dependency among every configuration setting of the cluster.

As a result, we define an oversized cluster as a cluster that contains one or more extra

configuration settings that are not related with the other configuration settings in the cluster,

and an undersized cluster as a cluster that does not contain one or more configuration settings

that are related with the configuration settings in the cluster.

We show the accuracy of Ocasta’s clustering algorithm in Table 7.2. For each application,

we compute the ratio of correctly identified clusters with more than one setting over the total

number of clusters with more than one setting. The result illustrates that Ocasta has a high

accuracy of identifying clusters with more than one setting, 72.3% on average (mean accuracy
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among all applications) and 88.6% overall (ratio of the total number of correctly identified

clusters to the total number of clusters across all applications). Except for four applications

(Evolution Mail, Internet Explorer, Text Editor, and MS Paint) that have a very small number

of clusters (smaller than 20) and a small number of configuration settings, Ocasta accurately

identified clusters with more than one setting in 94% of the cases. We elaborate on our findings

below.

Oversized Clusters The majority of the incorrectly identified clusters are oversized clusters,

which are caused by two major sources. First, Ocasta is limited to using a minimum of one sec-

ond as the sliding time window. This is because the trace collection infrastructure only records

the update time of configuration settings to the precision of the nearest second. Although the

1-second sliding time window works well for most applications, one second is long enough

for an application to update more than one group of dependent configuration settings. For

example, one oversized cluster of Evolution Mail contains six groups of dependent configura-

tion settings. Second, some configuration settings may be updated simultaneously as the result

of software updates, in which case even independent configuration settings could be updated

together.

Oversized clusters can cause unnecessary configuration settings to be changed when at-

tempting to fix configuration errors. As a result, we want to minimize the number of oversized

clusters and the number of extra configuration settings in oversized clusters. To achieve that,

we examined all 17 oversized clusters of the four applications with the highest ratio of over-

sized clusters. We found that 11 of the oversized clusters are composed of several groups of

dependent configuration settings and that the remaining 6 of them have one extra configura-

tion setting in them. This indicates that most of the oversized clusters are probably caused by

using a 1-second sliding time window and could potentially have been eliminated if our trace

collection infrastructure had recorded key modification times at a finer granularity.
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Undersized Clusters Ocasta’s clustering algorithm can also cause undersized clusters if de-

pendent configuration settings are not always updated together. Undersized clusters can cause

failures in fixing configuration errors, since dependent configuration settings are not changed

together, or leave configuration settings in an inconsistent state that can cause application mis-

behavior. In the next section, we describe how out of 16 injected errors, Ocasta is able to fix all

but 2 using the default clustering threshold of 2 and window size of 1 second. The 2 unfixed

errors are a result of undersized clusters, which we were able to correct by tuning of the clus-

tering threshold and window size. We did not observe any application crashes or misbehavior

during the hundreds of clusters that were changed during the trials executed by Ocasta to fix

these errors.

7.6.2 Configuration Repair

The traces we collected contain realistic application usage, but because they are collected with-

out interacting with the users of the applications, we are unable to confirm if configuration

errors occurred during trace creation. In addition, we want to be able to precisely control the

time at which the configuration error occurs in each trace. Thus, we simulate configuration er-

rors by injecting a write into the trace at the point in time at which we want the error to occur,

that changes the offending setting to the erroneous value. If the configuration error is caused

by presence or absence of the offending setting, we insert or delete the setting in the trace. To

simulate the recording phase of Ocasta, we populate the TTKV of the test machine with one of

the traces that exhibited usage of the same application in the configuration error scenario.

We first evaluate how effective Ocasta is at fixing 16 real-world configuration errors, num-

bered 1-16 in Table 7.3, which are all configuration errors that were either previously used

in the literature [125, 137] or were found via online forums, FAQ documents and configura-

tion documents. To demonstrate the benefit of using clustering, we compare the effectiveness

of Ocasta with the effectiveness of a modified version of Ocasta, called Ocasta-NoClust, that

does not use clustering and rolls back a single configuration setting at a time when it tries to
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Table 7.3: Real-world configuration errors used in our evaluation.

Case Trace Application Logger Description
1 Windows 7 MS Outlook Registry User is unable to use Naviga-

tion Panel.
2 Windows 7 MS Word Registry User loses the list of recently

accessed documents.
3 Windows 7 Internet Explorer Registry Dialog to disable add-ons al-

ways pops up.
4 Windows Vista Explorer Registry “Open with” menu does not

show installed applications
that can open .flv file.

5 Windows XP Windows Media Player Registry Caption is not shown while
playing video.

6 Windows XP MS Paint Registry Text tool bar does not pop up
automatically when entering
text.

7 Windows XP Explorer Registry Image files are always opened
in a maximized window.

8 Linux-1 Evolution Mail GConf Evolution Mail starts in of-
fline mode unexpectedly.

9 Linux-1 Evolution Mail GConf Evolution Mail does not mark
read mail automatically.

10 Linux-1 Evolution Mail GConf Evolution Mail does not start
a reply at the top of an e-mail.

11 Linux-1 Image Viewer GConf User is unable to print image
files.

12 Linux-1 Text Editor GConf User is unable to save any
document.

13 Linux-2 Chrome Browser File Bookmark bar is missing.
14 Linux-2 Chrome Browser File Home button is missing from

the tool bar.
15 Linux-3 Acrobat Reader File Menu bar disappears for cer-

tain PDF document.
16 Linux-4 Acrobat Reader File Find box is missing from the

tool bar.
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fix errors.

We use as many complex and real configuration errors as possible for the evaluation. For

example, error #12 was found on an internet message board, where the discussion contained

56 messages spanning 3 months. However, we are restricted to only using errors where the

offending setting(s) have been modified in our traces – otherwise Ocasta will have no clustering

information for them and Ocasta’s repair tool will have no values to roll back to. This problem

cannot happen in practice because any configuration key that is misconfigured must have a

modification history on a particular system. We simulate the configuration error by injecting

the erroneous value into the TTKV 14 days before the end of the trace and invoke Ocasta in

recovery mode. For each error, we provide a suitable trial and set the start time to 14 days

before the end of the trace. We configure Ocasta to use the DFS search strategy.

We evaluated Ocasta using the minimum window size of 1 second and the maximum cor-

relation threshold of 2, because these produce smaller clusters and are thus the most likely to

lead to invalid configurations or failed fixes. In practice, a user can adjust these settings in

case they fail to cluster the configuration settings that cause the configuration problem. With

these parameters, Ocasta was able to successfully find the offending cluster and fix the errors

in all cases except errors #2 and #4. In both of these cases, the settings that needed to be

rolled back were split into several clusters. In error #2, the offending settings consisted of one

rarely-changing dominant setting, which controls the validity of another 50 settings that change

frequently over a moderate span of time, as we described in Figure 7.1a. When the clustering

threshold is reduced to 1, the dominant setting is clustered with 34 of the other settings, but

there remain 26 settings that were not clustered together. When we increase the window size

to 30 seconds, causing all settings to be clustered together. In error #4, one setting stores an

ordered list of names of settings that store applications capable of opening Flash video files.

The setting storing the list tends to change even when the setting storing the application name

does not change. Reducing clustering threshold to 1 caused both the setting storing the list and

the settings storing application names to be clustered together.
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Table 7.4: Ocasta recovery performance.

Case Cl.Size Trials Time(mm:ss) Screens Ocasta NoClust
1 2 15 0:30/6:00 5 Y Y
2 8 2 0:34/1:01 1 Y N
3 2 14 4:16/5:24 11 Y Y
4 3 33 3:02/8:57 1 Y N
5 4 60 5:36/28:40 1 Y Y
6 8 8 3:04/3:30 1 Y N
7 2 134 3:30/24:11 2 Y N
8 2 7 1:46/2:11 2 Y Y
9 2 9 6:52/8:32 9 Y N

10 2 12 5:28/6:31 2 Y Y
11 1 2 0:24/0:56 1 Y Y
12 1 2 0:20/0:44 1 Y Y
13 1 7 0:36/3:40 2 Y Y
14 1 7 0:30/2:58 4 Y Y
15 1 17 1:05/8:41 2 Y Y
16 1 157 0:28/57:19 4 Y Y

Quantitative results are shown in Table 7.4. We can see that Ocasta successfully fixed all 16

configuration errors, but Ocasta-NoClust failed to fix 5 configuration errors, because it requires

rolling back more than one configuration settings at a time to fix them. The average cluster size

varies between 1 and 8 for our errors, thus effectively reducing the search space by the same

factor because Ocasta searches clusters of keys at a time instead of individual keys. The time

column gives the time required by Ocasta to find the offending cluster versus the total time for

Ocasta to search all cluster versions up to the 14 day start time. This shows that Ocasta’s sort

is successful at prioritizing the clusters, finding the offending cluster by an average of 78%

faster than having to search the entire history. The screenshots column gives the total number

of unique screenshots produced by Ocasta, while the trials column indicates the number of

trials executed before the offending cluster is found. The user must examine an average of 3

screenshots, with a worst case of 11, indicating a very modest amount of user effort.

Recall that instead of using DFS, Ocasta can also use BFS as the search strategy. To study

the trade-offs we perform searches using both strategies over all 16 errors while varying the

number of days in the past when the error was injected, as well as fixing the injection time at
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Figure 7.2: Comparison between DFS and BFS.
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14 days in the past and adding between 0-2 spurious writes after the initially injected error to

simulate the case where the user tried to fix the configuration error for 0-2 times. Figure 7.2a

shows the average number of trial executions as a function of error injection time for BFS and

DFS. As can be seen, the number of trials by both BFS and DFS increases as the injection time

occurs further in the past, as a result of Ocasta’s bias towards checking more recently modified

clusters first, while DFS provides better performance overall. Figure 7.2b shows the average

number of trials as a function of the number of spurious writes after the injected error. BFS

search is highly sensitive to this parameter because to search more writes within a cluster, it

must try every other cluster as well, so the number of rollbacks increases if there are a lot of

clusters.

We now evaluate the effect of the start time, which controls the time period Ocasta searches

over, on the number of trials Ocasta must execute. Figure 7.2c shows the average number of

trials Ocasta perform in its search as start time goes further into the past. As can be seen, the

number of trials rises roughly linearly with the length of time the search is conducted over.

7.6.3 Sensitivity

We examine the sensitivity of cluster size to both windows size and clustering threshold. Larger

clusters mean fewer trials, but also lead to the potential for more unrelated keys getting changed

if the offending cluster grows in size. Figures 7.3a and 7.3b show the growth in average cluster

size as a function of both the window size and clustering sensitivity. The sharp drop at the

left hand side of Figure 7.3a, is when the window is changed from one second to zero seconds

(modifications must have the same timestamp at zero seconds). Since our traces only record key

modification times to the nearest second, there is a lot of noise between these two points. With

the exception of this artifact, the average cluster is relatively insensitive to either parameter, and

ranges between between roughly 3.5 to about 4.5 or 25% of its value. These results indicate

that the overall cluster size is relatively insensitive to changes in these parameters, which might

suggest that users should tend to prefer smaller thresholds and larger window sizes to minimize
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the chances of the offending cluster being undersized.

7.6.4 User Study

To evaluate the effectiveness of the Ocasta repair tool with default settings 2 , we performed

a user study on 19 participants with various backgrounds. Because this study contains human

subjects, we have obtained a second ethics approval for this study from our institutional ethics

review board. The participants include two faculty members from our department, 13 graduate

students from four different departments, a system administrator, an administrative assistant,

and two software engineers. Six out of the 19 participants of the user study are non-technical

users. None of participants were authors of this chapter and none were compensated for this

user study. Each participant was given a brief explanation on how Ocasta works and shown

a demonstration on a contrived configuration error. The participant then tested Ocasta on a

computer setup with configuration error #11, #13, #15 and #16 from Table 7.3. We use only

four errors to limit the length of the user study, because it took between 1.5 and 2 hours for

each participant to finish the user study. In each case, the participants were first asked to quan-

titatively rate how familiar were they with the application having the configuration error. Then

they were given a description of the error and were asked to use Ocasta to fix the configuration

error. We recorded the time the participants took to create the trial. After they finished creating

the trial, they were asked to quantitatively rate how difficult it was to produce the trial.

The participant was then shown the set of screenshots Ocasta produces when run on the

history from our traces and asked to select the screenshot that showed the fixed application. The

time taken for the participant to select the screenshot was also recorded. After the participant

selected the screenshot, we recorded whether they selected the right one. We also asked the

participant how many of the screenshots they actually examined and to qualitatively rate how

difficult it was to find the screenshot.

We then reset the system back to its misconfigured state and asked the participant to try to

21-second sliding time window, clustering threshold of 2, and DFS search strategy
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Figure 7.4: Time required to fix the error with Ocasta versus manual fixing.

fix the error manually. The participant was given full control of the computer and was allowed

to use Internet to search for possible solutions to the configuration error. To keep the test

short, we cut the participants off at 5 minutes. We recorded whether the participant was able

to fix the error manually or not and the time it took for them to fix the error. For each error,

the participant was finally asked whether they had experienced the particular error themselves

before and the steps they took to fix or try to fix the error.

Figure 7.4 shows a comparison between the average time users took to both create the wit-

ness and select the screenshot and the average time taken to manually repair each configuration

error. If we use the time spent as an indicator of the amount of user effort, we can see that

Ocasta saves users a significant amount of effort to repair configuration errors. Only in case

16 were the majority of participants able to fix the configuration error manually and this sig-

nificantly lowered the average time for the a manual fix. Qualitatively on a difficulty scale of 1

to 5, with 1 being the easiest, across the 4 errors, the participants rated the creation of the trial

as 1 74% of the time, 2 21% of the time and and 3 5% of the time. For selecting the correct

screenshot, participants rated the difficulty as 1 80% of the time, 2 11% of the time, 3 8% of
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the time and 4 1% of the time.

Our user study has several sources of bias. First, selection of participants was not com-

pletely random, but consisted of colleagues and acquaintances of the authors. Second, the

administration of the study was single blind and the person administrating the test knew the

correct answer. To minimize this effect, we tried to minimize interaction with the participant

and communicated using written materials as much as possible. Third, the participants were

cut off at 5 minutes when they tried to fix the error manually, while no cut off was used for

generating the Ocasta trial or selecting the screenshot. Thus, the time measurements for some

of the manual fixes represent a lower-bound while the time measurements for Ocasta usage are

precise. Finally, we selected errors that tended to be simple. This made it easier to explain the

errors to users who might be unfamiliar with the applications. In addition, simple errors make

manual fixing easier and thus make it more difficult for Ocasta to have a significant advantage

over manually searching for the fix.

7.7 Summary

This chapter describes the design and implementation of Ocasta, a system that enables config-

uration recovery systems to handle multi-configuration setting errors by identifying clusters of

related configuration settings using statistical clustering. We have evaluated Ocasta over sev-

eral months on both Windows and Linux machines and find that Ocasta’s clustering accurately

identifies about 88.6% of clusters on average. Our evaluation of Ocasta in fixing configuration

errors shows that Ocasta successfully fixed all 16 real world configuration errors used in our

evaluation, 5 of which require changing more than one configuration setting together to fix, by

utilizing the identified clusters of related configuration settings,
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Conclusions

With the wide deployment of computer systems particularly mobile devices, almost every as-

pect of our daily lives has become dependent on computer systems. As a result, the security

and reliability of computer systems is increasingly crucial to us. However, troubleshooting

and fixing software security and reliability issues is still a largely time-consuming manual task

of software developers, system administrators, and computer users. Thereby there is a grow-

ing interests and need to automate this task. This dissertation addresses the challenges in the

automation of troubleshooting and fixing software vulnerabilities and configuration errors: 1)

generating correct security workarounds and patches; 2) finding the root cause of configuration

errors.

For software security, this dissertation presents Security Workarounds for Rapid Response

(SWRR) that mitigates software vulnerabilities. By leveraging existing error handling code in

applications, SWRRs gracefully prevent software vulnerabilities from being exploited. By its

design, SWRR is vulnerability-agnostic and is thus applicable to arbitrary software vulnerabil-

ities. To produce and instrument SWRRs, we implement a tool called Talos that employs novel

program analysis techniques to automatically identify existing error handling code in applica-

tions. This work illustrates that SWRRs can be automatically produced and instrumented and

they effectively mitigate real-world software vulnerabilities with remarkable coverage.

128
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As a vulnerability mitigation technique, SWRRs are intended to be a fast and short-term

solution. In the long run, security patches are necessary to fix software vulnerabilities. This

dissertation further presents our security patch generation technique and its implementation

called Senx. Targeting three of the most common and severe software vulnerabilities, Senx

uses original program analysis techniques to carefully generate correct security patches. We

find that Senx can generate security patches for the majority of the software vulnerabilities that

we evaluate.

As Talos and Senx have different design goals, we compare their strengths and drawbacks.

We find that they complement each other while in general Senx can apply to substantially

more vulnerabilities than Talos. Combining them together, we can address the vast majority of

software vulnerabilities.

For software reliability, we present Ocasta, a tool that automatically troubleshoots and fixes

configuration errors. Ocasta targets complex configuration errors involving dependent config-

uration options. It uses machine learning to understand the dependency among configuration

options. And it employs automated GUI testing facility to significantly reduce human interfer-

ence in the troubleshooting process. With a synergy of system monitoring, machine learning,

automated GUI testing, and rollback recovery, Ocasta automates the troubleshooting and fixing

of configuration errors. Our user study of Ocasta shows that it substantially reduces manual

effort in this task.

This dissertation demonstrates that it is possible to automate two crucial tasks that im-

prove software security and reliability: troubleshooting and fixing software vulnerabilities and

configuration errors, through a combination of original program analysis techniques, machine

learning, automated GUI testing, and rollback recovery.
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8.1 Future Work

Producing unobtrusive SWRRs. Currently SWRRs disable vulnerable code regardless of

whether the inputs to an application can actually trigger software vulnerabilities. This is the

main source of the obtrusiveness of SWRRs because the functionality provided by the disabled

code is even unavailable to benign inputs. Can SWRRs selectively disable vulnerable code

depending on whether the inputs are malicious or benign?

A possible solution to the problem is to use program path constraints to differentiate execu-

tion contexts for malicious and benign inputs. This approach however is limited by the fact that

traditionally path constraints are encoded as logical forumlas that are computationally hard to

solve in the presence of large number of variables. Thus developing a more efficient represen-

tation of path constraints will be a significant step towards differentiating execution contexts

for malicius inputs and benign inputs. I intend to develop such representation and leverage it

in SWRRs to make them unobtrusive.

Generating security patches for new vulnerability types. My work illustrates that it is

feasible to automate the development of security patches for certain types of vulnerabilities.

However, the automation relies on patch strategies generated using manual analysis of these

vulnerabilities. Such analysis provides a deep understanding of the cause and effect of vulner-

abilities but is a time consuming task. To be able to automatically generate patches for other

existing or new types of vulnerabilities, we need to create new patch strategies. How can we

speed up this process?

My vision is that machine learning is the key to accomplish this task. I intend to build

systems that automatically create patch strategies. First, I am interested in modeling the cause

and effect of vulnerabilities in an efficient way so that they can be understood by a machine

learning algorithm. Second, I would like to train the machine learning algorithm to understand

the cause and effect of vulnerabilities by learning from both the code relevant to vulnerabilities

and the code of their corresponding patches. Third, I plan to build systems that leverages the
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machine learning algorithm to automatically create patch strategies.
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