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ABSTRACT
The leakage of private information is of great concern on
mobile devices since they contain a great deal of sensitive
information. This has spurred interest in the use of taint
tracking systems to track and monitor the flow of private
information on a mobile device. Taint tracking systems im-
pose memory overhead, as taint information must be main-
tained for every piece of information an application stores
in memory. This memory cost is at odds with the grow-
ing number of low-end, memory-constrained devices, which
makes up the majority mobile device growth in emerging
markets. To make taint tracking affordable and to benefit
a broader range of mobile devices, we present LazyTainter,
which is a memory-efficient taint tracking system designed
for managed runtimes. To implement LazyTainter, we en-
hanced TaintDroid with hybrid taint tracking, which com-
bines lazy and eager tainting, to reduce memory usage with
only negligible performance loss. Our experimental results
demonstrate that LazyTainter can reduce heap usage by as
much as 26.5% when compared to TaintDroid while impos-
ing a negligible 1% increase in performance overhead.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information flow con-
trols

General Terms
Security, Efficiency

Keywords
Android, Taint Tracking, Memory Efficiency

1. INTRODUCTION
Mobile devices are quickly replacing traditional personal

computers as people’s primary computing devices. Equipped
with rich hardware sensors and an operating system capable
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of running 3rd party applications, mobile devices provide ca-
pabilities and convenience unmatched by any other types of
devices. According to the latest statistics by Flurry Analyt-
ics [10], an average user spends almost 3 hours a day using
applications and browsing the web on their mobile devices.

This heavy use of mobile devices, coupled with their in-
nate ability to collect and concentrate personal information
means that they are a risk to personal privacy. To help
understand how and when private information is being col-
lected and leaked by these devices, various static [1, 17,
21] and dynamic [6, 9, 12] approaches have been proposed.
While static analysis imposes no run-time overhead, it is in-
herently imprecise [26]. In contrast, dynamic taint-tracking,
which uses taint tags to track whether a value contains pri-
vate information has been shown to be effective at detecting
personal privacy violations. While native binary instrumen-
tation can incur considerable performance overhead [19, 28],
the overhead of taint tracking can be reasonable for a man-
aged run-time. For example, TaintDroid [9] is able to track
taints in real-time with a mere 14% performance overhead.
As a result, TaintDroid gains great popularity among mo-
bile device users and its taint tracking functionality has been
widely used in a number of research proposals [2, 12, 24].

Aside from execution overhead, taint tracking also im-
poses memory overhead, as taint tags must be maintained
for each value stored in memory. This is a major concern
for mobile devices because they have much less memory than
traditional PCs. While the amount of physical memory on
high-end devices has grown steadily, the bulk of the smart-
phone market remains in low-end devices [13]. According to
Google, millions of entry-level devices around the world still
have as little as 512MB RAM [14], leading Google to launch
Project Svelte [4] to address this issue specifically. When one
takes into account that some amount of this limited memory
pool must be reserved for the operating system and system
services, this leaves even less for each application. As mobile
applications mature, they are likely to include more features
and thus require more resources, making memory a poten-
tially limiting resource on entry-level devices. While one
can increase the speed of a device by overclocking the CPU,
there is no similar way to increase available RAM.

As a result, it is important to examine how the mem-
ory overhead of security mechanisms like taint-tracking can
be reduced on mobile devices. To address this, we propose
a mechanism that reduces the memory overhead of taint-
tracking while maintaining reasonable performance overhead.
Specifically, we notice that the storage for taint information
can be allocated either eagerly (ahead of time), or lazily (on-



demand). Eager allocation generally improves performance
because the taint-tracking system is free to place the taint
storage at a predetermined location relative to the memory
value it is tracking taint for, thus simplifying access to the
taint information. However, eager allocation wastes memory
in exchange for better performance because the amount and
granularity of taint storage cannot be dynamically adjusted
in response to the tainting behavior of the application. This
reasoning implies that there is a trade-off between memory
efficiency and runtime overhead that taint tracking systems
must choose between.

In this paper, we use a hybrid approach of taint tracking
which is able to maximize the benefits of both eager and
lazy tainting and minimize the costs. To demonstrate our
results, we present LazyTainter, which uses eager-tainting
for frequently accessed memory locations, lazy-tainting for
infrequently accessed locations, and carefully optimizes the
storage of taint information. To ensure a fair evaluation
of eager-tainting, we design LazyTainter to be functionally
equivalent to TaintDroid. However, LazyTainter uses up to
26.5% less heap memory and imposes a less than 1% in-
crease in performance overhead when compared to Taint-
Droid. This shows that the memory saving benefits come
at no cost to taint-tracking precision. Finishing the same
task with less memory is almost always an advantage. The
system may enjoy a larger cache size to do more effective
caching. User applications may keep more data in memory
to be more responsive. Depending on the usage scenario,
mobile device users can benefit from the memory savings in
different ways.

The rest of the paper is organized as follows: Section
2 provides background information of Android and Taint-
Droid, Section 3 presents the design of LazyTainter, Section
4 gives implementation details, Section 5 shows the exper-
imental results, Section 6 provides a discussion, Section 7
describes related work and Section 8 concludes this paper.

2. BACKGROUND

2.1 Android
Android is an operating system designed for mobile de-

vices. Its architecture consists of four layers from top to
bottom: applications, application framework, libraries and
Linux kernel. The top two layers are mainly written in Java,
while the bottom two layers are mainly written in C/C++.
In between is the Android runtime consisting of the Dalvik
virtual machine and a set of Java core libraries.

Dalvik executes its own DEX bytecode format [22]. An-
droid applications, which are written in Java, are converted
to DEX bytecode before installation on a device. Each ap-
plication runs in its own Dalvik instance and an application
sandbox is implemented at process boundary to improve se-
curity. Processes can communicate with each other through
Binder IPC.

Dalvik is a 32-bit register-based virtual machine designed
for resource-constrained devices. Registers are allocated on
the stack frame by each method. All computation occurs
on the stack. Dalvik also has a garbage collected (GC)
heap, which provides for long-term storage of objects. As
of the Android version we use, the default GC is a concur-
rent mark-and-sweep GC.

Dalvik has its own instruction set. The opcode size is 8-bit
so there will be at most 256 opcodes from 00 to FF. Dalvik

opcodes have clear semantics and can be roughly classified
into several groups. For example, ADD/SUB opcodes do arith-
metic computation on the stack, NEW opcodes create objects
on the heap and IGET/IPUT opcodes move data between the
stack and the heap.

The Dalvik heap is a virtual memory range acquired with
mmap and managed by the dlmalloc [15] memory allocator.
When an application explicitly requests memory with NEW,
Dalvik allocates memory to the application from the mem-
ory allocator. The amount of currently allocated memory on
the heap is termed Heap Alloc. When a garbage collection
is triggered, Dalvik will walk the heap, free unused space
and return them to the memory allocator. The amount of
free space on the heap is termed Heap Free. The total size
of the heap is termed Heap Size, which equals to the sum
of Heap Alloc and Heap Free. Dalvik doesn’t compact the
heap so it cannot shrink heap size when there is space being
used at the end of the heap. Therefore Heap Alloc is a more
precise measurement of heap usage than Heap Size because
it considers fragmentation.

Although Android is Linux-based, its process creation is
different from that of traditional Linux. In Android, there is
a nascent Zygote process which performs initialization that
is common to all applications, and application processes are
created by forking from Zygote. Therefore, memory pages
of Zygote are shared by many application processes. In An-
droid, memory pages can be classified into four kinds: shared
dirty, private dirty, shared clean and private clean [3]. Pri-
vate dirty memory is the most expensive because it’s ex-
clusively used by one application and cannot be readily dis-
carded when the operating system needs to reclaim memory.
Dalvik heap memory is usually private dirty, though some
heap memory can be shared dirty as processes can be forked.
Since private dirty memory is expensive, it is a good mea-
sure of an application’s memory cost. Android doesn’t use a
swap partition. If an application’s memory cost is too high,
the system may kill processes to reclaim memory.

2.2 TaintDroid
TaintDroid [9] is a taint tracking system designed for the

Android OS to monitor privacy leaks in realtime. It lever-
ages Android’s virtualized environment to provide an effi-
cient and system-wide dynamic taint tracking system with
fine-grained labels. TaintDroid taints data acquired from
sensitive APIs and identifies when tainted data is sent to
network. The principal component of TaintDroid is variable-
level tracking, which is implemented in the Dalvik inter-
preter. TaintDroid defines its own taint propagation logic,
covering explicit data flows in almost all the instructions.

Because a mobile device has different sources of sensitive
information, such as location, IMEI and microphone, Taint-
Droid represents each of them using a different bit (called a
taint marking) in a 32-bit vector (called a taint tag), so up to
32 types of sensitive information can be tracked in parallel.
TaintDroid stores the taint tag for a variable adjacent to the
variable itself. For 32-bit register values (Figure 1), taint
tags are interleaved between values so that register fp[i]
becomes fp[2*i] in TaintDroid’s stack layout. For 64-bit
register values, which are formed by adjacent register pairs,
a double word (fp[i], fp[i+1]) now becomes (fp[2*i],
fp[2*i+2]) with its taint tag stored in fp[2*i+1].

Taint tags of object fields which exist on the heap are also
interleaved so that a 32-bit field with offset k now has off-



Figure 1: TaintDroid stack layout.

set 2*k. The interleaving is done by modifying a function
that computes field offsets when a class is linked to Dalvik.
For 64-bit fields, a double word (base[k], base[k+1]) be-
comes (base[2*k], base[2*k+1]) with its taint tag stored
in base[2*k+2].

From this description we see that both the stack size and
the object size are effectively doubled. An exception is array
objects. In TaintDroid, each array has one taint tag that is
shared by all elements of the array. Therefore, tainting for
arrays only has minimal memory overhead. String objects
contain several fields, one of which is an array. TaintDroid
taints a string object by tainting the array it contains.

Besides variable-level taint tracking, TaintDroid also has
message-level taint tracking to propagate taints through IPC
channels, method-level taint tracking to propagate taints
through native methods and file-level taint tracking to prop-
agate taints through secondary storage. LazyTainter uses
exactly the same mechanisms as TaintDroid to track taints
through these channels and thus we omit a detailed descrip-
tion here. Finally, since TaintDroid is designed to work in a
virtualized runtime environment, third-party native libraries
are not supported. However, TaintDroid does support na-
tive system libraries in the firmware because they are in the
trusted computing base.

3. DESIGN
One of the challenges in designing a taint tracking sys-

tem is finding the right trade-off between precision, speed
and memory overhead. Intuitively, improving one of these
properties usually comes at a cost of degrading the others:

• We can use per-element tainting instead of per-array
tainting for arrays. Since this would track taint on a
finer granularity, it will reduce false positives and in-
crease precision. However, this will require more mem-
ory to store the fine-grained taint information.

• We can use 1-bit taint tags instead of 32-bit taint tags.
The reduction in taint tag size may lead to a reduction
in memory overhead because there is less taint infor-
mation to store. However, a taint tracking system with
1-bit taint tags can only indicate whether a variable is
tainted or not without the ability to distinguish be-

tween different taint sources, such as location, IMEI,
etc.

• We can track taints on a per-object basis instead of a
per-field basis. This coarse-grained taint tracking will
result in less taint information, and thus lower memory
overhead, but at the cost of decreased precision since
this can result in false taint propagation across fields
in an object.

Depending on the characteristics of the underlying system
on which the taint tracking system is built, there may be op-
portunities to improve one property with only minimal neg-
ative impact on the other two. Thus, a taint tracking system
might exploit these opportunities to maximize performance
across the three properties.

Finding a design that provides a good trade-off is espe-
cially important for mobile devices because they have lim-
ited resources. On these devices, speed and memory cannot
be as easily sacrificed for the sake of precision as devices
with more plentiful resources. Taint tracking systems such
as TaintDroid have already made such trade-offs. For exam-
ple, one of the trade-offs that TaintDroid makes is reducing
the precision of taint tracking for arrays and strings to save
memory and increase speed. Another trade-off is eagerly
allocating taint tag storage to trade memory for speed.

The goal of this paper is to show that one can trade a
negligible amount of speed for a significant saving in mem-
ory without affecting the precision of a taint tracking system
at all. To achieve this goal, we introduce lazy tainting and
apply it to TaintDroid. We use TaintDroid as the starting
point because we believe it is the most popular and influen-
tial taint tracking system for mobile devices, as proved by
the many projects [2, 12, 24] that have used or incorporated
TaintDroid. Also, TaintDroid is well implemented and doc-
umented. Its high-quality code has greatly facilitated our
work.

Finally, we note that while we demonstrate our ideas on
TaintDroid, we believe our ideas are general enough to be
readily adapted and applied to other virtualized environ-
ments as well.

3.1 Lazy Tainting Granularity
A key design decision that affects the memory overhead of

a taint tracking system is the granularity of taint tracking.
This decision has already been considered by the design-
ers of TaintDroid, which trades decreased precision for bet-
ter memory overhead for arrays and strings. Another place
where memory overhead of TaintDroid may be reduced, is to
track taints at a per-object granularity instead of a per-field
granularity. However, as previously mentioned, this causes
a loss of precision, which violates our design goal.

To overcome this apparent limitation, we hypothesize that
mobile applications on Android exhibit localized tainting be-
havior, which means taints are only propagated within a
small group of objects that are related to private informa-
tion. Since there is rising public awareness of the privacy
implications of the mobile applications we use, we further
hypothesize that Android applications are more likely to
send private information to servers as soon as possible rather
than to store it in memory for a long time. Together, these
factors should cause most Android applications to have a
majority of untainted objects with only a tiny portion of
tainted objects.



App \ Ratio CntNum CntSize
PhotoGrid 0.00 0.00
The Weather Channel 0.00 0.00
Twitter 0.00 0.00
Facebook 0.01 0.03
IMDb 0.00 0.00
Solitaire 0.00 0.01
Horoscope 0.00 0.01
Voice Search 0.00 0.01
Wish 0.01 0.01

Table 1: Tainted object ratio (rounded to 0.01).
CntNum is the ratio of the number of objects with at
least one tainted field to all objects. CntSize is the
ratio of the size of objects with at least one tainted
field to all objects.

If this is the case, then we can decouple taint granularity
from precision. Tainted and untainted objects don’t have
to be tracked at the same level of granularity. The system
can use cheap coarse-grained per-object tainting for the vast
majority of completely untainted objects and only the ex-
pensive fine-grained per-field tainting for the tiny minority
of objects with tainted fields.

To evaluate our hypothesis, we modified the mark-and-
sweep garbage collector in TaintDroid to profile tainted ob-
jects. Specifically, we add two counters, CntNum and CntSize,
to the Dalvik garbage collector and set them to zero when
garbage collection is started. During the mark step of the
garbage collection, we check the fields of an object when it’s
being marked to see whether any of them is tainted. If a
tainted field is found, we increase CntNum by 1 and increase
CntSize by the object size. We also allocate two other coun-
ters to count the total number and size of all live objects
regardless of whether they are tainted or not. We count ob-
jects only when it’s being marked for the first time so that
the same object is counted only once. We restrict the pro-
filing to data objects and do not include array objects. The
testing firmware is the same as TaintDroid except for the
profiling patch. All taint sources in TaintDroid are available
during the profiling so that applications are free to access
any taint sources they want.

We tested nine applications in total, as shown in Ta-
ble 1. For each application, we count the number and size
of tainted objects and live objects, respectively. Then we
calculate the ratio between tainted objects and live objects
in both number and size and tabulate the results. From the
results, we can see that only a tiny portion of objects contain
tainted fields. In addition, the total size of these objects is
a small percentage of overall objects. For many applications
the tainted ratio is within 1% in both number and size. This
result indicates that Android applications are very likely to
have a vast number of untainted objects. Thus a system
that uses coarse-grained per-object tainting by default and
then lazily switches to fine-grained per-field tainting when
any field in an object becomes tainted has the potential to
yield significant memory savings.

3.2 Hybrid Taint Tracking
Now that we have established that lazily switching from

coarse-grained to fine-grained tainting can yield memory
savings, we now turn our attention to designing a taint

Figure 2: A tainted real object in LazyTainter.
Shadow objects are used to store taint tags if the
real object has any tainted fields.

tracking system that incurs low speed overhead. Lazy taint-
ing imposes overhead on the speed of execution because the
memory for taint storage is not allocated at the same time
as the memory for the object itself. In eager tainting im-
plementations, such as TaintDroid, the storage for a value’s
taint tag is usually allocated at a fixed offset to the value
itself, making access to a value’s taint tag a simple matter
of pointer arithmetic. However, with lazy taint tracking,
only when a field in the object acquires taint will the sys-
tem lazily allocate storage for the more expensive per-field
taint tracking. Because the taint storage is allocated lazily,
it cannot be placed at a fixed offset from the base object, but
must instead be linked to the base object using a pointer,
as illustrated in Figure 2. This means that when accessing
taint, the taint tracking system must first check a pointer to
see if any field in the object is tainted, and if so dereference
the pointer to access the taint tags for the individual fields.
Such checking and deferencing of pointers results in more
instructions executed at runtime, as well as worse cache lo-
cality.

Given this trade-off between lazy and eager tainting, a
key design insight is that the two kinds of tainting can be
applied in parallel but to different memory regions. Dalvik
has divided its address space into several regions, such as
heap and stack. The decision here is which kind of tainting
should be used for which memory region. To make this
decision, we first make several observations.

First, the stack is much smaller than the heap. In Dalvik,
the maximum stack size is 256KB (plus a 768B region for
handling stack overflow errors). However, the heap can be
as large as 1GB. Even if a smaller soft limit is configured
on the device, the heap is still many orders of magnitude
larger than the stack. From this observation, we conclude
that even if only eager, fine-grained tainting is used all the
time for the stack, the memory overhead from doing so is
still small and bounded.

Second, all computation occurs on the stack, and values
in object fields must be loaded onto the stack before compu-
tation and stored back to the object afterwards. As a result,
values on the stack are generally accessed more frequently
than values on the heap. From this observation, we can infer
that using eager, fine-grained tainting for stack values would
help minimize the performance impact of hybrid tainting.



Finally, Dalvik only stores primitive values and object ref-
erences on the stack, while objects themselves are stored on
the heap. As a result, all stack values have fixed size (32-bit
or 64-bit). In addition, the stack is used continuously, mak-
ing it more amenable to eager tainting. Since the previous
section established that lazily tainting objects will yield ben-
efits, and objects are only stored on the heap, lazy tainting
would be most naturally applied to the heap.

Together, these three observations suggest a hybrid ap-
proach, which uses eager tainting for the stack and lazy
tainting for the heap. Since the stack is heavily used for com-
putation and the heap for storage, we can minimize perfor-
mance overhead in the stack and minimize memory overhead
in the heap at the same time by forming a memory hierarchy.
However, we note that this hybrid approach is not beneficial
under all conditions. When objects are tainted, they actu-
ally cost more storage when lazily allocated than if eagerly
allocated because there is the extra overhead of storing the
pointer. Thus, the lazy approach only yields benefits if ap-
plications are likely to have many untainted objects, which
has already been established earlier.

3.3 Managing Taint Storage
While allocating taint tags on-demand has been used by

several other taint tracking systems [27, 28, 29], they all use
a fixed granularity for taint tracking. In general, these tech-
niques are on-demand in that they programmatically map a
fixed-size taint tag storage area [27] or prohibit computation-
heavy instrumentation when taints haven’t been introduced
into the system [29]. In addition, these techniques are gen-
erally byte-level and do not take into account type informa-
tion of the program. In contrast, LazyTainter is designed
for a managed runtime of an object-oriented language. This
presents several challenges, as well as opportunities.

An opportunity is the natural grouping of related pro-
gram values into objects, as specified by the programming
language. This grouping leads to a natural way of switching
between coarse-grained and fine-grained taint tracking. The
challenges are how to efficiently allocate and, in particular,
deallocate taint storage.

To allocate storage, we leverage the existing heap allocator
in Dalvik. Since only objects can reside on the heap, we
aggregate taint tags of all fields in an object (called real
object) into a separate shadow object. To visualize this, we
again refer to Figure 2. To facilitate implementation, the
shadow object has the same type and size as the real object
and the taint tag of a field in the real object is put at the
same offset in the shadow object. This ensures that we have
enough taint tag storage in the shadow object for all the
fields in the real object.

Since we need to access its taint tag when accessing a field
in the real object, we must link the shadow object to the
real object. The shadow object is linked to the real object
by adding a shadow pointer in the object header. In a real
object, this pointer points to a shadow object (if any of the
fields in the real object is tainted) or is set to NULL (signifying
that none of the fields in the real object are tainted). Since
this pointer resides in a normal object, it’s automatically set
to NULL when an object is created because memory allocated
to an object is cleared by default in Dalvik. This is the
intended behavior for a real object because a newly created
object has no taints. When one of its fields gets tainted,
a shadow object is dynamically allocated and linked to the

Figure 3: TaintDroid object layout.

real object, and the taint tag corresponding to the tainted
field is set appropriately in the shadow object. From now
on, setting the taint tag of a real object field will first locate
the shadow object via the shadow pointer and then put the
taint tag at the correct offset in the shadow object. Getting
the taint tag of a real object field works in a similar way.

When objects are deallocated, we must also be sure to
deallocate any associated shadow objects. In managed run-
times, unused objects are not explicitly deallocated by the
programmer, but are instead identified and deallocated by a
garbage collector. During a garbage collection, the runtime
will iteratively traverse all objects on the heap by following
pointers to find all reachable objects. Since shadow objects
are linked to real objects, when the real object becomes
unreachable, the shadow object automatically becomes un-
reachable. However, the use of shadow objects still presents
a challenge during garbage collection.

As mentioned earlier, real objects and their associated
shadow objects have the same type. This is because the
total number of types a program will use is not known to
Dalvik before running the program, so we cannot statically
reserve some portion of the type space for shadow objects.
Because shadow objects and real objects have the same type,
the garbage collector cannot tell whether it is visiting a real
object or a shadow object. However, the garbage collector
must treat real and shadow objects differently. For real ob-
jects, the garbage collector should continue to follow point-
ers, while for shadow objects, since all fields are taint tags,
the garbage collector should just mark the object and re-
turn to the parent object. To let the garbage collector dif-
ferentiate between real and shadow objects, we set the space
reserved for the shadow pointer in a shadow object to an in-
valid address 0xffffffff during the creation of the shadow
object. We then modify the garbage collector to check this
field when visiting an object. If it is set to 0xffffffff, the
garbage collector treats the object as a shadow object. This
challenge arises because LazyTainter uses dynamic taint al-
location in a garbage collected runtime. In systems that use
eager tainting exclusively or do not have garbage collection,
this problem does not arise. However, the garbage collector
is helpful here because it allows taint storage to be deallo-
cated in an automatic and efficient way.

4. IMPLEMENTATION
We implemented LazyTainter on Android 4.1.1_r6, which

is officially supported by TaintDroid. Since we want to have



1 struct Object {
2 ClassObject * clazz;
3 u4 lock;
4 // Added in LazyTainter .
5 Taint taint;
6 };
7

8 struct ClassObject : Object {
9 u4 instanceData [ CLASS_FIELD_SLOTS ];

10 const char* descriptor ;
11 char* descriptorAlloc ;
12 ...
13 };
14

15 struct ArrayObject : Object {
16 u4 length ;
17 u8 contents [1];
18 };
19

20 struct DataObject : Object {
21 u4 instanceData [1];
22 };

Listing 1: Object implementation in Dalvik.

exactly the same taint propagation logic as TaintDroid, we
don’t modify any stack operations or method invocation in-
struction handlers. Similarly, we don’t modify the message,
method and file-level taint tracking implementation. In-
stead, we only modify the object layout, the heap-related
instruction handlers and the garbage collector. To satisfy
alignment requirements and to support different levels of
tainting at the same time, we also need to modify some
primitive wrapper functions, which we describe in more de-
tail below.

Since LazyTainter uses the basic framework of TaintDroid,
it has the same limitations. Third-party native libraries are
not supported. Native system libraries are supported but
native methods are tracked at method level. In addition,
only explicit data flow is tracked to avoid taint explosion.
LazyTainter is implemented on the portable interpreter and
we describe the reason for this decision in Section 6.

4.1 Objects in Dalvik
We first describe how Java objects are implemented in

Dalvik, including object types, layout and size. Then we
describe different kinds of objects which can exist in a taint
tracking system.

Dalvik defines several C++ structs to specify the layout of
Java objects in the application, as shown in Listing 1. There
are three kinds of Java objects in Dalvik: class objects, ar-
ray objects and data objects, whose headers are defined by
structs ClassObject, ArrayObject and DataObject, respec-
tively. Class objects are objects of type java.lang.Class.
Array objects are arrays of any type. Data objects are non-

Size (Bytes) \ #int 0 1 2 3 4 8
Android 16 16 24 24 32 48
TaintDroid 16 24 32 40 48 80
LazyTainter 16 24 24 32 32 48

Table 2: Object size with varying numbers of fields.

1 typedef union Taint {
2 u4 tag; // opaque .
3 Object * taintObj ; // transparent .
4 } Taint;

Listing 2: Field reuse with union Taint.

class and non-array objects. All objects share the same
header defined by the common parent struct Object. Object
fields are placed next to the header.

Currently Android is expected to run on 32-bit platforms,
and the size of Object is 8 bytes. Since heap memory is
managed by dlmalloc, an additional 4 bytes of bookkeep-
ing data is required per object. Dalvik further requires all
objects to be 8-byte aligned. Therefore, we can calculate
the size of an object as (4 + 8 + field_size) rounded up
to a multiple of 8 bytes. For example, an object with 0 or 1
int field is 16 bytes, while an object with 2 int fields is 24
bytes. An object can have both primitive values and object
references as its fields and it may have zero or more fields.

In terms of taint tracking, objects can be classified into
two categories:

• Transparent object. A transparent object doesn’t have
a per-object taint tag. Instead, each field has its own
taint tag and is individually tainted.

• Opaque object. An opaque object only has a per-object
taint tag which is shared by all its fields. Fields don’t
have their individual taint tags.

Ideally, all objects should be transparent to make taint
tracking as precise as possible. In practice, however, some
objects are made opaque to reduce taint tracking overhead.
For example, in TaintDroid data objects are transparent
while array objects are opaque. A data object maintains
one taint tag for each field, while an array object maintains
one taint tag for all elements.

Opaque objects have minimal memory overhead because
the only additional storage is a 32-bit taint tag. In contrast,
transparent objects have their fields interleaved with taint
tags and so the object size is almost doubled. Figure 3 gives
the layout of opaque and transparent objects in TaintDroid.

4.2 Field Reuse
At first glance, lazy tainting can be easily implemented by

adding a 32-bit pointer in Object. But TaintDroid already
adds a 32-bit taint tag field in ArrayObject. We notice
that a taint tag and a pointer have exactly the same size.
Since opaque objects never need the pointer, memory can be
saved if we use the same field for dual purposes: a pointer
in a transparent object, and a taint tag in an opaque object.
To do this we introduce a union Taint in the Dalvik source
code as shown in Listing 2.

Then we add a field of type Taint in Object as shown
in Line 5 of Listing 1 and remove the original 32-bit taint
tag field in ArrayObject. By reusing this field, we in fact
save 8 bytes on each array object because Dalvik requires
array elements to be aligned at an 8-byte boundary. If we
kept both fields, the total size of an array header (excluding
dlmalloc bookkeeping data and array elements) will be 20
bytes, which is then padded up to 24 bytes. If we reuse it,



we only need 16 bytes. An 8-byte per-object memory saving
may look small, but there can be many array objects on the
heap so the total saving is nontrivial.

A nice property is that LazyTainter with field reuse never
uses more memory than TaintDroid in a taint-free environ-
ment and, in some cases, uses the same amount of memory
as vanilla Android. Table 2 shows object size with a varying
number of int fields.

4.3 Garbage Collector
Now we have three kinds of objects on the Dalvik heap:

opaque objects, transparent objects and shadow objects.
Our next task is to modify the garbage collector so that
all kinds of objects can still be correctly recycled in face of
the heap diversity. Specifically, we want a shadow object to
be automatically recycled with the corresponding real ob-
ject (which must be a transparent object itself). In Android
4.1.1_r6, Dalvik uses by default a mark-and-sweep garbage
collector (GC). We must modify the GC so that the follow-
ing properties are satisfied:

1. No dangling pointers. A shadow object must be alive
if the real object is alive.

2. No memory leaks. A shadow object must be recycled
when the real object is recycled.

The simplest solution is to follow the shadow pointer and
mark the shadow object when the real object is being marked
during a garbage collection. However, we cannot blindly fol-
low the shadow pointer because:

1. The shadow pointer in an opaque object is in fact not
a pointer but a taint tag.

2. The shadow pointer in a shadow object is invalid.

In either case, blindly following the shadow pointer may
result in a segmentation fault. To deal with the first case, we
add a check in the GC’s object marking function to prevent
it from following the shadow pointer if the current object
is an opaque object. Since an object holds a pointer to its
defining class, we can look up its type to see whether it’s an
array object. If so, then we know the object is an opaque
object. Otherwise, the object is a transparent object and we
need to check whether the shadow pointer is invalid. The
only invalid pointer that we may have introduced into the
system is 0xffffffff so we just need to check against this
value to deal with the second case. If the shadow pointer
is 0xffffffff, then this object is a shadow object and we
don’t follow the pointer. Otherwise, this object is a real
object and we follow the pointer if it isn’t NULL. The value
0xffffffff can never be a valid shadow pointer because
objects are always aligned at 8-byte boundaries.

To facilitate the concurrent garbage collection, Dalvik di-
vides heap memory into a set of fixed-size cards and main-
tains a card table. Dalvik has a write barrier requesting any
change to an object field to mark the card on which the ob-
ject resides as dirty. Since the shadow pointer acts as a field
in garbage collection, we must also mark the card as dirty
whenever a transparent object gets tainted.

Finally, during the second phase of marking, objects on
dirty cards will be scanned and their fields will be traversed
to reach other objects. We must not traverse if the cur-
rent object is a shadow object because its fields are actu-
ally taint tags. Thus, we again need to test the shadow

pointer against 0xffffffff before traversing. We must use
0xffffffff to label shadow objects because it’s perfectly le-
gal and highly possible that a transparent object has a NULL
shadow pointer.

4.4 Instruction Handlers
We only need to modify the two Dalvik instructions (and

their variants) that access data objects: IGET and IPUT. In
TaintDroid, given the field offset, these two instructions as-
sume the adjacent field in the same object will contain the
corresponding taint tag. In LazyTainter, we modify IGET
to first check whether the shadow pointer is NULL. If so, it
returns a clean taint tag. Otherwise, it follows the shadow
pointer and retrieves the taint tag at the same offset in the
shadow object. IPUT is a little more complicated. If the
transparent object is clean and the input value is also clean,
then nothing is done. If the transparent object is clean and
the input value is tainted, then a shadow object is dynami-
cally allocated. If the transparent object is already tainted,
it just uses the existing shadow object instead of creating
a new one. We apply the same logic in other places where
we get or set an object field, such as when implementing
reflection in Java. We don’t have to consider opaque ob-
jects here because Dalvik instructions have clear semantics
and opaque objects are completely handled by two different
instructions AGET and APUT (and their variants).

4.5 Primitive Wrappers
Double-width (8-byte) fields are required to be aligned at

an 8-byte boundary in Dalvik. Since the original Dalvik
object header is 8 bytes, the first double-width field is just
next to the header. Some internal functions depend on this
assumption implicitly. However, since we have introduced
another 4-byte shadow pointer to the object header, the
header is now 12 bytes and the first double-width field will
have an offset of 16 bytes. Therefore, there is a 4-byte gap
between the end of the header and the beginning of the
double-width field. This breaks the implicit assumption and
the double-width value will not be correctly processed by
these functions.

We identify places where Dalvik relies on this assumption
and find that the majority of code deals with the boxing
and unboxing of primitive types. An example of boxing
and unboxing would be conversion between an int and an
Integer. We fixed these issues by manually shifting the
offset by 4 bytes before accessing the field.

5. EVALUATION
We evaluated LazyTainter on Galaxy Nexus (maguro).

We chose this device because it’s sufficiently popular, rela-
tively low-end and officially supported by TaintDroid. Galaxy
Nexus has a dual-core 1.2GHz ARM Cortex-A9 processor
with 1GB RAM and runs well on Android 4.1.1_r6, the ver-
sion on which TaintDroid and LazyTainter are implemented.

We evaluate three aspects of LazyTainter. First and fore-
most, we evaluate the memory savings that LazyTainter pro-
vides with its lazy-tainting technique. Second, we evaluate
the performance overhead of LazyTainter over TaintDroid.
Finally, to show that LazyTainter is functionally equivalent
to TaintDroid, we perform a comparative evaluation and
show that LazyTainter is able to catch exactly the same
leaks of private information as TaintDroid.



5.1 Memory Savings
As mentioned earlier, the size of Dalvik stack is gener-

ally very small, usually less than 256 KB. As a result, the
taint storage overhead on the stack is also limited to 256
KB. Therefore, we focus on the taint storage overhead on
the heap, which dominates the memory overhead of taint
tracking in Dalvik.

As illustrated in Table 2, when objects are not tainted,
the taint storage overhead of LazyTainter is either zero or
8-bytes and independent of the number of fields in an ob-
ject (i.e. Θ(1)). In contrast, the taint storage overhead of
TaintDroid will linearly increase with the number of fields
(i.e. Θ(n)). Therefore LazyTainter should be more memory-
efficient than TaintDroid in a taint-free environment. To
confirm this, we create a synthetic workload that allocates
one million objects where each object contains two int fields.
This workload uses small-sized objects which should mini-
mize the memory saving benefits of LazyTainter over Taint-
Droid. We run this workload using vanilla Android, Taint-
Droid and LazyTainter ROMs and measure the memory us-
age using the Dalvik Debug Monitor Server (DDMS), which
is part of Google’s official Android SDK.

The results are summarized in Table 3. Data Object rep-
resents the amount of memory allocated to data objects on
the Dalvik heap while Heap Alloc represents the total size of
allocated heap memory. Both of these measures are tracked
by the Dalvik heap allocator. We provide Data Object re-
sults because their theoretically expected value is given in
Table 2. Since there are non-data objects on the heap, Heap
Alloc is larger than Data Object. A full discussion of mem-
ory measurement methods used in this section is given in [7].
From these results we can see that TaintDroid incurs a 34%
memory overhead on data objects and a 23% overhead on
allocated heap size, while the memory overhead of Lazy-
Tainter is almost negligible.

The expected result for an object with two int fields is
derived as follows. Since we put two int fields into each data
object, the per-object memory overhead of TaintDroid is (32
- 24 =) 8 Bytes. Since we have created one million data ob-
jects in total, the overall memory overhead should be 8 MB.
The Data Object results give an overall memory overhead of
(33.134 - 24.737 =) 8.397 MB for TaintDroid. The 0.397 MB
difference is due to additional data objects that must be al-
located in an Android application, such as Activity objects
and various UI elements. Since LazyTainter doesn’t intro-
duce any overhead when compared to vanilla Dalvik for data
objects with two int fields, the memory overhead of Lazy-
Tainter versus vanilla Android is essentially zero except for
the same additional objects. As most data objects in real
applications will be larger than those with two int fields,
memory savings in practice can become larger because the
per-object memory overhead of TaintDroid grows with the
object size while the per-object overhead of LazyTainter is
constant for untainted objects.

ROM Data Object (MB) Heap Alloc (MB)
Android 24.737 38.530
TaintDroid 33.134 47.348
LazyTainter 24.781 38.967

Table 3: Heap memory usage (synthetic workload).

Figure 4: Memory overhead of TaintDroid and Lazy-
Tainter (relative to vanilla Android).

We then proceed to evaluate the memory savings of Lazy-
Tainter on real applications. We created a corpus of Android
applications based on popularity and non-trivial use of pri-
vate information. Then we ran the applications on three
ROMs: vanilla Android, TaintDroid and LazyTainter and
measured the amount of memory used by each application.
Since memory usage varies with application usage, we need
a methodology that can provide similar application usage
across all three ROMs.

To do this, we use the monkeyrunner testing tool, which
is part of the Android SDK, to write a script that mechan-
ically interacts with each application for two minutes. The
use of monkeyrunner ensures that UI events will be deliv-
ered to applications consistently and uniformly. Care was
taken to ensure that the script caused a realistic amount of
tainted, sensitive data to be read by the application. Af-
ter the two minutes, the script triggers a garbage collection
of the Dalvik heap to deallocate unused objects and then
reads the Dalvik memory usage data with the shell com-
mand dumpsys meminfo. To minimize noise due to variance
in network delays, all tests were performed on a high-speed
and low-latency university network. For social applications
such as Facebook and Twitter, we created fake accounts that
would have minimal variation across requests. In addition,
we execute all tests five times and use the average across the
runs.

We use two different methods of measuring the memory
usage of the applications. The first method, Private Dirty,
measures the amount of dirty memory used by the appli-
cation that is not shared with any other applications and
represents additional memory overhead incurred solely by
the application. This memory may include non-heap mem-
ory such as the stack, card table and auxiliary structures
that are used by Dalvik. The second method, Heap Alloc,
measures the amount of memory tracked by the heap allo-
cator and is the same as the method used to measure mem-
ory usage for the synthetic workload. In both measures we
only consider memory allocated by Dalvik because our opti-
mization is mainly involved with the Dalvik heap. We also
considered a third measure, Proportional Set Size (PSS),
where shared memory pages are divided by the number of
processes sharing them. PSS is a good measure for RAM us-
age comparison between concurrent applications. However,
if applications are measured sequentially, Android may kill



processes based on memory usage, and the varying number
of processes introduces noise into per-application measure-
ments taken with PSS. Thus, measurements using PSS are
not used in this evaluation.

The results of these measurements are presented in Fig-
ure 4. In this figure, each bar represents the memory over-
head of TaintDroid or LazyTainter relative to vanilla An-
droid. Measurements using both the Private Dirty method
and the Heap Alloc method are given. From the results
we see that the memory overhead of TaintDroid may vary
among applications. If an application carefully maintains a
small memory footprint by using small objects and recycling
unused objects as soon as possible, then the memory over-
head of TaintDroid is usually small as well (less than 10%).
On the contrary, if an application heavily uses the heap,
then TaintDroid can give a larger memory overhead (more
than 20%). In terms of private dirty memory, the measured
memory overhead of TaintDroid varies between 9-29%, while
that of LazyTainter varies between 0-4%. In terms of heap
usage, the measured memory overhead of TaintDroid varies
between 6-24% while that of LazyTainter varies between 0-
3%. And LazyTainter always uses less memory than Taint-
Droid. In the best instance, LazyTainter reduced heap usage
by as much as 26.5% when compared to TaintDroid. In fact,
the memory overhead of LazyTainter fluctuates around that
of vanilla Android within a range given by repeated runs
of vanilla Android itself. This conforms to the theoretical
results calculated in Table 2.

5.2 Performance Overhead
Since LazyTainter, by its design, leverages another level

of indirection to reduce memory overhead, it inevitably in-
curs performance overhead due to additional instructions
required to access lazily allocated taint storage. To measure
this overhead, we first create a synthetic workload that in-
tensively measures the execution time of operations where
LazyTainter incurs the overhead. This happens when ob-
jects fields are being accessed.

In Dalvik, object fields are accessed with IGET and IPUT
opcodes. We thus create an Android application that make
100 million accesses to fields in an array of 1000 objects. We
measure performance overhead for both reads (IGET) and
writes (IPUT), as well as measure the overhead when the ob-
jects are clean or tainted (i.e. whether shadow objects are
allocated for the objects or not). We note that the objects
in the array are all initially untainted, so the run times mea-
sured include the cost of allocating the shadow objects the
first time the real objects are tainted.

We performed five measurements of each benchmark on
each platform and tabulate the ratio and standard deviation
of the ratio of the application execution time on LazyTainter
to the application execution time on TaintDroid in Table 4.
From this result, we can see that the performance overhead
of LazyTainter over TaintDroid on clean objects is negligible

Object \ Ratio \ Op IGET IPUT
Clean 1.000±0.006 0.991±0.006
Tainted 1.055±0.033 1.058±0.032

Table 4: Execution time ratio of LazyTainter to
TaintDroid (rounded to 0.001).

Figure 5: CaffeineMark3 benchmark result.

while IGETs and IPUTs both have about 6% overhead on
tainted objects.

In practice, the majority of objects in an application are
clean and IPUT and IGET instructions take a smaller portion
in all executed instructions, so we expect the actual over-
head to be lower in real workloads. To get a better idea, we
use CaffeineMark3 [5], a popular benchmark tool measuring
the speed of Java programs, for our evaluation. We run each
workload in CaffeineMark3 five times and take the average.
We enable all standard taints so that data objects acquire
taints when they access sensitive Android APIs. The re-
sults are presented in Figure 5. The X-axis represents the
test performed by CaffeineMark3. The Y-axis represents
the CaffeineMark3 score, where higher bars represent faster
execution. The overall scores are 1656, 1370 and 1366 for
vanilla Android, TaintDroid and LazyTainter, respectively.
This shows that in practice, the runtime overhead between
TaintDroid and LazyTainter is generally within 1%.

5.3 Taint Propagation Logic
Recall that to ensure the validity of our memory and per-

formance overhead measurements, we designed LazyTain-
ter to have the same taint propagation logic as TaintDroid.
Thus, LazyTainter should detect the same leakage of private
information as TaintDroid. To confirm this, we selected a
set of applications which use different types of private infor-
mation and ran them on both TaintDroid and LazyTainter.
Then we collected the privacy leaks reported by these two
systems. The result is shown in Table 5.

Both TaintDroid and LazyTainter reported exactly the
same privacy leaks. We also manually confirmed some of
them by looking at the text sent through the network, as
summarized in Table 6. This confirms the effectiveness of
both TaintDroid and LazyTainter.

6. DISCUSSION
LazyTainter is currently implemented on the portable in-

terpreter. The main reason for this decision is that the
portable interpreter requires less memory than the JIT, and
is more likely to be enabled on resource constrained devices
than the JIT. In fact, Google’s official Android documenta-
tion recommends disabling the JIT entirely for low-memory
devices [18]. A secondary reason is that the execution and
performance of the portable interpreter is more predictable
than the JIT. For example, the overhead of executing vari-



App Leak Type
PhotoGrid None
The Weather Channel Location
Twitter Location
Facebook Location
IMDb Location
Solitaire Location, IMEI
Horoscope Location, IMEI
Voice Search Audio
Wish Address Book

Table 5: Reported privacy leaks.

ous instructions like IGET and IPUT where LazyTainter adds
overhead is fairly constant as the instructions are translated
the same way each time.

Both the portable interpreter and the JIT use the same
memory layout so we expect the memory savings provided by
the portable interpreter implementation to carry over if im-
plemented in the JIT. LazyTainter’s additional performance
overhead over TaintDroid comes mainly from the additional
logic that LazyTainter must implement for IGETs and IPUTs.
These instructions only make up a small percentage of total
instructions executed, so we expect the overhead in a JIT
implementation to be similar to that of the portable inter-
preter implementation.

Finally, the current measurements of memory savings do
not fully represent the capability of LazyTainter because of
TaintDroid’s decision to track taints for array objects as a
whole. The savings for these objects are nominal in both
TaintDroid and LazyTainter as the taint storage overhead
is only one taint tag, so there isn’t much opportunity to de-
crease the taint tracking cost of arrays. However, users who
want fewer false positives and more precision may decide to
turn on per-element taint tracking for arrays, at which time
lazy tainting will be able to provide even greater memory
savings.

7. RELATED WORK
Dynamic taint tracking has enjoyed a long history of use

for proposals in information tracking, malware detection and
attack detection. A good literature survey of dynamic taint
tracking for managed runtimes can be found in [16]. Taint-
tracking systems predominantly allocate taint storage ea-
gerly and track taints at a fixed granularity. For example,
Newsome et al. [19] enhances Valgrind with a shadow mem-
ory to store taint values in a one-to-one correspondence with
values in program memory. Yin et al. [28] assume a simi-
lar shadow memory is implemented in hardware. Zhu et
al. [29] also use a statically allocated table as taint stor-
age, but achieve better performance by using function sum-
maries. Others allocate memory on-demand, but still do
so at fixed granularity. For example, Xu et al. [27] inter-
cept segmentation fault signals and allocate a 16KB mem-
ory chunk spanning the faulting address if it’s within the
expected range. When compared with these projects, Lazy-
Tainter gives a unique solution to manage taint storage be-
cause it allocates taint storage with an adjustable granular-
ity and uses garbage collection to automatically deallocate
unused taint storage.

There has also been some work on tainting language run-
times for Javascript in browsers [8, 25]. Nguyen-Tuong et

App The Weather Channel

GET /wxdata/loc/get.js?lat=[latitude]&lng
=[longitude]&locale=en_US&...
App Solitaire

GET /post/config?p=android&a=...&m=2.3.2&
v=1.3.2&d=[IMEI]&
App Horoscope

POST /ws_pub/gcm.php?action=register&hwui
d=[IMEI]&dt=...

Table 6: Confirmed privacy leaks.

al. [20] take a similar strategy for PHP on a web server and
provide taint tracking at the precision of a character granu-
larity. In all these cases, taint storage is allocated dynami-
cally as variables are instantiated and used, but the granu-
larity of taint-tracking does not adapt to the taint propaga-
tion behavior of the program.

There have been a few instances where researchers have
explored adaptive tainting systems. Suh et al. [23] imple-
ment taint tracking support in a processor and use only a
single taint tag in the hardware page table for pages with-
out a valid physical mapping, thus allowing them to avoid
allocating an entire page of taint storage for such pages. Ho
et al. [11] dynamically switch between fine byte-level taint
tracking in QEMU and coarse page-level taint tracking us-
ing the Xen hypervisor. The mechanisms in these previous
works differ significantly from the dynamic granularity taint
tracking mechanism of LazyTainter.

The closest application of taint tracking to LazyTainter
is TaintDroid [9], which implements taint tracking in An-
droid’s Dalvik virtual machine. A number of projects have
used TaintDroid’s information to build other useful func-
tionality. For example, Balebako et al. [2] use phones with
TaintDroid installed on them to perform a user study to gap
between user’s perceptions and the reality of privacy leak-
age on smartphones. AppFence [12] uses TaintDroid with
data shadowing to prevent exfiltration of sensitive data with-
out breaking the functionality of applications. CleanOS [24]
uses TaintDroid to track sensitive data as it is propagated
throughout the smartphone and encrypt it to protect it from
being leaked if the phone is stolen. Since LazyTainter is
functionally identical to TaintDroid, we believe that these
and other projects that use TaintDroid would also work well
with LazyTainter, and we are pleased to enrich the mobile
taint tracking toolset to help a broader range of users secure
their devices.

8. CONCLUSIONS
Dynamic taint tracking is an effective approach for detect-

ing privacy leakage on mobile devices. However, designing a
good taint tracking system requires finding the proper trade-
off among precision, speed and memory overhead. In Lazy-
Tainter, we are able to reduce memory overhead observed
in eager-tainting systems with no reduction in precision and
minimal reduction in speed. To do this, we make several
important observations. First, the majority of memory used
by mobile applications does not contain any private infor-
mation, motivating a system that uses coarse-grained taint
tracking by default and lazily switches to fine-grained taint
tracking when a field in an object becomes tainted. Second,



the VM heap and stack have very different characteristics in
terms of size, access pattern and types of data stored, moti-
vating a hybrid approach that uses eager taint tracking on
the stack and lazy taint tracking on the heap. While Lazy-
Tainter is implemented for Android, we believe the tech-
nique of lazy tainting can be applied to any runtime system
that executes object-oriented code, and whose applications
exhibit localized tainting behavior.
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