
LazyTainter : Memory-Efficient Taint Tracking in Managed
Runtimes

by

Zheng Wei

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c⃝ Copyright 2014 by Zheng Wei



Abstract

LazyTainter : Memory-Efficient Taint Tracking in Managed Runtimes

Zheng Wei

Master of Science

Graduate Department of Computer Science

University of Toronto

2014

The leakage of private information is of great concern on mobile devices since they contain

a great deal of sensitive information. This has spurred interest in the use of taint tracking

systems to track and monitor the flow of private information on a mobile device. Taint

tracking systems impose memory overhead, as taint information must be maintained

for every piece of information an application stores in memory. This memory cost is

at odds with the growing number of low-end, memory-constrained devices, which will

also make up the majority mobile device growth in emerging markets. To allow taint

tracking to benefit a broader range of mobile devices, we present LazyTainter, which is

a memory-efficient taint tracking system designed for managed runtimes. To implement

LazyTainter, we enhanced TaintDroid to use hybrid taint tracking, which combines lazy

and eager tainting. Our experimental results demonstrate that LazyTainter can reduce

heap usage by as much as 26.5% when compared to TaintDroid while imposing a less

than 1% increase in performance overhead.
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Chapter 1

Introduction

Mobile devices (smartphones and tablets) are quickly replacing traditional personal com-

puters (PCs) as people’s primary computing devices. Equipped with rich hardware sen-

sors and an operating system capable of running 3rd party applications, mobile devices

provide capabilities and convenience unmatched by any other types of devices. According

to the latest statistics by Flurry Analytics [10], an average user spends almost 3 hours a

day using applications and browsing the web on their mobile devices.

This heavy use of mobile devices, coupled with their innate ability to collect and

concentrate personal information means that they are a risk to personal privacy. To help

understand how and when private information is being collected and leaked by these

devices, various static [21, 17, 1] and dynamic [9, 12, 6] approaches have been proposed.

While static analysis imposes no runtime overhead, it is inherently imprecise [27]. In

contrast, dynamic taint-tracking, which uses taint tags to track whether a value contains

or is derived from private information or not has been shown to be effective at detecting

personal privacy violations. While emulation-based native binary instrumentation incurs

considerable overhead [19, 29], the execution overhead of taint tracking can be reasonable

for a managed runtime. For example, TaintDroid [9] has made taint tracking realtime

with a 14% performance overhead. As a result, TaintDroid’s taint tracking functionality

1



Chapter 1. Introduction 2

has been used in a number of research proposals [2, 12, 24].

Aside from execution overhead, taint tracking also imposes memory overhead, as taint

tags must be maintained for each value stored in memory. This is a major concern for

mobile devices because they have much less memory than traditional PCs. While the

amount of physical RAM on devices has grown steadily, growth in the smartphone market

has shifted significantly towards low-end devices [13], with a large number of such devices

projected to be sold in emerging markets [25]. According to Google, millions of entry-

level devices around the world still have as little as 512MB of RAM [14], leading Google

to launch Project Svelte [4] specifically to address this issue. Even with this limited

amount of memory, a non-trivial portion of the physical memory is still be used by

graphics hardware and the operating system, leaving even less memory for applications.

To reduce the memory burden of taint tracking for these low-end devices, we propose

LazyTainter, a taint-tracking system that reduces memory overhead while maintaining

reasonable performance overhead.

The storage for taint information can be allocated either eagerly (ahead of time), or

lazily (on-demand). Eager allocation generally improves performance because the taint-

tracking system is free to place the taint storage at a predetermined location relative to

the memory value it is tracking taint for, thus simplifying access to the taint information.

However, eager allocation wastes memory in exchange for better performance because the

amount and granularity of taint storage cannot by dynamically adjusted in response to

the tainting behavior of the application. This reasoning implies that there is a trade-

off between memory efficiency and runtime overhead that taint tracking systems must

choose between.

In this paper, we propose a hybrid approach of taint tracking which is able to combine

the benefits of both eager and lazy tainting without the costs. To demonstrate our

results, we present LazyTainter, which implements the same taint propagation policy

as TaintDroid [9]. By using eager-tainting for frequently accessed memory locations,
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lazy tainting for the rest of memory, and carefully optimizing the storage and allocation

of taint information, LazyTainter can reduce heap usage by as much as 26.5% when

compared to TaintDroid while imposing a less than 1% increase in performance overhead.

The rest of the paper is organized as follows: Chapter 2 provides background informa-

tion of Android and TaintDroid, Chapter 3 presents the design of LazyTainter, Chapter

4 gives implementation details, Chapter 5 shows the experimental results, Chapter 6

provides a discussion, Chapter 7 describes related work and Chapter 8 concludes this

paper.



Chapter 2

Background

2.1 Android

Android is an operating system designed for mobile devices including cellphones and

tablets. Its architecture consists of four layers from top to bottom: applications, applica-

tion framework, libraries and Linux kernel. The top two layers (applications and appli-

cation framework) are mainly written in Java, while the bottom two layers (libraries and

Linux kernel) are mainly written in C/C++. What sits in between application frame-

work and libraries is the Android runtime consisting of a process virtual machine called

Dalvik and a set of Java core libraries.

Dalvik is mainly written in C++ and executes its own DEX bytecode format [22].

Android applications, which are written in Java, are first compiled into Java bytecode and

then converted to DEX bytecode before installation on a device. Each application runs in

its own Dalvik instance and an application sandbox is implemented at process boundary

to improve security. Processes can communicate with each other through Binder IPC.

Our work is mainly involved with Dalvik. Dalvik is designed for resource-constrained

devices and has some key differences from the traditional JVM. Dalvik is a 32-bit register-

based VM with 64-bit values formed by adjacent register pairs. Instead of having a fixed

4
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number of virtual registers, each method allocates the registers it needs in its stack

frame on the execution stack. All register operations occur on these values stored on the

stack. Dalvik also has its own garbage collected (GC) heap, which provides for long-term

storage of objects. As of the Android version we use, the default GC is a concurrent

mark-and-sweep GC, with the option of switching to a copying GC at compile time.

Dalvik has its own instruction set. The opcode size is 8-bit so there will be at

most 256 opcodes from 00 to FF, though some of them are not used at the moment.

Instructions are not limited to a particular type. The same instruction is often used to

operate on different types of values if they have the same width. Dalvik instructions

have clear semantics and can be roughly classified into several groups. For example,

move/arithmetic/logic instructions do computation on the stack, new instructions create

objects on the heap, get/put instructions move data between the stack and the heap

and if/goto instructions manage the control flow. Operations in each group may have

different variants. For example, iget and iput instructions have quick variants, whose

execution is faster because they use optimized inputs.

Much of the design on Android is focused around conserving memory. Android devices

don’t have a swap partition, so any memory pressure will cause the kernel to kill processes

to reclaim memory. This can be disruptive to the user if the user actually wants to use the

killed process in the near future. Even though Android has optimized process creation,

starting an application still imposes some delay. In addition, killing the wrong application

only to have it restarted by the user causes undesirable drain on the battery.

The Dalvik heap is a virtual memory range acquired with mmap. To manage heap

memory, Dalvik uses the dlmalloc [15] memory allocator. When an application explicitly

requests memory with new, Dalvik allocates memory to the application from the memory

allocator. The amount of currently allocated memory on the heap is called Heap Alloc.

When a garbage collection is triggered, Dalvik will walk the heap, free unused space and

return them to the memory allocator. This shows up as a reduction in the heap usage of
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the application. The amount of free space on the heap is called Heap Free. The total size

of the heap is called Heap Size, which equals to the sum of Heap Alloc and Heap Free.

Dalvik doesn’t compact the heap so it cannot shrink heap size when there is used space

at the end of the heap. Therefore Heap Alloc is a better measurement of heap usage

than Heap Size because there can be quite a bit free memory on the heap.

Although Android is Linux-based, the process creation model is different from that of

traditional Linux. In Android there is a nascent Zygote process which preloads a common

set of classes and performs initialization that is common to all applications. Application

processes are created by forking from Zygote to save initialization time. Memory pages

of Zygote are shared by many application processes. In Android, memory pages can be

classified into four kinds: shared dirty, private dirty, shared clean and private clean [3].

Shared memory is used by more than one processes, while private memory is used by only

one process. Clean memory is unwritten memory, while dirty memory has been written

to by the process. Private dirty memory is the most expensive because it’s exclusively

used by one application and cannot be readily discarded when the operating system

needs to reclaim memory. Dalvik heap memory is usually private dirty, though some

heap memory can be shared dirty as processes can be forked. Since private dirty memory

is expensive, it is a good measure of an application’s memory cost.

2.2 TaintDroid

TaintDroid [9] is an information-flow tracking system designed for the Android OS to

monitor privacy leaks in realtime. It leverages Android’s virtualized environment to

provide an efficient and system-wide dynamic taint tracking system with fine-grained

labels. TaintDroid taints data acquired from sensitive APIs and identifies when tainted

data is sent to the network interface. The principal component of TaintDroid is variable-

level tracking, which is implemented in the Dalvik interpreter. TaintDroid defines its
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own taint propagation logic, covering explicit data flows in almost all the instructions.

Because a mobile device has different sources of sensitive information, such as location,

IMEI and microphone, TaintDroid represents each of them using a different bit (called a

taint marking) in a 32-bit vector (called a taint tag). Taint markings don’t interfere with

each other so up to 32 types of sensitive information can be tracked at the same time.

TaintDroid stores the taint tag for a variable adjacent to the variable itself, providing

spatial locality. Recall that Dalvik stores registers on the stack. For 32-bit register values

(as shown in Figure 2.1), taint tags are interleaved between values so that a register fp[i]

becomes fp[2*i] in TaintDroid’s stack layout. For 64-bit register values, a double word

(fp[i], fp[i+1]) now becomes (fp[2*i], fp[2*i+2]) with its taint tag stored in

fp[2*i+1].

Taint tags of object fields which exist on the the heap are also interleaved so that a

32-bit field with offset k now has offset 2*k. The interleaving is done by modifying a

function that computes field offsets when a class is linked to Dalvik. For 64-bit fields,

if the base address of an object is base then a double word (base[k], base[k+1])

becomes (base[2*k], base[2*k+1]) with its taint tag stored in base[2*k+2]. From

this description we see that both the stack size and the object size are effectively doubled.

An exception is array objects. In TaintDroid, each array has only one taint tag that is

shared by all elements of the array. Therefore, tainting for arrays has minimal memory

overhead but is more coarse-grained than tainting for other types of objects. String

objects contain several fields, one of which is an array. TaintDroid taints a string object

by tainting the array it contains.

Besides variable-level taint tracking, TaintDroid also has message-level taint track-

ing to propagate taints through IPC channels, method-level taint tracking to propagate

taints through native methods and file-level taint tracking to propagate taints through

secondary storage. LazyTainter uses the exact same mechanisms as TaintDroid to track

taints through these channels and thus we omit a detailed description here. Finally,
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Figure 2.1: TaintDroid stack layout.

since TaintDroid is designed to work in a virtualized runtime environment, it doesn’t

allow third-party native libraries to be loaded because it cannot track taints for arbitrary

native code efficiently. However, native system libraries in the firmware are supported

by TaintDroid as they are in the trusted computing base.



Chapter 3

Design

One of the challenges in designing a taint tracking system is finding the right trade-off

between precision, speed and memory overhead. Intuitively, improving the performance

in one of these properties usually comes at a cost of decreasing the performance in one

or both of the other two. For example:

• We can use per-element tainting instead of per-array tainting for arrays. Since this

would track taint on a finer granularity, it will reduce false positives and increase

precision. However, this will require more memory to store the fine-grained taint

information and may also result in lower speed as more work needs to be done to

propagate the larger amount of taint information.

• We can use 1-bit taint tags instead of 32-bit taint tags. The reduction in taint tag

size may reduce memory overhead because there is less taint information to store.

However, a taint tracking system with 1-bit taint tags can only indicate whether a

variable is tainted or not without the ability to distinguish different taint sources,

such as location, IMEI, etc., resulting in lower precision.

• We can track taints on a per-object basis instead of a per-field basis. This coarse-

grained taint tracking will result in less taint information, and thus lower memory

9
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overhead, but at the cost of decreased precision since this can result in false taint

propagation across fields in an object.

Depending on the characteristics of the underlying system on which the taint tracking

system is built, there may be opportunities to increase the performance in one property

without great negative consequences in the other two. Thus, a good taint tracking system

will exploit these opportunities to maximize performance across the three properties.

Finding a design that provides a good trade-off is especially important for mobile

devices because they have limited resources. On these devices, speed and memory cannot

be as easily sacrificed for the sake of precision as devices with more plentiful resources.

Current Android taint tracking systems like TaintDroid already make such trade-offs.

For example, TaintDroid reduces the precision of taint tracking for arrays and strings to

save memory and increase speed.

The goal of this paper is to show that one can trade a negligible amount of speed for

a significant saving in memory without affecting the precision of a taint tracking system.

To achieve this goal, we introduce lazy-tainting and apply it to TaintDroid. We use

TaintDroid as a starting point as the TaintDroid designers have already made some good

design choices to make the system practical, as shown by the many projects that have

used or incorporated TaintDroid [2, 12, 24]. As a result, our design goal is to produce a

system that has the same precision as TaintDroid, but is more efficient in memory usage

with only a minimal decrease in speed. We use TaintDroid as the foundation due to its

good design and sound implementation, but we believe our ideas can be applied to other

virtualized environments as well.

3.1 Lazy Tainting Granularity

A key design decision that affects the memory overhead of a taint tracking system is the

granularity of taint tracking. This decision has already been considered by the designers
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of TaintDroid, which trades decreased precision for better memory overhead for arrays

and strings. Another place where memory overhead of TaintDroid may be reduced, is

to track taints at a per-object granularity instead of a per-field granularity. However, as

previously mentioned, this causes a loss of precision, which violates our design goal.

To overcome this apparent limitation, we hypothesize that mobile applications on

Android exhibit localized tainting behavior, which means taints are only propagated

within a small group of objects that are related to private information. Since there is

rising public awareness of the privacy implications of mobile application use, we further

hypothesize that Android applications, whether benign or malicious, are more likely to

send private information to servers as soon as possible rather than to store it in memory

for a long time. Together, these factors should cause most Android applications to have

a majority of untainted objects and the number of tainted objects should be very small.

If this is the case, then we can decouple taint granularity from precision. Tainted and

untainted objects don’t have to be tracked at the same level of granularity. The system

can use cheap coarse-grained per-object tainting for the vast majority of completely un-

tainted objects and only the expensive fine-grained per-field tainting for the tiny minority

of objects with tainted fields.

To evaluate our hypothesis, we modified the mark-and-sweep garbage collector in

TaintDroid to profile tainted objects. Specifically, we add two counters, CntNum and

CntSize, to the Dalvik garbage collector and set them to zero when garbage collection is

started. During the mark step of the garbage collection, we check the fields of an object

when it’s being marked to see whether any of them is tainted. If a tainted field is found,

we increase CntNum by 1 and increase CntSize by the object size. We also allocate two

other counters to count the total number and size of live objects regardless of whether

they are tainted or not. We only count objects when it’s being marked for the first time

so that the same object is counted only once. We restrict the profiling to data objects

only and do not include array objects.
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App \ Ratio CntNum CntSize
PhotoGrid 0.00 0.00
The Weather Channel 0.00 0.00
Twitter 0.00 0.00
Facebook 0.01 0.03
IMDb 0.00 0.00
Solitaire 0.00 0.01
Horoscope 0.00 0.01
Voice Search 0.00 0.01
Wish 0.01 0.01

Table 3.1: Tainted object ratio. CntNum is the ratio of the number of objects with at
least one tainted field to all objects. CntSize is the ratio of the size of objects with at
least one tainted field to all objects.

We tested nine applications in total. For each application, we count the number and

size of tainted objects and live objects, respectively. Then we calculate the ratio between

tainted objects and live objects in both number and size and tabulate the results in

Table 3.1. From the results, we can see that only a tiny portion of objects contain any

tainted fields. In addition, the total size of these objects is a small percentage of overall

objects. For many applications the tainted ratio is within 1% in both number and size.

This result indicates that Android applications are very likely to have a vast number

of untainted objects and that a system that uses coarse-grained per-object tainting by

default and then lazily switches to fine-grained per-field tainting when any field in an

object becomes tainted has the potential to yield significant memory savings.

3.2 Hybrid Taint Tracking

Now that we have established that lazily switching from coarse-grained to fine-grained

tainting can yield memory savings, we now turn our attention to designing a taint tracking

system that incurs low speed overhead. Lazy taint tracking imposes overhead on the speed

of execution because the memory for taint storage is not allocated at the same time as

the memory for the object itself. In eager tainting implementations, such as TaintDroid,
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the storage for a value’s taint tag is usually allocated at a fixed offset to the value itself,

making access to a value’s taint tag a simple matter of pointer arithmetic. However,

with lazy taint tracking, an object that has no tainted fields will have no taint storage

allocated to indicate that no fields are tainted. Only when a field in the object acquires

taint will the system lazily allocate storage for the more expensive per-field taint tracking.

Because the taint storage is allocated lazily, it cannot be placed at a fixed offset from the

base object, but must instead be linked to the base object using pointer, as illustrated

in Figure 3.1. This means that when accessing taint, the taint tracking system must

first check a pointer to see if any field in the object is tainted, and if so dereference the

pointer to access the taint tags for the individual fields. Such checking and deferencing of

pointers results in more instructions executed at runtime, as well as worse cache locality.

Given this trade-off between lazy and eager tainting, a key design insight is that the

two kinds of tainting can be applied in parallel but to different memory regions. Dalvik

has divided its address space into several regions, such as heap and stack. The decision

here is which kind of tainting should be used for which memory region. To make this

decision, we first make several observations.

First, the stack is much smaller than the heap. In Dalvik, the maximum stack size

is 256KB (plus a 768B STACK OVERFLOW RESERVE region). However, the heap can be as

large as 1GB. Even if a smaller soft limit is configured on the device, the heap is still

many orders of magnitude larger than the stack. From this observation, we conclude that

even if only eager, fine-grained tainting is used all the time for the stack, the memory

overhead from doing so is still small and bounded.

Second, all computation occurs on the stack, and values in object fields must be

loaded onto the stack before computation and stored back to the object afterwards. As

a result, values on the stack are generally accessed more frequently than values on the

heap. From this observation, we can infer that using eager, fine-grained tainting for stack

values would help minimize the performance impact of the hybrid tainting.
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Figure 3.1: A tainted real object in LazyTainter. Shadow objects are used to store taint
tags if the real object has any tainted fields.

Finally, Dalvik only stores primitive values and object references on the stack, while

objects themselves are stored on the heap. As a result, all stack values have fixed size

(32-bit or 64-bit). In addition, the stack is used continuously, making it more amenable

to eager tainting. Since the previous chapter established that lazily tainting objects will

yield benefits, and objects are only stored on the heap, lazy tainting would be most

naturally applied to the heap.

Together, these three observations suggest a hybrid approach, which uses eager, fine-

grained taint tracking for the stack and lazy taint tracking for the heap. Since the stack is

heavily used for computation and the heap for storage, we should minimize performance

overhead in the stack and minimize memory overhead in the heap. We note that this

hybrid approach is not beneficial under all conditions. When objects are tainted, they

actually cost more storage when lazily allocated than if eagerly allocated because there is

the extra overhead of storing the pointer. Thus, the lazy approach only yields benefits if
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applications are likely to have many untainted objects, which has already been established

earlier.

3.3 Managing Taint Storage

While allocating taint tags on-demand has been used by several other taint tracking sys-

tems [28, 29, 30], they all use a fixed granularity for taint tracking. In general, these

techniques are on-demand in that they programmatically map a fixed-size taint tag stor-

age area [28], or simply not starting computation-heavy instrumentation when taints

haven’t been introduced into the system [30]. In addition, these techniques are generally

byte-level and do not take into account type information of the program. In contrast,

LazyTainter is designed for a managed runtime of an object-oriented language. This

presents several challenges, as well as opportunities.

An opportunity is the natural grouping of related program values into objects, as

specified by the programming language. This grouping leads to a natural way of switch-

ing between coarse-grained and fine-grained taint tracking. The challenges are how to

efficiently allocate and, in particular, deallocate taint storage.

To allocate storage, we leverage the existing heap allocator in Dalvik. Since only

objects can reside on the heap, we aggregate taint tags of all fields in an object (called

real object) into a separate shadow object. To visualize this, we again refer to Figure 3.1.

To facilitate implementation, the shadow object has the same type and size as the real

object and the taint tag of a field in the real object is put at the same offset in the shadow

object. This ensures that we have enough taint tag storage in the shadow object for all

the fields in the real object.

Since we need to get and set its taint tag when accessing a field in the real object, we

must link the shadow object to the real object. The shadow object is linked to the real

object by adding a shadow pointer in the object header. In a real object, this pointer
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points to a shadow object (if any of the fields in the real object is tainted) or is set to NULL

signifying that none of the fields in the real object are tainted. Since this pointer resides

in a normal object, it’s automatically set to NULL when an object is created because

memory allocated to an object is cleared by default in Dalvik. This is the intended

behavior for a real object because a newly created object has no taints. When one of its

fields gets tainted, a shadow object is dynamically created and linked to the real object,

and the taint tag corresponding to the tainted field is set appropriately in the shadow

object. From now on, setting the taint tag of a real object field will first locate the

shadow object via the shadow pointer and then put the taint tag at the correct offset in

the shadow object. Getting the taint tag of a real object field works in a similar way.

When objects are deallocated, we must also be sure to deallocate any associated

shadow objects. In managed runtimes, unused objects are not explicitly deallocated

by the programmer, but are instead identified and deallocated by a garbage collector.

During garbage collection the runtime will iteratively traverse all objects on the heap

by following pointers to find all reachable objects. Since shadow objects are linked to

real objects, when the real object becomes unreachable, the shadow object automatically

becomes unreachable. However, the use of shadow objects still presents a challenge when

it comes to the traversal of reachable real objects by the garbage collector.

As mentioned earlier real objects and their associated shadow objects have the same

type. This is because the total number of types a program will use is not known to

Dalvik before running the program, so we cannot statically reserve some portion of the

type space for shadow objects. Because shadow objects and real objects have the same

type, the garbage collector cannot tell whether it is visiting a real object or a shadow

object. However, the garbage collector must treat real and shadow objects differently.

For real objects, the garbage collector should continue to follow pointers, while for shadow

objects, all fields are taint tags, so the garbage collector should just mark the object and

return to the parent object. To enable the garbage collector to differentiate between
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real and shadow objects, we set the space reserved for the shadow pointer in the shadow

object to an invalid address 0xffffffff during the creation of the shadow object. We

then modify the garbage collector to check this field when visiting an object. If it is set to

0xffffffff, the garbage collector treats the object as a shadow object. This challenge

arose because LazyTainter uses dynamic taint allocation on a garbage collected runtime.

In systems that use eager tainting exclusively or do not have garbage collection, this

problem does not arise. However, the garbage collector is helpful here because it allows

taint storage to be deallocated in an automatic and efficient way.



Chapter 4

Implementation

We implemented LazyTainter on Android 4.1.1 r6, which is the latest version that

TaintDroid supports. Since we want to have exactly the same taint propagation logic

as TaintDroid, we don’t modify any stack operations or method invocation instruction

handlers. Similarly, we don’t modify the message, method and file-level taint tracking

implementation. Instead, we only modify the object layout, the heap-related instruction

handlers and the garbage collector. To satisfy alignment requirements and to support

different levels of tainting at the same time, we also need to modify some primitive

wrapper functions, which we describe in more detail below.

Since LazyTainter uses the basic framework of TaintDroid, it has the same limitations

as TaintDroid. Third-party native libraries cannot be loaded. Native system libraries

can be loaded but native methods are tracked in a coarse-grained fashion. In addition,

only explicit data flow is tracked to avoid taint explosion. LazyTainter is implemented on

the portable interpreter version of TaintDroid. We describe our reasoning for this choice

in Chapter 6.2.

18
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1 struct Object {

2 ClassObject* clazz;

3 u4 lock;

4 // Added in LazyTainter.

5 Taint taint;

6 };

7

8 struct ClassObject : Object {

9 u4 instanceData[CLASS_FIELD_SLOTS ];

10 const char* descriptor;

11 char* descriptorAlloc;

12 ...

13 };

14

15 struct ArrayObject : Object {

16 u4 length;

17 u8 contents [1];

18 };

19

20 struct DataObject : Object {

21 u4 instanceData [1];

22 };

Listing 4.1: Object implementation in Dalvik.

4.1 Objects in Dalvik

We first describe how Java objects are implemented in Dalvik, including object types,

layout and size. Then we describe different kinds of objects which can exist in a taint

tracking system.

Dalvik defines several C++ structs to specify the layout of Java objects in the ap-

plication, as shown in Listing 4.1. There are three kinds of Java objects in Dalvik:

class objects, array objects and data objects, whose headers are defined by structs

ClassObject, ArrayObject and DataObject, respectively. Class objects are objects

of type java.lang.Class. Array objects are arrays of any type. Data objects are non-

class and non-array objects. All objects share the same header defined by the common

parent struct Object. Object fields are placed next to the header.

Currently Android is expected to run on 32-bit platforms, and the size of Object is 8

bytes. Since heap memory is managed by dlmalloc, an additional 4 bytes of bookkeeping
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data is required per object. Dalvik further requires all objects to be 8-byte aligned.

Therefore, we can calculate the size of an object as (4 + 8 + field size) rounded up

to a multiple of 8 bytes. For example, an object with 0 or 1 int field is 16 bytes, while

an object with 2 int fields is 24 bytes. An object can have both primitive values and

object references as its fields and it may have zero or more fields.

In terms of taint tracking, objects can be classified into two categories:

• Transparent object. A transparent object doesn’t have a per-object taint tag. In-

stead, each field has its own taint tag and is individually tainted.

• Opaque object. An opaque object only has a per-object taint tag which is shared

by all its fields. Fields don’t have their individual taint tags.

Ideally, all objects should be transparent to make taint tracking as precise as possible.

In practice, however, some objects are made opaque to reduce taint tracking overhead.

For example, in TaintDroid data objects are transparent while array objects are opaque.

A data object maintains a taint tag for each field, while an array maintains only one

taint tag for all elements.

Opaque objects have minimal memory overhead because the only additional storage

is a 32-bit taint tag. In contrast, transparent objects have their fields interleaved with

taint tags and so the object size is almost doubled. Figure 4.1 gives the layout of opaque

and transparent objects in TaintDroid.

4.2 Field Reuse

At first glance, lazy tainting can be easily implemented by adding a 32-bit pointer in

Object. But TaintDroid already adds a 32-bit taint tag field in ArrayObject. We notice

that a taint tag and a pointer have exactly the same size. Since opaque objects never

need the pointer, memory can be saved if we use the same field for dual purposes: a
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Figure 4.1: Object layout in TaintDroid.

1 typedef union Taint {

2 u4 tag; // opaque.

3 Object* taintObj; // transparent.

4 } Taint;

Listing 4.2: Field reuse with union Taint.

pointer in a transparent object, and a taint tag in an opaque object. To do this we

introduce a union Taint in the Dalvik source code as shown in Listing 4.2.

Then we add a field of type Taint in Object as shown in Line 5 of Listing 4.1 and

remove the original 32-bit taint tag field in ArrayObject. By reusing this field, we in fact

save 8 bytes on each array object because Dalvik requires array elements to be aligned at

an 8-byte boundary. If we kept both fields, the total size of an array header (excluding

dlmalloc bookkeeping data and array elements) will be 20 bytes, which is then padded

up to 24 bytes. If we reuse it, we only need 16 bytes. An 8-byte per-object memory

saving may look small, but there can be many array objects on the heap so the total
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Size (Bytes) \ #int 0 1 2 3 4 8
Android 16 16 24 24 32 48
TaintDroid 16 24 32 40 48 80
LazyTainter 16 24 24 32 32 48

Table 4.1: Object size with varying numbers of fields.

saving is nontrivial.

A nice property is that LazyTainter with field reuse never uses more memory than

TaintDroid in a taint-free environment and in some cases, uses the same amount of

memory as vanilla Android. Table 4.1 shows object size with a varying number of int

fields.

4.3 Garbage Collector

Now we have three kinds of objects on the Dalvik heap: opaque objects, transparent

objects and shadow objects. Our next task is to modify the garbage collector (GC)

so that a shadow object is automatically recycled with the corresponding real object,

which must be a transparent object itself. In Android 4.1.1 r6, Dalvik uses by default

a mark-and-sweep GC. We must modify the GC so that the following properties are

satisfied:

1. No dangling pointer. A shadow object must be alive if the real object is alive.

2. No memory leak. A shadow object must be recycled when the real object is recycled.

The simplest solution is to follow the shadow pointer and mark the shadow object

when the real object is being marked during a garbage collection. However, we cannot

blindly follow the shadow pointer because:

1. The shadow pointer in an opaque object is in fact not a pointer but a taint tag.

2. The shadow pointer in a shadow object is invalid.
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In either case, blindly following the shadow pointer may result in a segmentation

fault. To deal with the first case, we add a check in the GC’s object marking function to

prevent it from following the shadow pointer if the current object is an opaque object.

Since an object holds a pointer to its defining class, we can look up its type to see whether

it’s an array object. If so, then we know the object is an opaque object. Otherwise, the

object is a transparent object and we need to check whether the shadow pointer is invalid.

The only invalid pointer that we may have introduced into the system is 0xffffffff

so we just need to check against this value. This deals with the second case. If the

shadow pointer is 0xffffffff, then this object is a shadow object and we don’t follow

the pointer. Otherwise, this object is a real object and we follow the pointer if it isn’t

NULL. The value 0xffffffff can never be a valid shadow pointer because objects are

always aligned at 8-byte boundaries.

To facilitate the concurrent garbage collection, Dalvik divides heap memory into a

set of fixed-size cards and maintains a card table. Dalvik has a write barrier requesting

any change to an object field to mark the card on which the object resides as dirty. Since

the shadow pointer acts as a field in garbage collection, we must also mark the card as

dirty whenever a transparent object gets tainted.

Finally, during the second phase of marking, objects on dirty cards will be scanned

and their fields will be traversed to reach other objects. We must not traverse if the

current object is a shadow object because its fields are actually taint tags. Thus, we

again need to test the shadow pointer against 0xffffffff before traversing. We must

use 0xffffffff to label shadow objects because it’s perfectly legal and highly possible

that a transparent object has a NULL shadow pointer.
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4.4 Instruction Handlers

We only need to modify the two Dalvik instructions (and their variants) that move data

in and out of data objects: IGET and IPUT. In TaintDroid, given the field offset, these two

instructions assume the adjacent field in the same object will contain the corresponding

taint tag. In LazyTainter, we modify IGET to first check whether the shadow pointer is

NULL. If so, it returns a clean taint tag. Otherwise, it follows the shadow pointer and

retrieves the taint tag at the same offset in the shadow object. IPUT is a little more

complicated. If the transparent object is clean and the input value is also clean, then

nothing is done. If the transparent object is clean and the input value is tainted, then

a shadow object is dynamically allocated. If the transparent object is already tainted,

it just uses the existing shadow object instead of creating a new shadow object. We

apply the same logic in other places whether we get or set an object field, such as when

implementing reflection in Java. We don’t have to consider opaque objects here because

Dalvik instructions have clear semantics and opaque objects are completely handled by

two different instructions AGET and APUT (and their variants).

4.5 Primitive Wrappers

Double-width (8-byte) fields are required to be aligned at an 8-byte boundary in Dalvik.

Since the original Dalvik object header is 8 bytes, the first double-width field is just next

to the header. Some internal functions depend on this assumption implicitly. However,

since we have introduced another 4-byte shadow pointer to the object header, the header

is now 12 bytes and the first double-width field will have an offset of 16 bytes. Therefore,

there is a 4-byte gap between the end of the header and the beginning of the double-

width field. This breaks the implicit assumption and the double-width value will not be

correctly processed by these functions.

We identify places where Dalvik relies on this assumption and find that the majority
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of code deals with the boxing and unboxing of primitive types. An example of boxing

and unboxing would be converting from an int to an Integer and vice-versa. We fixed

these issues by manually shifting the offset by 4 bytes before accessing the field.
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Evaluation

To cover different types of mobile devices, we evaluated LazyTainter on two Android

devices: Galaxy Nexus (maguro) and Nexus 7 (grouper, 2012 version). The Galaxy

Nexus is a smartphone and the Nexus 7 is a tablet. Both devices have a 1.2GHz ARM

Cortex-A9 processor but Galaxy Nexus is dual-core while Nexus 7 is quad-core. Both

devices have 1GB RAM and both can run Android version 4.1.1 r6, the version on

which TaintDroid and LazyTainter are implemented. A major difference between these

two devices is that Galaxy Nexus has an IMEI number, which has been shown to be a

piece of private information that many applications access [9].

We evaluate three aspects of LazyTainter. First and foremost, we evaluate the mem-

ory savings that LazyTainter provides with its lazy-tainting technique. Second, we eval-

uate the performance overhead of LazyTainter over TaintDroid. Finally, to show that

LazyTainter is functionally equivalent to TaintDroid, we perform a comparative eval-

uation and show that LazyTainter is able to catch exactly the same leaks of private

information as TaintDroid.

26
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ROM Data Object (MB) Heap Alloc (MB)
Android 24.737 38.530
TaintDroid 33.134 47.348
LazyTainter 24.781 38.967

Table 5.1: Heap memory usage for the synthetic workload.

5.1 Memory Savings

As mentioned earlier, the size of Dalvik stack is generally very small, usually less than 256

KB. As a result, the memory overhead due to taint storage on the stack is also limited to

256 KB. Therefore, we focus on the memory overhead due to taint storage on the heap,

which dominates the memory overhead of taint tracking in Dalvik.

As illustrated in Table 4.1, when objects are not tainted, the taint storage overhead of

LazyTainter is either zero or 8-bytes and independent of the number of fields in an object.

In contrast, the taint storage overhead of TaintDroid will increase with the number of

fields. Therefore LazyTainter should be more memory-efficient than TaintDroid in a

taint-free environment. To confirm this, we create a synthetic workload that allocates

one million objects where each object contains two int fields. This workload uses small-

sized objects which should minimize the memory saving benefits of LazyTainter over

TaintDroid. We run this workload using vanilla Android, TaintDroid and LazyTainter

ROMs and measure the memory usage using the Dalvik Debug Monitor Server (DDMS),

which is part of Google’s official Android SDK.

The results are summarized in Table 5.1. Data Object represents the amount of

memory allocated to data objects on the Dalvik heap while Heap Alloc represents the

total size of allocated heap memory. Both of these measures are tracked by the Dalvik

heap allocator. We provide Data Object results because their theoretically expected

value is given in Table 4.1. Since there are non-data objects on the heap, Heap Alloc is

larger than Data Object. A full discussion of memory usage measurement methods used

in this chapter is given in [7]. From these results we can see that TaintDroid incurs a



Chapter 5. Evaluation 28

Figure 5.1: Memory usage on Galaxy Nexus.

34% memory overhead on data objects and a 23% overhead on allocated heap size, while

the memory overhead of LazyTainter is almost negligible.

The expected result for an object with two fields is derived as follows. Since we put

two int fields into each data object, the per-object memory overhead of TaintDroid is

(32 - 24 =) 8 Bytes. Since we have created one million data objects in total, the overall

memory overhead should be 8 MB. The Data Object results give an overall memory

overhead of (33.134 - 24.737 =) 8.397 MB for TaintDroid. The 0.397 MB difference is

due to additional data objects that must be allocated in an Android application, such

as Activity objects and various UI elements. Since LazyTainter doesn’t introduce any

overhead when compared to vanilla Dalvik for data objects with two int fields, the

memory overhead of LazyTainter versus vanilla Android is essentially zero except for the

same additional objects. As most data objects in real applications will be larger than

those with two int fields, memory savings in practice should be larger since the per-

object memory overhead of TaintDroid grows with the object size while the per-object
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Figure 5.2: Memory usage on Nexus 7.

overhead of LazyTainter is constant for untainted objects.

We then proceed to evaluate the memory savings of LazyTainter on real applications.

We created a corpus of several popular Android applications and randomly selected a

subset to execute on both the Galaxy Nexus and the Nexus 7 devices. We run the appli-

cations on three ROMs: vanilla Android, TaintDroid and LazyTainter and measure the

amount of memory used by each application. Since memory usage varies with application

usage, we needed a methodology that would provide similar application usage across all

three ROMs.

To do this, we use the monkeyrunner testing tool that is part of the Android SDK

to write a script that will mechanically interact with each application for 2 minutes.

monkeyrunner ensures that UI events will be delivered to applications in exactly the

same order and at exactly the same time. Care was taken to ensure that the script

caused a realistic amount of tainted, sensitive data to be read by the application. After

the 2 minutes, the script triggers a garbage collection of the Dalvik heap to deallocate
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Object \ Ratio \ Opcode IGET IPUT
Untainted 1.05 1.08
Tainted 1.03 1.04

Table 5.2: Performance ratio on synthetic benchmarks.

objects and then read the Dalvik memory usage data with the shell command dumpsys

meminfo. To minimize noise due to variance in network delays, all tests were performed

on a high-speed university network accessed using a low-latency wifi connection. For

social applications such as Facebook and Twitter, we created fake accounts that would

have minimal variation across requests. In addition, we execute all tests five times and

use the average across the runs.

We use two different methods of measuring the memory usage of the applications. The

first method, Private Dirty, measures the amount of dirty memory used by the application

that is not shared with any other applications and represents additional memory overhead

incurred solely by the application. This memory may include non-heap memory such as

the stack, card table and auxiliary structures that are used by Dalvik. The second

method, Heap Alloc, measures the amount of memory tracked by the heap allocator and

is the same as the method used to measure memory usage for the synthetic workload. In

both measures we only consider memory allocated by Dalvik because our optimization is

mainly involved with the Dalvik heap. We also considered a third measure, Proportional

Set Size (PSS), where shared memory pages are divided by the number of processes

sharing them. PSS is a good measure for RAM usage comparison between different

applications. However, Android may kill processes based on memory usage and the

varying number of processes introduces noise into per-application measurements taken

with PSS. Thus, measurements using PSS are not used in this evaluation.

The results of these measurements are presented in Figures 5.1 and 5.2. Each bar

represents the memory overhead of TaintDroid or LazyTainter as normalized to that of

vanilla Android. Measurements using both the Private Dirty method and the Heap Alloc
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method are given. From the results we see that the memory overhead of TaintDroid

may vary among applications. If an application carefully manages its memory by recy-

cling unused objects as soon as possible to maintain a small memory footprint (as in

the case of Pinterest), then the memory overhead of TaintDroid is usually small as well

(around 6%). On the contrary, if an application heavily uses the heap, then TaintDroid

can give a large memory overhead (more than 20%). In terms of private dirty memory,

the measured memory overhead of TaintDroid varies betwee 7-29%, while that of Lazy-

Tainter varies between 0-10%. In terms of heap usage, the measured memory overhead

of TaintDroid varies between 6-38% while that of LazyTainter varies between 0-14%.

LazyTainter always uses less memory than that of TaintDroid. In the best instance,

LazyTainter reduced heap usage by as much as 26.5% when compared to TaintDroid. In

some cases, LazyTainter even used slightly less (up to 4%) memory than vanilla Android.

We attribute this to differences in memory layouts and variability between runs of the

same application.

5.2 Performance Overhead

Since LazyTainter, by its design, leverages another level of indirection to reduce memory

overhead, it inevitably incurs performance overhead due to additional instructions re-

quired to access lazily allocated taint storage. To measure this overhead, we first create

a synthetic workload that intensively measures the execution time of operations where

LazyTainter incurs the overhead. This happens when objects fields are being accessed.

In Dalvik, object fields are accessed with IGET and IPUT opcodes. We thus create

an Android application that repeatedly accesses a field in an object 100 million times.

We measure performance overhead for both reads (IGET) and writes (IPUT), as well as

measure the overhead when the object is tainted or untainted (i.e. whether a shadow

object is allocated for the object or not). We tabulate the ratio between the execution
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Figure 5.3: CaffeineMark3 result on Galaxy Nexus.

time of the workload on LazyTainter to the execution time of the workload on TaintDroid

in Table 5.2.

From this result, we can see that the worst-case performance overhead of LazyTainter

over TaintDroid varies between 3-8%. Surprisingly, access to an untainted object incurs

more overhead than access to a tainted object. Both operations perform a test to see if

a shadow object exists or not, but the access to the tainted object requires an additional

memory access to access the actual taint value in the shadow object itself, so one would

expect tainted objects to incur more overhead. To investigate further, we disassembled

the compiled binary code for the IGET and IPUT instruction handlers. We found that

the logic in both of these instruction handlers resulted in a number of conditional branch

ARM instructions to check the value of the shadow pointer. From this, we speculate

that the untainted path might have resulted in slightly more branch mispredictions, thus

resulting in more overhead than the tainted path. The confirmation of this is left for

future work.
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Figure 5.4: CaffeineMark3 result on Nexus 7.

Since all computation in Dalvik happens on the stack and meaningful applications

don’t waste time on useless heap accesses, to get a better idea of the performance over-

head of LazyTainter in practice, we use CaffeineMark3 [5], a popular benchmark tool

measuring the speed of Java programs. We run each workload in CaffeineMark3 five

times and take the average. We do not taint any memory since the results of the syn-

thetic workload indicate that access to untainted objects incur more runtime overhead

than tainted objects. The results are presented in Figures 5.3 and 5.4. The Y-axis rep-

resents the CaffeineMark3 score, where higher bars represent faster execution. On the

Galaxy Nexus we have overall scores 1656, 1370 and 1366 for Android, TaintDroid and

LazyTainter, respectively. On the Nexus 7 the overall scores are 1726, 1457 and 1455.

This shows that in practice, the runtime overhead between TaintDroid and LazyTainter

is generally within 1% on both devices.
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App Leak Type
PhotoGrid None
The Weather Channel Location
Twitter Location
Facebook Location
IMDb Location
Solitaire Location, IMEI
Horoscope Location, IMEI
Voice Search Audio
Wish Address Book

Table 5.3: Reported privacy leaks.

App The Weather Channel

GET /wxdata/loc/get.js?lat=[latitude]&lng

=[longitude]&locale=en US&...

App Solitaire

GET /post/config?p=android&a=...&m=2.3.2&

v=1.3.2&d=[IMEI]&

App Horoscope

POST /ws pub/gcm.php?action=register&hwui

d=[IMEI]&dt=...

Table 5.4: Confirmed privacy leaks.

5.3 Taint Propagation Correctness

Recall that to ensure the validity of our memory and performance overhead measure-

ments, we designed LazyTainter to have the same taint propagation function as Taint-

Droid. Thus, LazyTainter should detect the same leakage of private information as

TaintDroid. To confirm this, we selected a set of applications which use different types

of private information and ran them on both TaintDroid and LazyTainter. Then we col-

lected the privacy leaks reported by these two systems. The result is shown in Table 5.3.

Both TaintDroid and LazyTainter reported the exact same privacy leaks. We also

manually confirmed some of them by looking at the text sent through the network, as

summarized in Table 5.4. This confirms accuracy and effectiveness of both TaintDroid

and LazyTainter.
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Discussion

6.1 Reference Tainting

Since the effectiveness of lazy tainting depends on proportion of objects that get tainted,

the precision of the taint tracking system is highly important. In particular, incorrect

taint propagation can create a larger number of tainted objects, thus resulting in more

taint storage overhead for LazyTainter. During the implementation of LazyTainter, we

discovered a subtle set of false taint propagation instances for string objects in TaintDroid.

TaintDroid taints a string object by tainting its array field. However, Dalvik relies on

string interning to minimize memory footprint of string objects. Therefore multiple

string references may actually point to the same underlying string object. If one of them

gets tainted, all other references will also get tainted implicitly. A similar issue has been

observed in the JavaScript interpreter [8]. To address this problem we can further classify

opaque objects into immutable and mutable objects. For immutable objects, we taint the

reference to the object rather than the object itself (which effectively treats the object

as a primitive value). For mutable objects, there is no reason in caching or interning

them since otherwise accesses via different references may interfere with each other. We

have implemented a prototype of reference tainting for string objects which eliminates

35
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this type of incorrect taint propagation. However, since it changes the taint propagation

logic, we did not use this version in our evaluation.

6.2 Implementation Choices

LazyTainter is currently implemented on the portable interpreter. The main reason

for this decision is that the portable interpreter requires less memory than the JIT,

and is more likely to be enabled on resource constrained phones than the JIT. In fact,

Google’s Android documentation recommends disabling the JIT entirely for low-memory

devices [18]. A secondary reason is that the execution and performance of the portable

interpreter is more predictable than the JIT. For example, the overhead of executing var-

ious instructions like IGET and IPUT where LazyTainter adds overhead is fairly constant

as the instructions are translated the same way each time.

Both the JIT and the portable interpreter use the same memory layout so we expect

the memory savings provided by the portable interpreter implementation to carry over if

implemented in the JIT. LazyTainter’s additional performance overhead over TaintDroid

comes mainly from the additional logic that LazyTainter must implement for IGETs and

IPUTs. These instructions do not make up a larger percentage of total instructions

executed, so we expect the overhead in a JIT implementation to be similar to that

of the interpreter implementation.

Finally, the measurements of memory savings represent a worse case for LazyTainter

because of TaintDroid’s decision to track taints for array objects as a whole. The savings

for these objects is nominal in both TaintDroid and LazyTainter as the taint storage

overhead is only one taint tag. If more precise per-element taint tracking is required,

LazyTainter’s memory savings should be even larger. We have implemented a prototype

of per-element array tainting and confirmed greater memory savings. However, since it

is no longer functionally equivalent to TaintDroid, it was not used in our evaluation.
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Related Work

Dynamic taint tracking has enjoyed a long history of use for proposals in information

tracking, malware detection and attack detection. A good literature survey of dynamic

taint tracking for managed runtimes can be found in [16]. Taint-tracking systems pre-

dominantly allocate taint storage eagerly and track taints at a fixed granularity. For

example, Newsome et al. [19] enhances Valgrind with a shadow memory to store taint

values in a one-to-one correspondence with values in program memory. Yin et al. [29]

assume a similar shadow memory is implemented in hardware. Zhu et al. [30] also use a

statically allocated table as taint storage, but achieve better performance by using func-

tion summaries. Others allocate memory on-demand, but still do so at fixed granularity.

For example, Xu et al. [28] intercept segmentation fault signals and allocate a 16KB mem-

ory chunk spanning the faulting address if it’s within the expected range. LazyTainter

will be more memory-efficient than these solutions because it allocates taint storage with

an adjustable granularity and uses garbage collection to automatically deallocate unused

taint storage.

There has also been some work on tainting language runtimes for Javascript in

browsers [26, 8]. Nguyen-Tuong et al. [20] take a similar strategy for PHP on a web

server and provide taint tracking at the precision of a character granularity. In all these
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cases, taint storage is allocated dynamically as variables are instantiated and used, but

the granularity of taint-tracking does not adapt to the taint propagation behavior of the

program. Thus, these solutions cannot save taint storage for applications that do not

propagate taints to a large number of memory locations.

There have been a few instances where researchers have explored adaptive tainting

systems. Suh et al. [23] implement taint tracking support in a processor and use only a

single taint tag in the hardware page table for pages without a valid physical mapping,

thus allowing them to avoid allocating an entire page of taint storage for such pages.

Ho et al. [11] dynamically switch between fine byte-level taint tracking in QEMU and

coarse page-level taint tracking using the Xen hypervisor. The mechanisms in these

previous works differ significantly from the dynamic granularity taint tracking mechanism

of LazyTainter.

The closest application of taint tracking to LazyTainter is TaintDroid [9], which im-

plements taint tracking in Android’s Dalvik virtual machine. A number of projects have

used TaintDroid’s information to build other useful functionality on top of Android. For

example, Balebako et al. [2] use phones with TaintDroid installed on them to perform

a user study to gap between user’s perceptions and the reality of privacy leakage on

smartphones. AppFence [12] uses TaintDroid with data shadowing to prevent exfiltra-

tion of sensitive data without breaking the functionality of applications. CleanOS [24]

uses TaintDroid to track sensitive data as it is propagated throughout the smartphone

and encrypt it to protect it from being leaked if the phone is stolen. Since LazyTainter

is functionally identical to TaintDroid, we believe that these and any other projects that

use TaintDroid would work well with LazyTainter.



Chapter 8

Conclusions

Dynamic taint tracking is an effective approach for detecting privacy leakage on mobile

devices. However, designing a good taint tracking system requires finding the proper

trade-off among precision, speed and memory overhead. In LazyTainter, we are able to

reduce the memory overhead of TaintDroid with no reduction in precision and minimal

reduction in speed. To do this, we make several important observations. First, the

majority of memory used by mobile applications does not contain any private information,

motivating a system that uses coarse-grained taint tracking by default and lazily switches

to fine-grained taint tracking when a field in an object becomes tainted. Second, the VM

heap and stack have very different characteristics in terms of size, access pattern and types

of data stored, motivating a hybrid approach that uses eager taint tracking on the stack

and lazy taint tracking on the heap. While LazyTainter is implemented for Android, we

believe the technique of lazy tainting can be applied to any runtime system that executes

object-oriented code, and whose applications exhibit localized tainting behavior.
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