
Susceptibility of Commodity Systems and Software to
Memory Soft Errors

Alan Messer, Philippe Bernadat, Guangrui Fu, Deqing Chen, Zoran Dimitrijevic,
David Lie, Durga Devi Mannaru, Alma Riska, Dejan Milojicic

• Alan Messer is with Samsung Electronic’s Corporate Technology Operations, 75, W. Plumeria Dr., San Jose, CA
95134. E-mail: alan_messer@yahoo.com

• Philippe Bernadat is with Hewlett Packard, 5 av. Raymond Chanas, 38320 Eybens - France. E-mail:
philippe_bernadat@hp.com

• Guangrui Fu is with the Mobile Internet Laboratory, DoCoMo Communications Lab. USA, Inc. 181 Metro Drive,
Suite 300, San Jose, CA 95110. E-mail: fu@dcl.docomo-usa.com

• Deqing Chen is with AskJeeves at 1551 South Washington Avenue Suite 400 Piscataway, NJ 08854 Email:
dchen@askjeeves.com

• Zoran Dimitrijevic is with Google at the University of California at Santa Barbara, Comp. Science Dept, Santa
Barbara, CA 93106. E-mail: zoran@cs.ucsb.edu

• David Lie is with the University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4 Canada email:
lie@eecg.toronto.edu

• Durga Devi Mannaru is with IBM, Reserch Triangle Park, NC 27709. Email: durgavellanki@yahoo.com
• Alma Riska is with Seagate Research, 1251 Waterfront Place Pittsburgh, PA 15222 E-mail:

alma.riska@seagate.com

• Dejan Milojicic is with Hewlett Packard Laboratories, 1501 Page Mill Rd., MS 1183, Palo Alto, CA 94304. E-
mail: dejan_milojicic@hp.com

Abstract — It is widely understood that most system downtime is accounted for by programming errors

and administration time. However, a growing body of work has indicated an increasing cause of downtime

may stem from transient errors in computer system hardware due to external factors, such as cosmic

rays. This work indicates that moving to denser semiconductor technologies at lower voltages has the

potential to increase these transient errors. In this paper, we investigate the susceptibility of commodity

operating systems and applications on commodity PC processors to these soft-errors, and we introduce

ideas regarding the improved recovery from these transient errors in software.

Our results indicate that for the Linux kernel and a Java virtual machine running sample workloads many

errors are not activated mostly due to overwriting. In addition, given current and upcoming microprocessor

support, our results indicate that those errors activated, which would normally lead to system reboot, need

not be fatal to the system if software knowledge is used for simple software recovery. Together, they indi-

cate the benefits of simple memory soft error recovery handling in commodity processors and software.

Index Terms — soft errors, memory errors, commodity, operating system, Java, recovery.

1 INTRODUCTION

Commodity systems such as PC systems based on the Intel IA-32 architecture running the Win-

dows and Linux operating systems account for the bulk of computer system sales. As computers

become more ubiquitous, demand for better performance and higher availability increases in

cost-effective commodity systems. However because of price pressures, current commodity

systems have focused on price/performance issues, giving availability less attention. It is a

common belief that software errors and administration time are, and will continue to be, the most

probable cause of the loss of availability [13]. While such failures are clearly commonplace,

especially in desktop environments, research has shown that certain transient hardware errors,

particularly in memories, are also becoming increasingly probable as technology improves [5,

32]. Since such transient errors require system reboots that can take several tens of minutes or

more on large systems, these errors can affect availability considerably.

Hardware errors can be classified as hard errors (faults) or transient (soft) errors. Hard errors are

those that require replacement (or otherwise relinquished use) of a component. These typically

happen as a consequence of physical damage to a component, e.g., by damage to connectors.

Transient (soft) errors are those that result in an invalid state in the hardware that is correctable.

For example, data stored at a memory location may become corrupt, but overwriting it will

remove the invalid state. Such errors may lie dormant for a significant time, since they are only

detected by the system when the processor directly uses the erroneous hardware or corrupt mem-

ory location. When an error is touched by the hardware it is referred at as Error Activation, while

activated errors which go undetected by the hardware are called Silent Data Corruption. Such

hardware errors have been considered by mainframe technology for years using expensive

proprietary hardware and software for detection and recovery [2, 26]. However, in the field of

commodity systems, it has not been cost-effective to provide full hardware detection and

redundancy for recovery support to mask all errors.

Results over the last 20 years have shown that soft errors due to cosmic rays and substrate alpha

particles can cause semiconductor transient errors in memory hardware [32]. For example, it has

been reported that a 1GB memory system based on today’s 64Mbit DRAMs still has a potential

combined error rate of 3435 FIT (Failures In Time -- failures in 109 hours) when using Single

Error Correct-Double Error Detect (SEC-DED) ECC [10]. Of these errors soft-errors account for

30 times (96.7%) the errors when compared to hard errors. This is equivalent to around 300

reboots resulting from soft errors on 10000 machines in 1 year, if all the errors are activated and

cause reboots. Based on Moore’s law, both cache and DRAM sizes will grow significantly over

the next 5 years (to around 2Gbits per DRAM), indicating the possibility for a large increase in

error rates due to shrinking cell sizes and reduced supply voltage.

The increasing prevalence of soft errors and their recovery has received some attention in

current- and next-generation commodity processor architectures. For example, Intel’s IA-32

architecture has various levels of support across processor implementations for error detection

and correction on certain buses and caches. In addition, the new Intel/HP IA-64 architecture

contains increased support for the detection of, correction of, and reporting for software recovery

of soft errors at the processor level.

At current error rates and memory sizes, processor-only recovery support may be sufficient.

However, given the potential for a high soft error rate, we would like to understand the effect of

those errors that are not masked by hardware support. In doing so, this paper aims to determine

how frequently soft errors are activated by commodity PC software using commodity operating

systems on commodity processors. In addition, given improved error support, we aim to

determine what influence will soft errors have on commodity software workloads and what are

the possibilities for recovery from those soft errors.

The rest of the paper is organized as follows. In Section 2, we present our approach to investi-

gating error susceptibility and recovery on commodity processors. We then describe our

investigation into the influence of these errors on a commodity operating system (Section 3) and

a sample application platform (Section 4). In section 5, based on our understanding we analyze

the probable effect of soft errors on commodity systems with and without simple, improved error

handling. Section 6 presents work related to this paper. In Section 7, we present the lessons

learned from this work, and in Section 8, we conclude the paper and propose potential future

work.

2 APPROACH

In a commodity system based on the IA-32 or IA-64 architectures memory soft errors predomi-

nantly occur in both the cache and main memories of a system. Depending on memory size, tech-

nology sensitivity to soft errors, and price pressures, PC systems usually support at least parity

detection on main memory and ECC for larger caches. Single bit errors can be effectively

masked with error correction support, however as technology feature sizes shrink and voltage

levels drop the probability of multiple bit errors increases. Depending on the protection used,

price, and technology types the number of errors masked by this protection will vary. But

ultimately, a number of soft errors are not masked and may be activated by the software resulting

in either detected errors or silent data corruption.

Determining the affect of soft-errors on a commodity system is a difficult task due to their

relative infrequency and limited post-mortem information. Past work has reported the effect on

availability of these errors from data acquired from in the field failures, however this information

typically comes from mainframe machines where some level of post-mortem information is

available. Our approach to this problem is to investigate the activation rate of emulated soft

errors (rather than total availability) for off-the-shelf commodity systems and software. Based on

this approach, we can gain an understanding of how soft errors are activated and with some

minor kernel modifications we can classify those errors by their usage and likely effect on those

commodity softwares and processors.

Based on this information, we would like to understand the processor and system status at which

the memory error is activated. This is important because the error’s severity on the software and

thus the ability of the system software to recover from the error is directly affected by what soft-

ware activates the error. We believe that the information derived from these experiments will

increase the understanding of whether and now to make software execution platforms more

robust to soft errors.

Soft-errors based on sources such as cosmic rays occur uniformly in memory, although the size

of the error may vary due to multi-bit impacts. To mimick this occurance our approach is to

insert emulated memory soft-errors uniformly distributed throughout memory and then

determine their activation rate. This approach does not stress-test particular memory regions or

system processing for errors to understand fully the consequences of the error on availability,

other work covers this approach well. Instead, we are able to determine the effect of the

uniformly inserted errors and their effect on the total system software (OS, application software,

etc.).

In this paper we evaluate two common PC software platforms; the operating system and Java vir-

tual machine platforms. Operating systems have the most scope for performing recovery without

affecting application code because it is first to receive an error from the hardware and is in total

control of the hardware. However, some errors cannot be handled by the operating system. In

these cases, the Java virtual machine’s abstraction may enable additional application recovery.

2.1 Existing Commodity Error Handling

The effect of a soft error on software execution depends predominantly on the processor’s

support for error masking, handling and reporting. In commodity processors, such as IA-32 and

IA-64 architecture processors, a detected memory soft error causes the system to raise a Machine

Check Architecture (MCA) exception to notify the operating system of a serious error. However,

because the hardware has seen an un-correctable error and because of commodity price/perfor-

mance pressures, this exception usually leaves the processor in an undefined state requiring a

system reboot due to loss of containment of the error’s effects at the hardware level.

A complete overview of the IA-32 or IA-64 MCA is beyond the scope of this paper. In general

for IA-32 processors, while the exception leaves the processor in an undefined state, the status of

the processor concerning the error is reported in a set of processor registers [17]. The IA-64

architecture extends support for soft errors in two ways [16, 28]. First, additional hardware

detection is supported for processor implementation, such as providing parity or ECC protection

to the system bus and the three on-chip caches. These provide good coverage of most common

errors while limiting cost. Second, the recoverability of machine-check exception handling has

been improved by providing several types of well-defined error scenarios. This provides more

information for potential software containment of the error.

These processors report many types of errors as part of the MCA. For memory errors, three

pieces of information are of interest: where the error activation occurred (both the current

instruction point and the erroneous memory location), what action caused the error (e.g. read or

write access) and whether it occurred in main memory or in cache. Based on these error cases,

several opportunities exist for simple error recovery. For example, a write access to a soft error

in main memory need not cause a fatal exception, since the error is being overwritten rather than

read. However, many architectures cause a cache read on a write, in order to read the data into

cache for update. In doing so, an error is consumed and signalled needlessly. Alternatively, an

error may occur in user memory during application processing. Since the error is outside the

kernel its integrity has not been affected, allowing an enhanced kernel to simply kill the user

process and continue.

Based on these possibilities, our approach is to understand where errors occur, and what

operation was being performed, so that knowledge can be used to determine whether some form

of error recovery processing could contain the error. This may lead to enhanced error recovery in

the kernel or an application platform to contain the data corruption due to the error.

3 INFLUENCE OF SOFT ERRORS ON A COMMODITY OS

To understand how activated errors affect the operating system on commodity processors we

need to measure and characterize soft errors with the following information:

• Was the processor reading or writing memory? Depending on the processor

implementation, errors while writing versus reading memory may be ignored since the content

is overwritten.

• Whether the processor is executing kernel or user code? If the error activation occurs while

the processor is in user mode, there may be opportunity for terminating the current thread or

task and switching to another one, thus avoiding bringing down the system

• Whether the affected memory is in user or kernel space? If the processor is executing

kernel code, but the accessed memory is in user space, such as when reading user data in a

write system call, or when reading system call arguments, it may be possible to modify the

operating system to send a signal to the corresponding user task and interrupt the system call.

Most operating systems are already prepared to handle an invalid memory access for such

transfers.

• What is the memory object type and what’s the OS state, if the processor is executing

kernel code? Depending of the type of kernel memory and how it is accessed (read/write) the

recoverability of the error can be determined from the state saved from the error insertion.

3.1 Kernel instrumentation and methodology

Simply injecting errors at random memory locations is an easy task. Determining if the error is

activated and what the effects are is more difficult. The error may be activated without any

visible effect, even though its future consequences can be severe. For example, an activated error

may cause a reboot requiring a file system integrity check taking many minutes or hours for large

systems. In the extreme case where the kernel panics or halts, analyzing error casualty “a

posteriori” is complex. Restarting the system during this analysis is often a long process that may

require some human intervention.

For soft-error investigation where a number of samples are required, we feel kernel panic

analysis process is too slow and difficult to gather enough samples. Instead, we chose to adopt a

non-intrusive approach of error activations that would give us enough information to categorize

the memories usage and use this with human analysis to determine the general affect on the

underlying software. To enable this hand analysis, we must modify the kernel to capture the

relevant state at memory error activation time in a non-destructive and non-intrusive fashion. For

each activated error our instrumentation records the activation delay and some error context,

including: affected memory type at injection time, the affected memory type at activation time

(since memory may be re-allocated), the access mode (read or write), the execution mode (kernel

or user), the interrupted task’s ID, and the program counter. This information is used under

human analysis to understand how potentially fatal each error would have been to the OS.

Note, because we are using a software injection approach, we are only attempting to determine

the software affect of activated errors on the system, rather than measure total availability of the

systemwere. In addition, using this approach we are unable to measure activation due to no pro-

cess memory activity such as DMA transfers or virtual memory lookups.

3.2 Error Injections

We performed our investigations on an IA-32 platform using watch points to simulate memory

errors. Similar to break points for instructions, watch points are a means to detect any type of

memory access to a given virtual memory location. A set of three debug registers in the

processor allows the detection of data read/write accesses, or instruction fetches at any given

memory location. Given that the watch point mechanism is virtual address driven, one limitation

is that physical memory that isn’t accessed through a virtual mapping is ignored. In particular

simulated errors in page tables (PTE) can not be detected during page translations, nor can errors

in I/O buffers during DMA operations. Most platforms use a TLB cache to minimize PTE

lookups. I/O buffers usually contain user data and errors activated in such memory area are not

considered fatal. This limitation shouldn’t significantly impact the OS susceptibility.

The fault injector is organized as two components, a user mode program and some newly written

kernel code. The user mode program is executed concurrently with the workload. The user mode

program randomly selects physical addresses where to inject an error. Then it interfaces to our

kernel injection component through a /proc virtual file system interface to setup a watch point,

called a /proc/mfi. This interface is a convenient way to communicate the kernel without adding

new system calls. If the error is activated, the kernel component returns the error context,

through the same interface. It will delete the watch point once the error is activated or if some

configurable time-out expires. Finally it computes the various statistics required for our analysis.

The watch point facility does not allow more than one virtual address to be monitored

simultaneously. Therefore, we setup a time-out to detect that the error has not been activated, and

inject a new error at another random location.

The kernel component searches which virtual address (kernel or user) maps into the physical

address provided by the user program. (We never detected multiple memory mappings while

running our experiments). This virtual address is process space dependent and must be searched

for each distinct task. This reverse PTE lookup is fairly expensive and can not be performed

systematically for all tasks or at each context switch. Instead it is performed when a task is first

scheduled after the error was injected, then the matching virtual address is cached in a task

specific data structure. Additionally the kernel intercepts all virtual mapping requests in case the

physical page where the error was injected is about to be mapped. Three watch points are

initialized to detect read, write, and instruction fetch on this virtual address. If a watch point

exception is raised the kernel gathers the error context and returns it to the user program. See

Figure 1 for a overview of this non-intrusive soft-error emulation process.

To collect the largest sample set, a new error is injected as soon as the previous one is activated

or when the time-out expires, therefore injections are not strictly periodic. Overall we injected

one error every 50 seconds, with minimal impact on the workload applications.

3.3 Memory objects classification

To enable human analysis of the activation point and consequences of the recorded exceptions,

we need a means of classifying the usage of that memory as well as determining where is it is

used. In order to classify memory usage, we chose to break down memory usage into types of

memory, based on the point at which it is allocated. This allows us to determine whether the

memory is used for file systems buffering, stack space, etc. and thus categorize them for further

analysis. To obtain this memory type information, the Linux OS was instrumented such that

every byte of main memory be classified. This is accomplished by modifying the memory

allocators (the buddy and Slab memory systems [3]) so that they register the requestor’s return

PC within the memory object. Each distinct PC is mapped to a distinct memory type. Given any

kernel virtual address, the operating system’s memory type may be retrieved either from the page

descriptor or the Slab header. The memory object type is determined both at injection and

activation time, since the physical memory may be re-allocated in the meanwhile. This allows

the program function allocating the memory (either the kernel or application) to be recorded as

well as the function activating the memory and then stored for analysis on activation.

3.4 Error severity classification

We categorize each error into one of three simple error severity classifications based on whether

the error was in kernel or user memory and whether the access was a read or a write:

• Overwritten. The memory is accessed in write mode. On many platforms, write access to an

erroneous location is not detected and can be ignored. However, on some platforms, a write

access may be preceded by a read when the cache loads a line, causing the processor to detect

the error before it can be overwritten.

• User Signal-able. The memory is accessed in read mode, but it belongs to a user (as opposed

to kernel) area. This applies whether or not the processor was running in kernel or user mode.

In these cases the state of a particular user program has become corrupt, but the processor may

allow the kernel to continue operating. As a result, the kernel can signal the user task and pro-

ceed with another one, or to interrupt the system call. Depending on the processor, some mem-

ory error exceptions indicate that processor error containment has been lost, these are not

considered to be user signal-able.

• Kernel Fatal. The memory is accessed in read mode and the location belongs to the kernel

space. In general, this is fatal, because kernel state is corrupt. There may be cases where the

error could be ignored or surmounted, but this would require a more thorough kernel analysis.

3.5 Experimental Setup

For our experimentation, we used a 500 MHz Pentium III PC with 192 MB of memory running

the Linux kernel version 2.2. We used two workloads:

• Workload 1: The host runs an Apache Web server and repetitively recompiles the Linux kernel.

A single client (600 MHz Pentium III Windows NT) connected over a 10 Mbit Ethernet link

runs the WebStone benchmark against the Apache server, simulating 20 users. The network

traffic is close to saturation. For this workload the real memory was artificially reduced to 64

MB so that the memory working set be slightly larger than real memory to induce some swap

activity.

• Workload 2: The host runs mySQL server 4.0.12 and iteratively executes the associated CPU

bounded benchmark suite. We didn’t limit memory as we did for workload 1, leaving the Linux

system with 10% of memory reported free. Another different is that there is no network traffic

in this workload. One characteristic of this version of MySQL is its extremely efficient memory

cache, reducing the amount of I/O operations.

To collect enough performance data, we injected errors at a much higher rate than found in a real

system. Unlike a real environment where errors persist in memory as long as it is not activated,

our simulator cannot monitor more than one error at a time. Since the error may never be

activated we need to impose a time-out. So the injection rate is not a fixed parameter, it is not

uniform, and its value can only be measured a posteriori. The time-out value is the only

configurable parameter.

We performed two sets of experiments. With the first one, performed with workload 1 (7 first

rows of Table 1), we study how the activation and activation delay evolve as a function of the

error injection time-out. In this experiment, the injection time-out varies from 10 seconds to 30

minutes. The second set of experiments, performed on both workloads (5 last rows of Table 1),

allows us to characterize the error severity, and to observe the influence of the workload. Here,

the errors were injected at higher rates and the experiments last longer.

Overall across 12 distinct experiments, 8624 error injections were performed over a 110-hour

period, resulting in 1774 activations. In the next sections we analyze these experiments with

respect to: the activation rates, activations delays, the influence of the time-out value and the

workload, and the error severity.

3.6 Activation Rate and Activation Delay

Because of our need to use a time-out on memory injections, our first analysis was to determine

how activation delay varies with the injection time-out. Absolute activation rates are of less

interest, but logic indicates that the larger the time-out is, the greater the activation rate. With no

time-out (e.g. an infinite time-out value) the activation rate should be close to 100%. Only close,

since some memory areas may never be accessed, such as unused kernel text code (initialization,

unused components). Figure 2 shows that the activation rate reaches 55% for a 120 second time-

out and 85% for a 30 minute time-out. This high activation rate is the result of both a memory

intensive workload (as little as 4% free memory) and of minimal memory fragmentation

resulting from the use of the slab allocator in the Linux kernel.

Figure 3 reports the activation delay (elapsed time between the injection and the activation).

With a 2 minute time-out value, 90% of the activated errors are activated within a minute. The

average activation delay increases insignificantly for injection time-out values greater than 5

minutes.

3.7 Memory Distribution and Activation Rate

Related to this analysis, we also would like to understand how activated errors are distributed by

memory type to determine their recoverability. Figure 4 depicts the average memory usage

distribution while running workload 1. We have categorized memory into 200 distinct memory

object types. Amongst the allocated memory (96% of total real memory), the top 9 types account

for 93%. 75% of the memory (48 MB) is dedicated to user processes. For this workload, a total

of 280 processes are allocated. Excluding the user private objects (private as opposed to shared

with other tasks), the mapped files and the free memory, 21% of the memory belongs to kernel

objects.

In Figure 5 we show 3 distinct injection and activation distributions for 4 injection time-out

value experiments. The first distribution is the percentage of overall memory used by each

memory type. The second is the injection distribution over the various memory types and the

third one is the distribution at the activation time. The figures show that error injections are

distributed across memory object types according to their memory usage. This is no surprise,

since the injector uses a uniform random generator to compute the physical addresses. The

activation distribution is not such a close fit; in particular, the user private memory hit rate is

unexpectedly high and the mapped file hit rate is unexpectedly low. Two factors contribute to

this:

• The task/thread creation rate for this workload is high and the private data page lifetime is

short. Every byte of a freshly allocated private page is cleared by the kernel whether or not it

will be entirely used by a task.

• The text (here classified as a mapped file) locality is also high. The server tasks are repetitive.

Only a small fraction of the text pages are referenced. This leads to low text hit rate.

Another important observation is that the injection time-out value has little influence over the

distributions or activation rate per memory type at these time-out levels, since while the absolute

activation rate varies with timeout, our activation rate per memory type is similar across timeout

values. This validates our experimental non-intrusive time-out based approach mimics the activi-

tations a real kernel would see from memory soft errors.

3.8 Error severity

Figure 6 shows the overall result of our classification across the 2 workloads. Overall, only 10%

of the activated errors are considered fatal to the system for our sample workload. Most of this

reduction is caused by 74% of the error activations simply overwriting an existing error. Leaving

16% of the errors which have potential for signalling the application before termination. This

interesting result follows from the common operation of many software components such as

stacks and virtual memory pages, both of which are generally written (a intermediate result or

zeroed page respectively) before they are read.

First, let us assume that write errors are silently ignored by the hardware or that if signalled the

error can be continued and the OS may be restarted. Then, we could ignore 74% of the activated

errors. Given this assumption, an unmodified Linux system would be affected by only 26% of

the activated errors. Second, the kernel already has support for appropriately handling existing

user data errors (e.g., segmentation violations) by signaling the relevant task. The same

mechanism would allow to signal applications when a read error activation occurs in user space.

With this error handling support and restartable processor error exceptions, the system would

only need to panic for 10% of the errors.

Table 3 provides the activation rate and error severity distribution for the two workloads and on a

per time-out basis. Our first observation is that time-out value has little influence on the severity.

The activation rate is higher for the first workload since we artificially reduced the real memory

so that the entire memory range is used. Despite a significant variation for the overwritten and

user signal-able errors, the fatal error proportions are close: 8% for workload 1 and 13% for

workload 2.

3.9 Potential OS Recovery and Containment

Our results show that up to 90% of memory errors can be considered as non-fatal to the

operating system. This assumes that the operating system has been instrumented to capture

relevant information at error activation time and is able to pinpoint the affected memory object

type. This may allow it to discard write mode errors and signal user processes when errors occur

in user memory space. While this does impose extra kernel development, we were able to apply

this modification to the Linux kernel in about one man-month. Given the Linux kernel size, this

seems a reasonably small implementation cost for the potential benefit.

The remaining 10% is much more difficult to handle. Looking more closely at the error distribu-

tion in Figure 5, we observe that apart from the non-kernel object types (user private and mapped

files) a number of kernel objects may be altered without affecting the overall kernel availability:

• User page table entries - Some may be re-built; at worst, the task can be signaled.

• Buffer cache - Non-dirty blocks can be recovered from disk; or an I/O error may be raised.

• Kernel stacks - If locks can be unwound, in some circumstances the task may be destroyed.

• Network buffers - The data may be retransmitted, or an I/O error can be raised.

• Kernel text - May be reloaded if the page-in code path is not altered.

More generally, corruptions within logs or statistical counters should not bring the system down.

However, this decrease in fatality will come at a higher cost due to more complex modifications

to the operating system core. Table 2 provides the list of kernel code routines affected by fatal

read error activations with workload 1. The most frequently affected are

• ide_output_data - Used while writing to disk. This is mostly a consequence of the compile

tasks.

• statm_pgd_range - Collects the memory usage statistics available through the /prof virtual file

system. We were running the top program simultaneously to observe the memory usage.

• xirc2ps_interrupt - Processes network controller interrupts. The network is close to saturation

with the Webstone benchmark.

• filemap_nopage - When a user task maps a shared page as private, the page must be copied.

This is usually the case for initialized data sections of a program. This memory is not

considered as user private. One option would consist of signaling all tasks still mapping this

page and discarding it for each. The page would then be reloaded from disk when the program

is next scheduled.

• do_fork - The kernel duplicates a significant amount of kernel data. Workload 1 induces a

significant amount of task creations, since it continuously compiles small files.

4 INFLUENCE OF SOFT ERRORS ON APPLICATION SOFTWARE

System recovery is a complex problem that involves participation from the hardware through to

the application software. We have seen that the operating system could be extended with simple

instrumentation to increase recoverability when it receives a memory error exception. However,

if the operating system determines that the error occurred in application space, in order to avoid

termination, the application must consider recovery as well. The operating system could be

extended to signal the application that an error occurred, but recovery for the application is not

necessarily straightforward. The data corruption that caused the exception may have affected an

important data structure. In addition, on commodity processors, the execution activating the error

is often not continue-able after the exception. Therefore, the application will either need to

consider recovery from such exceptions or the system will need to have mechanisms to preserve

application state in order to provide recovery for the application.

In this section, we present initial investigations into application susceptibility to soft errors. At

the application level, Java Virtual machines (JVM) and Java applications are of particular

interest to us due to the large garbage collected heaps, the machine abstraction presented, and the

integrated exception mechanism. By presenting an abstraction between the operating system and

the applications, the virtual machine simplifies application-level recovery by using increased

knowledge of the application’s status and semantics, such as whether the error is in static or heap

memory.

4.1 Influence on a Java VM

To determine how the JVM and its Java applications can respond to soft errors and potentially

detect silent data corruption, we performed several investigations instrumenting and adapting the

open-source Kaffe VM. This allowed us to examine its memory usage, to instrument it for fault

injection experiments, and to extend it to detect silent data corruption. It is also a mature system,

it has reasonable performance, and it is widely used. For our experiments, we used an IA-32

RedHat Linux 6.2 platform, running Kaffe 1.0.5 in the “interpreter mode.”

We instrumented the Kaffe virtual machine to inject memory errors into the data memory area

and to record the memory status. In a manner similar to the OS fault injector described in Section

3.1, the interpreter loop is instrumented so that after a certain number of byte codes have been

executed, the loop calls our error injection procedure to inject a memory error.

In a Java VM, the data areas can be divided roughly into two partitions, those allocated statically

for the VM and those allocated on the heap for Java objects. In each test set, errors are injected

into one of these data areas. When the error is activated, we determine what data area the error

has hit, what type of object it is in, and we also inspect the VM status to see whether it is

activated by the garbage collector. Kaffe uses the mark and sweep algorithm, which makes this

inspection fairly easy because when the GC runs all of the other user threads are stopped.

To investigate the effects on some sample applications on top of the JVM, we chose four bench-

mark applications extracted from the SPEC JVM98 benchmark suites using the medium data

configuration – ten percent [29]. To represent a range of memory uses we chose a Java expert

system (SpecJVM98 name: _202_jess), a Java database (_209_db), a Java compiler

(_213_javac), and a Java parser generator (_228_jack).

For our experiments, we injected 1,000 memory errors for the four benchmarks in both static and

dynamic memory areas of the JVM. Figures 8 and 9 show the results of our initial investigations

for the static and dynamic memory areas, respectively. These results show that for the static data

region around 5-6% of injected errors cause application errors (crashes or incorrect results), and

around 2% of errors are activated but cause no adverse result. However, the Java object heap

shows a much higher error activation rate between 16% and 63% when causing no error and

between 7% and 13% when causing application errors.

The most interesting results show that there is a significant difference in the error susceptibility

of the two data areas, especially that there is a large difference in the number of errors that are

injected and not activated. As can be seen from figure 9, this seems to be because the Garbage

Collector (GC) activates a large number of those normally latent errors. This stems from Kaffe’s

mark and sweep garbage collector strategy that touches most objects periodically causing latent

errors to be uncovered. This may cvause an error on the GC thread. However, the GC is designed

to be easily restarted to relieve load when memory is tight.

Interestingly, however, although most of the error activation takes place in the garbage collector,

relatively few errors actually cause real problems (crashing the JVM, for example). We believe

the main reason for this is that the garbage collector only uses certain data in the heap (e.g.,

object references) on its traversal reducing its susceptibility to the number of actual errors. By

comparison, 56% of static data error activation cause application errors, whereas, only 7% of the

error activation in the GC cause application errors.

4.2 Potential JVM Recovery and Containment

These results indicate that similarly to the operating system a large number of errors are latent

and never detected while executing. However, it seems that applications that exhibit behavior

similar to a mark and sweep garbage collector are much more susceptible to uncovering those

normally latent errors. For example, an in-memory database application transverses large amount

of memory in order to produce each query result. However, it is unclear whether the different

search patterns of other garbage collectors are similarly affected.

Results also indicate that with a little extra application knowledge a large number of those

detected errors need not be fatal. For example, the garbage collector could be modified to

tolerate machine-check abort exceptions that may occur during a heap sweep. Or in the case of

silent data corruption, when errors are not detected by hardware, the garbage collector could

check the validity of object references before use. In fact, most garbage collectors already check

object reference validity before proceeding as part of their sweep to determine which data is an

object reference. This probably accounts for some of the garbage collector’s existing tolerance to

errors. Also, given the level of abstraction offered by the JVM, there may be opportunities for

other forms of error handling, such as improved exception handling and object checksums to

detect silent data corruption. Initial investigations into these ideas show several interesting

approaches [7].

5 ANALYSIS FOR COMMODITY SYSTEMS

At the beginning of this paper, we noted that it has been reported that a 1GB memory system

based on today’s 64Mbit DRAMs still has a potential combined unmasked error rate of 3435

FIT1 when using ECC [10]. Given our investigation, it is interesting to consider: (1) given our

activation rate evidence how many failures in time would lead to a reboot? (2) given our results

for the recoverability of errors, how can this error rate be improved?

For simplicity lets assume that all activated errors are detected, which is quite common for an

ECC based system. Sections 4.2 and 5.1 report similar worst case error activation rates in the

range of 11%-37%, an average of 20%. Taking the worse case activation rate and our 1GB mem-

ory system, our experimental result would indicate that the software would only need to reboot

on a (3435 x 0.20) = 687 FIT1 activated error rate.

Our analysis of the activated error reports indicates that given a small amount of modification to

each piece of software not all errors need be fatal to the OS (reboot) or application (restart). We

would like to convert our understanding of the various software memory susceptibilities to errors

into an approximate visible error rate. The approximate combined error rate for errors that are

not masked by the hardware or modified OS can be determined using the following formula:

In section 3.9, we indicate that only 10% need be fatal to the operating system (KernelError-

Susceptibility), around 74% of errors are overwritten (OverwriteRate) and 16% of errors could

be signalled to the application (SignalledApplicationErrorSusceptibility). Given our design goals

to minimize the operating system modifications, let’s assume KernelErrorFatality is 100%. For

high-level IA-32 and IA-64 processors, most forms of data overwrite can be recovered from by

the processor or exception handler, so let’s assume OverwriteFatality is 0%. Our results from

Section 4.2 show that 7-13% of JVM errors would be fatal to the JVM and its application when

signalled (ApplicationFatality). This indicates that with a little application knowledge the reboot

error rate could be reduced to (3435 x 0.20) x ((0.1 x 1.0) + (0.16 x 0.13) + (0.74 x 0.0)) or 82.9

FIT1, a considerably smaller rate. This drop comes predominantly from ignoring overwritten

errors. However, if we assume an old IA-32 processor where overwrites are fatal, this error rate

remains at 591 FIT. In these situations, when execution cannot be continued, our investigations

indicate that this may be improved by focussed kernel modifications. Since these numbers are

1 Note 97% of the referenced source error rate is accounted for by soft errors. For simplicity the remaining

3% is not taken into account in these calculations.

F a t a l E r r o r R a t e V H E A R ×××× (((()))) K M S A M S O R + + (((()))) ××××
V H E V i s i b l e H a r d w a r e E r r o r R a t e
A R A c t i v a t i o n R a t e
K M S K e r n e l E r r o r S u s c e p t i b i l i t y K e r n e l E r r o r F a t a l i t y
A M S

××××
S i g n a l l e d A p p l i c a t i o n E r r o r S u s c e p t i b i l i t y A p p l i c a t i o n F a t a l i t y ××××

O R O v e r w r i t e R a t e O v e r w r i t e F a t a l i t y ××××

=
=

=
=
=

=

error rates we cannot directly calculate a machine’s eventual availability without determining the

downtime for each error.

6 RELATED WORK

In 1979, Ziegler et al. at IBM Research proposed that cosmic rays and alpha particles can cause

semiconductor transient errors in memory hardware [32]. Since this seminal research many

others in the field of semiconductors have reported other experiments verifying the result. Some

semiconductor research indicates that manufacturers are managing to limit increases in soft error

rates through changes to their memory design and manufacturing processes [5, 33]. Other

research indicates the need for consideration of soft errors more carefully in the longer term [1,

10]. However, the general consensus is that soft errors are likely to continue to play an important

role in computer system availability.

Techniques such as parity bits, Error Correction Codes (ECC) and ChipKill [10] have been used

in commodity main memories, storage media, and interconnects. These technologies allow

different levels of error detection and correction on locations accessed by the processor. While

ECC techniques reduce the number of errors, in this paper, we are interested in the effect on

software when either only parity is used or errors are not masked by ECC. We believe that as

technology trends increase the probability of memory soft errors, software recovery technique

may become more important. Since these errors are not masked by hardware support, they cause

the severe Machine Check Architecture (MCA) exception which typically results in a processor

reset. These errors are a prime candidate for increasing availability through software recovery

techniques.

Numerous research has been undertaken into the influence of failures on computer systems, as

well as techniques to improve hardware and software reliability. Probably closest to the work of

this paper has been the work on fault injection, propagation and error handling. The systems,

such as FERRARI [18], React [9], and Fine [19], have greatly improved our understanding of

hardware and software faults that are difficult to catch and repeat. Hsueh et al. give a good

survey and comparison of different injection methods [15]. Some work has been undertaken into

understanding errors in COTS systems, including Linux, and the PowerPC CPU [11, 14, 21]. In

the operating system work [11, 14] the focus is on inserting faults in focused areas to stress test

the OS to evaluate potential corruption and affect on availability. This work is complementary to

work, since it focuses on availability with faults rather than soft error activation rates, both of

which are required to understand total system availability. While the COTS CPU work [21]

focused on inserting errors through out the processor logic using a circuit fault injector, rather

than focusing on the external memory system as our work does. Again we feel this investigation

is complementary to our soft error activation rate experiments.

One approach to the problem of soft errors is to use reliable hardware through the use of redun-

dancy. Typically, this increased hardware reliability is only available in proprietary servers, with

specialized redundantly configured hardware and critical software components, such as

processor pairs [2]. Examples include the IBM S/390 Parallel Sysplex [26], the Tandem NonStop

Himalaya [2], and the Stratus ftServer [22]. Cornell’s Hypervisor-based fault tolerance system

provides a software alternative using multiple virtual machines to provide an n-1 fault-tolerant

system [4]. Another approach in multiple processor systems is fault containment and recovery at

a “node” granularity including cluster systems, and multi-cellular NUMA architectures, such as

Hive [6].

Software reliability has been more difficult to achieve in commodity software even with

extensive testing and quality assurance [25]. Techniques such as recovery blocks [12],

checkpoints [13], techniques for failure transparency [20], to name but a few, have greatly

improved recovery. In addition, a lot of work has been conducted in the context of distributed

systems providing tolerance with support such as fail-over and distributed transactions [2, 13]

rather than increasing single system availability, which is the focus of our work. Rio [8] takes a

novel software-based approach to fault containment for a fault-tolerant file cache, by using

memory protection operations to protect against wild writes to shared data structures.

However, commodity software fault recovery has not evolved very far. Most popular operating

systems support some form of memory protection between units of execution to detect and pre-

vent wild read/writes. But most commodity operating systems have not taken up software

reliability research in general and have not tackled problems of memory errors. Instead, they

typically rely on fail-over solutions, such as Microsoft’s Wolfpack [27].

Part of the solution to the problem of soft errors is the more widespread use of existing availabil-

ity techniques to more effectively mask errors throughout the system. However, our approach is

complimentary and attempts to improve the understanding of the susceptibility and recovery of

commodity software to soft errors using simple fault injection and exception handling

techniques. Our goal is to contribute to the existing work on the interaction of errors with

software activation and to propose simple techniques that may help reduce the effect of soft

errors.

7 LESSONS LEARNED

The following observations can be derived from our experimental data and analysis:

• The effect of soft errors on a modified operating system may be small. For our sample

workload we measured that 90% of memory errors need not be fatal to the operating system’s

execution.

• Large numbers of activations are overwritten. This stems from the write before read use of

most memory locations. This is due to page (and object) clearing for security and semantic

reasons.

• Kernel mode read accesses to user data only account for a small number of accesses most of

which are write accesses. In addition, kernel access to kernel data only accounts for a small

number of memory access. This indicates that recovery is still possible when execution cannot

be continued after an MCA exception if processors ignore overwritten errors, since user pro-

cesses may be signalled or terminated in all other situations.

• For the Kaffe JVM and sample Java applications running on it, the memory errors in the object

heap have a higher error activation rate and susceptibility rate than those in the static data area.

• A large portion of heap error activation is caused by the garbage collector (up to 75%). But this

activation causes fewer application errors than other sources of activation (7% vs. 56%).

Adding a small amount of knowledge about the operating system and application can reduce the

need for reboots by a significant fraction (down to 10% for an operating system and down to

15% for Kaffe in our initial experiments). While these are only initial results, they do indicate

that simple forms of error handling and software recovery can noticeably benefit system

availability.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have described how memory soft errors become an increasing cause of failures

in modern systems. However, commodity recovery support from these errors is limited because

of price pressures on these systems. While semiconductor researchers try to limit the causes of

soft errors on systems, the consensus is that these errors will continue to effect system

availability.

Current and future commodity processor implementation are begining to have increased support

for soft errors signalling. Assuming this improved support, we have investigated the effect of soft

errors on commodity software. In doing so, we have gained an understanding of the correlation

between soft errors and the reboots they can potentially cause.

Our investigation into the susceptibility of both the Linux kernel and Kaffe Java virtual machine

indicate that many errors are not necessarily activated by commodity software. In addition,

despite the potential data corruption that can occur, with simple instrumentation of the Linux

kernel, we believe only 10% of memory errors actually need to be fatal for our sample workload.

For the virtual machine, a large number of errors are activated by the heap garbage collector that

need not cause a fatal error to the Java application. Together, these results indicate that with

improved processor support and a little application knowledge, few of the activated soft errors

need to be fatal to the system, especially due to overwritten errors. Recently, similar observations

to those made here have lead some high-end commodity chipsets to include memory scrubbing

support to take advantage of the overwritting to minimise errors are masked by hardware.

Our results are only preliminary and the interaction between hardware soft errors and the

software that they affect is a complex one. Therefore, future research on other commodity

software and systems would greatly benefit our work. In addition, experiments run on real-world,

possibly IA-64-based hardware, would help further validate our results and perhaps improve the

possibility of running with real work example workloads.

Acknowledgements

We are indebted to John Wilkes, Ira Greenberg, Duane Dutton, George Candea, and Armando

Fox for reviewing early versions of this paper and Valentin Anders, Dan Osecky, Mike Traynor,

Peter Markstein, Don Wiess, and Richard Adkisson for contributing to the project. Their

contributions significantly improved the project and this paper’s content and presentation.

BIBLIOGRAPHY
[1] Anghel L., Nicolaidis M., Alexandrescu D., “Evaluation of soft error tolerance technique based on
time and/or space redundancy”, XIII Symp. on Integrated Circuits and Systems Design, Manaos, Brazil,
September 2000.
[2] Bartlett, J., “A Nonstop Kernel”, Proc. of the Eighth Symp. on Operating Systems Principles, pp 22-
29, Dec. 1981.
[3] Bonwick, J., “The Slab Allocator: An Object-Caching Kernel Memory allocator”. USENIX Tech.
Conf., 1994.
[4] Bressoud, T and Schneider F, “Hypervisor-based Fault Tolerance”, Proc. of 15th ACM SOSP, pp 1-
11, Dec 1995.
[5] Baumann, R., “Soft Error Characterization and Modeling Methodologies at TI: Past, Present and
Future”, 4th Annual Topical Research Conf. on Reliability, Oct. 2000.
[6] Chapin, J., et al., “Hive: Fault Containment for Shared-Memory Multiprocessors,” Proc. of the 15th
SOSP, pp 12-25, Dec. 1995.
[7] Chen, D., et al. “JVM Susceptibility to Memory Errors”, USENIX JVM Symposium ‘01, April
2001.
[8] Chen, P.M., et al., “The Rio File Cache: Surviving Operating System Crashes”, Proc. of the 7th
ASPLOS, pp 74-83, October 1996.
[9] Clark, J., and Pradhan. D., “Fault Injection: A Method for Validating Computer System
Dependability,” with Dhiraj K. Pradhan, IEEE Computer Magazine, June 1995, pp. 47-56.
[10] Dell, T. J., “A White Paper on the benefits of Chipkill”, IBM Microelectronics Division, Nov. 1997.
[11] Fabre, J.C., Salles, F., Modriguez-Moreno, M. and Arlat, J., “Assessment of COTS Microkernels by
Fault Injection,” in Proc. IFIP Dependable Computing for Critical Applications (DCCA'99).

[12] Goodenough, J., Exception Handling: Issues and a Proposed Notation, Comm. of the ACM 18, 683-
696 (1975).
[13] Gray, J., and Reuter, A., “Transaction Processing: Concepts and Techniques,” Morgan Kaufmann,
1993.
[14] Gu. W el al. “Characterization of Linux Kernel Behavior under Errors”, DSN-03, 2004.
[15] Hsueh, M-C, et al., “Fault Injection Techniques and Tools”, IEEE Computer, pp 75-82, April 1997.
[16] Intel IA-64 Architecture Software Developer’s Manual, Volume 2, Intel 1999, Intel Corporation.

[17] Intel IA-32 Architecture Software Developer’s Manual, Volume 3, Intel 2002, Intel Corporation.
[18] Kanawati, G., et al., “FERRARI: A Flexible Software-based Fault and Error Injection System”,
IEEE Transactions on Computers, vol 44, no 2, pp 248-260, Feb. 1995.
[19] Kao, W.-l., et al., “FINE: A Fault Injection and Monitoring Environment for Tracing the UNIX
System Behavior under Faults”, IEEE T-SE vol 19, no 11, pp 1105-1118, November, 1993.
[20] Lowell, D. E., Chen, P., “Exploring Failure Transparency and the Limits of Generic Recovery”,
USENIX Operating System Design and Implementation, Oct. 2000.
[21] Maderia, H., et al., “Experimental evaluation of a COTS system for space applications”, DSN02,
2002.
[22] McLaughlin, B. “Evaluating Alternatives for Windows® 2000 Server Availability”, White Paper,
Stratus, 2001.
[23] McVoy, L., Staelin, C., “lmbench: Portable Tools for Performance Analysis”, Usenix Technical
Conf., 1996.
[24] Milojicic, D., et al., “Increasing Relevance of Memory Hardware Errors – A Case for Recoverable
Programming Models”, ACM SIGOPS European Workshop, Sept. 2000
[25] Murphy, B., et al. “Windows 2000 Dependability”, IEEE Intl. Conf. on Dependable Sys. and Nets,
June 2000.
[26] Nick, J.M., et al., “S/390 Cluster Technology: Parallel Sysplex”, IBM Sys. Jour., vol 36, no 2, pp
172-201, 1997.
[27] Pfister. G, “In Search of Clusters”, Prentice Hall, 1998.
[28] Quach, N., “High Availability and Reliability in the Itanium Processor”, IEEE Micro, vol.20, no.5,
pp 61-69.
[29] Standard Performance Evaluation Corp., “SPECjvm98 Specification,” Aug. 1998.
[30] Tandem, Compaq Corporation, “Data Integrity for Compaq NonStop Himalaya Servers”, White
Paper, 1999.
[31] Tosaka, Y., “Soft Error Modeling and Simulation for SOI Circuits”, 4th Annual Topical Research
Conference on Reliability, October 2000.
[32] Ziegler, J. F., et al., “IBM Experiments in Soft Fails in Computer Electronics (1978-1994)”, IBM
Journal of R&D, vol 40, no 1, pp 3-18, January 1996.
[33] Zoutendyk, J.A., et al., “Characterization of Multiple-bit Errors From Single-ion Tracks in Integrated
Circuits”, IEEE Trans. on Nuclear Science vol 36, no 6, Dec. 1989.

Figure 1: Non-intrusive error injection to emulate soft-errors and determine activation point/usage

Injection
App.

Location selected,
kernel informed
via /proc fs

W a tchpoint on
emulated error
inserted with
timeout

kernel

user

user

or

kernel

user

user

or
PC or memory
access hit the
watchpoint

Injection
App.

System state
captured and
stored kernel

user

user

Injection
App.

Injection timeout
occurs

STEP 1)

STEP 2a) OR STEP 2b)

Re-inject
new location

Table 1: OS Error injection experiment sets

Workload Injection
Time-out Elapsed Injections Activations Activation

Rate

1 10 sec. 100 sec. 12 2 17%

 30 sec. 5 min. 15 5 33%

 1 min. 10 min. 17 9 53%

 2 min. 20 min. 18 10 56%

 5 min. 50 min. 18 12 66%

 10 min. 100 min. 28 20 71%

 30 min. 5 hours 47 40 85%

1 10 sec. 4 hours 1690 464 27%

 30 sec. 4 hours 670 278 41%

 60 sec. 4 hours 382 197 52%

 120 sec. 4 hours 228 132 57%

2 60 sec. 90 hours 5499 599 11%

 Total
~114

hours
8624 1768 20%

Figur e 2: Fault activation rate vs. injection time-out

.

Figur e 3: Activation delay

Figur e 4: Linux memory objects classification by size

Figur e 5: Affected memory by type for the Linux kernel

Figur e 6: Err or severity classification

Overwritten
74%

Kernel Fatal
10%User

signal-able
16%

Figur e 7: Function associated with pr ogram
counter location when err or s wer e activated in

kernel m ode

Table 2: PC locations for read access memory error activations occurring in kernel mode

Kernel location % Kernel location %

ide_output_data (disk write) 20 csum_partial_copy_gene ric 2

statm_pgd_range (/proc FS) 9 math_state_restore 1

xirc2ps_interrupt (net I/O) 8 tcp_send_skb 1

filemap_nopage 8 tcp_clear_xmit_timers 1

do_fork 7 tcp_v4_rcv 1

cp_new_stat (lstat) 4 do_select 1

ext2_update_inode 4 find_buffer 1

tcp_timewait_kill 3 d_lookup 1

brw_page 3 __generic_copy_to_user 1

ext2_open_file 3 zap_page_range 1

check_tty_count 3 get_statm 1

clear_page_tables 2 vsprintf 1

get_unmapped_area 2 si_meminfo 1

lookup_dentry 2 si_swapinfo 1

skb_clone 2 collect_sigign_sigcatch 1

Total 100

Table 3: Influence of workload on error activation and severity

 Workload 1 Workload 2 Overall

Injection Time out 10 sec. 30 sec. 60 sec. 120 sec. 60 sec.

Injections 1690 670 382 228 5499 8469

Activation rate 27% 41% 52% 58% 11% 20%

Fatal 9% 6% 10% 8% 13% 10%

Overwritten 80% 81% 78% 88% 60% 73%

User signalable 11% 13% 13% 5% 27% 17%

Figur e 8: Err or acti v ation in the JVM’ s static data .

0%

20%

40%

60%

80%

100%

Jess DB Javac Jack
Benchmarks

Pe
rc

en
ta

ge
s

Application errors

Errors Activated, no
app error

Errors Injected, not
activated

Figur e 9: Err or Acti v ation in the JVM’ s heap r egion .

Error consumption in the heap

0%

20%

40%

60%

80%

100%

Jess DB Javac Jack
Benchmarks

Pe
rc

en
ta

ge

Application Error, not
in GC

Application Error, in
GC

Error Activated no
error, not in GC

Errors Activated no
error, in GC

Errors Injected, not
Activated

