
Pearl-TEE: Supporting Untrusted Applications in TrustZone
Wei Huang Vasily Rudchenko He Shuang Zhen Huang David Lie

University of Toronto

ABSTRACT
Rising concerns about mobile security have motivated the use of
architectural features such as ARM TrustZone to protect sensitive
applications from compromise by malicious applications or a com-
promised OS. However, many TEE OSes (which run in TrustZone)
currently assume all applications in TrustZone are trusted, and
thus do not provide strong isolation guarantees between them. The
benefit of this is that TEE OSes can be simple, allowing them to
provide a high-assurance trusted computing base (TCB). However,
unlike how arbitrary third-party mobile applications can be in-
stalled onto a smartphone, the need for mutual trust among all
applications running inside TrustZone prevents the installation of
3rd party applications on the TEE OS. In this paper, we identify the
key properties that define application code that may wish to use
TrustZone and show that a standard TEE OS can be extended to
support multiple, mutually distrusting applications in TrustZone
with less than a 3% increase in the TCB. We realize our ideas in
Pearl-TEE, a novel TEE OS prototype we have implemented that
can provide mechanisms specific to the needs of TrustZone appli-
cations, including isolation for execution, secure persistent storage,
and support for network communication. We find that Pearl-TEE
imposes less than 20% performance overhead on applications.
ACM Reference Format:
Wei Huang Vasily Rudchenko He Shuang Zhen Huang David Lie. 2018.
Pearl-TEE: Supporting Untrusted Applications in TrustZone. In 3rd Work-
shop on System Software for Trusted Execution (SysTEX ’18), October 15,
2018, Toronto, ON, Canada. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3268935.3268936

1 INTRODUCTION
TrustZone is a powerful mechanism for reducing the attack sur-
face of security-sensitive applications on the ARM platform. Trust-
Zone implements a hardware-based Trusted Execution Environ-
ment (TEE), which reduces the attack surface of an application
by enabling it to execute code that is isolated and protected from
other, lower-assurance code on the system, such as the general-
purpose operating system and applications. TrustZone applications
execute in an isolated environment with their own TEE Operating
System (TEE OS). This isolation provides strong confidentiality and
integrity guarantees for applications executing in the TEE and the
data processed by the TEE applications.

The existence of such a useful security mechanism might beg
the question: Why isn’t TrustZone used by security-sensitive ap-
plications in general? Indeed, neither iOS nor Android exposes
a public API that enables application code to access TrustZone.

SysTEX ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 3rd Workshop
on System Software for Trusted Execution (SysTEX ’18), October 15, 2018, Toronto, ON,
Canada, https://doi.org/10.1145/3268935.3268936.

While strategic business exclusivity may be one reason for this
omission, a concrete technical reason is that TEE OSes vendors are
not sure their OSes will hold up to intentional attack from applica-
tions, thus small size and simplicity are required to maintain the
high-assurance level of the TEE OS. Because of this, for current
TEE OSes, it is simpler just to limit which applications can run
in the TEE, so that only a small number of mutually trusted TEE
applications that are signed and vetted by the smartphone vendor
are allowed to benefit from TrustZone.

In this paper, we propose Pearl-TEE, which removes the need
for TEE applications to mutually trust each other for less than a
3% increase to the trusted computing base (TCB) size of the TEE
OS. To do this, we first define an abstract TEE application model,
which encompasses the types of applications that can benefit from
TrustZone’s security guarantees. We then implement a Pearl-TEE
prototype TEE OS on top of an existing TEE OS to estimate the
amount of extra code that needs to be added to support the abstract
TEE application model. Finally, we demonstrate that our prototype
is realistic by porting three mobile payment applications and one
secure chat application to run in TrustZone. This paper makes the
following contributions:
(1)We describe an abstract TEE application model and show how
common applications map onto that model.
(2) We describe our implementation of Pearl-TEE, a prototype TEE
OS that satisfies the requirements of our TEE application model.
(3)We evaluate the increase to the TCB of modifying an existing
TEE OS to implement Pearl-TEE and find that it only increases the
TCB by 3%. We evaluate Pearl-TEE’s performance and practical-
ity by porting four existing applications and find that Pearl-TEE
imposes less than 20% performance overhead.

The remainder of this paper is organized as follows: Section 2
introduces hardware dependencies and the TEE application model
with examples of secure applications. In Section 3 we give details of
the Pearl-TEE system design. We present how Pearl-TEE and TEE
application examples are implemented and evaluate our prototype
in Section 4. We conclude this paper in Section 5.

2 DEPENDENCY AND APPLICATION MODEL
2.1 Hardware Dependency
ARMTrustZoneAnARM SoCwith TrustZone partitions software
and hardware resources, such as memory and access to peripherals,
into a secure- and normal- world, with the secure world isolated
from the normal world by hardware protection. In the secure world,
a small secure TEE OS provides basic security operations as well as
a TEE in which applications can run. The benefit of this division
between a large, normal-world OS and a small TEE OS in the secure
world is that applications running in the TEE have a smaller TCB,
isolated from the large and complex normal-world OS. To maintain
these benefits, the TEE OS must be high-assurance, meaning that it
has passed a higher standard of code auditing and testing during

https://doi.org/10.1145/3268935.3268936
https://doi.org/10.1145/3268935.3268936
https://doi.org/10.1145/3268935.3268936


its development. In the current ecosystem, only trusted, signed
applications can run the TEE OSes, which means that all TEE ap-
plications must have their code vetted before being allowed to run
in the TEE.
Secure Element To attest the integrity of software running on a
device to a remote party, a trusted hardware device in the form of a
Secure Element (SE) or a Trusted PlatformModule (TPM) is required.
Both of these are security-hardened processing elements capable
of securely storing signing keys and performing cryptographic
operations with those keys. An SE typically contains a private
signing key, whose public verification key is certified by a well-
known entity. Access to the SE is gated by a secure or verified boot
procedure so that only a properly certified TEE OS image can access
the SE and have it sign messages. As a result, the SE key can be used
to attest the integrity of a TEE OS and the messages it generates to
a remote party. Signatures made by SE keys can be trusted because
the keys are never exposed to the normal-world OS or applications
running on the application processor. In our design, we assume the
presence of an SE, but our design would work equally well with a
TPM.
Trusted Touch Screen A trusted touch screen provides a secure
channel between the user using a device and the TEE software.
Typically, the touch screen is shared with the normal-world OS, but
provides exclusive access to either the normal-world OS or the TEE
OS at any one time. Thus, when used by the TEE OS, it provides
exclusive read and write access to the TEE OS. Content displayed
by the TEE OS and input read by the TEE OS cannot be tampered
with, interrupted or read by the normal-world OS.

2.2 TEE Application Model and Examples
We first describe several common classes of applications that cur-
rently use, or may benefit from, the security provided by TrustZone.
We then identify shared qualities of these applications to construct
our abstract model.
Payment ApplicationsMalware targeting mobile payment appli-
cations has become more prevalent [18]; thus, some phone manu-
facturers now use TrustZone for application execution to isolate
their payment applications from malware and vulnerabilities in the
normal-world OS. Given that they must sign operations as well as
verify the authenticity of responses sent to them, they must store
long-term cryptographic keys securely. Examples of payment appli-
cations that use TrustZone include HuaweiPay and SamsungPay;
on the other hand, PayPal and AliPay are examples of applications
that do not.
Digital Rights Management Digital Rights Management (DRM)
systems intend to control the use, copy and distribution of copy-
righted software and data. Unlike payment applications, DRM sys-
tems do not take user input from the trusted touch screen, but only
require a secure path to output video content. DRM applications
also need to communicate with remote servers and must protect
and use keys to decrypt content for users. For example, XBox and
PlayStation encrypt game-related data so that they cannot be copied
across multiple devices [2].
Authentication Authentication applications are used to provide
the second factor in two-factor authentication in the form of a

pseudorandom sequence of secrets that are generated by the device.
The pseudorandom sequence is seeded by a secret and the server
and device are synchronized so that the server knows what indexes
in the sequence it might receive. As a result, such an application
must be able to store secrets and operate on them in a way that
is protected from tampering or observation. Many software two-
factor authentication applications, such as Google Authenticator
and Microsoft Authenticator, exist, but as far as we know, none
currently use TrustZone to protect their execution.
Integrity Monitoring Integrity monitoring applications in Trust-
Zone, such as Samsung Knox [5], continuously monitor normal-
world applications and the normal-world OS to ensure that their
execution patterns imply that the software has not been compro-
mised. While the operation of Samsung Knox is not public, we
surmise that they execute in TrustZone to protect their integrity
against a possibly compromised normal-world OS and also to pro-
tect cryptographic secrets with which they may securely commu-
nicate the state of their device to a remote server for mobile device
management (MDM) functionality.
Secure Chat Many mobile chat applications provide secure end-
to-end chat with message encryption, e.g., Telegram and Xabber.
They communicate with an external server via messages, require
secure key storage for encryption keys, and need to run in isolation
from one another. Secure keys can be used to encrypt and sign data
(such as chat logs) stored in the normal-world OS. Furthermore,
to ensure that users see correct messages, they require a secure
channel to the screen. Currently, we are not aware of any secure
chat applications that can use TrustZone.

Many applications cannot benefit from TrustZone because they
cannot run on existing TEE OSes, as both open-source [4, 6, 14] and
closed-source [12] TEE OSes do not isolate applications from each
other, nor do they isolate applications from themselves, meaning
that all TEE applications on a user device must mutually trust each
other. Due to this limitation, device manufacturers only run those
TEE applications that come pre-installed on the device and simply
disallow new applications. Recent academic work has proposed the
use of a trusted language runtime for multiple applications in the
TEE [13]; however, the trusted runtime does not provide a level
of isolation that would prevent a malicious application from com-
promising another co-resident application. This trust requirement
severely limits the accessibility and availability of TrustZone to
applications, as a single party must be trusted by all applications in
the TEE to curate and vet all the code in the TEE.

From the descriptions above, we can see that many security-
sensitive phone applications share certain common traits. We tabu-
late these traits in Table 1 and describe them in more detail below.
Key storage All example TEE application classes have crypto-
graphic secrets that they need to store and protect from exposure.
However, none have large amounts of persistent data to store in
Trustzone. Cryptographic secrets are typically small and do not
change frequently. While large contents can be protected by using
cryptographic keys for encryption and then stored by the normal-
world OS. Thus, TEE applications only require a small amount of
infrequently written persistent storage.



Table 1: Traits of each class of TEE applications

Application class Key storage Execution integrity
and confidentiality

Secure communication
with server

Secure communication
with user

Payment ✓ ✓ ✓ ✓
DRM ✓ ✓ ✓ ✓
Authentication ✓ ✓ ✓ ✓
Integrity Monitoring ✓ ✓ ✓
Secure Chat ✓ ✓ ✓ ✓

Execution integrity and confidentiality Because most applica-
tions process sensitive data or use cryptographic secrets for encryp-
tion/decryption or signing/verification, their execution must be
protected from observation and tampering. Thus, TEE applications
require an execution environment that is isolated from both the
normal-world OS and other TEE applications.
Communication with a remote server Most TEE applications
need to communicate with a remote server, even if infrequently.
Even in the two-factor authentication example, the application still
needs to receive secrets from a remote server and synchronize the
pseudorandom sequence with the server.
Trusted path to user All applications except for integrity moni-
toring need to have secure interactions with the user of the device.

3 PEARL-TEE DESIGN
We have examined current open-sourced TEE OSes such as OP-
TEE [6], TrustyTEE [4] and SierraTEE [14], and found that to pro-
vide the requirements outlined in our TEE application model, they
rely on the assumption that all TEE applications are trusted. For
example, they do not provide isolation between TEE applications
for storage, memory or execution. If we remove the assumption
that all applications are trusted and installed along with the TEE OS,
as Pearl-TEE does, this raises several challenges. As in all TEE OSes,
Pearl-TEE relies on TrustZone hardware to isolate it and all TEE ap-
plications from the normal-world, but also isolates itself from TEE
applications, and TEE applications from each other. TEE OS uses
a system call bridge to communicate with the normal-world OS,
allowing it to access resources controlled by the normal-world OS
as shown in Figure 1. We now describe how Pearl-TEE implements
each of the requirements above in more detail.

3.1 Storage Isolation

Current TEE OSes provide shared access to persistent storage,
so that any TEE application can read the values stored by any other
TEE application. If TEE applications can be malicious, Pearl-TEE
must provide storage isolation between TEE applications. However,
unlike generic applications, TEE applications do not need to store
large files or to share files with other applications, and generally
write to storage once and only read it afterward. Typically TEE
applications only need persistent storage for cryptographic secrets.

Pearl-TEE’s storage implementation is optimized for storing
keys, which are small, infrequently accessed, and written only once.
To implement this, Pearl-TEE encrypts all values stored by a TEE
application with an application-specific key, KAP. The derivation

of KAP relies on the Pearl-TEE master key, KPT, which is randomly
chosen the first time Pearl-TEE runs and every time the device
is factory-reset, and is stored in protected persistent storage that
is only made accessible to Pearl-TEE via secure boot. The KAP is
computed by encrypting the hash of the TEE application with KPT,
thus ensuring that the KAP is unique for each application, but at
the same time unique for each device, while also revealing nothing
about the KPT of the device. The TEE application can then use
KAP to encrypt and sign any data it wants to store and then store
it into the file system of the normal-world OS. In our Pearl-TEE
prototype, this is achieved by a system call bridge between Pearl-
TEE and the normal-world Android OS as described in Section 4.1.
This method of securing data comes with the caveat that data
stored in this way is vulnerable to a replay by the normal-world
OS. However, since such storage is assumed to be only written
once, this excludes any replay attack. In addition, any such storage
must be recreated if the TEE application binary is upgraded as
the hash will change, causing a new KAP to be generated. This
means that any old data or keys will become inaccessible. This has
the benefit of automatically protecting data generated by the new
version from any compromises that may have occurred against the
old application, as well as making roll-back attacks ineffective for
accessing data generated after the upgrade to the new application.

By not implementing a generic file system, Pearl-TEE is able to
prevent significant bloat to the TCB of the TEE OS. For comparison,
our storage-related implementation is only ∼150 lines of code (LOC)
excluding standard cryptographic libraries, while a generic file
system such as FAT [1] has over 20K LOC and EXT4 in Linux 4.2
has over 36K LOC.

3.2 Memory and Execution Isolation

Current TEE OSes also do not isolate the address spaces of TEE
applications from each other, nor do they prevent TEE applications
from interrupting each other or preventing each other from run-
ning. If TEE applications can be malicious, Pearl-TEE must provide
memory and execution isolation between applications, preventing
them from accessing each other’s memory, and ensuring that each
gets a fair amount of uninterrupted execution time. Pearl-TEE must
both protect its memory and execution from tampering by mali-
cious TEE applications, and protect the memory and execution of
TEE applications from each other. In addition, to prevent denial of
service by a malicious TEE application, Pearl-TEE must also ensure
that every TEE application gets the ability to run on the CPU.

For isolation of TEE applications, Pearl-TEE runs at a higher
privilege level than TEE applications. Specifically, Pearl-TEE runs



Secure world (TEE)

App “C” 
in TEE

App “B” 
in TEE

App “A” 
in TEE

Pearl-TEE OS

Secure Element

SKSE
KPT

Normal world

App “C”App “B”App “A”

Normal File System

Normal-world OS

KAP for “C”KAP for “B”KAP for “A”

Network Stack
syscall 
bridge

ARM & Secure Touch Screen

App “C”

PKSE

App “B”

PKSE

App “A” 
Server

PKSE

Figure 1: System overview of Pearl-TEE with multiple TEE-enabled
applications.

at EL1 (exception level 1) while the TEE applications run at EL0
(exception level 0). This enables Pearl-TEE to use hardware mech-
anisms such as the MMU to protect its code and execution state
from tampering by a malicious application.

To prevent a malicious TEE application from denying other ap-
plications to run, Pearl-TEE implements batch scheduling. In the
absence of user interaction, each TEE application is given a fixed
amount of time, Tbatch, before it is terminated and another TEE
application to run. In contrast, normal-world OSes generally use
complex interrupt-driven CPUmultiplexing and scheduling to share
execution resources among applications while isolating applica-
tion execution state. Pearl-TEE provides API functions for both
displaying output to the user and waiting for input from the user.
TEE applications may avoid being terminated after Tbatch by using
Tui_write and Tui_read. It can display output to the user at least every
Tui_write, or read input from the user, giving the user Tui_read to pro-
vide input. Tui_write would apply, for example, to a DRM application
that is displaying a movie to the user, while Tui_read would allow
the user ample time to input a message to a secure chat application.
As a result, Tui_read and Tui_write are generally longer than Tbatch
(i.e., on the order of seconds or minutes, while Tbatch may be on the
order of milliseconds) because an application that wants to abuse
them cannot do so silently without displaying something that the
user will notice. In all cases, Pearl-TEE also provides a hard-reset
option that allows the user to forcibly terminate a misbehaving
application by holding down the power button on the device.

3.3 Trusted Path and Communication
Similar to current TEE OSes, Pearl-TEE also provides the ability
to communicate over the network and interact with the user via
trusted path devices. Like current TEE OSes, Pearl-TEE assumes
hardware support for the trusted path, and provides exclusive access
for a TEE application to that device so that it can communicate with
the user without being interrupted by another TEE application.

Network communication is implemented by forwarding net-
work system calls to be executed by a user-space module in the
normal-world OS, which contains a full network stack. To secure
communication between a TEE application and a remote server,

Table 2: LOC of Different System Modules in the Implemen-
tation and Comparison with Other OSes

Category System Unit Name Lines of Code
Server Proxy Server 4,500

Normal-world
OS

Android AOSP 25,000,000
Normal-world user module 1,800
Normal-world kernel module 1,500
User application – Payment 3,000
User application – Chat 50,000

TCB
OP-TEE 130,000
Change to OP-TEE (C) 1,700
Change to OP-TEE (ASM) 50

TEE User
Space

TEE payment application 900
TEE-Chat 200

User Device

Secure world Normal world

Pearl-TEE Android

Secure Touch Screen

PayPal

User

①

②

Alipay Brain 
Tree

PayPal 
in TEE

Alipay 
in TEE

Brain 
Tree 

in TEE

PayPal 
Server

Alipay 
Server

Brain 
Tree 

Server

Proxy

③

PayPal 
SDK

Alipay 
SDK

Brain 
Tree 
SDK

④

Figure 2: System overview of a mobile payment framework as an ex-
ample for TEE applications.

the TEE application should use an encrypted protocol (such as TLS)
to protect communication. A shared secret can be established with
the remote party by including a Diffie-Hellman parameter in an
attestation sent to the remote server. Similarly, the remote server
may sign its Diffie-Hellman parameter with a certified private key,
whose certificate the TEE application should verify before combin-
ing the parameter with its local state to establish a shared secret. In
this way, a TEE application can securely send and receive messages.
Pearl-TEE implements a trusted path with the user by allowing
the TEE application exclusive read and write access to the device
touch screen. We note that Pearl-TEE currently does not implement
any type of security indicator [8] to signal to the user that it is
interacting with a TEE application or which TEE application the
user is interacting with. This means that while a malicious normal-
world OS or TEE application cannot intercept interactions between
a user and a TEE application, they can masquerade as another TEE
application by mimicking the target application’s user interface.

4 IMPLEMENTATION AND EVALUATION
4.1 Pearl-TEE Prototype
Our implementation of Pearl-TEE is based on OP-TEE 2.0 [6], an
open-source TEE that implements the GlobalPlatform TEE Internal
API Specification v1.0. It runs on a LeMaker HiKey development
board, which has a HiSilicon Kirin 620 SoC with an 8-core ARM



Cortex-A53 CPU at 1.2GHz and 2GB RAM. We use Android AOSP
7.1 for the normal-world OS. Pearl-TEE kernel executes at exception
level EL1, while all TEE applications run at EL0, allowing Pearl-TEE
to protect itself from malicious TEE applications. The GlobalPlat-
form API already provides a way for normal-world applications to
load and execute TEE applications and invoke API functions in the
TEE application. As a result, our Pearl-TEE prototype needs only
to implement the following APIs:
Device_Init(): This API is called by the normal-world OS during
device initialization. Pearl-TEE boots with secure boot andmeasures
the state of the normal-world OS. In our implementation, Pearl-
TEE checks the integrity of Android using a feature called device
mapper verity (dm-verity) [3] which is similar to the way Samsung
TIMA performs periodic kernel measurements [9].
Attest(): This API enables a TEE application to request an attes-
tation of the application and to send the attested application hash
to the remote server for verification. Message is an optional field
which can be used by the application to fill in its own application-
specific data (e.g., a Diffie-Hellman parameter to establish a secure
communication channel). The application server can grant or deny
access after verifying the application hash.
Get_App_Key(): This provides the TEE application with its KAP,
which is computed by Pearl-TEE based on the TEE application bi-
nary’s hash and the KPT, as described in Section 3.1. The application
can then use its KAP to encrypt/sign or decrypt/verify data it has
stored in the normal-world OS.
Secure_Display(): Used by a TEE application to display messages
to the user via secure path.
Secure_Input(): Used by a TEE application to receive user touch/
input from the secure touch screen or provide confirmation via a
secure authentication device (i.e., a fingerprint sensor).
NKM_Syscall(): Used by a TEE application to make system calls
and transfer messages to the normal-world OS. It uses this API to
send and receive network messages and to save encrypted data to
the normal-world file system.

To fully implement NKM_Syscall(), Pearl-TEE proxies system
calls to the normal-world OS in a way similar to Proxos [17]. How-
ever, while Proxos does it across a hypervisor, Pearl-TEE proxies
system calls between the secure- and normal-worlds of the ARM
architecture. The Normal-World Kernel Module (NKM) receives
NKM_Syscall() requests and sends them up to the Normal-World
User Module (NUM), which executes them on behalf of the TEE
application. The NUM runs as a dedicated, unprivileged user pro-
gram so that malicious TEE applications cannot use it to escalate
privileges in the normal-world OS. This design simplifies Pearl-TEE
as it can proxy most complex functionality to the normal-world OS,
while at the same time providing intuitive APIs for sending and
receiving network messages and storing persistent data.

The board we use to prototype Pearl-TEE does not have a Se-
cure Element (SE) or a touch screen. We therefore emulate these
using software modules. We emulate an SE according to existing
documents [7] analyzing SE, and we emulate a touch screen device
similar to that in [16], which emulates a touch signal to Pearl-TEE.

4.1.1 TEE Payment Applications. We implement PayPal, Alipay
and BrainTree mobile payment services on our prototype Pearl-
TEE system. We select these three payment services because they
are commonly used, processing a total of over 1 trillion dollars
in payments annually [10, 15], and because they do not currently
have implementations that use TrustZone. In the mobile payment
framework, a payment server works as a remote application server,
serving all payment transaction requests from the client application.
Since we do not have control over the actual payment servers of
these three payment providers, we implement a proxy server in
front of their servers that verifies the attestations and then for-
wards the verified payment request to the actual payment server.
Our proxy servers handle Pearl-TEE specific messages and use the
SDKs of the respective payment services to translate the Pearl-
TEE messages into the current native payment messages of each
provider, as shown in Figure 2. If Pearl-TEE is eventually deployed,
any of these payment providers could support Pearl-TEE by simply
running our proxy server in front of their legacy payment servers.

4.1.2 TEE Secure Chat Application. We implement a prototype TEE
secure chat application: TEE-Chat, that uses the Off-The-Record
messaging protocol (OTR). The basic framework of the TEE-Chat
application is similar to the payment application, while the main
differences are: (1) TEE-chat needs a symmetric key for encrypting
and decrypting messages to be compatible with OTR [11], (2) TEE-
chat needs to interact with the user and ensure confidentiality of
its output to the user as well as user’s input to the application, and
(3) instead of an application server, the end-user’s TEE application
verifies the identity attestation and then displays the User ID.

We implement TEE-Chat based on top of Xabber for Android [19],
which is an open-source XMPP client that supports the OTR proto-
col. In TEE-chat, we modify the OTR part of the original Xabber
application and move all encryption tasks to the TEE application
to ensure message confidentiality. In addition, in the secure chat
application, users input and read their chat messages via a secure
touch screen which is directly controlled by Pearl-TEE. For our
prototype TEE-chat we support the Encrypted level of security
of the OTR protocol, but implementing certification verification
in our framework should be straightforward. We instrument the
code whenever a cryptographic library is called for encryption
or key managing functions are used, and redirect the operation
to our TEE application in TrustZone. We do this, for example, in
OTRManager::getLocalKey() where the chat application gets the
key for encrypting a message.

4.2 Performance Evaluation
We evaluate the performance of Pearl-TEE with our TEE applica-
tions. In the evaluations, each TEE application type is compared
with a corresponding Baseline application. The Baseline applica-
tions are executed on the same system, except outside TrustZone
and without the support of Pearl-TEE. We also measure the impact
of running a single TEE application using TrustZone versus having
multiple different TEE application tenants.

After conducting 20 payment transactions on TEE applications
and the Baseline application, we summarize average times in Table 3.
We note thatmore than half of the time is spent communicatingwith
the payment providers’ servers. The next major component is the



Table 3: Time cost comparison between TEE applications and their Baseline counterparts (LP% = (Local Response Time / Transaction Time ) × 100%)

Time interval (in ms) Baseline Applications TEE Applications
PayPal BrainTree Alipay Average LP% PayPal BrainTree Alipay Average LP%

Local Response 43 45 43 43.7

8.4%

121 125 121 122.3

18.5%Proxy Process 136 141 145 140.7 203 206 225 211.3
Payment Process 305 310 334 316.3 305 311 328 314.7
Transaction 495 502 533 510.0 644 658 683 661.7

Table 4: Secure payment system performance breakdown

System Module Contributes
Network cost & server wait time 59.3 %
Normal-world process 13.8 %
Payment server process 12.8 %
Pearl-TEE kernel operations 8.2 %
TEE application process 6.5 %
World-switching time 0.1 %

network delay and processing time of our proxy server, which could
be reduced if it were directly integrated into the payment providers’
servers. Thus, if taking out the network cost and server wait time,
Pearl-TEE would only impose less than 20% overall overhead due
to Pearl-TEE kernel scheduling, world-switching between secure-
and normal-world, and extra encryption in TrustZone.

We study the performance overhead of the Pearl-TEE system
with a measurement of a few representative events in our system.
We use the TEE payment application as an example and collect the
time consumed by each component by instrumenting instructions in
the entry and exit functions in each component. These instructions
use/call the ARM Performance Monitor Unit, which guarantees the
relative accuracy of the timing data. In Table 4, we can see that
most of the system execution time consists of running processes
outside of the device, including server processing time, network
communication time between the device and the proxy server, as
well as between the proxy server and the payment servers.

We list the lines of code (LOC) of each module that we imple-
mented or modified in Table 2. As can be seen, the majority of the
functionality is implemented in the normal-world. Compared to
the base OP-TEE OS, Pearl-TEE increases the TCB of the TEE OS
by under 3%.

5 CONCLUSION AND FUTUREWORK
In this paper, we have proposed Pearl-TEE, a TEE OS design that
enables multiple, mutually distrusting TEE applications that con-
form to our abstract TEE application model to execute in TrustZone.
Pearl-TEE enables and assumes that arbitrary TEE applications will
be installed and run in TrustZone and ensures that each application
enjoys storage security, execution and memory security, and the
ability to attest application integrity to remote services and access
trusted path hardware. Our implementation of Pearl-TEE adds less
than 3% to the TCB of the TEE OS and imposes less than 20% local
processing overhead. For the future work, we plan to add more
features for application usability like supporting flexible scheduling
and convenient software update.

REFERENCES
[1] ChaN. 2018. FatFs - Generic FAT Filesystem Module. http://elm-chan.org/fsw/ff/

00index_e.html. Last accessed: 2018-08-13.
[2] Zhu Feng and Iansiti Marco. 2011. Entry into platform-based markets. Strategic

Management Journal 33, 1 (June 2011), 88–106.
[3] Google. 2017. Implementing dm-verity. https://source.android.com/security/

verifiedboot/dm-verity. Last accessed: 2018-05-01.
[4] Google. 2018. Trusty TEE. https://source.android.com/security/trusty/. Last

accessed: 2018-05-01.
[5] Uri Kanonov andAvishaiWool. 2016. Secure Containers in Android: The Samsung

KNOX Case Study. In Proceedings of the 6th Workshop on Security and Privacy in
Smartphones and Mobile Devices. Vienna, Austria.

[6] Linaro. 2018. OP-TEE. https://www.op-tee.org/. Last accessed: 2018-05-01.
[7] Tarjei Mandt, Mathew Solnik, and David Wang. 2016. Demysti-

fying the Secure Enclave Processor. In Blackhat US 2016. Las Ve-
gas, Nevada. https://www.blackhat.com/docs/us-16/materials/
us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

[8] Claudio Marforio, Nikolaos Karapanos, Claudio Soriente, Kari Kostiainen, and
Srdjan Capkun. 2013. Secure Enrollment and Practical Migration for Mobile
Trusted Execution Environments. In Proceedings of the Third ACM Workshop on
Security and Privacy in Smartphones. Berlin, Germany.

[9] Peng Ning. 2014. Samsung KNOX and Enterprise Mobile Security. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones. Scottsdale,
Arizona.

[10] Grace Noto. 2017. AliPay, WeChat Processed 3 Trillion in
2016). Bank Innovation https://bankinnovation.net/2017/04/
alipay-wechat-processed-3-trillion-in-2016/. Last accessed: 2018-05-01.

[11] P. Saint-Andre. 2004. End-to-End Signing and Object Encryption for the Extensi-
ble Messaging and Presence Protocol (XMPP). https://tools.ietf.org/html/rfc3923.
Last accessed: 2018-05-01.

[12] D. Rosenberg. 2014. Qsee trustzone kernel integer over flow vulnerability. In
Black Hat Conference. Las Vegas, Nevada.

[13] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. 2014. Using
ARM Trustzone to Build a Trusted Language Runtime for Mobile Applications.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems. Salt Lake City, Utah.

[14] SierraWare. 2018. SierraTEE Trusted Execution Environment. https://www.
sierraware.com/open-source-ARM-TrustZone.html. Last accessed: 2018-05-01.

[15] Statista. 2017. PayPal’s annual mobile payment volume from 2008 to
2016 (in billion U.S. dollars). https://www.statista.com/statistics/277819/
paypals-annual-mobile-payment-volume/. Last accessed: 2017-09-20.

[16] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. 2015. TrustOTP: Transforming
Smartphones into Secure One-Time Password Tokens. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security. Denver,
Colorado.

[17] Richard Ta-Min, Lionel Litty, and David Lie. 2006. Splitting Interfaces: Making
Trust Between Applications and Operating Systems Configurable. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation (OSDI).
Seattle, Washington.

[18] The Hacker News. 2017. Over 420 Banking Apps Found On Google Play
Store are Targeted By Android Trojan. http://thehackernews.com/2017/04/
android-banking-malware.html. Last accessed: 2018-05-01.

[19] Xabber. 2018. Introducing Xabber. https://www.xabber.com/. Last accessed:
2018-05-01.

http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/trusty/
https://www.op-tee.org/
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://bankinnovation.net/2017/04/alipay-wechat-processed-3-trillion-in-2016/
https://bankinnovation.net/2017/04/alipay-wechat-processed-3-trillion-in-2016/
https://tools.ietf.org/html/rfc3923
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.statista.com/statistics/277819/paypals-annual-mobile-payment-volume/
https://www.statista.com/statistics/277819/paypals-annual-mobile-payment-volume/
http://thehackernews.com/2017/04/android-banking-malware.html
http://thehackernews.com/2017/04/android-banking-malware.html
https://www.xabber.com/

	Abstract
	1 Introduction
	2 Dependency and Application Model
	2.1 Hardware Dependency
	2.2 TEE Application Model and Examples

	3 Pearl-TEE Design
	3.1 Storage Isolation
	3.2 Memory and Execution Isolation
	3.3 Trusted Path and Communication

	4 Implementation and Evaluation
	4.1 Pearl-TEE Prototype
	4.2 Performance Evaluation

	5 Conclusion and Future Work
	References

