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Abstract—The ability to execute and analyze code makes many
security tasks such as exploit development, reverse engineering,
and vulnerability detection much easier. However, on embedded
devices such as Android smartphones, executing code in-vivo, on
the device, for analysis is limited by the need to acquire such
devices, the speed of the device, and in some cases the need to
flash custom code onto the devices. The other option is to execute
the code ex-vivo, off the device, but this approach either requires
porting or complex hardware emulation.

In this paper, we take advantage of the observation that many
execution paths in drivers are only superficially dependent on
both the hardware and kernel on which the driver executes, to
create an ex-vivo dynamic driver analysis framework for Android
devices that requires neither porting nor emulation. We achieve
this by developing a generic evasion framework that enables
driver initialization by evading hardware and kernel dependen-
cies instead of precisely emulating them, and then developing a
novel Ex-vivo AnalySIs framEwoRk (EASIER) that enables off-
device analysis with the initialized driver state. Compared to
on-device analysis, our approach enables the use of userspace
tools and scales with the number of available commodity CPU’s,
not the number of smartphones.

We demonstrate the usefulness of our framework by targeting
privilege escalation vulnerabilities in system call handlers in
platform device drivers. We find it can load 48/62 (77%)
drivers from three different Android kernels: MSM, Xiaomi, and
Huawei. We then confirm that it is able to reach and detect 21
known vulnerabilities. Finally, we have discovered 12 new bugs
which we have reported and confirmed.

I. INTRODUCTION

The Android kernel is an attractive target for malicious
actors: it powers millions of mobile devices and vulnerabilities
in it are particularly dangerous as they can be exploited by
malicious code to gain high privilege execution level. Histori-
cally, the first place to look for kernel vulnerabilities is driver
code [4], [6], [18], [25], [26]. Since Android devices ship
with different peripherals (such as cameras or accelerometers),
manufacturers customize the stock Android kernel by adding
corresponding drivers to support these peripherals. As a result,
a significant part of these custom Android kernels consists of
driver code that may not be as rigorously audited as main
kernel components.

While vulnerabilities can be found using both static and
dynamic analysis, the latter makes triaging, understanding and
fixing (or exploiting) such security vulnerabilities much easier.
For example, coverage-based fuzzing and symbolic execution
have proven to be very efficient in finding vulnerabilities;
setting breakpoints, pausing execution, and peeking into mem-
ory state is important when identifying the exact cause of a
crash; taint tracking is very useful in reverse engineering; and

Qian Wu
University of Toronto
gianch.wu@mail.utoronto.ca

David Lie
University of Toronto
lie@eecg.toronto.edu

memory integrity checkers, such as AddressSanitizer [22] are
critical in detecting memory corruption vulnerabilities.

Dynamic analysis can be performed either on-device (in-
vivo) or off-device (ex-vivo). Unfortunately, while in-vivo
analysis might be ideal due to its accuracy, it is often im-
practical, especially at scale. This is because drivers reside in
an operating system kernel and dynamic analysis of a kernel
often requires either special privileges or special hardware,
neither of which are commonly available on Android devices.
For example, syzkaller [28] relies on running a custom kernel
on the device, but many Android devices will only boot signed
kernels. Similarly, KAFL [20] relies on the Intel PT hardware
tracing, which is not available on the ARM processors that
dominate smartphones. Finally, on-device analysis would re-
quire a smartphone of a particular model for each analysis
instance, which does not scale considering the number of
smartphone devices that exist.

The alternative to in-vivo analysis is off-device, ex-vivo
analysis in a hardware emulator. Emulated hardware has
many benefits, including efficiency, enabling monitoring that
is unavailable on the real hardware and the ability to paral-
lelize and scale on commodity CPU clusters. Unfortunately,
it is challenging to employ emulation to dynamically analyze
device drivers for two reasons. First, drivers have hardware
dependencies on proprietary, device-specific hardware compo-
nents that are not provided by the current emulators. Unless
these dependencies are satisfied, the drivers will not execute
properly in an emulated environment. Unfortunately, the pro-
prietary nature of the devices means that their specifications
are not available, and while the specifications can be reverse
engineered, the effort required precludes scaling to the plethora
of Android devices that exist. Second, drivers have software
dependencies on the host kernels on which they were meant to
run'. Unfortunately, hardware dependencies between the host
kernels and the device hardware also prevent those kernels
from running in an emulator. In fact, very few hardware-
specific kernels can boot on commonly available emulators—
for example, the Qemu emulator only supports a few board-
specific kernels (such as vexpress or versatile). The
inability to boot host kernels in an emulator has been a
challenge for other work as well [3]. Running an Android
driver inside an emulator would require porting the driver to a
kernel that can be emulated, but this also requires a significant
amount of effort.

E.g. Qualcomm drivers depend on the MSM Android kernel subsystems
that work with Qualcomm hardware.



Some approaches such as [29] and [32] avoid having to
emulate hardware by splitting the execution between the
emulated and real systems. For example, in [29], whenever
the driver tries to access the peripheral the corresponding
calls are redirected to the physical device. However, such
approaches still have the two drawbacks we mentioned—they
require porting of the driver to an off-device kernel, as well as
manual splitting of the driver, and while they do not require
emulation of the hardware device, they require a real hardware
device for each dynamic analysis instance, limiting scalability.
Our approach. In this paper, we present evasion, a technique
for detecting and analyzing vulnerabilities using dynamic
ex-vivo device driver analysis for Android phones. Evasion
enables the ex-vivo dynamic analysis of unmodified driver
code without: (a) having to port it and its dependencies, and (b)
the requirement to have the physical device. Without emulated
peripherals and the physical device, this goal becomes a trade-
off between emulation completeness and availability. Our key
enabling insight, gained through extensive analysis of driver
code, is that while there are many execution paths that do have
hardware and software dependencies, these dependencies are
superficial. For example, they may only depend on the ability
to read a device register, but not on the actual value returned;
or they may depend on a certain function returning a success
code, but not the actual semantics of the function. Most
importantly, we observe that there are many such superficially
dependent paths and such paths contain vulnerabilities. Thus,
instead of having to do the precise and rigorous work of
emulating all dependencies, we instead propose the alternative
approach of “evading” dependencies, and embody this idea in
an evasion kernel, which superficially claims to satisfy the
dependency, but does so in a generic way that does not have
to be faithful to the true software or hardware component on
which the driver depends.

We demonstrate the usefulness of evasion by developing
the Ex-vivo AnalySls framEwoRk (EASIER), which we use to
target privilege escalation vulnerabilities in driver IOCTL sys-
tem call handlers. IOCTLs are historically the biggest source
of such local privilege escalation vulnerabilities in drivers, and
are a critical component in remote exploit chains which are
considered a high-value targets in Android ecosystem [7]. One
advantage of ex-vivo analysis is that we are able to perform
this analysis with standard userspace vulnerability detection
tools, such as the AFL fuzzer [33] and the Manticore [16]
symbolic execution library. This ability is beneficial because
the number and power of userspace tools greatly exceeds those
of in-kernel tools, e.g. syzkaller [28] and S2E [5], are among
the most well-known, and still, they are hard to setup and use.

EASIER works by initializing a driver with our evasion ker-
nel and then taking a snapshot of the driver with its initialized
state. FASIER then uses a CPU-only ARM emulator, which
does not need to emulate any devices, to run the snapshot while
injecting fuzzed inputs from AFL to search for vulnerabilities.
We evaluate EASIER on a corpus of 72 platform device drivers
from three different Android kernels and different kernel sub-
systems, and were able to successfully load and initialize 77%

of them up to the point where analysis of IOCTL handlers was
possible (i.e. we could execute driver code without crashes).
When tested on 26 known vulnerabilities, EASIER was able to
trigger 81% of them. We then used EASIER to fuzz the drivers
and discovered a total of 29 vulnerabilities. Manual analysis
of the discovered vulnerabilities showed that 12 are zero-day
vulnerabilities in the Xioami Android kernel. We have reported
and confirmed all of these and received bug bounties for 5 of
them. The remaining 17 vulnerabilities are from the MSM
kernel, but since they were found in an older version, we are
currently in the process of verifying whether they are present
in the latest kernel version before reporting them.

Our contributions. In summary we provide two separate
contributions:

1) The evasion kernel and framework. We develop a set
of techniques and a kernel that allow us to load and
initialize an Android driver inside an alien environment
and carry out dynamic analysis of its system call handlers.
Such framework alone can be used to analyze,verify and
prepare PoC for known bugs.

2) EASIER. We introduce a way to transplant and analyze
parts of the kernel in userspace and develop fuzzing and
symbolic execution tools to analyze driver IOCTL system
calls.

The rest of the paper is organized as follows. In Section II,
we provide the necessary background on Linux kernel mod-
ules. We describe our evasion kernel in Section III and EASIER
in Section IV. We then evaluate both evasion and EASIER
in Section V. In Section VI, we discuss related work and
Section VII concludes the paper.

II. BACKGROUND

In this section, we give an overview of Linux kernel
modules, device tree files, the platform bus, and the IOCTL
system call.

A. Loadable kernel modules

In this paper, we target Android systems which are based
on Linux. In Linux, most device drivers can be compiled as
loadable kernel modules that can be dynamically linked into
the kernel after the system has booted. Once a Linux module
has been loaded it has the same privileges as any other kernel
code and can compromise the kernel just like any other kernel
code.

B. Platform bus and device tree files

Android smartphones today have most components/periph-
erals integrated into a single board. Such integrated peripherals
can be a part of the SoC or use [2C or AMBA buses, none
of which supports device discovery (as opposed to PCI or
USB device buses). The Linux kernel uses a virtual “platform
bus” for these integrated peripherals and system developers
configure the kernel to manage the peripherals with a device
tree file.

A device tree file describes hardware configuration for a
specific board and provides a plain-text description for each



1 gcom,csid@fda00000 {

2 compatible = ; /* Device ID */
3 cell-index = <0>;

4 reg = <0xfda00000 0x100>;

5 reg-names = H

6 interrupts = <0 50 0>;
7 interrupt—-names = ;
8 gcom, csi-vdd-voltage = <1200000>;

gcom, mipi-csi-vdd-supply = <&pm8110_14>;

el

10 };

Listing 1: Device tree entry for msm_ispf.ko; the
compatible property identifies the device.
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Fig. 1: Driver initialization flow

peripheral present. For example, Listing 1 shows one of the
entries describing the Camera ISP (Image Signal Processor)
for the Qualcomm Snapdragon 200 SoC. In particular, it
includes properties that the kernel/driver will need during
initialization such as MMIO memory ranges (field reg) and
interrupt numbers (field interrupts). The compiled device
tree file containing this entry is passed to the kernel at boot
time (e.g. using devicetree_image option in the case
of uBoot), which makes the kernel aware of what hardware
devices are on the board. Each peripheral in the device tree
file is identified by its compatible property.

Though device tree files are the predominant approach for
conveying device information to the kernel, another, older
option are board files, which describe devices in pure “C” and
are compiled directly into the kernel. Board files are obsolete
and used only by older kernels.

C. Module loading and initialization

When a module is loaded into the kernel, it first goes
through a linking process that performs symbol relocation:
modules may call functions from the host kernel at runtime,
but the locations of these functions is not known during mod-
ule compilation. Thus, after a module is loaded into the kernel,
the kernel links these function calls to their implementations
using module’s relocation table. If the kernel is missing any
of the functions required by the module, the module loading
is aborted.

Once relocation is finished, the kernel calls several func-
tions in the module to complete driver and peripheral ini-
tialization as shown in Figure 1. Each module defines an
init_module function and optionally a probe function.
The init_module function is executed by the kernel once
relocation is finished. Usually, in the case of platform devices,

this function registers the driver with one of the peripheral
buses and provides a pointer to its probe function, for
example by using the platform_driver_register APL
The bus-related code then goes through the list of existing
devices (pre-populated from a device tree file) and tries to
find the matching device. The exact matching process is bus-
specific; in the case of the platform bus, it matches the driver
and the device based on: a) the compatible property in
the device tree file; b) the device name; or c) driver ID’s,
whichever piece of information is present. If a matching device
is found, the bus code calls the driver’s probe function. The
probe function usually creates a new file in /dev/ folder
and registers IOCTL/read/write system call handlers with
register_chrdev (). System calls made on the device
file are then handled by the registered handlers.

D. The IOCTL system call

In order to expose features of the driver and hardware
devices to userspace programs, drivers register IOCTL system
call handlers. The IOCTL system call provides more function-
ality than standard read/write system calls. It allows userspace
to issue different commands to the driver, as well as transfer
and receive arbitrary information in the form of C structures.
Generally, IOCTL system calls contain a “command” field,
which can be set to a number of values depending on the
driver, where each value corresponds roughly to a feature of
the peripheral, and an “argument” pointer, which can point to
an arbitrary C structure whose format is defined by the driver
and may depend on the command.

E. Kernel-userspace safe data copying

When a userspace program issues an IOCTL system call it
provides an argument pointer. A driver can exchange data with
userspace programs by copying data to and from the structure
that the argument points to. When doing this, drivers use the
kernel-provided copy_from_user ()/copy_to_user ()
functions, which accept a pointer and the size of data to
be copied to or from the kernel. These functions implement
security checks to make sure that the pointer copied to or
from falls within the address space of the process making the
system call.

III. THE EVASION KERNEL

EASIER uses the evasion kernel to load and initialize
“alien” drivers from foreign host kernels by “evading” missing
software dependencies, missing hardware dependencies and
API data structure incompatibilities. It is important that drivers
are initialized before being passed to EASIER as drivers use
initialization to setup their execution context, which includes
important kernel structures, global variables the driver uses,
kernel API structures used in system calls (for example the
file->private_data), and resources such as MMIO
memory ranges and interrupts. The driver’s execution context
is used extensively whenever the driver and the kernel try
to speak through the kernel-driver API. If the context is not
initialized and one still tries to execute some of the driver’s



—

static long mdss_rotator_compat_ioctl (struct
file xfile, unsigned int cmd,

2 unsigned long arg)

3

4 ...

5 if (!rot_mgr)

6 return -ENODEV;

7 if (atomic_read(&rot_mgr->device_suspended))

8 return -EPERM;

9 if (!file->private_data)

10 return -EINVAL;

11 private = (struct mdss_rot_file_private x)file
->private_data;

12 if (! (mdss_rotator_file_priv_allowed(rot_mgr,

private))) {
13 return -EINVAL;
14 1}

Listing 2: Code snippet of the ioctl handler from the
mdss_rotator.ko driver.

functions, e.g. a system call, it will likely result in undefined
behavior and false positive crashes that are not the result of
true vulnerabilities.

To illustrate the problems that may arise if a driver is
executed without a properly initialized context, consider the
code snippet in Listing 2 that shows the beginning of the
IOCTL handler for the mdss_rotator.ko driver (suscep-
tible to CVE-2016-5344). At line 5, the handler checks if
the global variable rot_mgr has been initialized. Later, at
line 9, the file->private_data field maintained by the
kernel is checked. If any of them is NULL, the handler returns
immediately, and no analysis is possible. Note also that simply
instrumenting the code and setting them to non-NULL values
will not work: the variables are used later in the code (line 12),
and thus should dereference to structures with properly set
fields. Thus, our goal for the evasion kernel is to successfully
initialize drivers.

Once a driver is loaded by the evasion kernel, EASIER
can then extract the driver into userspace where fuzzing
and symbolic execution can be performed. We describe the
evasion kernel in this section and FASIER in the next section
(Section 1V).

A. Overview

The need for the evasion kernel comes from the fact that
driver code is not self-contained code and in order to be
able to run it needs to be loaded into a kernel; ideally, into
the host kernel, i.e. the kernel against which the driver was
compiled. However, as explained in Section I, the vast majority
of Android host kernels cannot execute in an emulator. Instead,
we modify an emulator-supported kernel so that it can load and
initialize drivers using evasion, making it our evasion kernel.
The evasion kernel used in our experiments is based on the
stock Vanilla Linux kernel for the vexpress board for arm32
and virt board for arm64.

Before we discuss the challenges with loading a module
into the evasion kernel, we first pose a simpler question: why

not simply recompile drivers for the Qemu-supported kernel?
Unfortunately, without porting, this can only be done in very
simple cases since the driver relies on the host kernel’s specific
subsystems, header files, and configuration. While the effort
needed to port the driver depends on the driver and the host
kernel, in this paper we try to avoid any such porting that
requires understanding of driver semantics all together. Instead
of porting each driver, our goal is to develop a kernel that
would handle missing driver dependencies in a generic way.
We start by listing the evasion kernel requirements.

Evasion kernel requirements. Our ultimate goal is to be
able to load alien drivers, execute their system calls without
crashes, and reach real vulnerabilities. Since a driver lives
in-between the kernel and the hardware, these are the only
two components with which it can interact directly. Thus
for the driver’s proper operation we need to make sure
that communications between the driver and the kernel and
attempted communications from the driver to the hardware
do not lead to a crash or failures and allow the driver to
initialize correctly. Given that, our main goal translates into
the following requirements. The evasion kernel should:

1) Satisfy driver’s software dependencies,

2) Mask hardware dependencies, and

3) Ensure consistency in data structure formats passed be-
tween the kernel and the driver.

We note that the third dependency is also a software depen-
dency, however its nature is quite different and solving it also
requires a different approach. Because of this we put it into a
separate category.

Each host kernel might have a different configuration and
a unique set of dependencies. In order to account for that
and achieve better precision in satisfying the dependencies,
the evasion kernel is reconfigured for each host kernel (i.e.
once for all drivers for this kernel) based on the host kernel’s
configuration. As a result, the evasion kernel contains compo-
nents (i.e. scripts and logic) outside of the kernel itself, that are
responsible for reconfiguring and in some cases, recompiling
the evasion kernel with new configurations. However, for
the sake of brevity, we will refer to the evasion kernel and
such external tooling simply as the “evasion kernel”. We now
discuss each of the requirements and our design choices in
detail.

B. Software dependencies

Drivers rely on the host kernel functionality and thus, when
compiled as standalone modules, reference the host kernel’s
functions. At the same time, the evasion kernel should be
generic enough to support loading and initializing different
kinds of drivers from different host Android kernels. Conse-
quently, as a trade-off, it will lack some of the functionality,
and thus symbols, present in the host kernel and required
by the driver. As a result, during the module’s relocation
phase, these symbols can’t be resolved as they are simply not
present. To solve this problem, the evasion kernel has a custom
module loading subsystem that intercepts relocation requests
for missing symbols and patches them with stub functions. It



then continues on with the loading making the driver believe
that the evasion kernel does implement the dependent function.
Note that our main goal is not to completely replicate the
behavior of the function in the original host kernel, but rather
to prevent driver from crashing.

By default the evasion kernel substitutes missing functions
with one of two stubs depending on the return type of the
missing function. In the case of integer return type, the evasion
kernel replaces the function with stubO that always returns
zero. This is based on the common Linux kernel convention for
functions to return zero on success, and a non-zero error code
if an error happened. In case the function returns a pointer, the
evasion kernel replaces it with st ubP that allocates a memory
region. This region in turn contains pointers to valid memory
locations. This is to deal with cases when a function returns
pointers to structures that in turn contain pointers. In order
to infer missing function return types, the evasion kernel gets
the list of the module’s exported functions from the module’s
binary and checks their signatures in the host kernel source. It
attaches this information as a part of the binary module itself
as a new ELF section. The evasion kernel’s custom module
loading subsystem then uses this information to decide what
function stub to choose.

Some functions may return non-zero code on success, and
zero otherwise. The evasion kernel has a method to deal with
this case. We define a third stub stub1l which always returns
1 and patch relocation entries to use stubl instead of stub0
if the module crashed or did not create a file in /dev. Only
2 out of the 72 drivers we analyzed requires stubl so we
never automated this process. However, automating it would
be straightforward: if a driver fails to load (i.e. a crash or
no new file in /dev), the evasion kernel will try different
combinations of stub0 and stubl starting with the most
recent relocation that was evaded. In order to give an upper
bound estimate of the total number of combinations, the last
column of Table V in the Appendix shows the total number of
stub uses by drivers (i.e. includes repeated calls of the same
function). In the 2 cases that needed stub1l, changing the last
evaded relocations enabled the driver to initialize.

C. Hardware dependencies

The main idea behind hardware evasion is the following:
a) we make the driver believe that the peripheral exists so
that the driver can finish initialization, and b) we then ignore
each device-driver communication attempt. Though the core
idea to evade the hardware dependency is conceptually similar
for all drivers, the exact implementation would differ for
different bus types. In this paper, we focus on the platform bus,
which represents a large class of devices that do not support
automatic discovery (e.g I2C or AMBA), and is found on the
majority of Android and embedded devices today.

1) Reusing device tree entries: As detailed in Section II,
an Android kernel reads the list of peripherals present on
the board from a device tree file. This suggests that in
order to make the driver believe that the missing hardware
is present, we need to add an entry with the corresponding

compatible property to the evasion kernel’s device tree.
During initialization, drivers will often query the host kernel to
retrieve yet other properties for the devices they are interacting
with. Like software dependencies, some of these properties can
be generically evaded without knowledge of the device tree
entries themselves. However, there are cases where driver code
relies on specific assumptions about the device properties. For
example, one value may index into another property, a value
may need to be within a specific range (e.g. gpio type that can
only take values of 0 and 1), a property may need to match a
string exactly.

Our evasion kernel thus implements two ways for satisfying
device property dependencies. First, if a device tree for the
host kernel is available, the evasion kernel uses it since it
is more reliable and still does not require any porting or a
hardware device. However, blindly copying the device tree
entry from the host kernel to the evasion kernel does not
always work. The original device tree entry might contain
cross-references to other hardware that is absent in the evasion
kernel, for example different interrupt controllers or clocks.
We thus design the evasion kernel to replace references to
interrupt controllers and clocks with analogs that are present
in the evasion kernel (i.e. in vexpress, the base kernel on
which we base our evasion kernel). In order to identify the
compatible property expected by the driver, which must
match the returned device property (see Section II for an
explanation of this property) the evasion kernel first loads
the driver with hardware evasion disabled. The evasion kernel
can then observe the compatible property provided by the
driver, search the host kernel’s device tree for the matching
entry, and load it into its current device tree.

Second, if the host kernel’s device tree file is not available,
or the required device tree entry is not present, then the evasion
kernel falls back on a generic device tree entry that returns
reasonable values for the properties that are most commonly
requested by drivers, reg and interrupts (describe MMIO
ranges and IRQ numbers). If the driver requests another
(unknown in advance) property it is generated dynamically
with value of 1 for integer type and random string for strings.

2) Board files: Some older drivers expect to work with
board files instead of device tree files. Board files have been
deprecated for quite some time now and are only used in
much older drivers. We still added support for board files to
our evasion kernel but in its current implementation we need
to extract the corresponding board file entries manually, after
which we load them dynamically into the evasion kernel. This
copying is mechanical and does not require understanding of
the driver code. The only reason we did not implement the
functionality to automate the copying was the small number
of instances (only seven cases in our experimental dataset)
where it was necessary.

3) Ignoring driver-device communications: During initial-
ization, most of the drivers will use values from device tree en-
tries to register MMIO ranges with ioremap/ioremap_wc
or of _iomap which map the corresponding pages. The eva-
sion kernel intercepts the above functions and redirects them



1 struct device {

2 ...

3 #ifdef CONFIG_PINCTRL

4 struct dev_pin_info *pins;

5 #endif

6 struct device_node *of_node;
7

8

}

Listing 3: Definition of struct device. The offset
of field of_node depends on kernel configuration

to kzalloc. This results in that read and write operations
are ignored. In our case of missing peripherals, reading from
this memory will return arrays of zeroes, and writes will pass
through.

Finally, the evasion kernel intercepts and replaces with
custom implementations 15 existing kernel functions whose
behavior depends on the presence of peripheral devices. We list
these differently from the replaced software dependency func-
tions as these are functions that have existing implementations
in the vanilla Linux kernel, whereas software dependencies
replace functions that only exist in the host kernel. The list of
intercepted functions can be found in Appendix A.

D. Kernel-driver API structures layout

In order to successfully load a driver into the evasion kernel
we must ensure that both the evasion kernel and the driver
have the same memory layouts for structures that are a part
of kernel-driver API. Since drivers only use a subset of the
kernel APIs we only need to extract layouts of structures
that are actually used by the driver to speak to the kernel.
We found that for many drivers that we analyzed, only two
structures needed to be aligned between the module and the
kernel, namely struct device and struct file. The
former is used to pass information from the driver to the kernel
during the driver initialization/probing, and the latter is used
when the userspace opens a /dev file. Depending on the host
kernel and its configuration, these structures will either include
or lack some fields, and if the driver and the evasion kernel
layouts do not match, the kernel and the driver will read/write
information at different offsets (which will lead to a crash most
of the time).

As an example, consider the definition of
struct device in Listing 3. Depending on the
CONFIG_PINCTRL configuration option, this structure

contains an additional field which shifts the offset of member
of_node by 4 (on a 32 bit machine). If the module was
compiled with CONFIG_PINCTRL set and the kernel has
CONFIG_PINCTRL unset, then the driver will assume the
offset of of_node is 4 bytes larger than it should be and
access the wrong memory location. This will lead to memory
corruption and prevent the driver from initializing correctly.
In order to avoid this problem, structure layouts in the
the evasion kernel must be compatible with those in the
driver. While aligning these two structures layouts can be done

manually, our evasion kernel uses a technique that enables it to
do this alignment automatically by extracting the appropriate
layout and recompiling the evasion kernel to use a layout that
matches the driver. It learns the structure layouts used by the
driver and then suggests configuration options and additional
fields for the evasion kernel. With this information an external
script can then reconfigure and recompile the evasion kernel
with the new data structure layout. This is done by exploiting
the fact that both the host kernel and the evasion kernel are
Linux kernels, and thus will share a great deal of code that
accesses the data structure whose layout needs to be extracted.
In addition, we also have the source code for the evasion ker-
nel. We describe our approach using only struct_device
for the sake of brevity; recovering layouts of other structures
is similar. First we identify a small set of Linux kernel
functions, that a) accept struct_device as an argument,
and b) use as many of its fields as possible. Currently, we
use functions i2c_new_device, device_resume, and
device_initialize for struct device layoutrecov-
ery and __dentry_open for struct file recovery. If
the source code for the host kernel is available we can skip
this and simply make our own kernel module that lists all the
fields of struct_device. The objective in either cases is
to have binary code compiled from identical source code that
accesses the same structure under both the evasion and host
kernel configurations.

By comparing the resulting binaries, the evasion kernel can
then recover corresponding field offsets for the structures in
both itself and the host kernel. Then using the evasion kernel
source code, the evasion kernel’s external tooling identifies the
necessary configuration settings to make the offsets identical.
It then sets the build configuration and then recompiles the
evasion kernel. In some cases, it is possible for the host kernel
to contain a field option that is not present in the evasion
kernel—simply having the host kernels .config file is not
sufficient because of this. In addition, imprecision may result
in case we don’t use our own module but use existing functions
that use only a subset of fields. In the first case, where a
corresponding configuration option doesn’t exist, the tooling
will insert padding to cause the appropriate fields to align. In
the latter case, the tooling generates several possible configu-
rations. Currently, this requires manual intervention to compile
and check which option works, but in our experiments, there
was never more than one configuration, so manual intervention
was not necessary. Moreover, we believe this trial and error
process can be easily automated if necessary.

With our own module that lists all the fields, the evasion
kernel was able to recover all kernel data structure layouts
in our evaluation. We further tested the technique that uses
existing kernel functions (12c_new_device and others) on
8 different MSM kernel configurations that produce 5 different
structure layouts and added 3 more manually selected layouts
(see Appendix F). In all 8 cases, the correct configuration
options and correct additional fields (i.e. where to add them
and of what size) were produced.



E. Surrogate modules

In most cases, if the kernel initializes correctly, a device file
in the kernel’s /dev directory is created. This device file is
needed later to send IOCTLs to the driver. However, an inter-
mediate case arises when due to some missing dependencies
the context is initialized only partially but sufficiently enough
for the driver to work, but the device never creates the device
file. This may happen for example if at the end of initialization
the driver requires the peripheral to return a specific value,
which fails since evasion is imprecise and cannot account for
all possible values. Without the device file, a user process has
no way of invoking the driver’s system call handlers, which
prevents them from being analyzed. In case no device file
is created, the evasion kernel provides functionality to create
a “surrogate” device file and attach the driver’s system call
handlers to the device (by looking up the handlers in the
memory with kallsyms_lookup_name ()). This allows
EASIER to invoke the driver’s system call handlers from the
userspace and analyze them.

IV. FUZZING AND SYMBOLIC EXECUTION WITH EASIER

Once the driver is loaded and initialized with missing de-
pendencies taken care of, we can manually analyze the driver,
verify vulnerabilities and prepare proof-of-concept exploits for
known bugs or bugs found via static analysis. However, our
real objective is fuzzing and symbolic execution of drivers for
automatic bug discovery. EASIER enables this by “running”
drivers as userspace programs.

EASIER first extracts the initialized state of the driver
and kernel into a memory snapshot. Then inputs from an
input file are read and injected into the memory snapshot
and the image is loaded and executed in a custom CPU-
only emulator called dUnicorn which is based on the Unicorn
library [30]. To execute the extracted memory snapshot as a
userpace program, certain kernel functions, which cannot exe-
cute without hardware are replaced by our custom equivalents.
Additionally, because each driver has its own IOCTL input
format, dUnicorn dynamically infers the format of the IOCTL
inputs so that our analysis can produce semantically valid
inputs. Using the image and dUnicorn, EASIER can proceed
to perform fuzzing and symbolic execution of IOCTL system
calls, identify vulnerabilities, and automatically generate bug-
triggering programs. We describe each of the components in
more detail in this section.

A. Memory snapshot

EASIER takes a snapshot of the entire evasion kernel image
by first issuing a system call (using a userspace program
running on the evasion kernel). Once execution enters the
evasion kernel FASIER pauses the emulator and dumps all
memory pages and register values (see Appendix B-A for
implementation details). Our EASIER prototype currently uses
Qemu as the emulator to run the evasion kernel and produce
the snapshot.

B. dUnicorn

To run the snapshot, dUnicorn loads it into emulated mem-
ory and restores the saved register values. It then uses an input
file to write specified values into memory and registers. For
example, when executing a system call handler in a driver
(e.g. IOCTL, read, write), dUnicorn reads the input file and
uses its content as the argument to the system call. This is
done by copying the file content into unused space in the
emulated memory, and setting the corresponding register to
point to that memory. This allows one to test the system
call against different potentially malicious inputs. Control is
then transferred to the system call entry point where the
snapshot was taken. dUnicorn then emulates CPU instructions
up to the point where it is about to leave the system call
and return back to userspace (specifically, once the execution
reaches ret_fast_syscall). If some instruction tries to
access emulated memory that was not mapped, dUnicorn raises
a SEGFAULT event. In other words, dUnicorn runs as a
userspace program that crashes on some input only if the driver
inside the kernel would crash on the same input, and finishes
successfully otherwise.

The biggest advantage over static analysis is that in our
approach the execution context and kernel structures are
defined and initialized. Thus, the analysis becomes much
more precise. For example, alternatives like under-constrained
symbolic execution [10] (UC) treat all uninitialized state as
symbolic, and then later tries to find both an input and a state
that can trigger a bug. However, for complex programs like
an OS kernel, the symbolic state can become large and lead
to path explosion. Moreover, the large state can also become
beyond what can be solved by a constraint solver. EASIER
elides these problems by producing an initialized state that is
precise enough for dynamic analysis.

C. Replacing kernel functions

As a CPU-only emulator, dUnicorn only emulates ARM
instructions and no other hardware. Thus, dUnicorn needs
to intercept and redirect accesses to hardware that dUnicorn
doesn’t emulate. The intercepted functions fall into three
main categories. First, since there is no MMU in CPU-only
emulation, the kernel code is not able to map new physical
pages. In most cases, this does not create any difficulties as
all the memory that the driver uses or is going to request is
likely to be already mapped by the slub allocator. Nonetheless
if a driver does allocate memory after initialization, dUnicorn
intercepts and replaces memory allocation routines such as
kzalloc, krealloc, and kfree with calls to a simple
custom memory allocator that allocates chunks from unused
emulated memory. Second, dUnicorn intercepts calls that
switch context such as _cond_resched. Context switches
are currently treated the same way as a successful return to
userspace. Finally we can have dUnicorn optionally disable
logging and output functions such as printk. Such logging
functions can usually be safely skipped as they perform no
useful function for the analysis and take long time to execute.
In fact, we find that removing print functions can speed



1 struct msm_vfe_cfg_cmd2 {
2 uintlé_t num_cfg;

3 uintl6_t cmd_len;

4 void __user *cfg_data;
5 void __user xcfg_cmd;

6 };

Listing 4: IOCTL structure for msm_1isp driver.

out the dynamic analysis of some drivers by as much as 3
times. However, this optimization has a trade-off of missing
some read-past-the-buffer bugs when a char array was not
properly null-terminated. dUnicorn is general enough to be
able to intercept and redirect execution of any kernel function
to a custom implementation, and we hypothesize that this
functionality could be used in the future for other types of
dynamic analyses.

D. IOCTL input format recovery

While the approach implemented in EASIER is generic and
can be applied to testing any kernel component, we specifically
target IOCTLs in this work, which requires additional infor-
mation for automatic fuzzing or execution. System calls such
as write and read only require providing a contiguous array
and size as input, and differ from IOCTLs, which have more
requirements on their inputs. Recall that an IOCTL system
call has the following format:

ioctl (int fd, long cmd,
The first argument is a file descriptor tied to the driver’s
device file in /dev and the second argument is an IOCTL
command number. Finally, the last argument points to an
arbitrary structure in memory whose format is again defined by
the driver. The final argument is particularly complex as there
is no way to tell beforehand what size the buffer that ~arg
points to should be. If it is too short, the driver will not get
enough data and will most probably go to error handling code.
If it is too long, a fuzzer will waste time mutating data that is
never used by the driver. Moreover, the structure in *arg can
embed pointers to other structures and arrays. Nested arrays
can have dynamic sizes, and the fields responsible for their
sizes are specific to the IOCTL command and driver.

To illustrate, consider Listing 4, which is a typical example
of the format of an xarg input for a driver. The last two fields
are pointers and should point to valid memory locations. If
they are set to random values (e.g. by a fuzzer), the driver
will fail while trying to access/copy this memory and is likely
to immediately go to error handling code. In addition, the size
of the data they point to is dynamic and depends on other two
fields, num_cfg and cmd_1len. Nested structures can in turn
contain pointers to other structures and so on. As a result, it
is important to extract which parts of the input to an IOCTL
call can be set to arbitrary values and fuzzed, and which parts
must have semantically correct inputs in order to not trigger
spurious errors and enable exploration of driver code.

While other work has proposed extracting the layout of
these structures statically, such an approach is necessarily

void =xarqg),

incomplete as it cannot extract the size of dynamically allo-
cated objects and arrays in the structure [8]. Instead, FASIER
recovers IOCTL structure layouts dynamically. As a result,
during fuzzing, one can issue an IOCTL system call with
arg set to arbitrary values and dUnicorn will dynamically
allocate the right sizes and insert pointers at correct places.
The key observation behind our approach is that in order to
copy data between userspace and kernel space drivers must
use copy_from_user () kernel API call (not using it is a
bug by itself that dUnicorn can catch). Functions from this
family take as arguments, an address in userspace that points
to data to be copied, and an integer giving the size of the
data to be copied. dUnicorn uses this information to recover
the format of the data that the driver expects at runtime as it
makes these copy_from_user () calls. dUnicorn intercepts
calls to copy_from_user () (see implementation details in
Appendix B-B) and redirects them to its own implementation
which dynamically, and on the fly, allocates the desired
amount of memory, fills it with random data and returns it
to the driver. This exploits the fact that if a pointer appears
in copy_from_user () function, then the driver expects
userspace data to be present at this location.

Consider an example in Figure 2. Assume the
userspace calls ioctl libc function and sets arg to
0x10000000% as shown in Figure 2a). When the driver
calls copy_from_user () for the first time it will use
this pointer as the first argument and lenl as the size of
the structure it expects (or array of structures). dUnicorn
intercepts this call, pauses the emulation, and allocates lenl
bytes of emulated memory and fills it with random data as
shown in Figure 2b). dUnicorn then continues execution.

Assume now that the driver expects a pointer at some (un-
known to us) offset d inside the data it just copied (Figure 2c).
It will try to use the (random) value from this offset, also
stored in src2, in another call to copy_from_user ().
dUnicorn intercepts this call and searches for src2 inside the
copied data; once found it gives us the offset d. dUnicorn then
allocates new space of size 1len2 and updates the values of
both src2 and the memory slot at offset d correspondingly
(see Figure 2d). Note that our approach is insensitive to how
len2 was computed or whether it depends on other user
input. Such dependencies can pose a problem to static analysis,
but not for our dynamic recovery. dUnicorn continues this
algorithm recursively which allows it to allocate the right
amount of memory and deal with nested pointers.

E. Fuzzing

Now that EASIER can use dUnicorn to run the memory
snapshot as a userspace program, instead of returning random
data it can return fuzzed values from the fuzzer. Moreover,
EASIER can use any userspace fuzzer to produce those values.
In our implementation, we support coverage-based fuzzing
using AFL, more specifically AFL in unicorn mode [31] (a.k.a.

2Note that since we are working on a memory snapshot we can treat
userspace and kernel space memory separation to our liking.
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Fig. 2: IOCTL structure recover details

AFL-Unicorn). This mode provides integration with Unicorn
library similar to how AFL-gemu mode integrates with Qemu
and captures emulated basic blocks/edges.

AFL executes dUnicorn as any other userspace program.
dUnicorn then does all the job of copying mutated input to
proper memory locations, catching unmapped memory errors
and raising SEGFAULT signals, dynamically intercepting and
rewriting function calls, and dynamically recovering IOCTL
structures.

F. Symbolic execution

With symbolic execution our goal is similar: being able to
symbolically run a kernel memory snapshot. Our implementa-
tion is based on the Manticore [16] framework. Manticore is
tailored to symbolically execute userspace ELF binaries and
cannot run kernel code. We extend it and add a new mode that
allows for restoring the execution state from the memory snap-
shot. Similar to dUnicorn, our symbolic execution tool allows
for dynamic binary rewriting and replacing kernel functions
with custom implementations, specifically we replace memory
allocation functions with our custom memory allocator.

The symbolic execution component is generic and can
potentially be used for different tasks (for example discovering
new paths when the fuzzer gets stuck). In our implementation,
we used it to develop a pass that recovers IOCTL command
numbers to be used in the cmd argument. Recovering IOCTL
commands was necessary since they are usually hard to guess
by the fuzzer. Our approach to recovering IOCTL command
numbers is based on the common convention of having a
large switch statement inside IOCTL handlers. Each switch
case is usually compiled into a conditional branch instruction.
We assign register r1 (containing cmd argument) a symbolic
value and every time the execution state forks inside the
IOCTL handler (but not inside its callees), we call the solver
to produce a counterexample.
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]
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Fig. 3: Experimental workflow

G. Program generation

For each of the IOCTL commands we launch an
AFL/dUnicorn instance. If crash is found, our system uses
the input that triggered the crash and the recovered IOCTL
structure layout to automatically generate a C program that
will trigger the crash when run on the real kernel. We have
found this very useful when preparing a proof-of-concept code
for a vulnerability report or filtering out false positive crashes.
In fact, we were able to submit and get accepted, working
proof-of-concept code for vulnerabilities in our reports without
ever having the device on which the proof-of-concept is
supposed to run.

V. EVALUATION

In this section, we pose three questions: 1) whether our
hypothesis about superficially dependent paths is correct and
we can reach real vulnerabilities; 2) whether the evasion tech-
niques are sufficient to load and initialize drivers; 3) whether
we can find new bugs and how many false positive crashes
we get during fuzzing. We start by describing experimental
workflow, describe our experimental results and discuss the
limitations of evasion.

A. Workflow

Figure 3 shows the sequence of steps that we followed
during our experiments for each driver. Each individual step
was automated except for driver compilation: our framework
was designed to work directly on binary kernel modules (i.e.
ko files) but most Android drivers are currently compiled
directly into the kernel rather than as modules. Compiling
drivers as modules did not require any changes in the driver
source. We had to either modify the corresponding Makefiles
(by changing ob j-y to ob j-m directives) or navigate through
the menuconfig. When modifying Makefiles, sometimes it
might not be immediately clear what source files constitute
a driver, this however can be solved through trial and error.

Going from one step to another requires providing the
output of one step as input to the next step manually. Gluing
all the steps together is mechanical (i.e. identical for all drivers
and does not require any additional analysis by the analyst)
and can be done with moderate engineering effort.

B. Reaching existing vulnerabilities

We start by answering: given that we can load some drivers,
do superficially dependent paths contain real vulnerabilities
and can we reach them? To answer this question, we looked at
existing vulnerabilities in IOCTL system calls. We wanted to



verify that we can reach vulnerabilities specifically in Android
drivers (and not only in Vanilla Linux kernel drivers on which
the evasion kernel is based on). Thus, we create a corpus
of known vulnerabilities in Android device drivers that are
not present in the vanilla Linux kernel and cannot be trivially
compiled against it.

In order to find CVE’s we used cvedetail.com database
with “android” keyword and chose the first 21 CVE’s that
satisfied the above criteria. These CVE’s belonged to 10
different drivers from Android for MSM kernel® that could
be loaded and initialized by the evasion framework. The
vulnerable versions of the drivers were for MSM kernel 3.4,
3.10, and 3.18, we thus prepared evasion kernels based on the
same versions of the Vanilla kernel.

We also include 5 additional bugs (lines 22-26) that were
known to the developers and patched in the latest version of the
MSM kernel but not publicly reported as CVE’s. We describe
each of these 5 bugs in more detail in Appendix E. For each
bug in our corpus, we created a test program that can inject an
input that should trigger each of the bugs and confirm whether
the bug is triggered or not.

Overall we were able to reach existing bugs in 21 (80%) of
the 26 cases. This indicates that vulnerabilities often pertain
to superficially dependent paths and confirms that EASIER is
able to trigger them without having to precisely emulate either
the host kernel or the hardware device. We describe some of
the interesting CVE’s in Appendix D.

C. Loading drivers in the evasion framework

We now evaluate the ability of the evasion framework
to successfully load and initialize Android platform device
drivers without peripherals and without porting drivers. To
evaluate this, we use 62 drivers from three different kernels:
the MSM kernel, the Xiaomi Redmi 6 kernel, and the Huawei
P20 Pro kernel. Specifically, we searched for platform drivers
that appear in the MSM kernel and are not present in the
vanilla Linux kernel and then selecting the first 20 that
contained IOCTL system call handlers (note that these drivers
are different from those in the previous experiment). We were
able to compile all of these as modules. We chose Xiaomi
drivers by selecting drivers that contain an IOCTL system call
handlers and are not present in the Vanilla kernel, resulting in
another 50 drivers. Among those, we were able to compile 32
as modules. The most common reason for not being able to
compile a driver was that the kernel source tree was missing
header files included by the driver. We believe these drivers
were not actually a part of the Xiaomi kernel but were left
there from previous kernels and never meant to be compiled.
We used a similar procedure for the Huawei kernel and added
another 10 drivers to bring the total to 62 drivers. The drivers
came from a variety of kernel subsystems, such as camera,
network, radio, USB, video subsystem, and others. Driver
loading experiments were conducted on machines running

3A fork of Android Open Source Project containing additional enhance-
ments for Qualcomm chipsets.

CVE # Module Reach
1 CVE-2014-9785 gseecom.ko v
2 CVE-2014-9891 gseecom.ko
3 CVE-2014-4322 gseecom.ko
4 CVE-2014-9894 gseecom.ko
5  CVE-2012-4220 diagchar.ko v
6 CVE-2015-9863 diagchar.ko v
7 CVE-2015-9863-1 diagchar.ko v
8 CVE-2014-9875 diagchar.ko v
9 CVE-2014-9782 msm_actuator.ko v
10 CVE-2014-9786 msm_actuator.ko e
11 CVE-2014-9777 vidc_vdec.ko v
12 CVE-2014-9880 vidc_vdec.ko
13 CVE-2016-5344 mdss_rotator.ko v
14  CVE-2014-9866 msm_csid.ko v
15 CVE-2016-3903 msm_csid.ko v
16 CVE-2014-9867 msm_isp.ko v
17 CVE-2015-8941 msm_isp.ko Ve
18 CVE-2014-9871 msm_isp.ko v
19 CVE-2014-9868 msm_csiphy.ko
20 CVE-2014-9882 iris-radio.ko v
21 CVE-2014-9881 iris-radio.ko v
22 diag-crash-1 diagchar.ko v
23 diag-crash-2 diagchar.ko v
24 actuator-crash-1 msm_actuator.ko v
25  actuator-crash-2 msm_actuator.ko v
26  isp-crash-1 msm_isp.ko v

Total 21/26 (80%)

TABLE I: EASIER’s abaility to reach known vulnerabilities.
The bug marked as CVE-2015-9863~-1 was unreported but
similar in nature to CVE-2015-9863.

Ubuntu 16.04/18.04 (with a 4-core 2.70GHz CPU and 8 GB of
RAM), Qemu version 3.10, and evasion kernels based on the
Vanilla kernels 3.4 and 4.9. We now evaluate the success rate
of driver initialization by the evasion kernel, analyze reasons
for failures to initialize and outline how often the stubl
evasion function was needed instead of stubO.

1) Success rate: The summary of the results is shown in
Table II. For each driver we indicate whether we were able
to load it, as well as the size of the driver. Out of 62 drivers,
the evasion kernel was able to successfully load and initialize
48 drivers (77%). Among those, for 2 drivers (drivers #4 and
#17) the last, open, stage failed with a crash, in which case
the evasion kernel completed loading by using the surrogate
module to which the IOCTL handlers of the driver were
attached.

2) Reasons for initialization failure: We analyzed the rea-
sons for initialization failure and observed that failures often
happened either in init or probe functions due to evaded
functions that had required functionality, such as initializing
fields of a struct, that our stubs did not perform. This caused
the driver to crash, skip the creation of the /dev file, or to
go to error handling code that deleted the previously created
/dev file. For example, in the case of the dwc3-msm.ko
USB controller driver, the probe function finished success-
fully, but the execution did not take the path that creates the



# Module LOC Init \ # Module LOC Init \ # Module LOC Init
MSM kernel v3.4

1 avtimer.ko 369 v 8 msm_rotator.ko 1,850 v 15 adsprpc.ko 1,287 v
2 msm_adc.ko 1,533 v 9 msm_serial_hs.ko 3,447 16  vidc_venc.ko 4,149 v
3 msm_led_flash.ko 273 v 10 msm.ko 1,056 v 17  msm_gemini.ko 2,399 F
4 msm_jpeg.ko 2,303 F 11 msm_ispif.ko 1,085 v 18  msm_cpp.ko 1951 v
5 msm_vpe.ko 1,645 12  msm_rmnet.ko 841 v 19 msm_rmnet_bam.ko 1,013 v
6 msm_rmnet_sdio.ko 713 v 13 msm_rmnet_smux.ko 934 v 20 msm_rmnet_wwanko 750

7 gfec.ko 3,056 14  dwc3-msm.ko 3,217

Xiaomi Redmi6 kernel

21  mtk_disp_mgr.ko 1,958 v 32 btif.ko 7,554 v | 43 flashlight.ko 1,902 vV
22 flashlights-dummy.ko 689 v 33 flahslights-leds191.ko 544 44 flashlights-lm3642.ko 728 v
23 vcodec_kernel_driver.ko 4,996 v 34  teei.ko 7,838 45  ccu_drv.ko 1,468 v
24 dfrc.ko 1,920 v 35  mtk_extd_mgrko 5,474 v 46  mtk_auxadc.ko 2,000 v
25 sub_lens.ko 2,883 v 36 main2_lens.ko 4,081 v 47  sub2_lens.ko 670 v
26 main_lens.ko 15,624 v 37  camera_isp.ko 15,330 v 48  camera_dpe.ko 5,053 v
27  camera_rsc.ko 3,660 38  3.5/camera_fdvt.ko 1,389 v 49  5.0/camera_fdvt.ko 4,569 v
28  4.0/camera_fdvt.ko 1,396 v 39  camera_dip.ko 5,028 v 50 sec.ko 399 v
29  mtk_irtx_pwm.ko 412 40  eeprom_driver.ko 1,406 v 51 jpeg_drv.ko 3,176

30 imgsensor.ko 2,784 41  cmdq.ko 17,959 52 mmprofile.ko 2,429 v
31  mtkbattery.ko 11,491 v | 42 mtkcharger.ko 5,079 v

Huawei P20 Pro kernel

53  fingerprint.ko 2,284 57 maxim.ko 618 v | 60 tfa98xx.ko 497 v
54 usb_audio_power.ko 593 58 usb_audio_power_v600 192 v 61 usb_audio_common.ko 205 v
55 anc_hs_default.ko 236 v 59 anc_hs.ko 1,517 v 62 ext_modem_powerko 1,244 v
56 hwcam_module.ko 5,471 v

Total successful: 48/62 (77 %)

TABLE II: Evaluation of driver initialization. F — surrogate module was used.

/dev file. From our analysis, it appeared that some of the
missing functionality could be extracted from the host kernel
and added to the stub functions in the evasion kernel, but we
leave the exploration of this functionality for future work.

3) Using stubl: In the vast majority of cases, the evasion
kernel’s stub function returns O and this is the value ex-
pected by the driver. However, two drivers, vidc_vdec.ko
and mdss_rotator.ko from Table I requires stubl. In
both cases, the most recent evaded relocations needed to be
changed, thus requiring only one attempt for the first driver,
and two attempts for second driver to correct the issue.

D. Fuzzing results

Finally, we evaluate the ability of our framework to discover
new bugs, the false positive rate due to evasion and the speed
at which EASIER supports fuzzing.

1) Evaluation set: We fuzz a total of 32 drivers: all of the
24 Xiaomi drivers that loaded successfully and 8 MSM kernel
drivers from section V-B. Since our current implementation
of dUnicorn is for 32bit ARM binaries, and Huawei drivers
could only be compiled for ARM64 we currently cannot fuzz
them. We plan to add support for fuzzing arm64 binaries in
future versions. We fuzzed each driver between 12 hours and
2 days on an 8-core machine with 8GB of memory running
Ubuntu 18.04. In total we fuzzed the drivers for 715 hours.

2) Bugs discovered: We discovered bugs in the drivers of
both the Xiaomi and MSM kernels. The number of bugs and
their types are shown in Table IV. We found a total of 12 new
bugs in the Xiaomi drivers, all of which were confirmed by
the Xiaomi security. We also received bounties for 5 of them
(submitted as 4 reports, one report combining two bugs into
a single read-write primitive).

We also found a total of 17 bugs in the MSM kernel. These
bugs were not known to us at the time of the experiments.
However because an older version of the MSM kernel was
used in our experiments (we originally used the MSM kernel
to test known vulnerabilities), we cannot be sure they are zero-
days. We are in the process of checking whether the bugs are
previously known, silently fixed or still present in the most
recent MSM kernel version.

Finally, our fuzzing experiments also used a checker that
detects cases where a userspace application can cause a driver
to attempt to allocate arbitrarily large memory buffers with
kmalloc. This checker found 13 unbound kmalloc uses
for Xiaomi and 1 unbound kmalloc for MSM kernel.

During fuzzing we were able to recover all IOCTL struc-
tures and catch all field interdependencies. For each of the
bugs we automatically generated a C program that we used to
triage bugs and prepare vulnerability reports

3) False positives: We observed 1 false positive in the
MSM kernel and 4 false positives for the Xiaomi kernel (see



Table IV). Three of the Xiaomi false positives are due to
a mismatch in the struct pm_gos_request definition
between the Xiaomi kernel and the evasion kernel. Upon
manual analysis we found that the Xiaomi’s version included
an additional field, resulting in an incompatibility between the
driver and the evasion kernel that resulted in a false crash. Our
current evasion kernel only guarantees the same layouts of
common structs like struct device and struct file
and did not handle this structure, though it could be extended
to do so.

The fourth Xiaomi false positive was due to a loop where
the driver reads a value from the device until it gets a non-
zero value. Since EASIER always returns a zero whenever the
driver tries to read from the non-existent peripheral the loop
never terminates. Note that this issue can also be classified as
a bug: ideally a kernel should not hang simply because of a
malfunctioning peripheral device.

The one false positive for MSM kernel was a driver that
failed to initialize completely, but still generated a device file
so it appeared to have been properly initialized. In reality, a
variable had not been properly initialized and then was used
by the driver’s IOCTL handler.

4) Fuzzing rate and execution paths: We tabluate the time
spent fuzzing, number of code paths discovered and rate of
fuzzing for each driver in Table III. On the average, EASIER
fuzzed MSM kernel drivers at 1,167 executions per second
and Xiaomi drivers at 525 executions per second (on an 8-
core machine). The difference between the two kernels is
due to the difference in snapshot sizes: 37Mb and 205Mb
correspondingly. This fuzzing speed is an improvement of 1-
2 orders of magnitude over previous hybrid systems such as
Charm [29], which achieves roughly 20 executions per second
by fuzzing drivers on a 16-core machine, but still forwarding
low-level operations to be run in-vivo on a real device. Another
advantage on our system was that the lack of a physical device
removed the need to re-initialize or restart the device when
needed (after a crash for example [8]).

On some drivers, fuzzing produced a low number of discov-
ered paths. We found that it often was due to magic numbers
that the fuzzer was not able to find rather than due to EASIER
or the evasion kernel. For example we often observed that after
IOCTL command switch statement drivers use yet another
switch statement on user input subfields. We plan to use our
symbolic execution tool together with the fuzzer to deal with
this cases in future work.

5) Halts during context switch: As mentioned in Sec-
tion I'V-C, a driver may invoke a context switch if it needs to
wait for a value from the peripheral. Since dUnicorn cannot
simulate a context switch, it halts if this happens. Such context
switches might prevent exploring new paths in the driver.
During fuzzing, such halts happened only in 13/267 IOCTL
commands for Xiaomi drivers and 3/137 IOCTL commands
for MSM drivers.

Module Time, hrs Paths Speed, exec/s
MSM kernel

diagchar.ko 48 37 1357
gseecom.ko 49 42 1126
msm_isp.ko 50 251 1250
msm_csiphy.ko 17 14 1130
radio-iris.ko 16 172 1217
msm_actuator.ko 51 140 1188
vidc_vdec.ko 51 52 952
msm_csid.ko 20 32 1117
Xiaomi kernel

mtk_disp_mgr.ko 19 58 485
mtk_btif ko 22 11 671
mtk_flashlight.ko 22 36 932
ccu_drv.ko 20 90 537
camera_isp.ko 20 422 578
flashlights-dummy.ko 15 63 621
flashlights-lm3642.ko 15 63 711
vcodec.ko 14 40 617
dfrc.ko 16 54 458
mtk_extd_mgr.ko 17 21 501
mtk_auxadc.ko 17 5 548
subaf.ko 17 9 455
main2af ko 17 9 466
sub2af ko 17 7 466
mainaf.ko 17 8 393
camera_fdvt_v3.5.ko 12 118 441
camera_fdvt_v4.0.ko 23 124 520
camera_fdvt_v5.0.ko 12 145 527
camera_dip.ko 12 208 527
sec.ko 12 4 431
eeprom.ko 19 86 275
mmprofile.ko 19 16 638
mtkbattery.ko 19 19 691
mtkcharger.ko 20 1 121

TABLE III: Fuzzing statistics

Type of bug # MSM Kkernel # Xiaomi kernel

Memory read

Memory write

Buffer overflow
Out-of-bound index
Unchecked user pointer
NULL dereference
ZERO_SIZE_PTR deref.
Buffer overread

False positives

—_—_——_—, NN = = O
Armm, P, O RO NDW

Total (excluding FP) 17

p—
N

TABLE IV: Types of bugs found. Memory read/write bugs
include bugs that allow for either arbitrary read/write or
memory read/write below a certain address.

E. Limitations

Our framework has three main limitations. First, because
of the lack of actual hardware it is currently most suitable for
system call analysis, i.e. when the malicious input comes from



userspace applications. It cannot reliably be used to find vul-
nerabilities that are exploitable by a malicious/compromised
peripheral or an attacker who sends malicious input to the
device. Second, our current implementation does not support
interrupts and only supports platform and I2C buses in the case
of ARM32 and platform bus in the case of ARM64. Finally,
evasion can produce false positives, which is usually not the
case for fuzzing.

VI. RELATED WORK

Charm [29] deals with the problem of missing peripherals
by redirecting the corresponding I/O calls to the actual physi-
cal device through USB. Such an approach, while more precise
in terms of emulation, requires porting the driver to a specific
version of the kernel and also requires the physical device to
be present. As reported by its authors the time required to port
a driver for an experienced kernel developer varies between
two days and two weeks. Our approach does not require driver
porting and having access to a physical device. Our approach
can also work for drivers that come as binary only. Avatar [32]
is similar in spirit to Charm but works for low-level embedded
firmware such as hard drive firmware.

FIE [9] analyzes self-contained barebone firmware for
MSP430 microcontrollers by extending KLEE [2], a fully sym-
bolic environment. In order to deal with missing peripherals,
every time the firmware tries to access a hardware through
memory-mapped registers, the framework returns either a
new symbolic value or a constant. Such an approach is well
suited for small barebone programs that access hardware using
memory-mapped registers. In contrast, Linux kernel drivers are
not self-contained code and use a diverse set of kernel API to
access peripherals. Additionally, FIE is tailored for a limited
set of MSP430 microcontrollers and peripherals. In the case of
Linux drivers there are many more peripherals, and for many
of them specification is not available.

Keil and Kolbitsch [12] focus on testing WiFi drivers in
Qemu by emulating an IEEE 802.11 device. Periscope [24]
instruments DMA buffers inside kernel to inject fuzzed data
into WiFi drivers. Ma [14] develops emulated versions of
USB devices and fuzz drivers against these emulated devices.
Mueller [17] uses a Qemu provided virtual USB device.
Schumilo et al [21] use USB redirection protocol to provide
access to remote USB devices. Patrick-Evans et al [19] develop
an emulation of a generic USB device. In the current work
we target a wider range of device drivers and do not require
emulated or physical peripherals.

Triforce [11] is a modified version of AFL that supports
fuzzing using QEMU’s full system emulation for x64 archi-
tecture. S2E [5] allows for symbolic execution of the full
kernel stack and is tightly coupled with the KLEE symbolic
executor. In this work, we support ARM, we deal with missing
hardware, automatically recover ioct1 system call structures,
and allow any userspace fuzzer or binary symbolic execution
tool to be used.

DR. CHECKER [15], Coccinelle [27] and Coverity [1]
use static analysis to find bugs in Linux kernel drivers. The

upside of static analysis is that it alleviates the need to have
peripherals. The downside is that it is also imprecise and
is known to produce a large amount of false positives that
require further manual analysis. Static analysis also limits
the analysis to bug finding only. In contrast, our goal is to
enable dynamic analysis. Our approach provides a different
set of capabilities such as coverage-guided fuzzing, symbolic
execution, and interactive debugging. Since dynamic analysis
produces a concrete input for a potential vulnerability, it can
be mechanically tested on the real device for false positives.

Firmalice [23] statically analyzes embedded binary firmware
images and identifies authentication bypass vulnerabilities.
Firmadyne [3] emulates user space applications extracted from
embedded devices. In this work, we target dynamic analysis
instead, and we focus on kernel-level vulnerabilities.

VII. CONCLUSION

The main challenge to ex-vivo dynamic analysis of device
drivers is the software dependencies they have on their host
kernel, and the hardware dependencies they have on the
hardware device they are supposed to manage. In this paper,
we make the observation that for many execution paths in
drivers these dependencies are in fact superficial. For example,
such paths may only depend on the ability to read a memory-
mapped device register, but not on the actual value returned.
We hypothesize that a possible solution to ex-vivo dynamic
analysis for such paths is evasion, where a specially con-
structed evasion kernel satisfies those dependencies by evading
them.

To test this hypothesis, we developed an evasion kernel
that can load and initialize platform device drivers and an
EASIER tool that can then extract and run those drivers for
analysis as userspace processes. We find that using evasion,
our kernel is able to successfully initialize 48/62 (77%) of
foreign platform drivers. Moreover, EASIER can trigger 21/26
(80%) vulnerabilities, showing that one does not need detailed
porting or emulation to find bugs. Finally, to fully test the
hypothesis, we fuzzed 32 drivers for a total 715 hours and
found a total of 29 bugs, 12 of which have been confirmed to
be new bugs. From this, we conclude that evasion and EAS-
IER make Android ex-vivo driver analysis possible without
porting or hardware (either real or emulated). Moreover, we
conclude that these techniques are effective for discovering
and analyzing vulnerabilities.

Our approach allows for dynamic analysis of Android
drivers with sufficiently high precision and without requiring
physical nor emulated devices. We believe that the ability to
work without the need to use complex debugging interfaces
or to reflash the device and the ability to analyze the driver in
userspace will help to lower the bar for Android kernel driver
analysis.
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APPENDIX A
LIST OF FUNCTIONS INTERCEPTED BY THE EVASION
KERNEL

In this appendix, we list functions that are intercepted by
the evasion kernel in order to evade hardware dependencies.



request_firmware Replaced with a stub that allo-
cates and returns 1024 bytes of

zeroed memory.

ioremap Replaced with kzalloc
ioremap_wc

of_iomap

clk_get Replaced with a stub that

devm_clk_get
of_clk_get_by_name

returns clock “oscclk0” present
at virt board or “apb_pclk”
present at vexepress board

Replaced with stub0

Replaced with stub0 to avoid
read/write to missing periphreal

clk_set_rate
i2c_smbus_write_byte_data
i2c_smbus_read_byte_data

wait_for_completion
request_threaded_irqg
_raw_spin_lock
_raw_spin_unlock
wait_for_completion_timeout

Replaced with stub0 to avoid
waiting for interrupts from
missing peripheral

Replaced with stubl to avoid
waiting for interrupts from
missing peripheral

APPENDIX B
IMPLEMENTATION DETAILS

A. Extracting kernel state snapshot

Once a driver is loaded and initialized and the corresponding
/dev/ filesystem entry is created in Qemu, EASIER executes
a user space program that opens that file and issues an IOCTL
system call. EASIER uses Qemu’s gdb interface to set a break-
point at the beginning of the corresponding system call entry in
the kernel: this address can be found in /proc/kallsyms.
Note that in order to distinguish the system call that reaches the
handler under test from system calls issued by other programs
(e.g. by the parent terminal) EASIER puts a unique value to
the list of arguments and uses a conditional breakpoint that
checks for this value (in our implementation we conveniently
reused the IOCTL cmd numbers which are usually sufficiently
unique).

Once the execution reaches the kernel, EASIER dumps
the guest memory and CPU registers values. Unfortunately,
Qemu’s control port command for dumping ARM guest mem-
ory, dump—-guest-memory, only works if the host also
runs on the ARM architecture®. Due to this, we use the
gdb interface instead, which allows one to dump arbitrary
memory regions. In order to use this approach, EASIER needs
to know memory regions to dump in advance. While getting
the userspace memory mapping is trivial through the /proc
filesystem, getting the kernel space memory layout is a bit
more complicated for ARM32. On Intel and aarch64 architec-
tures the kernel mapping can be obtained through debugfs if
the kernel was compiled with the CONFIG_PTDUMP option.
Unfortunately, there is no such option for ARM32. Fortunately,
a corresponding patch was published at 1wn . net that enables
similar functionality>. With a few tweaks we were able to
make it work for our case. For the guest CPU registers we
use Qemu’s QMP interface.

B. IOCTL recovery additional details

When  recovering  IOCTL structures, we  use
copy_from_user () and copy_to_user () functions
to learn the pointer value and the size of the corresponding

“https://lists.gnu.org/archive/html/qemu-devel/2015-11/msg04481.html
Shttps://lwn.net/Articles/572320/

memory region. To do this, we intercept and replace these
functions in dUnicorn. One of the difficulties is that these
functions are inlined which means that we cannot simply
put a code hook at one specific address (as with non-inlined
functions). Instead we need to find all places inside the driver
that include the corresponding code. Fortunately, in Linux
kernel both functions are defined using inline assembler
which means that they are always compiled into the same
type of instructions and with the same order. We use this
fact to statically search for the corresponding sequence of
instructions and redirect execution at those points.

C. Restoring coprocessor registers

When restoring the kernel state inside dUnicorn, we also
need to restore coprocessor registers. Unfortunately the Uni-
corn library does not support setting such registers directly. In
order to set them our framework automatically generates as-
sembly code (which uses mcr instructions to set the registers)
and executes it before starting IOCTL handler emulation.

APPENDIX C
DRIVER INITIALIZATION ADDITIONAL DETAILS

In this Appendix, we look further at how often stub func-
tions were used to satisfy software dependencies at various
stages of the driver initialization process. Table V shows the
number of stub invocations for 25 drivers from the MSM
kernel for which we were able to reach IOCTLs. To give
a rough measure of driver complexity, column 2 shows the
number of lines of code contained in the driver and column
3 specifies how many undefined functions the driver had (i.e.
those present in the Android kernel but absent in our evasion
kernel). Columns 4-7 specify how many times the evasion
kernel used stub functions to satisfy a dependency in each
step of the initialization process (including repeated calls to
a missing function). We can see that the total number of
invocations for most of the drivers is moderate and is often
less than 10, but could be as high as 50 in the case of
msm_cpp . ko.

In Table VI, we provide a breakdown of different loading
phases for MSM drivers. For each driver, the 3rd and 4th
columns specify if the driver’s init and probe functions
succeeded; n/a in the probe column means that the driver
does not have the corresponding function and all the initial-
ization happens inside init. Column “dev” file specifies
whether during the initialization, the driver succeeded in
creating the corresponding file in /dev; the open column
specifies whether this file could be successfully opened.

APPENDIX D
KNOWN CVE’S: CASE STUDIES

In this appendix, we describe three existing vulnerabilities
that were reachable in the evasion kernel, CVE-2014-9786,
CVE-2014-9785 and CVE-2014-9783, in more detail. The
former demonstrates that our system is capable of reaching
deep bugs. The second, is an example of a bug that can
be reached even in case the driver is supposed to actively



Module LOC Missing Stubs in Stubs in Stubs in Stubs in Stubs total
Symbols Init Probe open close

avtimer.ko 369 5 0 0 2 4 6
msm_rotator.ko 1,850 16 0 12 0 0 12
adsprpc.ko 1,287 19 3 - 5 5 13
msm_adc.ko 1,533 8 0 1 0 0 1
vidc_venc.ko 4,149 38 2 - 5 1 8
msm_led_flash.ko 273 2 0 2 0 0 2
msm.ko 1,056 2 0 0 0 0 0
msm_gemini.ko 2,399 11 0 0 0 - 0
msm_jpeg.ko 2,303 20 0 3 0 - 3
msm_ispif.ko 1,085 5 0 0 0 0 0
msm_cpp.ko 1,951 23 0 19 10 21 50
msm_rmnet.ko 841 10 0 - - - -
msm_rmnet_bam.ko 1,013 8 0 - - - -
msm_rmnet_sdio.ko 713 0 0 - - - -
msm_rmnet_smux.ko 934 0 0 0 - - -
gseecom.ko 3,391 18 0 10 0 0 10
diagchar.ko 8,781 17 1 - 0 0 1
msm_actuator.ko 907 15 0 0 0 0 0
msm_cci.ko 1,149 6 0 1 0 0 1
vidc_vdec.ko 2,691 49 1 - 5 3 9
mdss_rotator.ko 3,085 49 0 6 0 0 6
msm_csid.ko 669 7 0 0 0 0 0
msm_isp.ko 3,747 22 0 6 1 0 7
msm_csiphy.ko 774 4 0 0 0 0 0
iris-radio.ko 4,561 0 0 0 0 0 0

TABLE V: Details of driver initialization process

communicate with the hardware. The third, is an example of
how we used our framework to show that CVE-2014-9783 is,
in fact, a false positive and cannot really be triggered, even
on a device.

CVE-2014-9786. According to the CVE, this vulnerability
affects the camera actuator sensor driver in Google Nexus 5
and 7 devices. The vulnerability happens in an IOCTL used to
configure the sensor; triggering it requires issuing two IOCTLs
in a sequence. The first [IOCTL is used to allocate an array
of a user-defined size. Inside the second IOCTL this array is
parsed inside a loop whose upper bound can be controlled by
the attacker. This is a challenging stress test for our system
since reaching vulnerable code requires the driver to stay in a
consistent state between the two IOCTLs.

CVE-2014-9785. This vulnerability happens in gseecom. ko
driver which enables communication between the Linux kernel
and QSEE, Qualcomm’s TrustZone implementation, which is
present on a wide variety of Android devices. The driver works
by issuing a Secure Monitor Call to request services inside
QSEE, and thus its functionality depends on TrustZone re-
turning specific values. Dependencies on specific functionality
that cannot be evaded without detailed information about the
hardware is what prevents three other gseecom.ko CVEs
from being triggered: in order for the driver to reach vulnerable
code QSEE needs to return a correct version number. However,
even though execution in this driver depends on the hardware
most of the time, this particular vulnerability could be executed
and reached in our evasion kernel. The vulnerability is due to
the use of __copy_from_user () function that does not

verify the pointer provided by the userspace.
CVE-2014-9783. Finally we consider a CVE describing a bug
in a camera control interface driver, msm_cci . ko. We could
not cause a crash in our evasion kernel and at first decided that
it was due to our framework. However after additional manual
analysis, we found that the bug can not be in fact be triggered
on a real device either. According to the CVE, the bug is due
to unchecked “size” field which in theory should cause an
out of bound memory access. However msm_cc1i . ko gets the
user-provided data from the v412 subsystem which passes only
the number of bytes as encoded by the first, cmd, argument.
We found that there was another bug in the definition of
the cmd argument. As a result instead of copying the whole
second argument, only 4 bytes (a 32-bit pointer) were copied
from the userspace to the kernel space by the v412 subsystem.
This prevents the malicious payload (“size” field) from ever
reaching the IOCTL code.

APPENDIX E
FIVE KNOWN BUT UNREPORTED BUGS IN THE MSM
KERNEL

In our experiments, we used 5 bugs that were fixed in the
MSM kernel but not reported as CVE’s. We describe these
bugs in more detail in this section.
actuator-crash-1. This bug affects the camera actuator sensor
driver, msm_acutuator.ko, and is due to an attacker-
controlled upper bound of a loop. The vulnerable code we
analyzed pertains to the MSM kernel commit 212da48
and ioctl cmd VIDIOC_MSM_ACTUATOR_CFG. In more



[13 ob
# Module Init Probe ‘:ﬁ: Open
1 avtimerko v v v v
2 msm_rotator.ko v v v v
3 adsprpc.ko v n/a v F
4 msm_adc.ko v v v v
5  msm_serial_hs.ko v X - -
6  vidc_venc.ko v n/a v v
7 msm_led_flash.ko v v e v
8 msm.ko v v v v
9 msm_gemini.ko v v v S
10  msm_jpeg.ko v v v S
11 msm_ispif.ko v v v v
12 msm_cpp.ko v v v F
13 msm_vpe.ko v F - -
14  msm_rmnet.ko v n/a v v
15 msm_rmnet_bam.ko v n/a v v
16 msm_rmnet_sdio.ko v n/a Ve F
17 msm_rmnet_smux.ko v v v F
18 msm_rmnet_wwan.ko F n/a - -
19 gfecko F - - -
20  dwc3-msm.ko v v - -
21  gseecom.ko v v 4 v
22 diagcharko v n/a v v
23  msm_actuator.ko v v v v
24  msm_cci.ko v v v v
25  vidc_vdec.ko v v v v
26 mdss_rotator.ko v v v v
27  msm_csid.ko v v v v
28  msm_isp.ko v v v v
29  msm_csiphy.ko v v 4 v
30 iris-radio.ko v v v v

TABLE VI: Loading phase evaluation. v— step succeeded;
F — function returned a negative error code; X — function
crashed; ’—’ — step failed due to errors at previous steps; n/a —
functionality not present; X— ioctl analysis failed; S — surrogate
module was used.

detail, structure a_ctrl->region_params is copied from
userspace in Listing 5, line 3. Later, step_bound field of
this structure is used as a loop upper bound (lines 11 and 12)
with a crash at line 14.

actuator-crash-2. This bug also affects the
actuator sensor driver, msm_acutuator.ko, and
is caused by an uninitialized function pointer. Note
that such bugs can be sometimes exploited to get
arbitrary code execution [13]. The vulnerable code we
analyzed pertains to MSM kernel commit e6edf78
and ioctl comd VIDIOC_MSM_ACTUATOR_CFG. By
fuzzing this driver we immediately found that issuing
the CFG_SET_DEFAULT_FOCUS subcommand in
Listing 6 causes the kernel to crash. This is due to
a_ctrl->func_tbl in line 10 not being initialized
without first issuing the CFG_SET_ACTUATOR_INFO
subcommand in line 6.

diag-crash-1. This bug pertains to diagchar.ko, commit
1414d4a. This bug requires first to issue two ioctl system
calls in sequence: DIAG_IOCTL_SWITCH_LOGGING and
DIAG_IOCTL_COMMAND_REG to switch the driver state; and

camera

1 static int32_t msm_actuator_init(...) {
2 .

3 if (copy_from_user (&a_ctrl->region_params, (
void x)set_info->af_tuning_params.
region_params, a_ctrl->region_size x*
sizeof (struct region_params_t)))

4 return -EFAULT;
5 e
6 )
T ...
8 static int32_t msm_actuator_init_step_table(
struct msm_actuator_ctrl_t xa_ctrl,...)
9 {
10 .
11 step_boundary = a_ctrl->region_params|
region_index] .step_bound[MOVE_NEAR];
12 for (; step_index <= step_boundary;
step_index++) {
13 .
14 a_ctrl->step_position_table[step_index] =
cur_code; {
15

16 '}

Listing 5: Bug 1 in msm_actuator.ko, commit
212da48

1 static int32_t msm_actuator_config(...)

2

3 ...

4 switch (cdata.cfgtype) {

5 case CFG_SET_ACTUATOR_INFO:

6 rc = msm_actuator_init (a_ctrl, &cdata.cfg.
set_info);

7

8

9 case CFG_SET_DEFAULT_FOCUS:

10 rc = a_ctrl->func_tbl->

actuator_set_default_focus(a_ctrl, &
cdata.cfg.move);

11

Listing 6: Bug 2 in msm_actuator.ko, commit
ebedf78

then a write system call to trigger a crash. The reason for the
crash is a missing check for the lenght field (see lines 4 and
6 in Listing 7).

diag-crash-2. This bug pertains to diagchar.ko, com-
mit 1414d4a. The bug is due to copying a user pointer
directly instead of using copy_from_user function in
DIAG_TOCTI_COMMAND_REG ioctl.

isp-crash-1. This bug happens in msm_isp.ko
driver, commit 83789a7935f9. The bug is in
VIDIOC_MSM_VFE_REG_CFG ioctl which is used to

write data to the peripheral using writeb_relaxed in
which the attacker controls both the data written and the
offset from the start of the control register. The driver does
not check this offset which leads to arbitrary memory write
primitive.



1 int diag_send_dci_pkt (struct diag_master_table
entry, unsigned char xbuf, int len, int

index)
2
3 .
4 len = len - 4;
5 .
6 for (i = 0; i < len; i++)
7 driver—->apps_dci_buf[i+9] = x (buf+i);
8
9 1}

Listing 7: Bug 1 in diagchar.ko, commit 1414d4a

APPENDIX F
LIST OF DEFCONFIGS FOR AUTOMATIC RECOVERY

In this appendix, we list the eight layouts with default
configurations that were used to test our structure layout
recovery component.

msm7627a_defconfig

8226_defconfig, 8610_defconfig, 8960_defconfig
8660_defconfig

8974_defconfig

9615_defconfig, 9625_defconfig

All struct device options enabled

All struct device options disabled

PM_RUNTIME disabled but DEBUG_SPINLOCK enabled




