
In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety
Defense with Subobject Bound Granularity Protection

Shengjie Xu, Wei Huang, and David Lie

University of Toronto

1. Motivation

Unsafe programming languages like C and C++ do not strictly
enforce memory safety, and may allow an attacker to exploit
defects in pointer arithmetic to cause unintended memory cor-
ruption or disclosure. One important aspect is spatial memory
safety, where the pointer points to an unintended memory loca-
tion because of bad pointer arithmetic. When the bad pointer
arithmetic only moves the pointer in the same top-level object,
it can still cause intra-object overflow if the result address
points to the memory of a different subobject (e.g., struct
member in C), which is harder to detect but equally dangerous.
These vulnerabilities can be exploited by attackers to become
a powerful primitive for further attacks, for example, code
reuse attacks [12] and the more recent data-only attacks [5].
Currently, no existing or proposed defense can comprehen-
sively provide fine-grained checking, low overhead, and binary
compatibility at the same time.

2. Limitations of the State of the Art

While many solutions have been proposed to improve mem-
ory safety for C and C++ code, some schemes do not protect
against intra-object overflow, which allows a buffer overflow
inside a struct member to overwrite the memory of other mem-
bers in the same struct. Fine-grained memory safety defenses
aiming to catch these overflows will need to associate a pair
of legitimate address as pointer bounds to each pointer subject
to bad arithmetic [14].

Traditional fat pointer based approaches associate the
pointer bounds to each pointer persistently throughout the
lifetime of the pointer [11, 16, 8]. Such schemes either in-
cur high overhead if the bounds are maintained in a separate
memory region, or are incompatible with legacy code if the
pointer bounds are stored inline with the pointers. They are
also common to have memory overhead of 2× or higher [11].

Recent tagged-pointer schemes store metadata bits, known
as tags, in the unused high address bits on pointers. Prior
works have explored using pointer tags to lookup in-memory
object metadata and then recomputing pointer bounds on-
demand, which avoids the high memory overhead [9, 1, 2, 6].
However, none of the existing hardware-based schemes can
both detect intra-object overflow and fit all the per-pointer
metadata on the tag without increasing pointer size. Effec-
tiveSan [2] is a software-only sanitizer that achieves both but
has a high performance overhead of 115% for bound checking.

3. Key Insights

For a tagged pointer scheme using object metadata, in order
to detect intra-object overflow, the recomputed bound should
have subobject granularity. This means that when a pointer to
a subobject is derived from a pointer to the parent, the bound
on the derived pointer must be narrowed to the memory range
of the subobject. We propose In-Fat Pointer which solves the
following two challenges:
• Develop means for object metadata lookup schemes to con-

sume less pointer tag bits so that In-Fat Pointer can encode
information about current subobject.

• Develop an efficient approach to compute the most narrow
bounds to the current subobject with help from additional
pointer tag bits
The first insight is that by including multiple metadata

schemes, each of which is designed for certain objects in the
program, object metadata lookup can take fewer pointer tag
bits. Previous works using tagged pointers only use a single
metadata scheme general enough to accommodate all possi-
ble objects. This insight guides the design of three metadata
schemes in In-Fat Pointer which solves the first challenge.

The second insight is that carrying information on pointer
representing the current subobject can significantly simplify
subobject bound recomputation. EffectiveSan [2] needs to
perform a search on possible subobjects to retrieve the correct
bound. We find that by storing a subobject index on pointer and
updating it when deriving pointer to subobjects, the retrieval
of the current subobject can be simplified. This insight guides
the design of layout table in In-Fat Pointer which solves the
second challenge.

With the two challenges solved by two insights above, In-
Fat Pointer can achieve finer-grained protection without in-
creasing pointer size than previous tagged-pointer schemes.

4. Main Artifacts

In-Fat Pointer is an instruction set extension and compiler
instrumentation that provides spatial memory safety at subob-
ject granularity. We implemented In-Fat Pointer prototype on
CVA6 [17], a 64-bit in-order RISC-V processor, and evaluated
it on an FPGA board. We modified Linux kernel to support
additional user-level states introduced by In-Fat Pointer, and
proper handling of pointer tags when a pointer from a user-
level program is passed to the kernel. We implemented the
compiler instrumentation on Clang/LLVM [7].



As introduced in Section 3, the ISA is extended with three
metadata schemes and layout tables for object metadata access
and subobject bound computation. The hardware provides
a new promote instruction to recompute the pointer bound
from a pointer value, which first determines the metadata
scheme from the pointer tag, then accesses the object metadata
according to the scheme design, and finally computes the
pointer bounds. The compiler instruments the program so
that each pointer subject to bad pointer arithmetic has an
accompanying bound, and a bound check is performed before
the pointer is dereferenced.

In-Fat Pointer introduces the following three metadata
schemes, which trade-off placement constraints, object size
constraints, and scalability. Constraints can limit compatibil-
ity with certain types of objects, while scalability limits the
number of objects that can be supported. We reserve 2 bits
from a 16-bit tag to indicate the scheme and 2 poison bits to
track the validity of the pointer.

The Local Offset scheme is designed for small objects that
have object placement constraints, such as stack-allocated
objects. It appends object metadata directly after the object,
aligns both of them at power-of-2 sized granule, and for each
pointer it stores the distance from the current address to the
metadata address in terms of multiple of granule size on the
pointer tag. Therefore, 6-bit offset on pointer tag and 16-byte
granule size can support objects at most ~1KB in size.

The Subheap scheme supports heap allocations. It requires
the memory allocator to group objects with the same type and
size into power-of-2 sized blocks, and share a common meta-
data per block among all objects in the block. The prototype
uses 4 bits from the pointer tag to locate the common metadata,
with the help of 16 control registers specifying the block size
and offset of metadata that is indexed by the 4 bits.

The Global Table scheme is a fallback scheme that supports
objects that the other two schemes cannot support due to con-
straints. Each object is assigned a row in a global metadata
table, and the index is stored in the pointer tag. The size of the
table is limited by the width of the index, which is 12 bits in
our prototype.

After one of the metadata schemes is accessed and the object
granularity bound computed, the hardware executing promote
instruction will access the layout table to narrow the bound
to the currently pointed subobject. The layout table encodes
the type hierarchy as a table, and a subobject index from
pointer tag points the element in the table corresponding to the
subobject, which the hardware uses to retrieve the narrowed
subobject bound.

We synthesized the modified CVA6 processor on an FPGA
board and (1) run all 5,572 applicable test cases from the NIST
Juliet test suite for C/C++ [10] to test the functionality; (2) run
4 benchmarks to evaluate the performance and area overhead:
bzip2 [13], 458.sjeng from SPEC2006 [4], CoreMark [3], and
WolfCrypt’s Diffie–Hellman benchmark [15]; (3) evaluate the
area overhead by analyzing the FPGA synthesis reports.

5. Key Results and Contributions

In-Fat Pointer shows that it is practical for hardware-based
tagged-pointer scheme utilizing object metadata to provide
spatial memory safety at subobject bound granularity without
breaking compatibility by increasing pointer size. It incurs
performance overhead from 8.9% to 23.1% and memory over-
head less than 17.2% across four benchmarks. In-Fat Pointer
detects all 5,572 applicable vulnerabilities in the Juliet test
suite with full accuracy.

Comparing with existing tagged-pointer schemes, In-Fat
Pointer is the first hardware design that can achieve subobject
granularity protection on par with fat pointers without breaking
compatibility with legacy code. Comparing with existing fat
pointer schemes that store pointer bounds in separate memory
regions, In-Fat Pointer has a lower overhead.

This paper makes the following contributions:
• We present In-Fat Pointer, which uses three complemen-

tary metadata schemes that provide comprehensive, legacy
code-compatible, and performance-efficient protection for
hardware-based spatial memory safety defenses against
memory corruption.

• We describe layout tables, a mechanism that In-Fat Pointer
uses to provide protection against intra-object overflows
by narrowing the bounds that pointers to subobjects within
an object are checked against, so they are the most precise
bounds possible.

• We implement a In-Fat Pointer prototype on an FPGA board.
We evaluate its ability to detect memory safety violations
using the Juliet test suite, and performance and memory
overhead against a set of application benchmarks.

6. Why ASPLOS

In-Fat Pointer is a memory hardware-software safety proposal
that and involves modifications and innovations in the proces-
sor architecture, compiler, and operating system. It illustrates
how hardware and software can be co-designed to achieve
results that were previously impossible.

7. Citation for Most Influential Paper Award

This paper presents In-Fat Pointer, the first hardware-
accelerated tagged-pointer scheme that can achieve spatial
memory safety at subobject granularity while maintaining
compatibility with legacy code and imposing low performance
overhead. In-Fat Pointer encodes both object metadata loca-
tion and currently pointed subobject in pointer tags, and backs
them with three complementary metadata schemes for deriv-
ing object metadata from the pointer tag. The work shows
that this approach provides practical fine-grained spatial mem-
ory safety protection on par with fat pointers, but with full
compatibility with legacy code and acceptable performance
overhead.

2



References
[1] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer. CUP:

Comprehensive user-space protection for C/C++. In Proceedings of
the ACM ASIA Conference on Computer & Communications Security
2018, ASIACCS 18, Incheon, Korea, June 2018.

[2] Gregory J. Duck and Roland H. C. Yap. EffectiveSan: Type and
memory error detection using dynamically typed c/c++. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 18, Philadephia, PA, June 2018.

[3] Shay Gal-On and Markus Levy. Exploring coremark a benchmark
maximizing simplicity and efficacy. The Embedded Microprocessor
Benchmark Consortium, 2012.

[4] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4):1–17, September 2006.

[5] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. Data-oriented programming: On the
expressiveness of non-control data attacks. In Porceedings of the 37th
IEEE Symposium on Security and Privacy, Oakland 16, San Jose, CA,
May 2016.

[6] Gnanambikai Krishnakumar, Kommuru Alekhya REDDY, and Chester
Rebeiro. ALEXIA: A processor with lightweight extensions for mem-
ory safety. ACM Trans. Embed. Comput. Syst., 18(6), November 2019.

[7] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004., pages
75–86. IEEE, 2004.

[8] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Watch-
dogLite: Hardware-accelerated compiler-based pointer checking. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 14, Orlando, FL, Feburary 2014.

[9] Myoung Jin Nam, Periklis Akritidis, and David J Greaves. FRAMER:
A tagged-pointer capability system with memory safety applications.
In Proceedings of the 35th Annual Computer Security Applications
Conference, ACSAC 19, San Juan, Puerto Rico, December 2019.

[10] NIST. Juliet test suite for C/C++. Accessed on: Dec 12, 2020. [Online].
Available: https://samate.nist.gov/SRD/testsuite.php.

[11] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel MPX explained: A cross-layer analysis of the
Intel MPX system stack. In Proceedings of the ACM on Measurement
and Analysis of Computing Systems, SIGMETRICS 18, Irvine, CA,
June 2018.

[12] M. Prandini and M. Ramilli. Return-oriented programming. IEEE
Security Privacy, 10(6):84–87, 2012.

[13] Julian Seward. bzip2: Home. Accessed on: Dec 12, 2020. [Online].
Available: https://www.sourceware.org/bzip2/.

[14] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:
Eternal war in memory. In Porceedings of the 34th IEEE Symposium
on Security and Privacy, Oakland 13, San Francisco, CA, May 2013.

[15] WolfSSL Inc. Wolfcrypt embedded crypto engine. 2020. Accessed
on: Dec 12, 2020. [Online]. Available: https://www.wolfssl.com/
products/wolfcrypt-2/.

[16] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neu-
mann, Robert Norton, and Michael Roe. The CHERI capability model:
Revisiting RISC in an age of risk. In Proceedings of the ACM/IEEE
41st International Symposium on Computer Architecture, ISCA 14,
Minneapolis, MN, June 2014.

[17] Florian Zaruba and Luca Benini. The cost of application-class process-
ing: Energy and performance analysis of a linux-ready 1.7-GHz 64-bit
RISC-V core in 22-nm FDSOI technology. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(11):2629–2640, Nov 2019.

3

https://samate.nist.gov/SRD/testsuite.php
https://www.sourceware.org/bzip2/
https://www.wolfssl.com/products/wolfcrypt-2/
https://www.wolfssl.com/products/wolfcrypt-2/

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

