
Detect Iago Vulnerabilities in Legacy Code with Reverse Syscall
Fuzzing

by

Rongzhen(Gavin) Cui

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Computer Engineering
University of Toronto

c© Copyright 2020 by Rongzhen(Gavin) Cui

Abstract

Detect Iago Vulnerabilities in Legacy Code with Reverse Syscall Fuzzing

Rongzhen(Gavin) Cui

Master of Applied Science

Graduate Department of Computer Engineering

University of Toronto

2020

There has been interest in mechanisms that allow legacy code to be securely used to implement trusted

code that runs in Trusted Execution Environments (TEEs), such as Intel SGX. However, because legacy

code generally assumes the presence of an operating system, this naturally raises the spectre of Iago

attacks on the legacy code. We develop Emilia, which automatically detects Iago vulnerabilities in

legacy applications using reverse system call fuzzing. We use Emilia to discover 50 Iago vulnerabilities

in 17 applications, and find that Iago vulnerabilities are widespread and common. We conduct an in-

depth analysis of the vulnerabilities we found and conclude that while common, the majority (84%) can

be mitigated with simple, stateless checks in the system call forwarding layer, while the rest are best

fixed by finding and patching them in the legacy code. Finally, we study and evaluate different trade-offs

in the design of Emilia.

ii

Acknowledgements

First, I would like to thank my supervisor, Professor David Lie, whose expertise was invaluable in

formulating the research questions and methodology. Your insightful feedback pushed me to sharpen

my thinking and brought my work to a higher level.

I would also like to thank Lianying(Viao) Zhao at Carleton University for exchanging ideas and

helping paperwork.

Finally, I would like to thank University of Toronto, the Department of Electrical and Computer

Engineering and Ontario government for their financial support.

iii

Contents

1 Introduction 1

2 Background 4

2.1 Isolation techniques . 4

2.1.1 Handling system calls . 5

2.1.2 Protect trusted files . 5

2.2 Iago Attacks . 6

2.2.1 SSL Replay with getpid . 6

2.2.2 Compromising any program using malloc . 6

3 Related Work 8

3.1 Mitigation of Iago vulnerabilities . 8

3.2 Iago Attack Analysis . 9

4 Design of Emilia 10

4.1 Threat Model and Assumptions . 10

4.2 Reverse Syscall Fuzzing . 11

4.3 Objective . 13

4.4 Measuring syscall coverage . 13

4.5 Achieving syscall coverage . 14

4.6 Fuzzing Strategies . 15

4.6.1 Target Selection . 15

4.6.2 Fuzzing Value Sets . 18

4.6.3 Return Fields . 18

5 Implementation of Emilia 20

5.1 Overview . 20

5.2 Interceptor . 21

5.2.1 Stack hash extraction . 21

5.2.2 Return value mutation . 22

5.3 Controller . 23

5.4 Value extractor . 24

iv

6 Vulnerability Analysis 25

6.1 Applications examined . 25

6.2 Classification . 25

6.3 Vulnerabilities found . 27

6.4 Mitigating Iago vulnerabilities . 31

6.5 Forwarding OFL Analysis . 32

7 Evaluation 34

7.1 Comparing Target Selection Methods . 34

7.2 Effects of Valid Values . 36

8 Conclusion and Future Work 37

8.1 Future Work . 37

Bibliography 39

v

List of Tables

5.1 Stack trace overhead (ms) . 22

6.1 Legacy applications analyzed . 26

6.2 Detected Iago vulnerabilities . 27

7.1 Stateful fuzz vs. Fuzz-all . 35

7.2 Effects of the valid value set . 35

vi

List of Figures

2.1 Syscall forwarding model . 5

4.1 High-level Overview of Reverse Syscall Fuzzing Emilia . 12

5.1 Components and workflow of Emilia . 20

vii

List of Algorithms

1 Stateful fuzzing loop . 17

viii

Listings

1.1 Iago attack example . 2

4.1 An example of a new syscall invocation introduced by fuzzing 12

4.2 An example of varying syscall arguments . 14

4.3 An example of early termination with fuzz-all method . 16

4.4 An example of missing vulnerability with fuzz-all method 16

4.5 An example of extracted valid values . 18

6.1 An example (accept) of the Static semantics in Redis . 28

6.2 An example (readlink) of the local semantics in OpenSSH 28

6.3 An example (epoll wait) of the stateful semantics in Lighttpd 29

6.4 An example (fstat) of the external semantics in glibc . 30

ix

Chapter 1

Introduction

Operating system(OS) is the most important software component in common computing infrastructure.

Its core code (kernel code) runs in a privileged supervisor mode (also known as kernel mode) to manage

computer resources and provide services for applications. Due to its high privilege and overly permis-

sive interface, a compromised OS or privileged application can read and modify the execution state

(e.g. memory content and register values) of any program running in the same system. For example,

a compromised OS could extract the encryption key from a web server’s memory and steal sensitive

information that is supposed to be crypto-protected such as financial and health data. It is challenging

to make all privileged processes secure. Therefore, running secure-sensitive applications in a Trusted

Execution Environment (TEE) and protecting them from vulnerable components is an attractive alter-

native. In recent years, many hardware-based [17, 11, 1] and hypervisor-based [6, 5, 35] TEEs have been

proposed. Applications implemented in those environments are isolated from the large, legacy trusted

computing base (TCB, set of components critical to the computer system’s security) of commodity sys-

tems, which includes the OS, drivers, and all privileged applications on a system. Thus, the computing

infrastructure is separated into the normal/untrusted world controlled by the untrusted OS and the

secure/trusted world in which the protected code is executing. Privileged parties in the untrusted world

are no longer allowed to access sensitive information stored in the protected application’s memory.

However, to retain the benefits of the isolation that TEEs provide, such “trusted” applications

themselves should remain small so that they can have a higher level of assurance. As a result, there

exists a tension between rewriting code from scratch to keep it small, and re-using legacy application

code, which reduces effort in implementing trusted applications. Both new code and legacy code may

have vulnerabilities and need to be audited. In addition, using legacy code creates an extra challenge—

it assumes the presence of an operating system. Normally, the OS provides services (e.g. accessing

hardware) to applications through the system call (abbreviated to syscall hereinafter) interfaces. Thus,

supporting syscalls is necessary for running legacy code. One way to achieve that is to implement some

OS’s functionalities and handle syscalls internally in the trusted environment. However, handling syscalls

involves communication with hardware components. Some hardware-based TEEs such as Software Guard

eXtension (SGX) do not have this ability. Code inside SGX always executes in the lowest privilege level

(ring 3 / user mode), which is restricted from performing I/O. Besides, communicating with file systems

and other processes in the normal world still requires interaction with the untrusted OS. Therefore,

another option is to delegate those service requests back to the untrusted OS by forwarding syscalls

1

Chapter 1. Introduction 2

through an OS-forwarding layer (OFL). When the protected application makes a syscall, the OFL will

forward the requests with its arguments to the untrusted OS, and return the results to the application

after receiving them.

One issue raised by the use of such OFL is that legacy code often inherently trusts the OS that

it makes syscalls to. Once legacy code is moved into a TEE, such trustworthiness can no longer be

assumed. When an untrusted OS that compromises an application in a TEE due to this misplaced

trust, this attack is known as an Iago attack. For example, a legacy application might assume the

returned size from the read syscall would not exceed the max length specified in the syscall’s argument.

In listing 1.1, the application assumes len <= MAX LEN-1 after read syscall returns, it then uses len

to send buffer content to the network with write syscall. A malicious len that violates the assumption

will trick the application to write content beyond the buf. As a result, the value of secret will be

exposed to the attacker.

1 char buf[MAX_LEN];

2 int secret = 1234;

3 size_t len = read(fd, buf, MAX_LEN-1);

4 size_t ret = write(socket_fd, buf, len);

Listing 1.1: Iago attack example

Such attacks were first identified in [5] and [30], and then eventually named Iago attacks in [4].

While most legacy code implicitly trusts the OS, this does not automatically mean that all legacy code

is vulnerable to Iago attacks. For code to be vulnerable, it must a) neglect to sanitize the return values

of a syscall and b) use the return values in an unsafe way. Thus, for legacy code to be vulnerable to an

Iago attack, it must have an Iago vulnerability that meets these two criteria.

Iago attacks are real-world threats because many projects still propose using OFLs to enable legacy

code to run in a TEE. Such projects include TaLoS [12] and SGX SQLite [29]. They port legacy

LibreSSL and SQLite correspondingly into SGX enclaves. Syscalls are forwarded to the untrusted OS

without verifying the return values. Therefore, Iago vulnerabilities in the legacy codes may be exploited

when those projects are deployed.

We present Emilia1, a reverse syscall fuzzer that is designed to find and detect Iago vulnerabilities

in legacy code. Emilia fuzzes applications from the syscall interface by replacing legitimate OS’s syscall

return values with fuzz values designed to find and trigger Iago vulnerabilities. We run Emilia on 17

popular applications and find a total of 50 Iago vulnerabilities, which were categorized into 4 basic types.

We also detect two Iago vulnerabilities in Google’s Asylo [10] system, an OFL that has been specially

designed to protect applications against Iago vulnerabilities. Both vulnerabilities have been confirmed

and fixed by the Asylo team. Our main result is that Iago vulnerabilities are wide-spread—almost every

application we examined had at least one vulnerability. Fortunately, many vulnerabilities are stateless

and could be easily mitigated by minor modifications to an OFL.

In summary, we make the following contributions:

• We present Emilia, a tool that detects Iago vulnerabilities using reverse syscall fuzzing.

• We use Emilia to measure the frequency of the Iago vulnerabilities in real-world applications, and

have identified a total of 50 memory corruption vulnerabilities in 17 popular legacy applications and

1Emilia was the wife of Iago who eventually reveals Iago’s treachery in Shakespeare’s tragedy, Othello.

Chapter 1. Introduction 3

glibc. From the statistics, we can see the actual impact of the Iago vulnerabilities. Furthermore,

we have also found similar vulnerabilities in one of the OFL implementations, Google Asylo [10],

which is supposed to treat the OS as untrusted.

• We identify some of the underlying causes of the Iago vulnerabilities by characterizing the syscall

return values. Our analytics sheds some light on how legacy applications can be better ported to

the OFL’s protection.

Chapter 2

Background

2.1 Isolation techniques

Recently, the security provided by commodity operating systems is often insufficient because privileged

components include not only kernel but also device drivers and services daemons that run as root in

the system. Those components expose broad attack surfaces that are frequently vulnerable to bugs or

misconfigurations. Once they have been compromised, the attacker could gain access to any sensitive

data on the system. To solve this problem, researchers have built isolation techniques to protect the

execution of secure-sensitive applications even when the underlying OS is compromised.

In general, there are hypervisor-based and hardware-based solutions. A hypervisor creates virtual

machines for operating systems to run. The OS running in the virtual machine is called guest OS. The

hypervisor provides a mapping from the guest OS’s memory to the actual physical memory. That means

a hypervisor could restrict or intercept the guest OS’s memory access. Hypervisor-based solutions use

this ability to create an environment that is not accessible from an untrusted guest OS. ProxOS [35]

runs the protected application in another virtual machine paralleled to the untrusted OS. A unikernel is

combined with the application to support basic functionalities and keep the TCB small. Overshadow [5]

provides multiple views of the guest’s memory. It presents the application with cleartext of its page,

and the OS with an encrypted view.

Hardware-based solutions utilize designated hardware. One example is Intel’s Software Guard eX-

tentions (SGX) [17], which provides processor support to run secure-sensitive code on a computer owned

and maintained by an untrusted party. In SGX, the protected code is running in a secure container

called enclave. While loading the enclave, the code’s initial integrity and its private data are checked

through software attestation. A user could refuse to interact with the service running in an enclave, of

which content hash does not match the expected value. The integrity and confidentiality of the execu-

tion inside an enclave are protected from the outside environment, including the OS, the hypervisor, and

hardware devices attached to the system bus. It is achieved by storing the enclave’s code and data into a

Processor Reserved Memory (PRM), which cannot be directly accessed by other software or peripherals.

This memory protection is provided by a Memory Encryption Engine(MEE) connect to the memory

controller.

4

Chapter 2. Background 5

2.1.1 Handling system calls

As mentioned in Chapter 1, handling syscalls invoked by the legacy application is an essential task for

those isolation techniques. They usually have an OFL to proxy requested services. For Overshadow, the

OFL consists of both trusted and untrusted shims. The VMM is responsible for saving the execution state

and transferring control among shims and kernel by setting instruction and stack pointers. Both shims

act as trampolines to perform hypercall to the VMM for context switch. Syscall arguments and outputs

are stored in the memory region of untrusted shim. Both untrusted kernel and trusted shim can access

this region. The trusted shim is responsible for writing and retrieving those data. For ProxOS, trusted

syscalls can be handled internally by the unikernal in the private Virtual Machine(VM). Untrusted ones

are forwarded to the commodity OS through inter-VM remote procedure calls (RPCs) and a shared

communication buffer.

In SGX enclaves, INT and SYSCALL instructions are disallowed for security. However, the enclave

can use ECALL and OCALL, an RPC-like mechanism, to enter an enclave function or temporarily leave

the enclave and invoke an untrusted function in the normal world. Many SGX-based isolation techniques

utilize this mechanism to redirect syscalls.

Figure 2.1: Syscall forwarding model

In general, syscall forwarding techniques share a similar model as shown in Figure 2.1. The OFL

sits inside the trusted environment intercept application’s syscall request in step 1. Then, it passes the

syscall arguments to an untrusted handler in step 2. In steps 3 and 4, the handler invokes the actual

syscall to the commodity OS. All the syscall outputs are returned to the handler’s address space. The

OFL copies those outputs into the trusted environment in step 5. Finally, values are returned to the

application in step 6.

2.1.2 Protect trusted files

Applications sometimes rely on the OS to provide access control for protecting trusted files’ confidential-

ity and integrity. When the trust shift, it is isolation techniques’ responsibility to ensure the application

can retrieve the correct file content from read-related syscalls. For example, ProxOS [35] encrypt and

decrypt trusted data write to and read from the untrusted OS. It also stores hashes of all trusted files

into a private block device directly available from the underlying VMM to verify the file’s integrity.

Graphene-SGX [37] also stores secure hashes of trusted files into each application’s manifest. The man-

ifest is measured as part of enclave initialization. InkTag [14] translates file I/O in trusted files into

operations memory-mapped files. Then it ensures privacy and integrity by hashing and encrypting in-

Chapter 2. Background 6

memory file data in response to accesses by the untrusted OS. All of those protection mechanisms happen

transparently without the requirement of code modification. Users only need to specify which files are

trusted through the configuration stage.

2.2 Iago Attacks

Porting a legacy application to an isolated environment means the ported application a) still needs the

OS’s support to access services through syscalls and b) still retains any trust it has in that OS. The

application could trust syscall return values to follow the semantics described in the syscall’s specification.

Iago attack [4] is an attack that A malicious kernel can mount by manipulating syscall return values

and forcing a protected process to act against its interests. Its threat model assumes that the malicious

kernel can not directly read or modify the protected application’s execution state. The kernel still

handles syscalls invoked by the application and can provide arbitrary syscall return values. It assumes

both the application and linked system libraries are unmodified and written to trust the OS. The original

Iago attack paper demonstrates two Iago exploits. One causes replay attacks on Apache servers with

mod ssl, due to the syscall getpid being used in part for randomness. The other one even achieves

arbitrary code execution because malloc (wrapped in c library) could be tricked to modify arbitrary

memory by malicious return values of brk and mmap.

2.2.1 SSL Replay with getpid

The SSL replay attack is presented as a warmup example in Iago paper. SSL protocol uses random

numbers to derive cryptographic secrets for each session so that the same message crossing different SSL

sessions will be encrypted differently. If the random value is reused, the attacker can replay previous

packets to repeat the user’s one-time action even if the attacker cannot forge arbitrary requests without

knowing the secret. For example, a single money transfer could be turned into multiple transactions

with the same amount. In the mod ssl extension of the Apache Web server, the entropy pool used to

generate random values is initialized and seeded with strong entropy once in the parent process. Every

child process inherits an identical entropy pool when forked. To prevent generating the same randomness

in each child process, Apache stirs the entropy pool with system time in seconds and process ID obtained

from getpid, which should be distinct for each child process. However, once the kernel is malicious, it

can provide the same process ID and time for all child processes through the return value of getpid and

time. As a result, packets sent to one child process can be replayed by establishing a new connection

to another child process because the random value generated by two processes will be the same.

2.2.2 Compromising any program using malloc

Consider the following code fragment.

p = mmap(NULL, 1024, prot, flags, -1, 0);

read(fd, p, 1024);

mmap syscall maps a 1024 byte memory region whose start address is stored at pointer p. After that,

the code reads up to 1024 bytes into the memory region from a file descriptor through the read syscall.

Chapter 2. Background 7

Unlike a benign kernel which returns the address of a newly allocated memory region from mmap, a

malicious kernel could break this semantic and return an arbitrary address. The following read will

overwrite content on that address with bytes provided by the attacker. If the attacker could guess the

memory layout of the application, he could trick the application to overwrite the return address saved

on the stack and hijack the execution once the function returns.

This mmap-read logic is common in standard I/O functions such as fread that reads data from a

file. Those functions perform buffering on the target file. The fixed sized buffer to hold one block data

is allocated by mmap in the EGLIBC internal function IO file doallocate. Then it will be filled by

the read syscall in IO new file underflow

The Iago paper further introduces another vulnerability in malloc function of EGLIBC. malloc

uses brk syscall to allocate memory. brk(addr) changes the location of the program break that

defines the end of the process’s data segment. Increasing the program break has the effect of allocating

memory to the process. Every allocated memory region managed by malloc is called a memory chunk.

malloc writes both the previous chunk’s size and current chunk’s size at the beginning of each chunk.

There’s also a special top-most chunk that can grow and shrink as malloc requests memory from and

returns memory to the system. If it is the first time the process calls malloc(size), malloc will

invoke several brk syscall. In general, it uses the returned address from the first brk(0) to get the

initial program break S, and calculate the start of the initial top chunk based on S and requested size.

Then malloc invoked another brk to align the requested memory and get the end of new program

break E. The size of the top chunk (E-S-size) is then written to the corresponding metadata region

(S+size+4). By carefully crafting S and E returned from brk syscalls, a malicious kernel can make

malloc write a single word of the kernel’s choice into an arbitrary address. Given this vulnerability,

the attacker could change the saved return address to a standard I/O function and further exploit the

mmap-read attack mentioned above.

In practice, isolation techniques manage the application’s memory internally and do not forward

memory-related syscalls such as mmap and brk to the untrusted OS. Our work shows legacy applications

contain other Iago vulnerabilities caused by syscalls that will be directly forwarded.

Chapter 3

Related Work

3.1 Mitigation of Iago vulnerabilities

Isolation techniques usually take Iago attack into account when forwarding an application’s service re-

quest to the untrusted OS. This section will study their methods of mitigating Iago attacks to understand

their limitations. Isolation techniques try to mitigate the attacks while we see to identify vulnerabilities

so they can be patched. Therefore, their work is complementary to ours.

Since the mmap-based attacks in the original Iago paper attract significant attention in the commu-

nity, almost all isolation techniques have included checks to ensure that the returned address of memory

management syscalls does not overlap with previously allocated memory. VirtualGhost[8] also introduces

a random number generator to defend against the specific attack related to the entropy source. Other

isolation techniques that have also addressed the original Iago vulnerabilities include: Trustshadow[13],

AppShield[6], Sego[23], ShieldBox[36] and HiddenApp[39]. In the first version of SGX, all memory

needed by the enclave is allocated during initialization with no further memory requests allowed. In

SGX revision 2 [41], enclave programs can dynamically request EPC pages at runtime. Before accessing

newly committed pages, the enclave memory manager must accept the allocation using EACCEPT in-

struction. This instruction will perform basic validation on newly assigned pages (e.g. non-enclave pages

or pre-allocated pages). As a result, It is unlikely that SGX-based solutions will forward memory-related

syscalls directly to the untrusted OS, which thwarts a major source of mmap-related attacks.

Most OFLs make some effort to narrow the syscall interface by only implementing certain syscalls.

Minibox[25], SGX-Tor[21] and InkTag[14] handle part of system services with special care. InkTag has

an application-level library to translate read/write syscalls into operations on memory-mapped files.

Minibox divides all syscalls into sensitive and non-sensitive calls. Memory management, thread local

storage management, multi-threading management, and file I/O are handled by Minibox internally. Both

Minibox and InkTag still directly forward network I/O to the OS. This is because network is originally

considered as an untrusted communication channel by the application and cryptographic protocols may

be applied to help secure the channel.

Ryoan[16], SeCage[27] and Glamdring[26] claim that some checks are applied in the OFL to validate

the return value of syscalls. However, no information is disclosed about what exactly those checks are.

Panoply[32] studies the type of syscall return values and categorizes them into zero/error, integer value

and structures. Their OFL will validate the returned error code as well as ranges of some integer return

8

Chapter 3. Related Work 9

values based on POSIX semantics. For syscalls that return structure pointers or function pointers,

Panoply states that developer annotations are needed for correct bounds. OpenSGX[18] only supports a

limited number of syscalls so that it can carefully consider the potential attack surface on their narrowed

interface. It relies on packet encryption, Network Time Protocol (NTP) server, random instruction and

monotonically increasing integer to prevent potential Iago attacks.

As a strong form of mitigation, Haven[3], Graphene[37], and SCONE[2] mitigate the Iago vulnera-

bilities by placing a library OS, which provides OS services in the form of libraries, inside the isolated

environment. This method replaces the complex syscall interface with a carefully designed small inter-

face, which makes validation of values returned by the untrusted OS more realistic. For example, in

Graphene, the library OS can track the offset of opened files and all epoll event data.

3.2 Iago Attack Analysis

There exist other works that analyze and detect Iago vulnerabilities. In this section, we studied the

methods they use and compared them with our work.

Symbolic execution technique had been used to study the effect of Iago attacks. In symbolic execution,

inputs are represented as symbols rather than concrete values as in normal execution. Thus, operations

on symbols become expressions of symbols. Constraints are applied to the symbols according to each

possible outcome of conditional branches encountered. Hong Hu et al. [15] combine symbolic execution

with data dependency analysis to detect vulnerabilities introduced by privilege separation. Iago attack

can fit into this model if the two separated partitions are kernel and application. Hong Hu and his

team first run the program binary with given input to record the execution state. From the collected

execution state, they extract suspicious read/write instructions whose address or data is controlled by

the syscall return value. Then, they use symbolic execution to collect constraints representing the

relationship between the interface inputs and the address or data used in the instruction. By analyzing

those constraints, they can assess the capability of the attacker. Since they only analyze instructions

executed with the given input, paths that reachable with the other program input and interface input

are ignored.

In 2019, Jo Van Bulck et al. [38] analyzed responsibilities and attack vectors of a TEE shielding

runtime. They generalized Iago attacks from the OS syscall interface to OCALLS in general, and

detected Iago vulnerabilities in Graphene-SGX [37] and SGX-LKL [31] similar to the ones we found in

Google Asylo. Their work is all manual and does not present a tool or method to automate discovery

as we do.

COIN attack [20] performs the symbolic analysis on both inputs of ECALL and return values of

OCALL (used to forward syscall for some systems) are studied. The authors of COIN attack paper

emulate the execution with concrete values while collecting the path constraints in terms of symbolic

variables. They then use a constraint solver to solve the constraints to generate a new seed (input) that

can help explore other paths. By comparing the symbolic information with predefined policies, they

can detect different types of memory vulnerabilities. Their work aims to detect errors in existing SGX

projects, which are aware of the malicious OS. In contrast, we focus on legacy applications, and seek to

provide guidelines to port them.

Chapter 4

Design of Emilia

In this chapter, we will first describe the threat model and our assumptions. Then we will discuss our

fuzzing technique for detecting Iago vulnerabilities. We will introduce reverse syscall fuzzing and discuss

its challenges compared with regular fuzzing. After that, we will define our objective as increasing syscall

coverages under a fixed setting of an application (i.e. fixed command-line arguments, configuration).

Finally, we will explain our design choices and strategies for achieving our objective.

4.1 Threat Model and Assumptions

Threat Model: We follow a typical threat model for Iago attacks. The following components are

untrusted: (1) the OS and other system software, (2) other applications executing under the same OS, (3)

syscall handler described in Section 2.1.1. We only trust the hypervisor or the designated hardware which

creates an isolated environment. The protected application is benign but may contain vulnerabilities.

Assumptions: We assume the application is correctly protected by the isolation technique so that the

malicious OS could not directly access the application’s memory or other execution states. We assume

the application’s syscalls will be forwarded to the malicious OS, and syscall outputs will be copied to

the application’s address space by the OFL.

Pointer corruption: When the OS mounts Iago attacks, the manipulated return values can be used

in a variety of ways. For instance, the return value of getpid can be used as an entropy source and

the time provided by the untrusted OS can be relied on as timestamps to generate system logs. While

such vulnerabilities can take various forms, we consider it the worst when code or data pointer can be

corrupted [34]. In this thesis, we focus on Iago vulnerabilities that can result in pointer corruption. Data

pointer corruption can lead to memory safety errors. Reads of this pointer could lead to data leakage,

and writes can contribute to the corruption of data or other pointers. If the corrupted pointer is a code

pointer, then the attacker could execute arbitrary code.

For certain pointer corruptions, the attacker may be unable to retrieve the information directly, but

there are possibilities that the illegally accessed data can be revealed to the attacker through other

channels. For example, a buffer containing data from out-of-bounds memory read may be written to a

file or a network socket later.

Syscall’s output argument included: In addition to the simple scalar return values considered in the

10

Chapter 4. Design of Emilia 11

original Iago attack paper, we also examine the buffers with OS-defined structures filled as the result

of the syscall (whose members’ value can still be scalar) because they are also in the malicious OS’s

control. Note that the OS is unable to directly overflow those buffers because the buffers are copied to

the application’s address space by the OFL as specified in Figure 2.1, and we assume the length of the

buffer is known when performing the copy. For example, in getsockopt:

getsockopt(int sockfd, int level, int optname,void *optval, socklen_t *optlen)

optlen initially contains the size of the buffer pointed to by optval. When forwarding getsockopt,

the OFL should record the original optlen provided by the application and copy at most that amount

of bytes to optval.

Untrusted payload excluded: Even the trusted OS can return both trusted and untrusted values.

For example, some syscalls are intended for data transfer between parties, with the help of the OS.

Therefore, what the other party sends to the application does not represent the OS. For example, when

the read syscall is used to read from a socket, buffer contents are by nature untrusted as they could

come from network, but buffer length should be bear the same trust as the OS as it is set by the OS.

For file contents, the application may trust the OS to perform access control and thus may assume the

payload of read syscall is trusted. Fortunately, as we described in Section 2.1.2, isolation techniques

transparently ensure the privacy and integrity of trusted file data with a proper configuration. However,

the metadata (e.g. file size returned from fstat syscall) of the trusted file usually remains unprotected.

Therefore, we only define vulnerabilities due to the misplaced trust in the syscall return values as Iago

vulnerabilities and exclude untrusted or protected payload from our analysis.

4.2 Reverse Syscall Fuzzing

We use fuzzing to detect Iago vulnerabilities. Fuzzing is a general technique for testing a target ap-

plication. A fuzzer repeatedly executes the application by feeding it with unexpected or random data.

It then monitors the application to detect exceptions, such as crashes, assertions, or potential memory

leaks. Compare to static analysis, fuzzing usually does not generate false alarms. For each bug found,

fuzzing provides concrete inputs that can be used to reproduce and examine the bug. Emilia shows the

ability to apply fuzzing on syscall return values.

Reverse syscall fuzzing is to fuzz the program making the syscall (i.e., applications) as opposed to the

program handling syscalls (i.e. the OS). Instead of fuzzing the inputs to the syscalls, Emilia fuzzes the

return values that the OS uses to respond to the application making the syscall. Compared to regular

syscall fuzzers [19] and application fuzzers, which have been systematically studied [28] and are relatively

more mature, reverse syscall fuzzing can be considered to be a new variant.

Overview: Figure 4.1 provides a high-level overview of how Emilia works. Applications running in user

space do not call directly into the kernel. Instead, they will call a syscall wrapper function provided

by the C library that knows how to invoke the syscall of interest. The wrapper will place the syscall

arguments in the right locations and do whatever is necessary to invoke a trap into kernel mode. Thus,

there are two places we can intercept a syscall. The first one is the actual syscall interface, where the

syscall is invoked through special instruction, and the execution is trapped to the kernel. The other

one is the syscall wrapper interface, where the application calls to the C library for constructing real

syscall requests. We placed Emilia at the actual syscall interface. By doing so, we can analyze how a

Chapter 4. Design of Emilia 12

Figure 4.1: High-level Overview of Reverse Syscall Fuzzing Emilia

legacy C library handles syscall return values. Besides, some library functions that are not typical syscall

wrappers will also lead to syscall invocations (e.g. fprintf will invoke write syscall in the C library).

Intercepting at the syscall wrapper interface will miss those functions. In addition, isolation techniques

such as Graphene [37] and SCONE [2] place the C library inside the trusted world. We believe most of

the logic is ported from a legacy C library since it is expensive to write one from scratch. Therefore, it

is worth analyzing potential Iago bugs in a legacy C library.

By sitting at the actual syscall interface, Emilia can intercept syscalls invoked by the C Library and

mutate any syscall outputs provided by the OS before returning to the application. If a segmentation

fault is triggered due to the abnormal return value, a coredump filter will briefly analyze the core dumped

to remove duplicates. Therefore, the outputs of our tool are filtered unique core dumps. We define unique

core dumps as cores with unique call stacks because using the absolute crash location (program counter)

fails to distinguish some cases. For example, all crashes caused by the length argument of memcpy

may end up crash at the same instruction in the C Library. But how the memcpy get called and which

syscall’s return value affects the length may be different. Notice that core dumps with varying call stacks

sometimes may lead to the same vulnerability. For example, the same vulnerability in fprintf may

result in multiple core dumps because fprintf is invoked at different locations in the application. We

resorted to manual analysis for understanding the exact cause of each core dumps.

The most obvious difference between reverse syscall fuzzing and traditional fuzzing is their target

input. We define target inputs as values a fuzzer is going to modify. For traditional fuzzing, the target

inputs are inputs to the application/function. (e.g. arguments, environment variable and configuration

files). They can be determined before doing the fuzzing. However, for reverse syscall fuzzing, the

target inputs to mutate values on are syscalls’ outputs. It has to wait for the application to invoke

syscalls passively. When to invoke a syscall, which syscall to invoke heavily depends on the application’s

behaviour. Furthermore, the syscall sequence can vary due to the fuzzing itself. Considering an error-

handling code snippet in Lighttpd [22]:

/* after fuzzing the return value of fstat with value other than 0, new write()

syscall will be triggered */

if (0 != fstat(fd, &st)) { // 0 for success

log_error_write("..."); // invoke extra write() syscall

...

}

Listing 4.1: An example of a new syscall invocation introduced by fuzzing

Chapter 4. Design of Emilia 13

With a proper setup, the fstat syscall should succeed and return 0 during the vanilla execution (i.e.

the execution with no fuzzed return values). In this case, fstat is our only target syscall. However,

after fuzzing the return value of fstat to be non-zero, log error write in the error-handling path

will be called and will subsequently invoke the write syscall that does not occur in the vanilla execution

of the program. That means the total number of target syscalls are not deterministic before fuzzing and

is affected by the fuzzing process.

Note that although reverse syscall fuzzing shares some commonalities with network protocol fuzzing [9],

(e.g., fulfilling requests from the other party), network protocol fuzzing interact the application with

protocol-specific semantics as opposed to application-specific. The syscall sequence is much more com-

plicated and less well-defined than the message flow in protocol fuzzing.

4.3 Objective

Since fuzzing on the application’s regular input (argument, configuration, e.t.c) has been systematically

studied, Emilia will focus on finding Iago vulnerabilities by only mutating the syscall return values with

fixed application’s inputs. Users can provide different inputs and configurations to explore the path they

are interested in.

Considering that the root cause of Iago attacks is the misuse or improper handling of syscall-returned

results, Emilia’s objective should be to search such code for vulnerabilities. Thus, an Iago vulnerability

depends on both the syscall and the code that executes after the syscall. The objective of our reverse

syscall fuzzing is to cover as many syscall invocations as possible, as well as the subsequent code paths

that operate on the syscall-returned results. In summary, how a syscall return values get used by the

application is reflected in two aspects: 1. Different locations in code. If the syscall is invoked in different

code locations, the handling of its return values can be naturally considered different. 2. Different

context. In the case of the same code, different local/global variables may lead to a different path being

taken (e.g., there are two possibilities for if (a > b)), and the handling can also be different.

Therefore, compared to the general code coverage in regular fuzzing, we are mainly interested in

syscall coverage. In this thesis, we define syscall coverage as how many unique syscall invocations we

can execute without changing the regular input given to the application being fuzzed. This differentiates

syscall coverage from path coverage, which is achieved by varying inputs to the application (command-line

arguments, for example).

We show in 4.2 that applications may still execute different paths even if inputs are held constant if

the return values of syscalls change. While both path coverage and syscall coverage are required to find

as many Iago vulnerabilities as possible, reverse syscall fuzzer only focuses on achieving syscall coverage

and may be combined with standard fuzzers. In this way, the standard fuzzer achieves path coverage and

the reverse syscall fuzzer maximizes syscall coverage for each input generated by the standard fuzzer.

4.4 Measuring syscall coverage

To measure syscall coverage, one must have a notion of what constitutes a unique syscall invocation.

Simply counting static syscall locations is insufficient because it does not consider path information lead-

ing up to and following the syscall—syscalls are often located in libraries (i.e. libc) whose functions

may have many incoming and outgoing code paths. Similarly, certain näıve alternatives can be further

Chapter 4. Design of Emilia 14

ruled out. For example, using syscall name with arguments passed in also has significant redundancy

because syscall arguments may vary for every invocation (file descriptors, loop iterations, pointer ad-

dresses, etc.) but are followed by the same handling logic for the returned results. In listing 4.2, for

the same read syscall in line 3, the pointer(buf) allocated and passed in may vary for every run of

the application. Also, the file descriptor is not deterministic since fuzzing on the open syscall in line 2

would change its value.

1 char* buf = malloc(1024);

2 int fd = open(...);

3 size_t ret = read(fd, buf, 1023);

4 buf[ret] = ’\0’;

Listing 4.2: An example of varying syscall arguments

To effectively identify all execution paths leading to and following from syscalls, one way is to collect

the application’s control flow directly (e.g., conditional/unconditional direct/indirect branches). One

can envision employing application tracing, using either program instrumentation, or efficient hardware

such as Intel Processor Trace (PT) [7], which collects such information that can be later retrieved in

the form of data packets. However, tracing alone is insufficient because we must still be able to identify

which executed paths were the result of syscalls. It means that we must either have debug symbol

information or still recompile all code with instrumentation. As mentioned before, many applications

invoke syscalls via libraries. Consequently, we must have debug symbol information or instrumentation

not only for all application code, but also for all library code as well. Unlike standard fuzzers, which are

mainly concerned with code paths in the main application, the libraries containing syscalls can play a

role in Iago vulnerabilities, so they must be instrumented as well. To avoid instrumenting and rebuilding

multiple libraries for each application and be able to find Iago across the application and libraries, we

propose an alternative that does not require instrumentation or debug symbols.

A proxy for the path after a syscall is the path leading up to a syscall. Since the path leading up

to a syscall usually explains the purpose of invoking the syscall, how a syscall return values will be

used afterwards depends on those purposes. The syscall’s call path (i.e. functions in the call stack) is a

reasonable approximation of the path leading up to the syscall. We note that if two syscall invocations

have different call paths, they must necessarily have different code paths both before and after the syscall,

owing to the different caller and callees that must exist if the call paths are different. Moreover, the

call stack, which gives us the call path, is easily accessible from the OFL without needing to instrument

the application or special tracing hardware. Thus, we formally define a syscall invocation in Emilia as

a tuple of syscall name (i.e. read, write) and its call stack (function name + offset) at the point the

syscall is invoked.

4.5 Achieving syscall coverage

In summary, we need to execute as many syscall invocations as possible by using call stack as a means

to check for uniqueness and varying syscall return values with constant application’s regular input. To

achieve “as many”, it seems that we should keep trying with different return values as long as the syscall

uniqueness still holds. A standard fuzzer can specify its target inputs (e.g. command-line arguments

or functions in libraries) and try different values on them. Due to the non-determinism of syscall

invocations, reverse syscall fuzzing needs a strategy to select syscall invocations for mutating their value.

Chapter 4. Design of Emilia 15

On the contrary, a reverse syscall fuzzer needs to ensure that the application does not terminate too

early. As already shown in Listing 4.1, fuzzing by itself makes subsequent syscall invocations vary, which

is a double-edged sword: 1. We lose a fixed basis on which we can keep trying systematically. 2. Only

through such variations, can we increase syscall coverage. If each run has the same sequence of syscall

invocations, syscall coverage will become constant.

Since each iteration can encounter a varying number of syscall invocations and fuzzing them also

affects subsequent invocations. To maximize coverage, we may want to fuzz only a subset of these

syscall invocations observed. (We define one iteration as the cycle from when the application gets

launched for fuzzing to when it crashes due to fuzzing or terminates normally.) We refer to the set of

invocations to be fuzzed as current targets in each iteration.

Note that syscalls not selected as targets (hence not fuzzed) are still executed as part of their code

path. Their OS-provided return values are passed directly to the application without modification by

Emilia. The following section will explore the fuzzing strategies to achieve maximal syscall coverage

with our tool Emilia.

4.6 Fuzzing Strategies

Our fuzzing strategies with Emilia reflect three important aspects that affect syscall coverage: target

selection (whether an encountered syscall should be fuzzed), fuzzing value sets (what values to fuzz with)

and return fields (which return fields of one syscall to fuzz).

4.6.1 Target Selection

We have shown that new syscall invocations could appear after fuzzing previous syscalls’ return values.

We need a method to select which syscall to fuzz for each iteration that can cover the new syscall

generated.

Note a simple option of fuzzing one syscall invocation at a time (e.g. the first syscall invocation, then

the second) does not work for new syscalls. To fuzz a new syscall, the previous syscall, which creates an

execution path for the new syscall, must be fuzzed together.

Both stateless and stateful methods can be used to cover new syscall generated. The fuzzing state

represents the information of which syscall’s output field we have fuzzed and what value we have used

for each field. A target syscall may only appear if preceding syscalls have been fuzzed. This state

information can be used to fuzz the preceding syscalls in the same way so that the extra syscall in the

mutated execution path can be analyzed.

Fuzz-all

A simple solution to address the new syscall problem is to fuzz all syscall invocations during the execution.

In this case, all the syscalls in new paths and old paths will be fuzzed.

By doing so, the application would usually terminate early after fuzzing the first few syscalls due to

an error. To keep going and fuzz syscalls afterwards, a variable skip count is introduced to “skip”

fuzzing the first skip count syscall invocations. The skip count will be incremented by one each

time. For example, in Listing 4.3, the application will terminate after fuzzing the first stat syscall with

Chapter 4. Design of Emilia 16

a non-zero return value. In order to reach the following open syscall, the skip count will be set to 1

so that the first stat syscall will normally return a zero in the next iteration.

1 int ret = stat(...);

2 if (ret != 0) exit();

3 int fd = open(...);

4 ...

Listing 4.3: An example of early termination with fuzz-all method

Since this method will fuzz a variable number of syscall invocations for each iteration, we would lose

the fuzzing state because we would have no idea of which syscall invocation should we continue mutating

its values for the next iteration. Even though we are forced to pick one and continue to change its return

values, syscalls fuzzed in the next iteration would also be changed. That means the states we recorded

for all the syscalls in the previous iteration may become useless. Therefore, we could only statelessly

fuzz all the syscalls by randomly picking values and fields.

We found that this method also fails to trigger some vulnerabilities if there’s an extra syscall between

the vulnerable syscall invocation and the use of its return values. Thus the fuzz-all method will fuzz

both the vulnerable and the extra syscall invocations. If the application terminates itself or changes its

execution path due to the extra syscall’s return value being fuzzed, the vulnerable syscall’s return value

will have no chance to be used. skip count does not help because the vulnerable syscall is invoked

before the extra syscall.

1 /* the application calls syscall1 and then syscall2 */

2 ret1 = syscall1(); // ret1 is a vulnerable syscall return value

3 ret2 = syscall2(); // in vanilla run, syscall2 returns 0 on success

4 if (ret2 != 0) { // ret2 is less likely to be 0 if syscall2 also get fuzzed

5 return ERROR; // vulnerability in line 7 will be skipped

6 }

7 array[ret1] = var; // memory corruption caused by ret1

Listing 4.4: An example of missing vulnerability with fuzz-all method

For example in Listing 4.4, the code calls syscall1 and syscall2 in order. Assume the ther

return value of syscall2 is zero (ret2 = 0) in vanilla execution. If we only fuzz syscall1, a

memory corruption error will be trigger in line 7. However, with the fuzz-all method, both syscall1

and syscall2 will be fuzzed with random values. A non-zero ret2 will cause a return in line 5 and

the vulenrable code in line 7 will not be executed.

Stateful Fuzz

In order to keep useful fuzzing states, we need to record the relationship of which syscall’s return values

can lead to new syscall invocations. Those relationships form a tree-like structure. Each node represents

a discovered unique syscall invocation. The root of the tree is one of the syscall invocations in the

vanilla syscall sequence. A child node is a new syscall invocation caused by fuzzing the parent syscall.

We ignore already discovered syscall invocations even they are caused by fuzzing different parent syscalls

to prevent cycles in the tree. There are many different methods to traverse the tree. We simply pick the

recursive method to perform a depth-first search as it is intuitive. Algorithm 1 shows the pseudo-code

of the recursive fuzzing loop.

Chapter 4. Design of Emilia 17

Algorithm 1 Stateful fuzzing loop

1: overall set← ∅
2: procedure main loop()
3: vanilla syscalls← extract vanilla syscalls()
4: overall set.add(vanilla syscalls)
5: for syscall in vanilla syscalls do
6: target← (syscall, init ref)
7: references← [target]
8: recursive fuzz(references, 0)

9: procedure recursive fuzz(references, depth)
10: if depth > max depth then
11: return
12: current target← references[depth]
13: do
14: new syscalls← start fuzzing(references)
15: overall set.add(new syscalls)
16: for (syscall, hash) in new syscalls do
17: next target← (syscall, init ref)
18: references.append(next target)
19: recursive fuzz(references, depth + 1)

20: while current target.update target()

In every iteration, Emilia will store the fuzzing state into a reference list (references). Each

element of the list contains the identifier for one target syscall (we will discuss this later) and a value

reference describing which return field should be fuzzed with what value for this syscall. This reference

list also serves as a guide for fuzzing. All syscall invocations in the list will be fuzzed accordingly.

The stateful fuzz first extracts a list of unique syscall invocations from the vanilla run and updates the

overall syscall set with vanilla syscalls (line 3-4). overall syscall is a global variable

that records all the discovered syscalls. Then for every syscall invocation in the vanilla syscalls, it

runs the recursive analysis. The init ref is the initial value reference of the target syscall invocation,

and the content of the value reference will be updated in the do-while block in recursive fuzz

each time until it can not be updated further (values exhausted) (line 20). We will describe the update

mechanism in the Sections 4.6.2 and 4.6.3. start fuzzing(line 14) will launch the application and fuzz

syscall invocations recorded in the reference list. Then Emilia will extract any new syscall invocations

that are not found in the overall syscall set. For each newly founded syscall invocation, we will

append it to the reference list and go to the next level of recursion (line 17-19).

As a result, a syscall in the reference list is a new syscall invoked in the new execution path caused by

fuzzing its previous syscalls. In most cases, the reference list as a stored state will help replay the previous

execution by filling the fuzzed syscall return fields with the same values. However, the application could

also be affected by the OS-returned values to the unfuzzed syscalls. For future work, we could record

the whole execution state or taking a snapshot of the execution.

We use experiments to understand the trade-off between the stateless and stateful methods (see

Section 7.1). It shows that the stateful method can cover more syscall invocations than the stateless one

while also requiring more time to run.

Chapter 4. Design of Emilia 18

4.6.2 Fuzzing Value Sets

The values we select to fuzz each syscall return field are important in discovering new syscall invocations

and triggering memory corruption bugs. Ideally, we could iteratively flip the bits, store the state and

start mutating other bits when finding new paths as what regular guided fuzzing does. However, an

application has hundreds of syscall invocations, and we have to do it recursively to handle new syscall

invocations systematically. Moreover, the syscall return values without file/network payload do not affect

code coverage much compared to program inputs and configurations. So if we have infinite resources,

we would rather use regular fuzzing on input/configurations and combine the generated input with our

reverse syscall fuzzing.

As a tradeoff, we prepare a finite value set for each return field of each syscall. The update target

in the do-while loop in Algorithm 1 will iteratively update the value reference with values inside the

value set. A value set consists of a valid value set, an invalid value set and a few random values generated

at runtime. The valid value set contains values extracted from static analysis to increase path coverage.

For example, in Listing 4.5 , the return value ret of read syscall is compared with a constant 10 in a

conditional branch (line 2). To explore both branches, we would add 10 and 9 into the valid value set

of read’s return code. An experiment was performed to evaluate the effectiveness of valid values. (see

Section 7.2)

1 int ret = read(...);

2 if (ret < 10) { // compare the read return vlaue with a constant 10

3 write(...);

4 ...

5 return;

6 }

7 poll(...);

8 ...

Listing 4.5: An example of extracted valid values

Both the invalid set and random values aim to trigger the crash once the value is used on pointer

arithmetics. Currently, the invalid set contains two bound values: MIN and MAX. The interceptor will

fill the target return buffer with little-endian, twos-complement MIN and MAX when seeing them in

the value reference. For random values, Emilia randomizes not only the bytes of the output but also

the number of bytes to overwrite. In this way, Emilia has a higher possibility of generating value with

different orders of magnitude. We did this because some memory corruptions can not be triggered with

a too large value. For example, in OpenSSH, the read return value will be used first to reallocate a

buffer then perform pointer arithmetic on another buffer. If the value is too large, the reallocation will

fail, and the program will not go further.

4.6.3 Return Fields

A syscall could have multiple return fields. We need to decide which of them to fuzz in each iteration.

A systematic and time-consuming way is to try every combination of the return fields and values. The

number of combinations increases exponentially with the number of the return fields. For example, stat

has 14 return fields when broken down (i.e., the return value + 13 fields in struct stat). Assume we

only have 3 values for each field to try (including an option to not fuzz this return field). There will be 314

Chapter 4. Design of Emilia 19

combinations for one syscall invocation. To make the fuzzing finish in a reasonable amount of time, we

choose to fuzz one field at a time, so that the time to fuzz a single syscall invocation grows quadratically

with the number of fields and values (i.e. num fields × num values) as opposed to exponentially. In

this way, the update target method will iteratively go through every value of every output field.

Chapter 5

Implementation of Emilia

5.1 Overview

An overview of our reverse syscall fuzzing framework is shown in Figure 5.1. Emilia consists of three

components: interceptor, controller and value extractor. We divided the interception of the application

and fuzzing loop regulation into an interceptor and a controller. In each iteration, the controller feeds the

interceptor with references (described in 4.6.1), then the interceptor will launch the application’s binary

and actually perform the fuzzing instructed by the references. After the application finishes or crashes,

the controller will analyze the syscall invocation data to detect new syscall invocations and prepare

references for the next iteration. The controller will also briefly examine the causes of the termination

by inspecting the application’s exit code and its core dump. The outputs of Emilia are unique core

dumps(Section 4.2) filtered by the controller. Emilia requires manual analysis on core dumps generated.

A client instance will be launched for continuing the tested server’s execution if necessary. The source

code of the application will go into the Value Extractor for generating valid values (see Section 4.6.2).

The controller will select values from them when constructing the reference list.

Figure 5.1: Components and workflow of Emilia

20

Chapter 5. Implementation of Emilia 21

5.2 Interceptor

When a syscall is trapped, the interceptor will replace values in the return fields/buffers in the applica-

tion’s address space and registers (e.g. $rax) with fuzz values and continue execution. In the case of

buffers (i.e., pointer arguments passed to the syscall), the interceptor determines the buffer size either

based on its type or from other arguments as mentioned in Chapter 4.1. The interceptor would also

calculate a hash of stack trace for each syscall encountered to help identify them for syscall coverage.

We build the interceptor based on strace [33]. strace is a userspace utility for Linux to monitor

and tamper interfaces between processes and the kernel. strace make intercepting syscall possible by a

feature known as ptrace. A tracer process can call ptrace to observe and control the execution of

another process(tracee). After calling ptrace with PTRACE SYSCALL, the tracer can use wait syscalls

(e.g. wait4, waitpid) to wait for the tracee to stop. The stop will be trigger twice on both the entry

and exit of a syscall. The fuzzing of the return values happens at the exit point.

5.2.1 Stack hash extraction

The original strace utilize libunwind to extract the call stack of each syscall invoked if option -k is

specified. However, libunwind is not designed to be performance sensitive. As table 5.1 shows, stack

trace implemented by the original strace+libunwind introduce a 6x overhead.

To optimize the stack trace function, we first need to understand where the bottleneck is. In brief,

whenever encountering a syscall invocation, the stack trace function will execute a for-loop consist of

two parts:

1. Go to the next frame. It walks through the program stack to retrieve the return address of the next

frame.

2. Get function name and offset. It uses the return address to recover the function name and offset from

the program image.

The number of iterations executed in this for-loop depends on the call stack depths of the syscall. By

performing a microbenchmark on the stack trace function, we find that the get function name part takes

most of the execution time (16:1). Therefore, we further study the code of this part in libunwind.

libunwind first reads and parse the /proc/pid/maps file to get the elf image path corresponding

to the return address. Then it loads the image file or the debug link file extracted from the image file.

For each function symbol in the symbol table, libunwind calculates the function’s distance to the return

address. Finally, it returns the name and offset of the function that closest to the return address. We

find that libunwind will go through the whole process without caching for each of the return address.

That means, for one syscall invocation with n call frames, it will reload the map and image file n times,

although those files are unchanged during the process.

Therefore, we decide to cache the map file and function symbols when they get loaded. Fortunately,

we find strace itself caches the maps file to ignore some unnecessary lookup. strace also keeps the

cache fresh by rebuilding it after syscalls that can affect memory mapping. (e.g. mmap, mprotect,

munmap, execve). We take advantage of it to pass strace’s map-cache to the libunwind, and refresh

the symbol cache along with the map-cache.

As a result, we make the stack trace process approximately 3 times faster than the original strace

and libunwind. (see Table 5.1).After getting the stack string (function name and offset pairs), we hash it

Chapter 5. Implementation of Emilia 22

Application strace w/o stack trace stack trace (original) stack trace (cached)
git clone 548.1125855 3836.559932 1095.884483
openssh 47.34340906 341.8519902 105.715909
lighttpd 47.02815771 676.3854456 179.5955133
memcached 42.62156487 322.8056741 146.6278839

Table 5.1: Stack trace overhead (ms)

to a 32-bit unsigned integer with Murmurhash. The interceptor will output the syscall name and stack

hash for all the syscalls invoked. Thus, the controller can figure out if new syscalls appear after fuzzing.

5.2.2 Return value mutation

When intercepting the exit point of a syscall invocation, the interceptor first compares the syscall stack

hash with the reference list (see Section 4.6.1). If it finds a match, and this syscall has been fuzzed less

than 10 times during this iteration (to prevent infinite retry), the interceptor will start mutating the

return value.

We manually write one fuzz function for each supported syscall that returns structures or buffers.

We need to specify the size and location of each output field for different structures. For value-result

argument/field that describes the buffer’s max length, we need to tell the interceptor to use input length

recorded at the syscall entry point when filling the buffer. The fuzz function creates a local variable in its

address space for each output of the syscall. For example, the fuzz function for fstat contains struct

stat fuzz stat and int fuzz ret. For buffer output whose length depends on another input

argument, (e.g. the max length of optval in getsockopt should equal to the original optlen), we

dynamically allocate the buffer. The buffer’s length must be retrieved at the entry point of the syscall if

it is a value-result argument (optlen). Fortunately, strace already has the feature to record and retrieve

those old values. (strace prints [old -> new] for value-result argument when tracing syscalls). After

filling those local variables according to the value reference, they will be written back to the application’s

address space. strace achieves this with process vm writev and ptrace(PTRACE POKEUSER) calls.

As described in Section 4.6, the reference for the target syscall contains a field index and a reference

value. The field index tells the interceptor which output field to fill, and the reference value specifies its

content. There are three types of values: 1. concrete value, 2. random and 3. MIN/MAX.

concrete value: The concrete values are integer values extracted by the value extractor. They will

be copied to the corresponding field directly.

MIN and MAX: If the reference value is MIN or MAX, the target field will be filled with a two’s

Complement MIN/MAX in little-endian. For example, if the length of a target field is 4 bytes, the

interceptor will write the value 0x800000 or 0x7FFFFF for MIN and MAX. If the target field is a

signed number, this method can provide both positive and negative values. If the target field is unsigned,

it still can provide a large enough value for triggering memory corruption.

random: To replay the previous execution, we need to use the same value to fuzz recorded syscalls

(See section 4.6.1). Therefore, we need a method to store the random values in the previous iteration.

We can not determine the random value ahead in the controller and treat it the same way as concrete

values, because the length of some buffer can not be determined until runtime (again optval). As a

result, the controller only set a randomly generated file name to the interceptor. The interceptor will

Chapter 5. Implementation of Emilia 23

generate random bytes to fill the target field and create the file to store the value for the first time. If

the file exists, the interceptor will directly fill the field with the file content. The interceptor also extends

the file with random bytes if the file size is smaller than the target field’s length. Before starting to try

out the next value in the value set (update target), the controller removes the previously used random

file.

Filling the field with random bytes favours values in large magnitude. However, we find that some

crashes will only be triggered if the return value is small. As a result, when generating random bytes,

we also randomize the number of bytes. For example, if the target field is 4 bytes, the number of bytes

(n) will be randomly picked from 1-4. Once n is determined, we will fill the first n bytes of the target

field with random values, and fill the remaining bytes with 0x00 or 0xFF.

5.3 Controller

The entire fuzzing process is coordinated by a controller, which invokes and feeds the other components

with instructions. The role of the controller is threefold: 1. Target selection. The controller regulates the

fuzzing loop and selects the fuzzing targets for the interceptor (which syscalls to fuzz with what values).

For syscalls that are not fuzzed, we just let them pass through with the OS-returned values. 2. Satisfying

external conditions. Sometimes, the application may have external dependencies for continuing its

execution. In particular, if the application is a server, the interceptor will send a signal to the controller

when the accept syscall (a syscall indicating the server is ready to handle client connections, which

could be accept, select, epoll wait, etc.) is reached. Upon receipt of the signal, the controller

will launch the corresponding client to connect to the server application so that fuzzing can continue.

3. Core dump analysis. If a core dump is produced after the application crashes, the controller would also

briefly analyze them for duplicates and filter out the ones that are not caused by memory corruptions

(e.g. assertion error).

Note that not all syscall invocations will be selected as fuzzing targets by the controller. Some

syscalls are not suitable to be directly forwarded to the untrusted OS. 74 syscalls related to threads,

memory management and signals (e.g. fork, mmap, sigaction) are usually specially handled by

the isolation techniques. The untrusted OS is usually not allowed by the isolation technique to directly

manage threads and signals because those operations involve manipulating the application’s address

space. After the publication of the Iago attack, almost all isolation techniques implement their own

memory management handlers to address the mmap-based attack. Since they are handled separately,

the interfaces might be changed, and careful checks might have already been applied to the interfaces.

(see Section 3.1). As a result, we exclude those 74 syscalls from our analysis since the untrusted OS

will not handle them through an unverified syscall interface.

The controller part of Emilia is written in python3. The main logic of it is described in Algorithm 1.

It uses subprocess to launch the interceptor with configurations in each iteration. The interceptor

does all the fuzzing. The controller does not interact with the interceptor unless the target application is

a server. For sever applications, the controller specifies its pid to the interceptor through a configuration

option. Once the accept syscall is invoked, the interceptor will send a customized signal to that PID

so that the controller can launch a client instance for further processing. We write most of the client

instances python functions. For example, a simple client instance for a web server is a python function

that sends a URL request with request package. The user could define its own client function or launch

Chapter 5. Implementation of Emilia 24

the client binary with subprocess.

The controller is also responsible for storing dumped cores. During the initialization phase, the

controller will set the core pattern kernel configuration so that all the crashed cores will be dumped

to a specified temporary directory. After each iteration, the controller will check that directory to see

if any new core is generated. For each newly dumped core, the controller launches a gdb script to

extract a hash of the core’s call stack. Both the core and the fuzzing log will be renamed and moved

to a permanent directory if the call stack hash is new. Otherwise, they will be cleared before the next

iteration. Further analysis of those cores is performed manually.

5.4 Value extractor

The value extractor generates a valid value set for each output field of syscalls. The value extractor is a

coarse-grained LLVM (a open-sourced compiler project [24]) analysis pass. The syscall wrapper looks

for any usages of the return value and output arguments for each call instructions to the syscall wrapper.

Suppose the return value is used in a binary operation instruction (e.g. add and sub) with an immediate

value, the extractor will update the offset and recursively search usage of this binary operation. If the

value is used in a store instruction, we will further analyze its corresponding load instruction. If the

usage is a comparison instruction (e,g, equal, less than) and the other operand is constant, we will

output this relationship for value generation. For example, ret + 3 < 5 will be represented as var1

= ret + 3 and var2 = var1 < 5 by LLVM. When we see the usage of the return value in the first

add instruction, we will update the offset to 3 and looking for usages of var1. Then in the comparison

instruction, we output ret < 2. For all the relationships in the form of ret operator n (n is a

constant integer), we simply add n, n-1 or n+1(depends on the operator) into the target field’s value

value set. (e.g read’s ret, fstat’s ret and fstat’s stat.st mode)

Libc syscall wrappers move the negative part of the syscall return value to a global variable errno.

So the extractor also searches for comparison instructions with errno involved. To find the syscall

related to an errno, we use a heuristic that errno is usually used immediately after the call. Thus,

we search forward to find the closest function call instruction. If it is a call to a syscall wrapper, we add

the extracted negative value to the valid set of that syscall’s ret. Otherwise, we simply add the value

to all syscall’s ret.

Chapter 6

Vulnerability Analysis

This chapter starts with the classification of vulnerabilities found by Emilia and provides examples

of each. We then quantitatively examine our measurement results to describe how frequent the Iago

vulnerabilities arise in legacy code. Then we discuss our insights into why Iago vulnerabilities arise,

and at the same time, why they don’t arise more often. After that, we summarize some lessons-learned

that will provide directions for avoiding Iago vulnerabilities for legacy code in applications. Finally,

we describe our extra work on analyzing a commercial OFL implementation and Iago vulnerabilities

detected in it.

6.1 Applications examined

We examine 17 applications and libraries, including servers, clients, and utilities. They are summarized

in Table 6.1. We choose these applications because they are likely to be treated as targets in different

isolation techniques[2, 40, 37]. They are largely I/O-intensive, meaning they tend to make a lot of

syscalls, and are all UI-less applications (we test the headless version of Chromium) making them easier

to fuzz. We also analyze the C library code invoked during fuzzing since we intercept the actual syscall

layer instead of libc wrappers. Our system was running glibc-2.27.

6.2 Classification

We consider all the memory corruption bugs as potential Iago vulnerabilities though the severity of

those bugs may vary. Memory corruption bugs are caused by a corrupted pointer get dereferenced. The

dereference could be either a memory write or memory read. For memory write, if the attacker could

control both the write address and content, he could overwrite a stored return address to hijack the

execution further. In most cases, the attacker can only control the invalid write operation’s address, and

the value to overwrite is limited by the code’s logic. We believe there’s a potential for the attacker to

overwrite bytes of some important variables (e.g. a boolean variable decide whether to encrypt network

packages or not) to affect its execution. For memory read, if the read content is exposed to the attacker

through some channel (e.g. pass the value as a syscall argument), sensitive information could be leaked.

In some cases, bytes read are only used internally. We believe there’s still a potential for the attacker

to learn some knowledge of the bytes read by observing the application’s behaviour change if the read

25

Chapter 6. Vulnerability Analysis 26

App Ver. Description LOC

openSSH 7.9p1 SSH server and client 91,607
Lighttpd 1.4.51 light-weight web server 49,688
Apache 2.4.37 HTTP Server 184,033
MongoDB r4.2.4 document-based, distributed database 1,957,478
Redis 5.0.5 key-value database 115,034
Nginx 1.17.0 web server 132,911
Memcached 1.5.20 memory object caching system 18,414
Evolver 2.70 liquid surfaces modelling system 130,104
Charybdis 3.5.5 IRCv3 server 191,478
BOINC 7.14.2 volunteer grid computing system 222,388
Chromium 74.0 web browser 21,140,796
Git 2.18.0 version control system 210,732
wolfSSH v1.4.3 lightweight SSHv2 server library 22,533
Coreutils 8.31 GNU operating system utilities 62,466
zlib 1.2.11 data compression library 18,334
libreadline 7.0 command lines editing library 21,728
curl 7.72.0 command lines web client 130,833

Table 6.1: Legacy applications analyzed

value is used on some branch conditions. Therefore, we just count all the memory corruption bugs found

as potential vulnerabilities. Further work is needed to determine whether they are exploitable and how

the attacker could take advantage of them.

We classify the Iago vulnerabilities by the nature of the assumptions they violate. Every syscall

has semantics that a correct OS adheres to, so naturally, programs will assume the OS will obey such

semantics. We categorize these semantics into four types:

Static: Semantics are independent of syscall arguments and history. For example, certain syscalls

return a negative value as the error code, which can be checked against a predefined list, such as the

negative value returned by accept.

Local: Semantics are only dependent on the arguments that are local to the syscall. For example,

the returned number of bytes processed (read/written) needs to be less than or equal to the specified

buffer length as an argument, as in read and getsockopt. We also find that some similar syscall

return values do not have this restriction. For example, the manual page of accept syscall specifies

that the returned addrlen can be set greater than the provided max length. We do not consider the

bug caused those return values as Iago vulnerability as it could happen with a benign OS.

Stateful: Semantics are dependent on the history of previous syscalls. Certain states can only

be affected by the application itself, in the case of a well-behaved OS. A representative example is

the current read/write pointer of an open file, which is only determined by the previous syscalls the

application has invoked (i.e. the return values of epoll wait depend on previous invocations and

returns).

External: Semantics depend on information external to the application. Examples include random-

ness from the Iago paper and time. In theory, without duplicating the corresponding functions within

the OFL, it would be infeasible or impossible to verify such semantics.

Chapter 6. Vulnerability Analysis 27

6.3 Vulnerabilities found

App Syscall Count Type

Redis accept 1
Static

(1, 2.0%)
openSSH

read
(27)

2

Local
(41, 82.0%)

Apache-httpd 6
MongoDB 1
Redis 5
Nginx 1
Evolver 1
BOINC 1
Chromium 1
Coreutils 2
zlib 1
curl 1
libreadline 2
glibc 3
openSSH

readlink
(7)

1
Redis 1
libreadline 4
glibc 1
openSSH getsockopt 1
Lighttpd getsockname 1
zlib write 1
Redis epoll wait 1
Memcached recvfrom 1
glibc recvmsg 1
glibc getdents 1
Lighttpd

epoll wait
(6)

1

Stateful
(6, 12.0%)

Apache-httpd 1
MongoDB 1
Redis 1
Charybdis 1
Chromium 1
Git lseek 1 External

(2, 4.0%)glibc fstat 1
Total 50

Table 6.2: Detected Iago vulnerabilities

We run the stateful fuzzing on 17 real-world applications for about 80 hours in total. We provide a

subset of per-application runtimes in Table 7.2 where the measurements were taken from an average of

3 runs (the variance was small in all cases). 50 memory corruption Iago vulnerabilities are discovered

in those applications and the involved part of glibc. We manually analyze those memory corruptions to

make sure all 50 vulnerabilities are caused by violating one of the syscall semantics. The majority of

vulnerabilities are Local (82.0%), followed by Stateful (12.0%). See Table 6.2 for the list and statistics.

We will discuss a few examples based on the four types of semantics.

Static: Many of the syscalls will return a positive value on success. The negative return value will be

interpreted as an error code, and the C library will move it to errno and set the return value of the

syscall wrapper function to -1. However, glibc will not perform this translation if the negative value

Chapter 6. Vulnerability Analysis 28

is less than -4095 because all valid error codes should fit into this range. In Redis, we find a piece

of code that uses a file descriptor returned from accept to index a pre-allocated file descriptor array

(Listing 6.1). Before performing indexing, Redis checks the returned file descriptor with -1 in line 2 and

then compares it against the array’s max size in line 8. Usually, those checks are sufficient to prevent

buffer overflow since Redis assumes the negative value returned from the syscall should be a valid error

code and be moved to errno correctly, -1 should be the only negative return value from the glibc

syscall wrapper. Thus, a crafted negative return value less than -4095 will skip the translation of glibc,

pass all those checks and cause out-of-bounds indexing in line 11. The attacker could make fe point

to a selected address and uses the following dereference instructions to change memory content around

that address. For the syscalls that are not allowed to return any negative values except error codes,

the OFL could check the negative part against a predefined valid value list to prevent such vulnerabilities.

1 int fd = accept(...);

2 if (fd == -1) {

3 // error handling

4 return error;

5 }

6 ...

7 /* compare fd with max number of file descriptors tracked (max size of eventLoop

->events[]) */

8 if (fd >= eventLoop->setsize) {

9 return error;

10 }

11 aeFileEvent *fe = &eventLoop->events[fd]; // use fd to index

12 fe->mask |= mask;

13 if (mask & AE_READABLE) fe->rfileProc = proc;

14 if (mask & AE_WRITABLE) fe->wfileProc = proc;

Listing 6.1: An example (accept) of the Static semantics in Redis

Local: Syscalls such as read and getsockopt will fill a buffer provided by the caller. There is

always an input value to specify the buffer’s max length so the OS will not overwrite the buffer. Upon

completion, the syscall sometimes returns a value to indicate the actual size it has written into the buffer.

In most cases, a benign OS should never return a value larger than the specified max length. Listing 6.2

shows a vulnerability caused by an unbounded readlink return value in OpenSSH.

After reading the symbolic link’s content into the buf, the program tries to form a zero-terminated

string by adding a zero at the end of the string. Normally, the returned len should be equal or less

than the input length (PATH MAX - 1 in this case) based on the specification of the readlink syscall.

So the application feels safe to index buf with len in line 7. However, a crafted len which breaks

the assumption will let the attacker set any byte beyond buf to zero. If the attacker can guess the

application’s memory layout, he could use this vulnerability to change a boolean variable on the stack

to zero and change the application’s behaviour.

1 char buf[PATH_MAX];

2 if ((len = readlink(path, buf, sizeof(buf) - 1)) == -1)

Chapter 6. Vulnerability Analysis 29

3 ...

4 /* error handling */

5 else {

6 ...

7 buf[len] = ’\0’;

8 ...

9 }

Listing 6.2: An example (readlink) of the local semantics in OpenSSH

Stateful: Some state information involved in syscalls is supposed to be exclusively controlled by the

application. The application may make assumptions on return values regarding such state information

based on its previously invoked syscalls. To verify this type of return values, a stateful OFL that can

keep track of all related syscalls is necessary. Syscalls like epoll wait and epoll pwait will return

user data corresponding to the polled file descriptor. The user data should contain the same data as

was stored in the most recent call to epoll ctl. This user data usually specifies a file descriptor or

a pointer. If the application dereferences the pointer returned by a malicious OS, the vulnerability will

occur. The common usage of epoll will also use the returned file descriptor to index a pre-allocated

array to extract the data regarding this file descriptor. Listing 6.3 shows an Iago vulnerability caused

by epoll wait in Lighttpd.

1 n = epoll_wait(ev->epoll_fd, ev->epoll_events, ev->maxfds, timeout_ms);

2 ...

3 ndx = 0;

4 do {

5 ...

6 fd = ev->epoll_events[ndx].data.fd

7 handler = fdevent_get_handler(ev, fd);

8 (*handler)(srv, context, revents);

9 } while (++ndx < n)

10

11 fdevent_handler fdevent_get_handler(fdevents *ev, int fd) {

12 if (ev->fdarray[fd] == NULL) ERROR();

13 if (ev->fdarray[fd]->fd != fd) ERROR();

14 return ev->fdarray[fd]->handler;

15 }

Listing 6.3: An example (epoll wait) of the stateful semantics in Lighttpd

ev->epoll events is an output buffer of epoll wait. The malicious OS controls its content

after the syscall returns. fd is an integer value returned in this buffer (line 6). Lighttpd retrieves the

corresponding handler function pointer by indexing (fdnode)ev->fdarray with the returned fd in

fdevent get handler (line 14). Then the function pointer gets called in line 8.

We will show that the attacker could fully control the function pointer if he knows the mem-

ory layout. ev->fdarray is placed at a lower address of ev->epoll events. By setting fd =

4100, the attacker could make fdarray[fd] point to the region inside ev->epoll events buffer

(&fdarray[fd] == &epoll events[1].data.ptr). Since the content of epoll events buffer is

controlled by the attacker, he can then set epoll events[1].data.ptr = &(epoll events[2])

Chapter 6. Vulnerability Analysis 30

and craft a valid fdnode structure there (set (fdnode)epoll events[2].fd = fd to pass check

in line 12 and 13). Finally, the attacker can set (fdnode)epoll events[2].handler to any code

address he wants and gain control of the execution.

A similar vulnerability is found in Charybdis, the data field of epoll event stores a pointer to a

structure which contains a function pointer. If the attacker let the pointer point to a controlled buffer

and write a function pointer there, he can make the application call arbitrary functions.

External: Some syscall return values describe a state that can not be maintained by the application,

and they do not have clear invariant as Static or Local semantics do. Examples are the file or network

content obtained from read syscall, time received from gettimeofday, and file size received from

stat. The application may have the ability to affect those values by performing operations like writing

to a file, but the external world could also change it.

We find one such example in glibc’s code of parsing ld.so.cache (Listing 6.4). It uses the file size

retrieved from fstat to mmap the same file in line 5. Then it assumes the file content is written in a

specific format and casts the buffer to struct cache file in line 8. If the malicious OS returns a

small file size (cachesize). glibc would mmap less pages to cache, and the following parsing based

on the file format would eventually access unmapped memory. Although glibc verifies pointers with the

macro defined in line 1 before using, the cache data size itself could be miscalculated. In line 10, if

the cachesize is smaller than the offset of cache data, cache data size would be a very large

number since it is unsigned.

In git config set multivar in file gently function of Git, it tries to modify key-value pairs

in the config file by copying file contents to a temporary lock file part by part. It first parses the config

file and records each parsed element’s position by calling lseek(fd, 0, SEEK CUR). Then it mmap

the config file to a buffer named contents with the file size read from fstat. During this procedure,

Git assumes the config file is owned exclusively by itself and uses the lock file to prevent access from

other Git processes. Therefore, Git expects the recorded file offset to be smaller or equal than the file

size they read from the fstat and uses the recorded file offset to index the content buffer. In this

case, both file size and file offset describe a state that cannot be maintained by the application alone

(lseek with SEEK END will set the file offset based on file size).

1 #define _dl_cache_verify_ptr(ptr) (ptr < cache_data_size)

2 if (fstat(fd, &st) >= 0)

3 {

4 sizep = st.st_size;

5 result = mmap(NULL, sizep, prot, MAP_FILE, fd, 0);

6 }

7 cachesize = sizep;

8 struct cache_file* cache = result;

9 cache_data = &cache->libs[cache->nlibs];

10 uint32_t cache_data_size = (const char *) cache + cachesize - cache_data

11 ...

Listing 6.4: An example (fstat) of the external semantics in glibc

A malicious OS could also compromise the application through return values ways other than memory

corruption. For example, Apache used getpid and time as a random source, which was mentioned in

Chapter 6. Vulnerability Analysis 31

the original Iago paper. Those vulnerabilities are ad-hoc and hard to detect automatically. Extra work

such as modifying the application logic and adding a trusted random and time source is necessary to

mitigate those vulnerabilities.

In summary, we have found at least one vulnerability in every application we examined except

wolfSSH. They are listed in Table 6.2. From the table, we can see that 82% of the vulnerabilities are

caused by a returned size, which goes beyond the local upper bound. (The epoll wait vulnerability

in category Local is caused by a returned number of file descriptors which is larger than the specified

maxevents.) It is predictable since the returned length is likely to be used to access the buffer sent

to the same syscall for some common programming practices. For example, iterating the buffer using

the returned number of items, adding a zero to the end of the received data to terminate a string and

copying the buffer using a “smaller” size to save space. The epoll data returned from epoll wait

caused most of the Stateful vulnerabilities because storing a file descriptor in epoll event and using it

to index a file descriptor array to extract more data associated with that file descriptor is also a common

practice. On the other side, syscall-returned data that is not related to any buffer position is unlikely to

be used for pointer arithmetics. That is why the types of vulnerable syscalls which can trigger memory

corruption are limited.

6.4 Mitigating Iago vulnerabilities

An obvious way of mitigating the Iago vulnerabilities is to check if the semantics of syscalls have been

violated. This could be done by either the application itself or the OFL. Also, for each type of syscall

semantics, the implications and difficulty might be different.

Local and Static: Since this type of semantics can be checked against predefined ranges or other

constraints without maintaining a state, the checks can be simply performed by the OFL and they are

straightforward and relatively cheap to do. For example, the OFL can check if the returned size is smaller

or equal to the maximum length specified in the parameter. The high number of Local vulnerabilities in

Table 6.2 suggests that the majority of Iago vulnerabilities can be mitigated in this way, and this would

eliminate 84% of the vulnerabilities for Static and Local. The semantics might need to be manually

derived from the OS code or syscall specifications for the OFL check, but this would only be a one-time

effort for each OS version.

Stateful: In contrast to Static and Local which are straightforward to check, Stateful Iago vulnerabil-

ities require more complex logic to maintain parallel states with the untrusted OS (e.g., keeping track

of the syscall history). However, we note that the main motivation of many user-TEEs is to reduce the

TCB of security-sensitive code. Since the OFL is in the TCB, it must also remain small as well. Im-

plementing a stateful OFL will thus increase the TCB, which is antithetical to the philosophy of TEEs.

Therefore, instead of purely relying on the OFL, an alternative is to patch the application to free from

vulnerabilities. We find that all 6 applications we examine that contain an epoll wait vulnerability

can be easily configured to use other polling syscalls such as poll and select for compatibility reasons.

External: We have argued that the application should not make assumptions on resources that it

does not control or keep track of. The root cause of the fstat and lseek bug in Git and glibc is

the assumption that it owns the file exclusively, which is not true even in a common threat model

Chapter 6. Vulnerability Analysis 32

(the OS is not malicious but with other applications running in parallel). External metadata, such as

file size, should also be crypto-protected to prevent those vulnerabilities. Ad-hoc vulnerabilities such

as mistrusted random sources (causing other application failures) can be mitigated through improved

application development.

Our study shows that Emilia can help detect vulnerabilities and help application developers identify

where applications need to be rewritten to avoid Stateful Iago vulnerabilities. By detecting the presence

of Stateful Iago vulnerabilities, these vulnerabilities can be patched in the application, thus avoiding

increases in the TCB of the OFL to perform stateful checks. Adding up Static and Local, 84% of the

vulnerabilities can be checked and mitigated in a straightforward manner.

6.5 Forwarding OFL Analysis

Compared to the threat model inconsistency faced by legacy applications, the Iago vulnerabilities have

been included in the OFL development threat model. With that said, we are still interested to see

whether or to what extent, commercial OFL implementations can defend against Iago vulnerabilities.

Google Asylo [10] is a two-year-old (first commit on GitHub was May 3, 2018) enclave application

development framework with 32 contributors on Github (101,131 LOC). It aims to help developers take

advantage of a range of emerging trusted execution environments (TEEs), including both software and

hardware isolation technologies.

In Asylo, a subset of POSIX calls made in the enclave will be forwarded to the untrusted side.

It shares the same syscall forwarding model described in Section 2.1.1. Trusted OFL performs the

forwarding in the enclave while handler functions make actual syscall calls in the untrusted world. For

some of the calls, outputs are copied based on predefined rules. For other calls, specific codes are used

to parse and copy the returned value.

Instead of directly applying Emilia, we intercept Asylo’s untrusted syscall handler which handles

and replies syscall requests forwarded by the OFL. The fuzzing loop algorithm we use in Emilia that

enumerates all target syscalls is unnecessary when fuzzing OFL since we know the target syscall will only

be invoked once by the forwarding interface. We do not use strace to intercept target syscalls because

the untrusted handler will also invoke syscalls, while the ones forwarded by the OFL are only a subset.

e.g., when doing initialization, logging and sending syscall output back to the enclave, the untrusted

handler would also need to rely on syscalls. To be able to use strace, we need to modify the untrusted

handler code in a way to tell strace which syscalls should be fuzzed, which might be redundant work

as we are already modifying the code of the untrusted handler. Therefore, we decide to fuzz the return

values directly in the untrusted handler. Since both the untrusted handler and the OS are under the

attacker’s control in the threat model, altering the handler’s syscall return values before sending them

to the trusted part is a valid fuzzing method.

Two vulnerabilities discovered, reported and fixed: We find two memory corruption vulner-

abilities according to the getsockopt and recvmsg syscalls. Asylo uses serialized data to transfer

syscall parameters and return values. Most of the syscalls have a pre-defined forwarding rule and are

forwarded together (all handled by a set of functions instead of handled separately). For example, the for-

warding rule SYSCALL DEFINE3(read, unsigned int, fd, \out void * [bound:count],

buf, size t, count) means that the buf parameter is an output of the read syscall and its size is

Chapter 6. Vulnerability Analysis 33

bounded by count parameter. So the forwarding function will only copy count bytes from buf to the

application. Asylo also handles some syscalls specifically. In enc untrusted getsockopt, it copies

data to the internal optval with the length of opt received:

memcpy(optval, opt received.data(), opt received.size());

If the untrusted handler sets the opt received with a size larger than the original size (the original

optlen) which is used to allocate optval inside the enclave, the attacker could overflow optval. A

similar vulnerability is found in enc untrusted recvmsg when it tries to copy msg→ msg name. In

this case, the same could happen to msg.msg namelen. Following the practice of responsible disclosure,

we contact Google and these two vulnerabilities are confirmed. They have been patched by comparing

the received size with the input parameter optlen and msg namelen.

Implications: We have shown that Emilia and the idea of fuzzing can find vulnerabilities in commercial-

grade OFLs as well. The vulnerabilities in the application are less severe because of the assumption that

the OFL will truncate the returned buffer based on the input max length. For example, if the application

does this:

char opts[200];

char buf[200];

optlen = 200;

getsockopt(fd, level, name, opts, &optlen);

memcpy(buf, opts, optlen);

buf might be overflowed. However, since the OFL will truncate the returned opts to 200 bytes, the

attacker can not control the content he writes beyond 200 bytes. But in Asylo, opts is serialized, and

Asylo uses opts.size (optlen) instead of 200 to perform the truncation and copy (memcpy(buf,

opts.content, opts.size), the overflow happens before/during truncation, then the attacker can

control the overwritten content.

Chapter 7

Evaluation

We have discussed our strategies for achieving syscall coverage in section 4.6. To evaluate the design

decisions we make and understand the trade-off between syscall coverage and runtime, we perform

two experiments. The first one compares stateless and stateful methods of handling new syscalls that

occurred in new paths caused by fuzzing. Fuzz-all method mutates all encountered syscalls statelessly,

and the stateful method can record the relationship between the fuzzed syscall and the newly occurred

one. The second experiment is performed to evaluate the effectiveness of valid value sets.

Metrics: We used runtime, number of unique syscall invocations (with call stack) fuzzed, and number

of unique core dumps produced, as the basis for comparison. Unique core dumps are core dumps with

unique call stacks. This number does not equal to number of vulnerabilities we listed in Table 6.2.

As we explained in Section 5.1, multiple core dumps with different call stack could represent the same

vulnerability, and those core dumps also include common vulnerabilities in glibc. Manual analysis on

dumped cores is needed to categorize them further. #syscall(vanilla) in Table 7.1 represents the number

of unique syscalls in the vanilla run. This number is the same across all design settings. We run the

experiments 3 times for each setting since randomness is involved in these experiments and the results

are average values over 3 times. For the fuzz-all method, the runtime is calculated by turning off the

stack trace since the stateless fuzz-all does not need it to identify syscall invocations. We also run 3

extra times for fuzz-all with stack trace turned on to collect the unique syscalls fuzzed by this method.

Experimental Setup: We test with 5 applications from our analyzed application list in section 6.1:

OpenSSH, Lighttpd, Memcached, Redis and Curl. All experiments run on a machine equipped with 8

Intel 2.20GHz Xeon cores and 4GB RAM. The software environment is Ubuntu-18.04 with glibc-2.27.

7.1 Comparing Target Selection Methods

Table 7.1 shows the result of comparing two methods of handling new syscall invocations. Fuzz-all(rnd)

statelessly fuzzes all syscalls encountered, and the stateful method feeds the interceptor with syscall

references list recursively. Since stateless fuzzing can not identify unique syscall invocations, it can

not iterate through every value of every return field. To make the two methods comprable, the fuzzer

mutates all return fields with random values for every syscall in both Fuzz-all(rnd) and Stateful(rnd)

settings.

34

Chapter 7. Evaluation 35

Application Setting Runtime #Syscall (Vanilla) #Syscall (Fuzzed) #Core dumps

Openssh
Stateful (rnd) 01:41:40

389
1098 23

Fuzz-all (rnd) 01:23:12 820 20

Lighttpd
Stateful (rnd) 00:50:48

194
742 21

Fuzz-all (rnd) 00:22:38 497 19

Memcached
Stateful (rnd) 00:53:25

152
434 37

Fuzz-all (rnd) 00:42:36 315 5

Redis
Stateful (rnd) 00:32:36

94
537 11

Fuzz-all (rnd) 00:11:53 348 8

Curl
Stateful (rnd) 00:05:31

59
107 6

Fuzz-all (rnd) 00:04:02 94 4

Table 7.1: Stateful fuzz vs. Fuzz-all

Application Setting Runtime #Syscall (Fuzzed) #Core dumps

OpenSSH
Stateful (inv+rnd+valid) 14:19:45 1736 29
Stateful (inv+rnd) 02:28:58 1173 24

Lighttpd
Stateful (inv+rnd+valid) 05:07:05 1077 23
Stateful (inv+rnd) 01:04:06 784 21

Memcached
Stateful (inv+rnd+valid) 03:17:38 626 61
Stateful (inv+rnd) 01:14:29 457 47

Redis
Stateful (inv+rnd+valid) 02:54:20 823 19
Stateful (inv+rnd) 01:06:52 598 17

Curl
Stateful (inv+rnd+valid) 00:22:22 117 7
Stateful (inv+rnd) 00:08:28 107 6

Table 7.2: Effects of the valid value set

The data in Table 7.1 shows that the stateful method always covers more syscall invocations and

produces more core dumps than the stateless fuzz-all method. This is expected since Stateful has a

higher chance of fuzzing new syscall invocations multiple times by replaying the mutation of previously

fuzzed syscalls. In contrast, Fuzz-all depends on randomness to reach the new syscall invocations (and

very likely only once for each). Also, because of its ability to distinguish syscall invocations, Stateful

fuzz can be extended to become more systematic by iterating through different values and fields as

Statefull(inv+rnd+valid) in Table 7.2 shows.

Furthermore, the Fuzz-all method is unable to trigger some crashes by design, as mentioned in section

4.6.1. This is the reason why the number of core dumps drops a lot for Fuzz-all(rnd) in Memcached. It

fails to trigger the memory corruption in fprintf, which forms the majority of core dumps in State-

ful(rnd) with different call stacks. Fuzz-all actually fuzzed the vulnerable write syscall in fprintf.

However, there is another extra write syscall before the misuse of the return value of the previous

write. If the extra write does not succeed (returned size equals the input size), the misuse by the

vulnerable instruction will not be reached. As Fuzz-all fuzzes both the vulnerable and the extra writes,

the possibility of making the extra write success is very low during fuzzing.

Obviously, the stateful method is slower than the stateless Fuzz-all because the stateful method

analyzes more syscall invocations, and the overhead of stack trace is not negligible. However, the

runtime of Fuzz-all(rnd) and Stateful(rnd) are close for OpenSSH and Memcached. That is because

Fuzz-all would more likely enter an infinite retry loop and timeout by design. As mentioned in section

4.6.1, Stateful only fuzzes the first 10 occurrences of the target syscall invocation to prevent infinite

Chapter 7. Evaluation 36

retry. Fuzz-all can not do the same because it can not identify unique syscall invocations. Also, Stateful

will only face this situation when the retrying syscall invocation is in the current reference list, while

Fuzz-all will fuzz the retry syscall as long as it is reachable. For example, assume S1, S2, S3, S4, and S5

is a syscall sequence in the vanilla run. None of them except S4 affect the execution path. S4 resides in

an infinite retry loop unless the return value is zero and the default return value of a normal OS is zero.

When fuzzing the first 3 syscalls, the stateful fuzz method will only fuzz the target syscall invocation and

end the iteration smoothly. However, Fuzz-all will fuzz all the syscalls including S4 when skip count

< 4. So Fuzz-all will always enter the infinite retry and time out until skip count equals 4.

7.2 Effects of Valid Values

We perform the second experiment to analyze the effectiveness of valid values generated from the value

extractor. In Table 7.2, both Stateful(inv+rnd+valid) and Stateful(inv+rnd) uses the stateful method to

handle new syscalls, and the fuzzer iteratively tries out every value in the value set for every return field

of the target syscall. For Stateful(inv+rnd+valid), the value set of each return field contains valid values

from the value extractor, invalid values (MIN and MAX) and 3 random values. For Stateful(inv+rnd),

the value set only includes invalid values and 3 random values.

The result shows that the valid value set could lead to more syscall coverage and core dumps. For

example, in OpenSSH, a poll syscall will never be reached unless the previous read syscall returns

EAGAIN or EWOULDBLOCK. The EAGAIN in the valid set of read’s return value will help trigger this

syscall.

The runtime also increases dramatically when using valid values because there are more syscall in-

vocations to fuzz and more values to try out for each syscall invocation. It seems not efficient since the

number of fuzzed syscall invocations and the number of core dumps are not increased in the same order

of magnitude. This is because not all valid set values are useful for finding new syscall invocations due

to our coarse-grained static value extractor. We do not relate the syscalls in static analysis with unique

syscall invocations in stateful fuzzing. We try the valid values for all the syscall invocations with the

same syscall number, although the valid value only applies to some of them. It is worse when we can

not relate an errno with a specific syscall number. We will add the value to the valid set of all syscalls.

This can be improved by having a fine-grained value extractor and labelling each syscall invocation only

to use the valid value if the label matches during fuzzing.

In summary, the experiments demonstrate, to a certain extent, that the design decisions we made

on target selection and fuzzing value sets indeed help increase syscall coverage and produce more core

dumps.

Chapter 8

Conclusion and Future Work

In an effort to detect memory corruption Iago attacks in legacy applications, we explore the technique

of reverse syscall fuzzing, which passively waits for syscall invocations and replace their return values.

We choose to fuzz legacy applications (i.e., applications developed prior to the advent of mechanisms

protecting them from an untrusted OS) with the observation that such legacy code is still largely reused

or ported as opposed to rewritten.

We study the difficulties of fuzzing syscall return values. One of the most challenging problems is

that the syscall sequence would change during fuzzing so that we do not have fixed targets to fuzz. We

design Emilia to fuzz newly appeared syscalls recursively by replaying the fuzzing values in previous

iterations. We also build a valid value extractor to find values that can help explore different application

branches. Experiments have been performed to justify the effectiveness of our design.

We have detected 50 Iago vulnerabilities in 17 applications using Emilia. We further study the cause

of the detected vulnerabilities by categorizing the semantics of syscall return values into static, local,

stateful and external.

The majority of the detected vulnerabilities pertaining to static and local categories could be easily

fixed by stateless verification in the OFL. The remaining vulnerabilities may need code modification or

extra resources. We hope Emilia can shed some light on how Iago vulnerabilities can be mitigated when

legacy applications are ported to the isolated environment of the protection mechanisms.

8.1 Future Work

Modifying syscall return values along has less impact on the path coverage than mutating application’s

regular inputs such as environment variables and configurations. We let the users provide fixed inputs

to analyze paths they are interested in for now. Ideally, we could use fuzzing or other techniques to

generate regular inputs that can trigger different paths automatically.

Instead of utilizing stack trace to identify unique syscalls, we could use the fine-grained execution

path leading to the syscall. The path can be extracted by instrumenting the application and all its

libraries to track branches taken in the run time. By doing so, the performance of Emilia would also be

improved since computing the stack trace involving syscalls to access tracee’s stack and load images.

The current implementation of Emilia is synchronous. We could run multiple fuzzing tasks in parallel

to improve the performance further.

37

Chapter 8. Conclusion and Future Work 38

The valid value extractor could be optimized to generate values for a specific syscall invocation.

Currently, if the return value of one read syscall is used on a branch condition, the extracted valid

value will be added to all read’s value set. Trying this value on other read syscalls usually not trigger

any new paths, and iterations are wasted. We could mark each syscall invocation with an identifier in

the application and only use valid values on the syscall invocation where the value is generated from.

Bibliography

[1] ARM Ltd. Security technology building a secure system using trustzone technology (white paper),

2009.

[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe,

Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell, et al. SCONE: Secure linux

containers with intel SGX. In 12th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), pages 689–703, 2016.

[3] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an untrusted

cloud with haven. ACM Transactions on Computer Systems (TOCS), 33(3):1–26, 2015.

[4] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call API is a bad untrusted

RPC interface. SIGPLAN Not., 48(4):253–264, March 2013. Available at http://doi.acm.org/

10.1145/2499368.2451145 [Accessed July 30, 2020].

[5] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger,

Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Overshadow: A virtualization-based approach to

retrofitting protection in commodity operating systems. SIGPLAN Not., 43(3):2–13, March 2008.

[6] Yueqiang Cheng, Xuhua Ding, and Robert Deng. Appshield: Protecting applications against un-

trusted operating system. Singaport Management University Technical Report, SMU-SIS-13, 101,

2013.

[7] Intel Corporation. Intel Processor Trace. Available at https://software.intel.

com/content/www/us/en/develop/blogs/processor-tracing.html [Accessed July 30,

2020].

[8] John Criswell, Nathan Dautenhahn, and Vikram Adve. Virtual ghost: Protecting applications from

hostile operating systems. In Proceedings of the 19th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS ’14, pages 81–96, New York, NY,

USA, 2014. ACM. Available at http://doi.acm.org/10.1145/2541940.2541986 [Accessed

July 30, 2020].

[9] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of TLS implementations. In 24th USENIX

Security Symposium (USENIX Security 15), pages 193–206, Washington, D.C., August 2015.

[10] Google. Asylo. Available at https://asylo.dev [Accessed July 30, 2020].

[11] James Greene. Intel trusted execution technology, white paper. Intel, 2012.

39

http://doi.acm.org/10.1145/2499368.2451145
http://doi.acm.org/10.1145/2499368.2451145
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
http://doi.acm.org/10.1145/2541940.2541986
https://asylo.dev

Bibliography 40

[12] Large-Scale Data & Systems (LSDS) Group. TaLoS, 2019. Available at https://github.com/

lsds/TaLoS [Accessed July 30, 2020].

[13] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and Trent Jaeger. Trust-

shadow: Secure execution of unmodified applications with arm trustzone. In Proceedings of the

15th Annual International Conference on Mobile Systems, Applications, and Services, pages 488–

501, 2017.

[14] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. Inktag:

Secure applications on an untrusted operating system. SIGPLAN Not., 48(4):265–278, March 2013.

Available at http://doi.acm.org/10.1145/2499368.2451146 [Accessed July 30, 2020].

[15] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena. Identifying arbitrary memory

access vulnerabilities in privilege-separated software. In Günther Pernul, Peter Y A Ryan, and

Edgar Weippl, editors, Computer Security – ESORICS 2015, pages 312–331, Cham, 2015. Springer

International Publishing.

[16] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. Ryoan: A dis-

tributed sandbox for untrusted computation on secret data. ACM Transactions on Computer Sys-

tems (TOCS), 35(4):1–32, 2018.

[17] Intel. Intel Software Guard Extensions SDK for Linux OS: Developer Reference, 2016.

[18] Prerit Jain, Soham Jayesh Desai, Ming-Wei Shih, Taesoo Kim, Seong Min Kim, Jae-Hyuk Lee,

Changho Choi, Youjung Shin, Brent Byunghoon Kang, and Dongsu Han. OpenSGX: An open

platform for SGX research. In NDSS, 2016.

[19] Dave Jones. Trinity: Linux system call fuzzer. Available at https://github.com/

kernelslacker/trinity [Accessed July 30, 2020].

[20] Mustakimur Rahman Khandaker, Yueqiang Cheng, Zhi Wang, and Tao Wei. COIN attacks: On

insecurity of enclave untrusted interfaces in SGX. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’20, page 971–985, New York, NY, USA, 2020. Association for Computing Machinery. Available at

https://doi.org/10.1145/3373376.3378486 [Accessed July 30, 2020].

[21] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han. SGX-Tor: A secure

and practical tor anonymity network with SGX enclaves. IEEE/ACM Transactions on Networking,

26(5):2174–2187, 2018.

[22] Jan Kneschke. Lighttpd, 2003. Available at https://www.lighttpd.net/ [Accessed July 30,

2020].

[23] Youngjin Kwon, Alan M Dunn, Michael Z Lee, Owen S Hofmann, Yuanzhong Xu, and Emmett

Witchel. Sego: Pervasive trusted metadata for efficiently verified untrusted system services. ACM

SIGARCH Computer Architecture News, 44(2):277–290, 2016.

[24] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &

transformation. In International Symposium on Code Generation and Optimization, 2004. CGO

2004., pages 75–86. IEEE, 2004.

https://github.com/lsds/TaLoS
https://github.com/lsds/TaLoS
http://doi.acm.org/10.1145/2499368.2451146
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://doi.org/10.1145/3373376.3378486
https://www.lighttpd.net/

Bibliography 41

[25] Yanlin Li, Jonathan McCune, James Newsome, Adrian Perrig, Brandon Baker, and Will Drewry.

Minibox: A two-way sandbox for x86 native code. In 2014 USENIX Annual Technical Conference

(USENIX ATC 14), pages 409–420, 2014.

[26] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis Aublin, Florian

Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger Kapitza, et al. Glamdring: Auto-

matic application partitioning for Intel SGX. In USENIX Annual Technical Conference (USENIX

ATC 17), pages 285–298, 2017.

[27] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. Thwarting memory disclosure

with efficient hypervisor-enforced intra-domain isolation. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, pages 1607–1619, 2015.

[28] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo. The art,

science, and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering, pages

1–1, 2019.

[29] Yerzhan Mazhkenov. SGX-SQLite, 2019. Available at https://github.com/yerzhan7/SGX_

SQLite [Accessed July 30, 2020].

[30] Dan RK Ports and Tal Garfinkel. Towards application security on untrusted operating systems. In

HotSec, 2008.

[31] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui, Vasily A. Sar-

takov, and Peter Pietzuch. SGX-LKL: Securing the host os interface for trusted execution, 2019.

[32] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. Panoply: Low-TCB linux applica-

tions with SGX enclaves. In NDSS, 2017.

[33] strace. strace: linux syscall tracer. Available at https://strace.io/ [Accessed July 30, 2020].

[34] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In 2013

IEEE Symposium on Security and Privacy, pages 48–62. IEEE, 2013.

[35] Richard Ta-Min, Lionel Litty, and David Lie. Splitting interfaces: Making trust between applications

and operating systems configurable. pages 279–292, November 2006.

[36] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof

Fetzer. Shieldbox: Secure middleboxes using shielded execution. In Proceedings of the Symposium

on SDN Research, pages 1–14, 2018.

[37] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-SGX: A practical library OS for un-

modified applications on SGX. In 2017 USENIX Annual Technical Conference (USENIX ATC 17),

pages 645–658, 2017.

[38] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia, and Frank Piessens.

A tale of two worlds: Assessing the vulnerability of enclave shielding runtimes. In Proceedings of

the 2019 ACM Conference on Computer and Communications Security, pages 1741–1758, 2019.

https://github.com/yerzhan7/SGX_SQLite
https://github.com/yerzhan7/SGX_SQLite
https://strace.io/

Bibliography 42

[39] Veronica Velciu, Florin Stancu, and Mihai Chiroiu. Hiddenapp-securing linux applications using

ARM TrustZone. In International Conference on Security for Information Technology and Com-

munications, pages 41–52. Springer, 2018.

[40] Huibo Wang, Erick Bauman, Vishal Karande, Zhiqiang Lin, Yueqiang Cheng, and Yinqian Zhang.

Running language interpreters inside SGX: A lightweight, legacy-compatible script code hardening

approach. In Proceedings of the ACM Asia Conference on Computer and Communications Security,

pages 114–121, 2019.

[41] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. Intel R© software guard extensions

(intel R© sgx) software support for dynamic memory allocation inside an enclave. In Proceedings of

the Hardware and Architectural Support for Security and Privacy 2016, pages 1–9. 2016.

	Introduction
	Background
	Isolation techniques
	Handling system calls
	Protect trusted files

	Iago Attacks
	SSL Replay with getpid
	Compromising any program using malloc

	Related Work
	Mitigation of Iago vulnerabilities
	Iago Attack Analysis

	Design of Emilia
	Threat Model and Assumptions
	Reverse Syscall Fuzzing
	Objective
	Measuring syscall coverage
	Achieving syscall coverage
	Fuzzing Strategies
	Target Selection
	Fuzzing Value Sets
	Return Fields

	Implementation of Emilia
	Overview
	Interceptor
	Stack hash extraction
	Return value mutation

	Controller
	Value extractor

	Vulnerability Analysis
	Applications examined
	Classification
	Vulnerabilities found
	Mitigating Iago vulnerabilities
	Forwarding OFL Analysis

	Evaluation
	Comparing Target Selection Methods
	Effects of Valid Values

	Conclusion and Future Work
	Future Work

	Bibliography

