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Lack of memory safety in programming languages like C and C++ can leave programs written in these

languages with exploitable memory corruption vulnerabilities. Spatial memory safety defense can catch

memory corruptions from out-of-bounds pointer arithmetic. However, none of the existing works can

achieve low overhead, high compatibility, and fine-grained protection at the same time.

This thesis presents In-Fat Pointer, a hardware-assisted spatial memory safety defense that improves

the protection granularity of existing tagged-pointer schemes using object metadata to subobject-bound

granularity while maintaining their high compatibility and low overhead. In-Fat Pointer introduces

multiple object metadata schemes to spare pointer tag bits from object metadata lookup, and use the

spared bits with in-memory type metadata for subobject bound computation. The hardware prototype

is implemented on an FGPA board, and In-Fat Pointer is evaluated in functionality, runtime and memory

performance, and estimated hardware cost.
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Chapter 1

Introduction

Memory corruption vulnerabilities in programs written in unsafe programming languages like C and

C++ have been a research focus for more than a decade [41]. These languages do not strictly enforce

the memory safety requirement that a pointer should point to the object from which it is derived from,

therefore when such a pointer is dereferenced to access memory, errors can happen that cause the

unintended memory to be disclosed or overwritten. This becomes a powerful primitive for attackers to

mount further attacks, for example, code reuse attacks [34] and the more recent data-only attacks [19].

One important aspect is spatial memory safety which intends to stop the pointer dereference to access

an unintended memory location because of bad pointer arithmetic. Bad pointer arithmetic can move a

pointer outside its intended memory range, which would trigger a spatial memory error in the subsequent

dereference. For example, an off-by-one error triggered by accessing the N-th element in an N-element

array (where the valid index should fall into [0, N−1]) is a spatial memory error, and a scheme enforcing

spatial memory safety should detect this error.

While many solutions have been proposed to improve the spatial memory safety for C and C++

code, they often face challenges or shortcomings in overhead, compatibility, or protection granularity.

For example, many software-based solutions may impose a performance overhead as high as 115% [13],

which has motivated solutions that rely on hardware acceleration [32, 44, 11]. Compatibility is also a

challenge for many solutions. To check the safety of a memory access, the value of the pointer must be

checked against pointer metadata, which describes the memory range over which the pointer may safely

point [41], However, these solutions either store that metadata along with the pointer as an inline fat

pointer, thus changing the size of the pointer and causing incompatibility with legacy code [44], or they

store the metadata in a separate memory region, thus increasing the cost to access and maintain the

metadata [29, 32]. Finally, many solutions do not provide fine-grained protection [30, 3, 24]. Ideally,

the intended memory range associated with a pointer should exactly cover the subobject(s)1 the pointer

can point to. For example, a pointer derived from an array embedded inside a struct should not point

to any other member of the struct when the pointer is dereferenced. However, coarse-grained protection

schemes may not restrict the pointer to the enclosing array, therefore they cannot detect such intra-

object overflow. In this thesis, schemes that can detect intra-object overflow are said to have subobject-

granularity spatial protection; these schemes can narrow the bound associated with a pointer when the

program change it to point to a member of the original struct. A pointer to a subobject under the

1In this thesis, a subobject represent the smallest memory range scope that a pointer derived from it should not access
any memory outside the scope. This includes C struct members, arrays, and their counterparts in C++.

1



Chapter 1. Introduction 2

top-level object (e.g., a pointer to a member of a struct) is referred to as an interior pointer.

Recent advances in tagged-pointer schemes introduce a new approach for spatial memory safety

enforcement [24]. A tagged-pointer scheme utilizes the unused high-address bits on pointers to store a

metadata tag on each pointer, and a memory safety enforcement mechanism using this approach can use

the pointer tag to lookup a larger, per-object metadata stored in memory to retrieve the object bound

for spatial safety enforcement [30, 22, 6]. The use of shared per-object metadata eliminates the expensive

pointer bound maintenance, and the pointer tag is shown as an effective approach for inexpensive per-

pointer metadata without breaking compatibility. However, among all tagged-pointer schemes that

maintain backward compatibility, no hardware-based solutions have been proposed, and software-only

works either do not provide subobject-granularity protection [30] or impose high overhead [13].

This thesis presents In-Fat Pointer, a hardware-assisted scheme for spatial memory safety enforcement

that addresses the challenges of overhead, compatibility, and protection granularity through efficient

usage of the pointer tag bits. Unlike prior published works that use a single scheme for object metadata

placement and lookup, In-Fat Pointer uses three complementary schemes that enable a range of objects

while minimizing the number of pointer bits required for object metadata lookup. This enables In-Fat

Pointer to use the remaining tag bits to implement efficient narrowing of subobject bounds to prevent

intra-object overflow. As far as this author knows, In-Fat Pointer is the first hardware-based scheme

using a tagged-pointer approach that can protect against intra-object overflow while maintaining the

same pointer size as legacy code. This thesis shows that In-Fat Pointer can provide spatial memory safety

comparable with fat pointer schemes while preserving compatibility and with lower memory overhead.

1.1 Contributions

This thesis makes the following contributions:

• The design and implementation of In-Fat Pointer are presented, which is a hardware-assisted

scheme that provides low overhead, legacy code-compatible, and fine-grained spatial memory safety

enforcement.

• The three complementary metadata schemes that In-Fat Pointer use are presented, which can

retrieve object-granularity bounds with efficient use of pointer tag bits.

• The layout table is presented, which is a mechanism that In-Fat Pointer uses to narrow object

bounds to subobject granularity to provide fine-grained spatial protection.

• A prototype implementation of In-Fat Pointer is presented, in which a processor implementation

is synthesized on an FPGA. The prototype is evaluated for its functionality, runtime and memory

overhead, and the estimated hardware cost.

1.2 Thesis Structure

The remaining chapters of this thesis are organized as follows. Chapter 2 introduces the background

information, including memory safety tagged pointers and related works. Chapter 3 elaborates on

the design of In-Fat Pointer, including the metadata schemes and the layout table. Chapter 4 lists

the implementation details, including metadata format, ISA extension, processor modification, and the
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compiler instrumentation. The evaluation of In-Fat Pointer is then presented in Chapter 5 and followed

by the discussion on limitations in Chapter 6. Finally, Chapter 7 concludes this thesis and proposes

some future work of In-Fat Pointer.



Chapter 2

Background and Related Works

2.1 Memory Errors and Attack Methods

Memory errors happen when a pointer dereference reads or writes memory not belonging to the original

object the pointer is derived from. Such unsafe dereferences can happen when bad pointer arithmetic

moves the pointer out of the bounds of the object (spatial violation), or when the original object has

been freed, leaving the pointer dangling (temporal violation). Defenses that stop both spatial violation

and temporal violation are said to provide complete spatial memory safety protection. This work focuses

mainly on spatial memory safety, aiming to thwart attacks that trigger the first scenario.

Memory errors are usually leveraged as an attack primitive for memory read/write to circumvent de-

ployed protections, and the only way to completely protect programs is memory safety enforcement. The

attacks with the highest possible impact are those that achieve some form of arbitrary code execution,

where the attacker can take control of an application to execute arbitrary code from the attacker under

the application’s privilege. Contemporary computer systems deploy DEP/W ⊕ X defenses to prevent

attackers from injecting executable code into application data. On these systems, instruction fetch on

writable memory pages will generate exceptions. To circumvent these defenses, Return-Oriented Pro-

gramming (ROP)[34] reuses existing code in an application to perform Turing-complete computation,

given that there is an arbitrary memory write primitive that can corrupt a code pointer in the application

memory. ROP works by (1) finding usable code snippets (gadgets) from the compiled binary that end in

a return-like instruction, (2) faking a stack with return addresses that chain the gadgets together, and

(3) start the attack by corrupting a code pointer (e.g., a return address) using the arbitrary write prim-

itive. To defend against control-flow hijacking attacks like ROP, Control-Flow Integrity (CFI) defenses

enforce that indirect call and return destination follow the constraints derived from the program’s static

control-flow graph [1]. However, it is shown that coarse-grained CFI can be bypassed [17], and the more

recent Data-Oriented Programming (DOP) [19] can achieve Turing-complete code execution on certain

programs without corrupting control flow data. Other existing deployed defenses make exploitations

harder but do not prevent them from happening [42]. Therefore, the only way to eliminate these attacks

is to enforce memory safety policies so that attackers have no memory read/write primitive in the victim

program.

4
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2.2 Tagged-pointers

On a 64-bit architecture, each pointer is 64-bit in size. However, the processor typically cannot use all

64 bits for addressing1. For example, current x86-64 implementations only use the lower 48 bits of a

pointer for addressing. The hardware requires that a 64-bit address must be in a canonical form, where

the high 16 bits (bit 63 to 48) must be the same as the highest bit in lower 48 bits (which is bit 47)[2].

If this condition is not satisfied, the hardware will generate an exception when a memory access using

such a malformed address is executed.

The term “tagged-pointer” used in prior works refers to any pointer that has a custom metadata

tag at the unused high-address bits, and “tagged-pointer scheme” refers to any work that uses tagged-

pointers. Canonical address checks are handled by either removing the tag before pointer dereference or

modifying the hardware to ignore the tag. Note that “tagged-pointer” refers to the method of metadata

storage, which means:

• The term does not constrain what purpose the metadata serves. For example, ARM Pointer

Authentication [4] (PA) use tagged-pointers to enforce code pointer integrity. It attaches a crypto

signature as Pointer Authentication Code (PAC) on the pointer, and the PAC is checked before

dereferencing the pointer to ensure its integrity and authenticity. PARTS [26] use ARM PA for

both code and data pointer integrity. Mid-Fat Pointer [22] use tagged-pointers for generic metadata

handling.

• The term does not constrain what metadata is stored on the tag. The metadata may belong to

the pointer, the pointed object, or a more coarse-grained subject (i.e., a subject with less semantic

or characteristic information than objects).

Note that the integrity and authenticity of the pointer tags are not guaranteed on their own unless

the scheme includes pointer integrity or complete memory and type safety enforcement. The pointer tags

can either be corrupted by attackers, who only need to corrupt the entire pointer as normal application

data, or by the application themselves. Legacy C/C++ applications may cast a pointer to an integer,

perform arbitrary manipulation on the pointer, and then cast it back before dereferencing[9].

2.3 Related work

Because it is impossible to determine the safety of all pointer dereference at compile time in unsafe

languages like C/C++, all memory safety defenses introduce additional metadata into the program to

model the safety expectations and insert runtime checks before important events (e.g., pointer derefer-

ences) to verify that these expectations are met. For spatial memory safety protection, the introduced

metadata would store information about what memory range is safe for a pointer to access.

There is a wide design space for memory safety schemes that involve trade-offs between performance,

compatibility, and protection granularity. Table 2.1 compares In-Fat Pointer with recent related works

in methodology, protection granularity, compatibility, and memory feature requirements. The related

works are grouped into (1) fat-pointer schemes, (2) object-based schemes, (3) memory-based schemes,

and (4) tagged-pointer schemes. Note that certain schemes in the table support temporal memory safety,

and comparison on temporal memory safety enforcement is out of the scope of this thesis.

1All addressing in this thesis refers to virtual addressing.
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Table 2.1: Comparison between In-Fat Pointer and related works on memory safety, including hardware-
based defenses, software-based defenses, and sanitizers.

Defense or In-Memory Spatial Protection Lost Required
Sanitizer Metadata Subject Granularity1 Compatibility2 feature3

Intel MPX [32] Pointer Subobject — S©
HardBound [11] Pointer Subobject — S©

WatchdogLite [28] Pointer Subobject — S©
SoftBound [29] Pointer Subobject — S©

CHERI [44] Pointer Subobject B© S© T©
Shakti-MS [10] Pointer + Object Subobject B© —
ALEXIA [21] Pointer + Object Subobject B© —

BaggyBound4 [3] [12] Object/None† Object — S©/—†

PAriCheck [45] Object Object – S©
AddressSanitizer [37] Memory Partial — S©

REST [40] Memory Partial — T©
Califorms [36] Memory Partial B© S© T©

Low-Fat Pointer [24] None† Object — —
SMA [8] None† Object — —
CUP [6] Object† Object — —

FRAMER [30] Object† Object — —
EffectiveSan [13] Object† Subobject — —
ARM MTE [4] Memory† Partial — T©
In-Fat Pointer Object† Subobject — —

† The scheme use tagged-pointers.
1 Whether the work can detect spatial memory errors at the bound of subobject (Subobject), at the

bound of object (Object), or the detection is conditional or probabilistic (Partial).
2 Whether the work increases pointer size and loses binary compatibility ( B©) or requires source code

change ( S©)
3 Whether the work requires a shadow memory( S©) (can be either software-based or hardware-based)

that either grows with the number of metadata subjects or reserves a fixed percentage of memory in
the virtual address space, or a hardware-based tagged memory(T©)

4 BaggyBound describes (1) a 32-bit system design that uses shadow memory for in-memory bound
table, and (2) a 64-bit system implementation that uses tagged-pointers to store bounds on pointer
tags.

The approach using tagged pointers with object metadata allows In-Fat Pointer to provide the

same fine-grained protections as traditional fat pointers without depending on special metadata memory

features, for example, hardware-based tagged memory [38] which requires changes to the memory system,

or shadow space memory that requires additional memory management change. Tagged memory refers

to an unaddressable memory (from a user-level program’s perspective) that has a small fixed ratio with

the associated physical memory, and each memory location is direct-mapped to a tag memory location.

Manipulation to the tagged memory usually involves new special instructions. A common choice for the

tag size is a one-bit tag per 64-bit memory, and it is common to optimize tag memory access by modifying

the cache design. Shadow memory refers to a distinct memory address range that each (usually pointer-

sized) word in the application’s virtual address space has a mapping to the distinct memory range.

Shadow memory can be implemented in software and may use a complex mapping (including levels

of indirections) to map a virtual address to a shadow memory address. Hardware-based works using

shadow memory usually do not change the cache design to optimize shadow memory access.
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(a) Fat-pointer scheme and per-pointer (sub-
object) bound

(b) Object-based scheme and object bound

(c) Memory-based scheme (left) and tagged-pointers us-
ing memory tags (ARM MTE) (right)

(d) Tagged-pointers that store pointer
bound in the tag (Low-Fat Pointer)

(e) Tagged-pointers using object metadata
(FRAMER, CUP)

(f) Tagged-pointers using object metadata
with subobject bound narrowing (Effec-
tiveSan)

Figure 2.1: General approaches used in related work for checking. A scheme can either obtain the bound
of a pointer and then perform bound checking (fat-pointer or object-based scheme), or enforce derived
memory access policies without the notion of pointer bounds (memory-based scheme).

Figure 2.1 summarizes the approaches that each category of schemes use to obtain the pointer bound

when a check is needed. The following subsections will introduce each category of schemes in greater

detail.

2.3.1 Fat-pointer scheme

Traditional fat-pointer schemes persistently associate a pointer bound to each pointer throughout the

pointer’s lifetime and check the address against the bound before dereferencing. Therefore, the bound

of each pointer can be adjusted individually and the bound can preferably only cover the intended

subobject, as shown in Figure 2.1a. Maintaining the pointer bound introduces a trade-off between

performance, memory overhead, and compatibility. HardBound [11] is a hardware-assisted defense that

manages pointer bounds in a direct-mapped shadow memory. While the direct-mapped shadow memory

has lower performance overhead, in the worst case, the shadow memory range needs to be twice the size of

the application’s memory. Intel MPX [32] stores the metadata in a separate two-level directory structure

to reduce the reserved virtual memory range. Unfortunately, the indirection of the directory structure

introduces the performance bottleneck. CHERI [44] expands a pointer to a 256-bit capability which stores

the pointer bound inline with the address. This inline fat-pointer approach has both low performance
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overhead and relatively low memory overhead comparing with other fat pointers. However, the data

layout change breaks the binary compatibility, and applications may have to modify any code that

makes assumptions on the pointer size. Besides the pointer size, CHERI in addition introduces changes

in the programming model that requires source code modification for the capability-based protection.

While it remains an unsolved problem for fat-pointer schemes to achieve low performance overhead,

memory overhead, and high compatibility at the same time, the semantics-rich per-pointer metadata

is proven useful for enforcing strong memory safety policies. Fat-pointer based spatial memory safety

schemes can detect overflow at the subobject level because the bound of each pointer can be individually

narrowed. The compiler can instrument bound narrowing operations when a pointer is used to derive

another pointer to a subobject so that later overflow on the derived pointer cannot corrupt adjacent

subobjects. Besides pointer bounds, fat-pointer schemes can also include additional metadata to enforce

other security policies. WatchdogLite [28] and Shakti-MS [10] uses a lock-and-key approach to guarantee

temporal memory safety, where each pointer also carries a value as “key” that is required to match with

the “lock” value from per-object metadata when dereferencing. Therefore, if a pointer is dereferenced

after the object is freed, the error can be detected because the key will not have a matching lock.

Note that because of the way In-Fat Pointer use fat pointers2, this thesis either uses “traditional

fat-pointer scheme” or “traditional fat pointer” to refer to works that persistently associate a pointer

bound to each pointer, and uses “fat pointer” to refer to the local construct that combines a pointer and

its associated bound and can be passed through function interfaces (i.e., call and return). The bound is

not required to be persistently associated with the pointer. In addition, all examples and comparisons

in this thesis assume that fat-pointer schemes always have the bound narrowing enabled.

2.3.2 Object-based scheme

As shown in Figure 2.1b, an object-based scheme uses a single object bound for all pointers pointing to

the same object. The object bound is typically encoded in an object metadata stored in the memory,

and the schemes either store the metadata in memory along with the objects they describe or use a

1-to-1 mapping from an object to its metadata [3, 12]. The object metadata is usually immutable

over the lifetime of the corresponding object and can be shared among all pointers to the object. The

object metadata is located completely by the object address, without the help from pointer metadata.

BaggyBounds [3] stores the size of each object in a bound table in the shadow memory, and instrument

bound checks at each pointer arithmetic. BaggyBounds pads each object to be power-of-two sized and

aligned, and uses a fixed slot size as the minimum object size so that the index of the bound table entry

of an object can be computed by right shifting the object address. While the original BaggyBounds

enforces the power-of-two sized allocation bound, it was improved to enforce the exact object size in later

work [12]. Instead of storing the object size, PAriCheck[45] store an object label in the shadow memory,

and instrument each pointer arithmetic to verify that the result pointer maps to the same label before

the arithmetic. These schemes tend to have lower overhead than fat-pointers but they cannot provide

subobject-granularity protection.

One observation from the design of object-based schemes is that it is possible for user space protection

mechanisms to encode information on pointers without using unused high address bits by manipulating

the object placement at the allocation time. Software-based Low-Fat Pointer [14] divide the application’s

virtual address space into regions and dedicate one region for each size class of objects, effectively encode

2This is described in Section 3.1.3.
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object size in the used virtual address bits on pointers. In this thesis, such schemes are still categorized

as tagged-pointers.

2.3.3 Memory-based scheme

Memory-based schemes enforce coarse-grained policies in terms of memory, which are derived from

object allocations, types, or other higher-level programming language constructs [37, 40]. As shown

in Figure 2.1c, the enforcement mechanism usually only guarantees that accesses to memory that are

marked invalid are caught, regardless of the higher-level semantics. These schemes cannot enforce fine-

grained safety policies, but they typically have lower performance overhead. AddressSanitizer [37] marks

all memory containing live objects as valid with one byte of shadow memory for every eight bytes in

the application memory, and catches all the access to invalid memory regions. It also uses quarantine

zones that delays the reuse of freed memory location to assist in catching some temporal memory safety

violations. Califorms [36] insert padding bytes that should never be accessed into C/C++ structs, and

use tagged memory to distinguish these bytes from normal application data. The hardware will trap

any access to these tagged bytes.

2.3.4 Tagged-pointer scheme for spatial memory safety

Tagged-pointers were used for spatial memory safety enforcement before the term “tagged-pointer” was

even introduced. Hardbound [11] implementation stores metadata opportunistically on high-address bits

of each pointer. Hardware-based Low-Fat Pointer [24] first use tagged-pointers systematically to encode

the entire pointer bounds on pointer tags, at the cost of increased external fragmentation for object

allocations. These early works directly encode the pointer bound into the tag, as shown in Figure 2.1d.

However, because of the limited number of pointer tag bits, the pointer bound must undergo a lossy

compression, therefore this approach can only store pointer bounds coarser than object bounds, and

may introduce excessive padding between object allocations.

As shown in Figure 2.1e, recent tagged-pointer schemes for memory safety enforcement use the pointer

tags to locate in-memory object metadata that is shared across all pointers to the object. CUP [6] uses

a 32-bit tag on each 64-bit pointer to store a per-object capability ID, and the object metadata is stored

in a table indexed by the capability ID. FRAMER [30] proposes a scheme that uses a 16-bit tag to locate

a generic object metadata near the object, and it provides an example use of object-granularity spatial

memory safety enforcement. EffectiveSan [13] re-purpose the software Low-Fat Pointer to facilitate

object metadata lookup, and use the type information at pointer use sites to narrow the object bound

to subobject granularity, as shown in Figure 2.1f. EffectiveSan uses the layout hash table as in-memory

type metadata, and given the use type of the pointer and offset into the object, EffectiveSan can retrieve

the subobject bound offset from the layout hash table. However, the lookup into layout hash table is

inefficient for hardware implementation, and EffectiveSan will lose the subobject-granularity bound if the

use type of the pointer is inaccurate (e.g., a void pointer). In summary, when comparing tagged-pointer

schemes using object metadata with traditional fat-pointers, combining pointer tags with in-memory

object metadata eliminates the per-pointer memory overhead at the cost of losing the ability for per-

pointer bound narrowing. Comparing with tagged-pointers that directly encode pointer bound, these

schemes can use larger object metadata to store a precise object bound, and the use of object metadata

introduces some level of detection for temporal memory safety.
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There are also works on using tagged-pointers with memory-based metadata. ARM MTE [4] tags

the memory of each object with a 4-bit tag, and store the same 4-bit tag on pointers to these objects. It

ensures that the tag from the pointer and the tag in the memory match before the pointer dereference,

as shown in the right half of Figure 2.1c

2.4 Implementation background

The prototype implementation of In-Fat Pointer involves an instruction set extension based on RISC-V

and a modified processor with the ISA extension support that can be synthesized on an FPGA. To assist

in detecting corruption on metadata, the design of In-Fat Pointer embeds message authentication code

(MAC) into metadata that is vulnerable to corruption. This section provides the background information

on related concepts necessary to understand the prototype implementation.

2.4.1 FPGA and HDL

A Field-Programmable Gate Array (FPGA) is a device that can emulate a hardware design. It has a chip

that pre-builts a lot of hardware building blocks including look-up tables (LUTs), flip-flops (FFs), block

RAM, digital signal processing (DSP) units, I/O ports, and interconnects. The connection between all

these resources and the configuration of each block on an FPGA chip (and therefore what is the hardware

design being emulated) can be reconfigured after the FPGA is manufactured. The configuration data for

an FPGA is called bitstream. Contemporary FPGA stores these configurations in RAM after they are

loaded from a bitstream, and the configuration will be lost after power-cycling. An FPGA development

board connects an FPGA package to memory (including non-volatile flash memory that can store a

bitstream, and volatile memory like DRAMs), peripheral devices (e.g., JTAG, UART, and Ethernet),

and other devices or interfaces on a circuit board to simplify the task of building a complete system.

To use an FPGA to test a hardware design, the design first needs to be written in a Hardware

Description Language (HDL), for example, Verilog and VHDL, and then the design is converted to

a bitstream using an Electronic Design Automation (EDA) tool. The relationship among the design

source code, EDA tool, and the bitstream is similar to a software source code, compiler toolchain, and

the compiled binary. Because the bitstream format is dependent on the exact FPGA device, developers

usually use the EDA tool from the FPGA vendor.

2.4.2 RISC-V Instruction Set

RISC-V instruction set is an open-standard RISC ISA that the specification of RISC-V ISA is released

under an open-source license. It is suitable as a base instruction set for research in computer architec-

ture and hardware for the following reasons: (1) modifications on the RISC-V instruction set do not

require explicit licensing because the ISA is open-sourced; (2) the RISC-V instruction set leaves available

instruction opcode space for custom extensions[20], which is suitable for research that adds additional

instructions; and (3) there are open-sourced HDL implementations of RISC-V capable processors that

can be synthesized and run on an FPGA development board.

RISC-V instruction set uses a modular design, where the base ISA only defines a minimal integer

instruction set. All other operations, including integer multiplication and division, atomic instructions,

and floating-point operations, are defined as standard instruction set extensions. The base instruction
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set and each of the extension is assigned a unique character, and combining all the characters gives all the

instructions that the platform supports. For example, if a processor supports RV64IMAC, then beside

the base 64-bits instruction set (I), it also supports integer multiplication and division (M), atomic

instructions (A), and compressed instructions (C). The base ISA uses a fixed 32-bit instruction size,

and the compressed instruction extension introduces 16-bit encoding that each 16-bit instruction has a

one-to-one mapping to a 32-bit instruction.

RISC-V uses a load-store architecture, and it has 32 registers for both general-purpose registers

(GPR) and floating-point registers (FPR). Each instruction that contains one source register and one

destination register can carry a 12-bit immediate operand. RISC-V only supports Reg+Imm addressing

modes for loads and stores. RISC-V standard calling convention uses 16-byte natural stack alignment.

RISC-V uses Control and Status Registers (CSRs) to store or present all key information of the

execution states or the system in general. For example, it is not only used for execution privilege levels

and modes but also for hardware performance counters. Besides a human-readable name, each CSR is

also assigned a unique 12-bit CSR address (which can fit in the 12-bit immediate operand space), and

a single set of CSR manipulation instructions are used to access all the CSRs. Therefore, adding new

CSRs do not need to introduce new instructions to access them specifically.

2.4.3 Message Authentication Code

A Message Authentication Code (MAC) is a keyed cryptographic hash computed with (1) a secret key

that is unknown to attackers, and (2) a message that may be known to attackers. While the message

can have arbitrary length, the secret key and the computed MAC typically has a fixed width determined

by the algorithm. When the defender wants to protect the integrity3 and authenticity4 of a message,

it can create a secret key and compute the result MAC for the message. The MAC is stored and sent

along with the message. When the data is used, the recipient can read the message, recompute the MAC

using the secret key, and check if it matches with the received MAC. Proper implementation of MAC

will guarantee that the probability that an attacker can craft a correct MAC without knowing the secret

key is negligibly small.

In-Fat Pointer is designed to detect spatial memory errors and stop the program once a spatial error

is triggered. However, it may not detect other types of memory error (i.e., temporal errors) as well as

errors from uninstrumented binary code. Therefore, it is possible that the object metadata used by

In-Fat Pointer is corrupted by an undetected memory error, which renders the protection ineffective.

To defend against these corruptions, In-Fat Pointer embeds MAC into vulnerable object metadata to

assist in detecting corruption to these metadata. In addition, erasing the MAC upon object deallocation

also gives In-Fat Pointer some ability to detect temporal memory errors on objects with MAC-protected

metadata.

3Data integrity requires that any corruption on the data should be detected before it is used.
4Data authenticity requires that the data crafted by an unauthorized source should be detected and rejected.
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Design of In-Fat Pointer

Figure 3.1: Workflow of In-Fat Pointer. In-Fat Pointer do not require changes to the application source
code or build procedure.

In-Fat Pointer (abbreviated as IFP) is a hardware-assisted spatial memory safety defense that aims

to achieve both fine-grained protection and low overhead while preserving legacy code compatibility. It

is designed to provide transparent protection for applications with source code available. Figure 3.1

shows the overall workflow of In-Fat Pointer. A modified compiler is responsible for instrumenting the

protection code into applications, and the resulting code is then linked with a runtime library to support

the instrumentation. The output binary can then run with protection on an environment with the OS

and the processor modified to support In-Fat Pointer.

In-Fat Pointer use compiler instrumentation to check the memory access addresses before pointer

dereferences to ensure it is in the pointer bound, similar to other fine-grained spatial memory safety

defenses. The core novelty of In-Fat Pointer is on how the bound of each pointer is retrieved when

a check is needed. Figure 3.2 shows the overall approach for the bound retrieval. In-Fat Pointer

inherits the basic approach from tagged-pointer schemes using object metadata, where a pointer tag

in high address bits of a pointer can assist in lookup of in-memory object metadata, which encodes the

object bound. This approach is compatible with legacy binary because no memory layout is changed,

and the object metadata lookup can be efficiently implemented in hardware. After the object bound

is retrieved, unlike prior tagged-pointer schemes that either directly use the (coarse-grained) object

bound for checking [30, 6], or use expensive subobject lookup mechanism with in-memory type metadata

only [13], In-Fat Pointer use a subobject bound narrowing procedure with a combination of in-memory

type metadata (named as layout table) and per-pointer metadata stored on the pointer tag (named as

subobject index ). This improves both the performance and the accuracy of subobject bound narrowing.

12
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(a) Prior tagged-pointer scheme using object metadata

(b) In-Fat Pointer

Figure 3.2: In-Fat Pointer’s approach to retrieve pointer bound from the pointer. In-Fat Pointer improves
upon prior tagged-pointer scheme using object metadata by (1) using multiple object metadata schemes
to save pointer tag bits for object metadata lookup, and (2) using the spared tag bits to assist in
subobject bound narrowing.

To address the shortage of pointer tag bits due to the new subobject index field, In-Fat Pointer includes

three complementary object metadata schemes where each scheme is designed for a category of objects

and can therefore use fewer pointer tag bits to lookup the in-memory metadata. In this way, In-Fat

Pointer improves the protection granularity of tagged-pointer scheme using object metadata to subobject

bound granularity without compromising compatibility or performance.

In this chapter, the high-level design of In-Fat Pointer is presented. Section 3.1 gives a complete

overview of the design and explains how each component in In-Fat Pointer works together. Then, each

of the subsequent sections describes a major component of In-Fat Pointer. Finally, Section 3.4 elaborates

on the compiler instrumentation.

3.1 Overview

In-Fat Pointer is designed for a 64-bit instruction set where the hardware does not use all available bits

on a pointer for addressing. Instead of requiring the pointer to have canonical addresses where the top

unused bits must be the sign extension of address, In-Fat Pointer uses them to store a pointer tag for

custom metadata. The exact width of a pointer tag can be adjusted; the prototype implementation uses

16-bit metadata tags.

Figure 3.3 shows the high-level instrumentation by In-Fat Pointer, and Figure 3.4 provides a code

example1 and shows how the software and hardware collaborate to protect the application code. The

modified hardware introduces new instructions for accelerated pointer checks and tag updates. The

modified compiler will (1) instrument allocation of possible pointed objects to create object metadata

on allocation and attach pointer tags to pointers to instrumented objects, (2) replace pointer arithmetic

code with new instructions that update the pointer tag in addition to the arithmetic on the address, and

(3) identify all pointers that cannot be determined to be safe statically and instrument them for runtime

checking. The object metadata will also be cleared when the corresponding object is deallocated. The

1The code example assumes that no inter-procedural information is utilized for instrumentation, in other words the
instrumentation on main() treats foo() as a black-box and vice versa.
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Figure 3.3: In-Fat Pointer instrumented run time operations, represented as boxes with grey back-
ground. IFP Register(), IFP Deregister(), IFP GEP(), and IFP Check() represent high-level instru-
mentations made by the compiler. The pointer check can involve the pointer bound retrieval shown in
Figure 3.2 if needed.

runtime library is responsible for initializing the In-Fat Pointer state and manages some of the object

metadata.

Example code walkthrough. The code from Figure 3.4 uses IFP-prefixed functions to represent

instrumented code fragments. The object metadata initialization and cleanup code is represented by

IFP Register() and IFP Deregister(). IFP GEP() performs both the pointer arithmetic and the

corresponding tag update. The pointer checking code is represented by IFP Check(). In function

main() from the code example, because the local variable boo can be accessed through pointers from

foo(), the compiler will (1) instrument the allocation of boo so that it has the object metadata (not

shown in the figure); and (2) create a new pointer to boo that has the correct pointer tag, which is

shown as ptr initialized by the return value of IFP Register() at line 8. The object metadata will be

cleared by IFP Deregister(ptr) at line 18 when boo goes out of scope. If the program calls malloc()

or another dynamic memory allocation function to create an object instead of declaring a local variable,

then the compiler will modify the call so that the runtime library can manage the allocation and its

object metadata. Beside instrumenting boo, the compiler will find that the result of &boo.value is

passed as a function argument to foo(), which means the pointer will be checked in foo() and it

should contain the up-to-date tag. Therefore, the compiler replaces &boo.value with IFP GEP() at line

12 and uses its result as the function argument to foo() to ensure that the passed pointer has the

correct tag. The hardware provides specialized instructions to update the pointer tag along with the

address computation. Finally, inside function foo(), the compiler cannot guarantee that the argument

pointer is safe to dereference, therefore the pointer is checked with IFP Check(), and the returned

pointer is dereferenced instead. In-Fat Pointer uses poison bits on pointer tag to mark the validity of a

pointer, and any check failure is indicated by setting the poison bits on the output pointer (also referred

to as poisoning the pointer). Therefore, pointers returned from IFP Check() is dereferenced directly,

and either the pointer is found valid and the dereference is successful, or the dereference trigger an

exception if the check fails and the pointer is poisoned. Poison bits are introduced with greater details

in Section 3.1.2. When a pointer needs checking, a new promote instruction is used to recompute the
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Figure 3.4: Code example of instrumentation and HW/SW collaboration by In-Fat Pointer.
IFP Register(), IFP Deregister(), IFP GEP(), and IFP Check() are explained in Figure 3.3.
offsetof() is a macro in C that computes the address offset from the base address of the parent
type (struct Boo) to the member (value).

pointer bound from available metadata, and then the bound can be used for later checking. Section 3.1.1

below elaborates the procedure of promote and the metadata involved. More details on the compiler

instrumentation is presented in Section 3.4.

3.1.1 Promote Instruction and Metadata Organization

In-Fat Pointer introduces a promote instruction that takes a pointer as the input operand, uses the

dynamic state in the tagged pointer to access the in-memory metadata, and recomputes the appropriate

pointer bound. It encapsulates the pointer bound retrieval operations shown in Figure 3.2 from the

software. This design choice brings the following two benefits. Firstly, object metadata schemes that

require long sequences of arithmetic instructions can be utilized efficiently because the decoding over-

head is eliminated. Secondly, In-Fat Pointer can therefore efficiently employ multiple object metadata

schemes and optional pointer bound narrowing during bound recomputation, which would translate to

unreachable or dead code for software-only instrumentation. Section 3.2 describes the designs of multiple

object metadata schemes. Section 3.3.1 describes the design of the layout table, the data structure used

for optional pointer bound narrowing.

Figure 3.5 shows all the metadata components used in In-Fat Pointer and events with instrumentation,

as well as the flow of information between the metadata components. When an object is allocated, In-

Fat Pointer will capture the base address and size information and encode them in the object metadata

in memory. The promote instruction will use this metadata to derive the object-granularity bound.

In addition to object metadata, if the type information is available at the object allocation site and

the type contains subobjects (e.g., the program allocates a C struct instance with multiple members),
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Figure 3.5: Overview of In-Fat Pointer’s Metadata Organization and promote Operation

then a layout table is created for the allocated type and a pointer to the layout table is included in

the object metadata. The layout table will assist in narrowing the object-granularity bound to the

currently pointed subobject during promote. After in-memory metadata is initialized, the pointer to the

allocated object will be attached with a tag that the promote hardware can utilize to locate the object

metadata. In-Fat Pointer ensures that the pointer tag is in-sync with the address part of the pointer

by instrumenting all pointer arithmetic code to update the pointer tags. When the pointer is later used

and require checking, the promote instruction (1) uses the pointer tag to retrieve the object metadata

and recompute the object-granularity bound, and then (2) if the layout table is available, accesses the

layout table to narrow the bound to the currently pointed subobject. When the object is deallocated,

the object metadata will be cleared to assist in catching temporal errors. The layout table is generated

at compile time, stored in constant memory pages to prevent corruption, and shared for all allocations

of the same type. The computed bound and the corresponding normal-sized pointer is grouped in a

construct called In-Fat Pointer Register (IFPR), which is elaborated in Section 3.1.3 below.

In-Fat Pointer stores multiple pieces of metadata on each pointer tag. The pointer tag is split

between the following fields: (1) scheme selector bits to indicate which scheme is being used, (2) the

poison bits representing the validity of the pointer, (3) scheme-dependent metadata that is used by

the object metadata scheme, and (4) subobject index used with the layout table. The scheme selector

bits are required because it is not known at the compile time which scheme a pointer will use. The

poison bits mark invalid pointers to assist in checking, and is elaborated in Section 3.1.2 below. The

scheme-dependent metadata assists lookup of in-memory metadata during a promote operation. The

subobject index represents which subobject the pointer is pointing to, so that the hardware can narrow

the bound to correct subobject for interior pointers using the layout table. Section 4.1 elaborates the

tag bits assignment in the prototype implementation with greater details.

3.1.2 Poison bits

Poison bits are part of the pointer tags in the unused bits on a pointer. They encode whether the pointer

they are attached to is in one of the three states: (1) valid, meaning that it points within the bound; (2)

recoverable out-of-bound, meaning that it points outside the bound but promote can still find the correct

object metadata and recompute the correct bound; and (3) invalid, which is any other state. Poison bits
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are updated each time an operation changes the value of the underlying pointer, or when any check fails.

For example, the promote instruction will set the poison bits if the object metadata is invalid, which

may happen in a use-after-free (temporal memory error) scenario where the object metadata is already

cleared by the deallocation code but a dangling pointer to the object is dereferenced. The support for

the recoverable out-of-bound state is necessary because (1) C/C++ permits off-by-one pointers to be

brought back in bound and dereferenced2, and (2) the compiler may create temporarily out-of-bound

pointers in loop optimizations. The current implementation dedicates two bits for poison bits to ease

implementation and debugging, while a future implementation may only use a single bit to distinguish

the valid and recoverable out-of-bound scenario, and use a special bit pattern for the entire pointer tag

to represent the invalid state of the pointer.

The poison bits serve two purposes. First, because two of the object metadata schemes (the local offset

scheme described in Section 3.2.1 and the subheap scheme in Section 3.2.2) use the address portion of the

pointer as part of their metadata lookup schemes, promote operations on pointers in these two schemes

could access invalid metadata when the input pointer is out-of-bound and the computed metadata address

is incorrect. By updating the poison bits for resulting pointers in each pointer arithmetic operations,

In-Fat Pointer ensures that all out-of-bound pointers can be reliably identified and handled by promote

hardware. Second, standard load and store instructions check the poison bits and will trap if the

state of the poison bits is anything other than valid. This has the benefit of extending some amount

of protection to legacy code, which would also use standard load and store instructions, and thus

would trap if it dereferences an out-of-bound pointer that it received from instrumented code. Bound

checks can also be hoisted without introducing false positives when the same pointer is dereferenced by

multiple load and store instructions. Hoisting the bound check will therefore only cause the pointer to

be poisoned earlier, and the exception is not generated unless the poisoned pointer is dereferenced.

3.1.3 In-Fat Pointer Registers

In-Fat Pointer introduces In-Fat Pointer Registers (IFPRs) as logical registers which (1) contains the

entire normal-sized, 64-bit pointer; and (2) embeds all necessary metadata for later checks, which cur-

rently include the pointer bound3. The promote instruction therefore takes a 64-bit pointer as input and

produces an IFPR value as output, as shown in Figure 3.5. In-Fat Pointer ensures that IFPR values can

drop their bound metadata and recompute them using information available on tagged-pointers when

these pointers are valid. Because of this property, IFPR values do not need to be stored in application-

managed memory because storing the normal-sized pointer is sufficient. The name of this work is an

abbreviation of Internal Fat Pointer because IFPR can be used for bound check in the same way as

traditional fat pointers but they are internal to the code being instrumented; the compiler may only

spill them to stack slots but not save them to any memory where a change in the memory layout due

to the pointer size increase would break the binary compatibility. Because a normal-sized pointer is

typically allocated in a general-purpose register (GPR), this thesis uses “GPR” or “GPR value” to refer

to a normal-sized pointer value, as opposed to an “IFPR value”.

Figure 3.6 shows how pointer values are converted between GPR and IFPR form, and all the oper-

2An off-by-one pointer points to the first byte after the object, and can be generated by taking the address of N-th
element in an N-element array. The current implementation supports off-by-one pointers in all object metadata schemes,
but other out-of-bound scenarios may not be recoverable in all schemes.

3In-Fat Pointer may be extended in the future to add more checks beyond spatial memory safety, while the concept of
IFPR would remain the same.



Chapter 3. Design of In-Fat Pointer 18

Figure 3.6: Pointer form conversions and other operations defined on pointers. Incoming pointers are
promoted to IFPR and checked before dereferences. Comparing with normal-sized pointers, pointers in
IFPR form carry the bound information and can perform bound narrowing and size checks in addition
to pointer arithmetic.

ations defined on each pointer form. When a pointer enters the instrumented code4, the In-Fat Pointer

compiler instrumentation promotes the pointer to an IFPR first to ensure that they point to a valid

object and to compute the pointer bound. Most new operations introduced by In-Fat Pointer on point-

ers takes an IFPR as an operand, including size checks, specialized pointer arithmetic, and metadata

updates described below. The pointer stays as an IFPR value until (1) it will be passed to external

code or memory; or (2) the compiler believes it is safe and profitable (for lower overhead) to drop the

additional metadata (i.e., the pointer bound), for example when remaining arithmetic on that pointer

is no longer subject to spatial errors. The IFPR value can be converted back to normal-sized pointers

through a demote operation5. The rest of this subsection describes some of the listed operations on the

pointers in more detail.

Size check. In-Fat Pointer expresses bound checks in terms of access size checks; given (1) an IFPR

with an address A and (2) a size S, a size check outputs an IFPR that is either the input IFPR unmodified

if every byte in the range [A,A + S) is in bound, otherwise, the persistent poison bit in the IFPR is

set. For example, given a pointer P to struct T , a check with P and sizeof(T ) guarantees that any

subsequent access to any member to the struct is in bound6. A size check with S = 0 is a no-op. The

size check is a part of IFP Check() in Figure 3.4.

Pointer arithmetic. In-Fat Pointer introduces new instructions for pointer arithmetic that (1) modify

scheme-dependent metadata on the pointer tag7, and (2) perform a bound check that update poison

bits, in addition to the address computation. These instructions are part of IFP GEP() in Figure 3.4.

For pointers whose arithmetic is not subject to spatial errors and the metadata is not necessary to be

up-to-date (e.g., the pointer is only used in a function locally), In-Fat Pointer still uses the integer add

instructions to perform the pointer arithmetic on their GPR values.

4The implementation only consider pointers that have non-trivial uses (e.g., dereferenced or modified by pointer arith-
metic) for promotion. Pointer values with only trivial uses (e.g., being copied from one memory address to another) are
not considered for promotion.

5The demote operation is essentially a truncation, except that the poison bit will be updated if the pointer is too far
away from the bound that later promote cannot recover the exact bound.

6sizeof() is the standard C/C++ operator.
7In the current design, one of the three object metadata schemes (the local offset scheme introduced in Section 3.2.1)

need the scheme-dependent metadata to be updated for each pointer arithmetic.
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Table 3.1: Object metadata schemes comparison. Cross marks mean the scheme imposes constraints on
the metric.

placement1 size2 scalable3 Use scenario
Local Offset Scheme 3 7 3 Small Objects and Local Variables
Subheap Scheme 7 3 3 Heap-allocated Objects
Global Table Scheme 3 3 7 Fallback Scheme
1 Whether the scheme avoids imposing constraints on the object base address
2 Whether the scheme has no maximum object size limitation
3 Whether the scheme has no maximum objects count limitation

Bound narrowing. When a pointer to a subobject is derived from a pointer to a parent subobject,

besides the pointer arithmetic, the bound of the derived pointer must be narrowed so that subsequent

arithmetic can be checked with a more accurate bound. In-Fat Pointer therefore introduces new in-

structions for bound narrowing and subobject index updates for this purpose. The bound narrowing

operation is a part of IFP GEP() in Figure 3.4.

3.2 Object Metadata Schemes

In-Fat Pointer introduces three complementary metadata schemes, each of which is designed to suit

a category of objects. By having separate schemes, In-Fat Pointer can (1) efficiently instrument the

allocation and manage the metadata of objects by exploiting the property of target objects, and (2) be

able to spare pointer tag bits for subobject information storage, therefore achieving finer-grained spatial

memory safety protection than prior works.

Table 3.1 shows the comparison of three metadata schemes. The first column lists the name of the

metadata schemes, and the last column lists the positioning of the scheme. Each of these schemes makes

assumptions on the target objects and therefore imposes constraints on them. The “placement”, “size”,

and “scalable” columns in the middle of the table show the constraints that each of the schemes imposes.

The local offset scheme is designed for small objects, especially for local variables allocated on the stack.

The subheap scheme is designed for heap-allocated objects that have varying sizes and allocation counts.

The global table scheme is designed as a fallback scheme that the previous two schemes cannot handle,

for example, large global arrays. While the local offset scheme cannot serve for large objects, the subheap

scheme cannot support objects at fixed base address, these two schemes combined can handle most of

the objects in the application, and the global table scheme can handle the remaining objects.

When a promote instruction is executed, after the scheme is selected by the tag, the metadata

scheme needs to recover the object-granularity bound given the pointer and the in-memory metadata.

The implementation can also store a pointer to the layout table for the allocated type to facilitate

subsequent subobject bound narrowing.

Because the local offset scheme and the subheap scheme place the in-memory metadata near appli-

cation data and there is a risk of confusing the application data with their metadata, In-Fat Pointer

introduces a MAC facility to embed a pointer-sized MAC in the metadata so that their authenticity

and integrity can be verified. The key for the MAC computation is stored in a new control register

introduced by In-Fat Pointer and is initialized by the runtime library.
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Figure 3.7: Local Offset Scheme

3.2.1 Local Offset Scheme

The local offset scheme is intended for small object allocations, especially stack-allocated objects. This

scheme is designed to minimize the instrumentation code size for such allocations and to be general

enough to handle all small objects, including global variables or heap-allocated objects.

Figure 3.7 provides an illustration of the local offset scheme. The object metadata is appended

to each object, and both the object and metadata base addresses are aligned to a granule, which is an

implementation-defined power-of-two size. The pointer tag contains an offset field (granule offset), which

represents the offset from the current address to metadata in the unit of granules. Thus, the promote

operation retrieves the metadata by adding the address with granule offset and retrieving the metadata.

Whereas it is possible to put the metadata at the beginning of an object, placing it at the end means

that pointers are usable by legacy code as they still point to the object as opposed to the metadata.

Because the metadata address is known from the granule offset, knowing the size is sufficient to derive

the object base address. In the prototype implementation, the local offset scheme’s object metadata is

128 bits in size. Section 4.1.2 elaborates on the exact format and bits allocation of the metadata.

The advantage of the local offset scheme is that it has no constraints on object placement, and is thus

suitable for global, heap-allocated, and stack-allocated objects. The main disadvantage is that it places

a limit on the size of the objects it can handle, which is constrained by the size of the granule and the

offset field in the tag. A larger granule will result in fragmentation, while a smaller granule results in a

smaller maximum object size. The tag bits are shared between the object field and the subobject index,

so while increasing the object field allows larger objects, it decreases the number of subobjects that can

be supported. The prototype implementation uses a granule size of 16 bytes, and both granule offset and

subobject index use 6 out of the 12 bits each from the pointer tag. Therefore, the implementation can

support objects up to (26− 1)× 16 = 1008 bytes in size and object types with at most 26 = 64 elements

in the layout table. Most of the objects are expected to be smaller than the imposed size limit [47] [7].

3.2.2 Subheap Scheme

Subheap scheme is intended for heap-allocated objects and is tightly coupled with the dynamic memory

allocator design. As shown from Figure 3.8, the subheap scheme places objects inside power-of-two-sized

and aligned memory blocks, where all objects inside the same block share the same copy of metadata

in the memory block. The memory allocator will guarantee that only objects having the same size and

type (and therefore identical metadata) would be placed inside the same block. The memory inside the

block is expected to contain an array of allocation slots where each slot stores a single object, and the
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Figure 3.8: Subheap scheme. F is an implementation-defined function that maps assigned tag bits to
memory block size and metadata offset. In the prototype, F is implemented as a lookup from a set of
control registers.

slot has a size constrained to be efficient for hardware to perform division (e.g., power of two or fixed

integer multiple of power of two). Besides the object metadata, the common metadata in each block

also describes the layout of the array of slots, including the start and end offset of the slot array, the

size of each slot, and the object size. In the current implementation, the size of the common metadata

in each block is 32 bytes. To locate the metadata given a pointer to one of the objects inside the

block, the hardware still needs to know the block size and the offset from the block base address to the

common metadata base address. In the current prototype, 16 control registers are introduced to store

this information. The pointer tag bits in the subheap scheme thus only need to store which control

register is being used. Thus the prototype uses 4 bits to indicate which of the 16 control registers is

used, and the remaining 8 bits are used to store a subobject index. Besides the data fields, the common

metadata also includes a MAC to defend against corruption.

The design of the subheap scheme is inspired by parallel memory allocator designs that group objects

according to their sizes into size classes and perform allocation based on size classes [27, 15, 23]. The

design ensures that these parallel memory allocators can be ported to make use of the subheap scheme,

and the implementation should provide support for common slot sizes that can match the size classes

used by these allocators.

Because the subheap scheme constrains objects to be allocated in the same subheap as other objects

of the same size, it is not appropriate for stack-allocated objects. However, unlike the local offset scheme,

it has no constraint on object size and can support a larger number of subobjects.

3.2.3 Global Table Scheme

The global table scheme is designed to handle all objects that the previous two schemes fail to serve, at

the cost of a limited capacity for the number of objects served. As shown in Figure 3.9, the global table

scheme stores all object metadata inside a single metadata table (referred to as the global table), and

the pointer tag stores an index into the table. The table’s base address is stored in a control register,

and both the control register and the table itself are initialized and managed by the runtime library.

Whenever an object needs to be registered, an empty row in the table is chosen to store the metadata,
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Figure 3.9: Global Table scheme

and the table index is stored in the pointer tag. When the pointer bound is requested, the hardware

simply indexes into the table to retrieve the metadata. The global table scheme is designed to handle

objects that cannot use the previous two metadata schemes, for example, global variables that are too

large to use the local offset scheme.

The number of objects that can use the global table scheme is limited by the size of the table, which

is limited by the size of the table index stored in the pointer tag. In the prototype implementation, all

12 bits are allocated for the table index, and thus no subobject index is on the pointer tag, and objects

using this scheme cannot narrow pointer bounds to the subobject in promote. The size of each row in

the global table is 16 bytes.

3.3 Layout Table and Subobject Bound Narrowing

For subobject-granularity spatial protection, spatial memory safety defenses need to get the most precise

bound for a pointer requiring checks. When a pointer is promoted and a bound is needed, In-Fat Pointer

uses the following two-stage approach to recompute the pointer bound on demand. First, the object-

granularity bound is computed using the scheme-dependent method, and then promote hardware narrows

it to the exact subobject bound by utilizing the following two metadata. First, the subobject index from

the pointer tag represents a summary of the sequence of adjustment of the current pointed (sub)object

(and correspondingly its pointer bound). Second, In-Fat Pointer uses the layout table to represent the

subobject memory layout in the object and map the subobject index back to the sequence of pointer

bound narrowing to refine the object-granularity bound during promote.

This section first elaborates on layout table in Section 3.3.1, then describes subobject index briefly

in Section 3.3.2.

3.3.1 Layout Table

Layout tables are created by the compiler whenever it can obtain or infer the type from an object

allocation, and the type is a composite type with subobjects (for example a struct type in C/C++).

Each layout table is a flat array of elements where each element represents a possible subobject that an

interior pointer can point to, and the subobject index from the pointer tag is simply an index into the

layout table. The text below uses C/C++’s type concept interchangeably with language-independent

terms, for example, using a struct type from C/C++ to represent a composite type that can have a

different name in other programming languages.

Figure 3.10 shows a complete example of layout table, where the code in (a) triggers the generation

of layout table for type struct S shown in (c). This example is used throughout this subsection to
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1 // type definition

2 struct S { // 0: struct S

3 int v1; // 1: S.v1

4 struct NestedTy {

5 int v3; // 3: S.array []. v3

6 int v4; // 4: S.array []. v4

7 } array [2]; // 2: S.array

8 int v5; // 5: S.v5

9 };

10

11 // object allocations

12 struct S* ptr = malloc(

13 sizeof(struct S) * size

14 );

15 struct S s;

(a) Code example. The object allocation
code triggers the generation of the layout ta-
ble for struct S.

(b) Subobjects memory layout and the ordering
of events during bound narrowing. The boxes are
concrete subobjects, and the numbers are subob-
ject indices.

(c) Representation of the layout table. The top part of
the figure describes how each field in the layout table
element is plotted below it.

Figure 3.10: Example of Layout Table. Each element in the layout table store a tuple of <parent index,
base, bound, element size>.
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explain the design of the layout table. The example assumes that each int is 4-byte in size.

3.3.1.1 Representation

As shown in Figure 3.10c, the layout table embeds a tree structure where each member of the struct

has an element in the layout table, and the element of members will store the index for parent type’s

element in the parent index field. If a member is a struct, then all its members are recursively embedded

in the layout table. For example, the element for S.array (#2) will store the index of S (#0) as the

parent index, and the parent of S.array[].v3 (#3) is S.array (#2). In the text below, the recursive

embedding of members is referred to as subobject nesting.

Meaning of layout table elements. To explain exactly what a layout table element represents from

the program, the considerations on array support need to be explained first. Arrays in source programs

introduce challenges for a layout table design to support them efficiently. While a possible layout table

design can use each element to represent one concrete subobject that has distinct memory ranges (and

pointer bounds as a result) as if all array elements are similarly expanded in the layout table recursively

as struct members, such design is not suitable for practical use because it cannot efficiently handle the

following situations:

• When a struct type contains an array of structs that has a large array size, the layout table has

to duplicate the similar elements for each array element because each array element is a concrete

subobject that has distinct bounds. This will lead to unacceptably large memory overhead of

layout tables and quick depletion of subobject index bits from pointer tags.

• A program can use code like ptr++ (where ptr points to an array element) to iterate over an array in

a performance-critical loop. If the subobject index has to be adjusted in each of the iterations, the

design needs to either instrument additional instructions that can incur unacceptable slowdown, or

introduce a new hardware instruction that performs both the arithmetic and the subobject index

update, which over-complicates the instruction set design because the instruction will need to take

an additional operand for the subobject index change8.

Therefore, instead of using each layout table element to represent a concrete subobject, the current design

uses each element to represent an abstract subobject, where there is no distinction between an array

element and the entire array. For example, as shown in Figure 3.10b, there are two concrete instance of

S.array[].v3 (which is S.array[0].v3 and S.array[1].v3 respectively) in each element of S.array,

and they are both represented by element #3 (S.array[].v3). In this design, the layout table size

does not grow with the array size because all array elements map to the same abstract subobject (and

therefore the same layout table element), and iterating over S.array with pointers incur no overhead

from subobject index adjustment because the subobject index is the same for all elements in the same

array.

Fields in a layout table element. Besides the parent index field which is mentioned previously,

each layout table element contains a base and a bound field, which respectively express the lower and

8Because each subobject can have its own subobject and these subobjects are recursively embedded after the parent,
the adjacent array elements in the loop iterations may not have their layout table elements being adjacent. The change in
subobject index will be a function of the static type of the pointer in such a design.
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upper address as offsets from the parent element. For example, because S.array[].v3 (#3) is the first

member in each element of S.array (#2), the element S.array[].v3 has the base of 0 and the bound

is the base plus its size, which yields 4.

While the base and bound are sufficient to completely describe simple structs where all the members

are non-arrays, they do not handle the case that one of the members of a struct is an array of another

struct type. For example, computing the pointer bound to a struct member of an array element in

S.array from Figure 3.10a cannot be properly handled in this naive design. When promoting a pointer

derived from the expression &s.array[1].v3, because element #3 represents its base and bound as

the offset from the parent S.array[] instance, the hardware will need to know how to compute the

base address of its parent element (offset of S.array[1]) before computing the base and bound of

&s.array[1].v3, which is not possible without additional metadata to describe the array element size

of S.array[]. To fill in this missing gap, each layout table element carries an element size in addition

to parent index, base, and bound. The element size is the array element size if the member is an array,

and is the type size (bound− base) in other cases. This information assists the hardware to compute the

base address of array elements so that the bound of its struct member can be computed.

3.3.1.2 Bound Narrowing

The layout table is designed so that a single subobject index from the pointer is sufficient to describe the

necessary bound narrowing operations. The design ensures that (1) each layout table element corresponds

to a bound narrowing operation; and (2) the nesting relationship of the elements corresponds to the order

of bound narrowing operations. Because the nesting relationship is a tree structure and each node (layout

table element) saves the index to its parent node, the path from the tree root (which corresponds to the

top-level element) to any desired destination subobject can be completely described by the subobject

index of the destination subobject. As shown in (b) and (c) in Figure 3.10, given the subobject index 3

that corresponds to S.array[].v3, the hardware can traverse through the tree edges along 3→ 2→ 0

to fetch all the layout table elements necessary for bound narrowing from the root to S.array[].v3.

To perform a subobject bound narrowing operation, given a “destination” subobject index from the

pointer, the hardware first fetches layout table elements from the destination to the root, then applies

the bound narrowing operations according to the elements from the root to the destination. Considering

the bound narrowing for a pointer from &s.array[1].v3, which is the second concrete subobject with

subobject index 3 from left to right in Figure 3.10b. In this walkthrough, all addresses are relative to

the base address of the object (&s) and the text may use “offset” to represent the “address”. Before the

subobject bound narrowing, the object bound is [0, 24) and &s.array[1].v3 is at offset 12 into s. The

element #0 corresponds to the object bound, and no bound narrowing is necessary for it in this case.

After fetching the elements #3 and then #2, The hardware will:

1. Compute the pointer bound of &s.array (#2). Because the base and bound is 4 and 20, the

bound of &s.array is [4, 20) into &s.

2. Compute the base address of &s.array[1]. Given that the element size of #2 is 8 and the bound

of &s.array is [4, 20), the hardware does the following:

(a) Subtracting the lower bound of parent (4) from the offset of current address (12) to get the

offset into element #2, which is 8.



Chapter 3. Design of In-Fat Pointer 26

(b) Dividing the offset 8 with the element size 8 to compute the remainder, which is 0 in this

case. This means that &s.array[1].v3 has the offset 0 into &s.array[1], or in other words,

&s.array[1]’s base address is exactly &s.array[1].v3.

(c) Subtracting the result offset 0 from the current address (the address of &s.array[1].v3,

which has offset 12) to get the base address of &s.array[1], which is also 12.

3. Compute the pointer bound of &s.array[1].v3. Given that the base and bound of element #3

is 0 and 4 respectively, the bound of &s.array[1].v3 is [12 + 0, 12 + 4) which is [12, 16), where

the 12 is the base address of &s.array[1] computed from the last step.

All these operations are done in the sequential order because of the data dependency, and the operation

sequence is longer if the depth of the tree structure in the layout table is larger.

Because the number of nesting levels directly impacts the performance of subobject nesting, the

design of the layout table includes an optimization that reduces unnecessary nesting. If there is a struct

with a member that is in struct type (i.e., it has subobjects) but is not an array of struct, then all its

subobjects are expanded in the same hierarchy as the member. Using the example from Figure 3.10, if

the type of S.array (#2) changes from struct NestedTy[2] to struct NestedTy, then element #3

and #4 will have their parent set to #0 and their base and bound expressed as an offset from struct

S instead of S.array[], in other words the hierarchy of S.array will be flattened if it is no longer an

array. After this optimization, the only possible intermediate nodes in the embedded tree are those

representing an array of structs.

3.3.1.3 Generation

Table 3.2 lists the complete generation rules for the layout table. The layout table generation procedure

is generally a depth-first traversal of the type hierarchy where:

• Each “array of struct” member creates a new intermediate node in the tree, with the struct member

expanded recursively under this intermediate node;

• Each struct member creates a leaf node with all its members expanded recursively under the same

parent of the struct member; and

• Each elementary type or array of elementary type is a leaf node.

3.3.2 Subobject Index

In-Fat Pointer keeps the subobject index in sync with the intended subobject by instrumenting all code

locations that involve changes in the subobject index. Table 3.3 lists all the pointer operations and the

semantics handling. In-Fat Pointer instruments the subobject address computations so that besides the

pointer bound is adjusted as other fat-pointer-based defenses, the subobject index is also updated to

point to the new object. The design of layout table guarantees that for every subobject (struct member)

address computation, the increment of subobject index is the same for all possible layout tables that

have the struct S embedded, no matter which top-level type embeds the struct S.

Because the subobject index is used to index into the layout table, the size of a layout table is limited

by the bit width of the subobject index from the pointer tag. More bits assigned to the subobject index

enables the use of larger layout tables for more complex types.
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Table 3.2: Layout table generation rules. sizeof and offsetof are standard C operators and typeof

return the type of argument.

R : Type× Z × Z 7→ 〈Z × Z × Z × Z〉 Element generation function1

R(T[N], p, b) = 〈p, b, b + N × sizeof(T ), sizeof(T )〉 (for array type T [N ])
R(T, p, b) = 〈p, b, b + sizeof(T ), sizeof(T )〉 (for non-array type T )

L : Type× Z × Z × Z 7→ (〈Z × Z × Z × Z〉) Table generation function2

L(S[N ], i, p, b) = (R(S[N ], p, b))+ (for array of composite type S[N ])3

‖
Ek∈S

L(typeof(Ek), i + 1 + k, i, offsetof(S,Ek))

L(S, i, p, b) = (R(S, p, b))+ (for non-array composite type S)3

‖
Ek∈S

L(typeof(Ek), i + 1 + k, p, b + offsetof(S,Ek))

L(T, i, p, b) = (R(T, p, b)) (for non-composite type T )
1 R maps a tuple of (Type, parent index, base offset) to a layout table element, which is a tuple of

(parent index, base offset, upper bound offset, element size).
2 L maps a tuple of (Type, current subobject index, parent index, base offset) to a layout table frag-

ment, which is an array of layout table elements. The + and ‖ operators represent the concatenation
of elements. The current subobject index is the index of the first element in this fragment. Top-level
table generated with L(T, 0, 0, 0) for any given T .

3 Applied to all types which contain subobjects and can apply bound narrowing. Rows from members
(Ek) are inserted in declaration order after the row for parent type. For the array of composite types
S[N ], the child elements will use the element for S[N ] as the parent. For the non-array composite
type S, an optimization is introduced and the child elements will use the parent of S as the parent,
effectively expanding the type S.

3.4 Compiler Instrumentation

In-Fat Pointer’s compiler instrumentation utilizes IFPR and new hardware instructions to facilitate

fine-grained bound checking, and prepare the aforementioned metadata components to assist metadata

fetching. It is responsible for maintaining both the per-pointer metadata on the pointer tag and the

object metadata in memory.

Figure 3.11 shows the compiler instrumentation in response to pointer operations along the value

flow of the pointer. The table both describes the instrumentation made by In-Fat Pointer and compares

that with prior works including traditional fat pointers (e.g., Intel MPX[32]) and tagged-pointer scheme

using object metadata only (e.g., FRAMER[30]), because (1) these two approaches represent the prior

state-of-the-art schemes for spatial memory safety enforcement that maintains binary compatibility

Table 3.3: In-Fat Pointer’s handling of pointer operations, given struct S *ptr;.

Operation Address change1 New bound size1 Subobject index change1

ptr++; addr += sizeof(S) — —
&ptr->memb addr += offsetof(S, memb) sizeof(memb) idx += L(S, memb)2

(struct T*)ptr — — —
1 “—” represents no change to the specified value
2 L(S, memb) = 1 +

∑
k∈[0,km) |L(typeof(Ek), 0, 0, 0)| where memb is the km-th member inside struct S,

Ek is the k-th member inside struct S, and |L| is the number of rows of a given layout table. L is
defined in Table 3.2.
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Figure 3.11: Compiler Instrumentation in response to pointer operations. All symbols used in the figure
are listed in the legend in the bottom of the figure and explained in the text.

with legacy code, and (2) the instrumentation of In-Fat Pointer is inspired from these two approaches.

The code example uses the declared types from Figure 3.10, and the functions with IFP prefix that

represent high-level operations are from Figure 3.4. The operations listed on the top of the figure

include all operations that a spatial memory safety enforcement mechanism (including IFP and related

works) should handle, including pointer creation, arithmetic (which may or may not require bound

narrowing), and dereference9. All the semantics involved in the pointer operations from the language

implementation’s view are listed below the operations. The “+” sign on the metadata (e.g., bound

and tag) highlights that they impose additional semantics on pointer operations on top of the pointer’s

original address computation semantics. The dataflow of the pointer value, as shown in the figure from

left to right, may come across multiple code locations, in other words, the operations on the pointer can be

performed in different functions. The pointer value can also be stored to the memory and loaded back, for

example through a direct copy in the source code or by functions like memcpy(). These obstacles for the

compiler instrumentation to pass arbitrary metadata along the pointer value flow is represented by the

code boundary in the figure. When a program is not protected by any spatial memory safety mechanism,

the only semantics associated with the pointer operations are the address computation. This case is

represented by the vanilla scenario in Figure 3.11. When a spatial memory safety scheme is applied to

9Pointer type casts are not shown because (1) In-Fat Pointer ignores them as noted in Section 3.3.2; and (2) as far as
this author knows, prior works either explicitly state that they ignore pointer casts (e.g., HardBound[11]) or the handling
of casts are not mentioned.
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the program and the scheme introduces additional metadata that cannot fit in the pointer, the scheme

must define how the metadata is handled. Because all spatial memory safety schemes must perform

a check before pointer dereferences to detect memory corruption, all comparisons below among In-Fat

Pointer and prior works on instrumented operations are focusing on metadata creation and propagation;

the use of metadata (i.e., the bound checks) are similar in design and is therefore not compared.

Instrumentation of two approaches from prior works. For traditional fat-pointer schemes, as

introduced in the Background (Section 2), they persistently associate a bound for each pointer, and they

either use shadow memory or store the bounds inline with the pointer to propagate the bound along

with the pointer value flow. This is shown in the second row of Figure 3.11, and the bound passing

strategies are represented by the “guaranteed passing with special design” symbol in the figure. Besides

the bound passing, for each pointer arithmetic that requires bound narrowing, the instrumentation will

also instrument instructions to set a new bound for the pointer. Therefore, these fat-pointer scheme

instrumentation would (1) instrument bound setup or narrowing code upon pointer creation or certain

arithmetic; and (2) handle bound passing across code boundaries. For tagged-pointer schemes using

object metadata, because these schemes devote all pointer tag bits for object metadata lookup, the

tag does not contain per-pointer metadata and is therefore not modified throughout the lifetime of the

pointer value. Therefore, the instrumentation of these schemes only needs to (1) instrument near pointer

creation so that objects have in-memory metadata and the pointers have the tag, and (2) load the object

metadata when the pointer bound is needed for the checking before the dereference.

Instrumentation of In-Fat Pointer. In-Fat Pointer is unique in that the design of IFPR and sub-

object index inherits the bound narrowing operations from traditional fat-pointer schemes, and the use

of object metadata requires the setup and cleanup of these object metadata as in prior tagged-pointer

schemes using them. Besides, In-Fat Pointer need to instrument pointer arithmetic on pointers where

the tags must be up-to-date because the local offset scheme depends on the correct granule offset for a

successful promote. Therefore, In-Fat Pointer requires the compiler instrumentation to instrument all

scenarios listed below10.

Object allocation instrumentations. These instrumentations are made at pointer sources and are

represented by IFP Register() and IFP Deregister() in the earlier examples from this chapter. When-

ever the address of an object is taken and the resulting pointer may later be used for a check, the compiler

instrumentation needs to (1) select one of the metadata scheme for the object and instrument the scheme-

dependent metadata initialization and cleanup so that later pointer checks can find these metadata, and

(2) set up the pointer tag for pointers whose downstream of value flow will need the correct tag for

checking. While object allocation instrumentations are also performed conceptually by other tagged-

pointer schemes using object metadata, the support for multiple metadata schemes and layout table is

unique in In-Fat Pointer. For optimizations11 and implementation considerations, instead of proactively

checking each object allocations for instrumentation, whether to instrument an object or not should be

determined by a use-based analysis that all object allocations necessary for instrumentation are identi-

fied by tracing back from pointers whose values may flow to pointer checking sites. For example, the

10The listed three instrumentation scenarios are also used by schemes that incorporate both object metadata and pointer
metadata using fat pointers, for example, ALEXIA[21], although the instrumented operations will differ for different designs.

11Ideally, the compiler should not instrument objects whose metadata will never be used for pointer checks.
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allocation of the object s alone does not cause it to be instrumented; the compiler should determine to

instrument it after it finds that the pointer ptr1 will be checked later on, and s can be pointed to by

ptr1.

Pointer update instrumentations. These instrumentations are made whenever the pointer value

is changed, and are represented by IFP GEP() in earlier examples. For all the pointers that may be

used in later checks, the compiler must make sure their metadata are up-to-date before the check, or

before the pointers reach a code boundary if it may be checked after crossing the boundary. Therefore,

the compiler will need to replace the pointer arithmetic instructions for these pointers so that they

get the tag updated. The current implementation replaces all these instructions in place. Comparing

with the instrumentation for traditional fat-pointer schemes, In-Fat Pointer instruments not only bound

narrowing operations but also other pointer arithmetic that do not narrow pointer bounds, because of

the need to update the pointer tags. To be specific, the compiler will update the subobject index (and

the bound if present) for each bound narrowing, and the granule offset for local offset scheme pointers

for each address computation in the pointer arithmetic. The hardware provides new instructions to

perform these operations. In the example from Figure 3.11, the third operation (deriving ptr3 from

ptr2) involves only the pointer arithmetic, while the the second operation (deriving ptr2 from ptr1)

involves a bound narrowing in addition to the pointer arithmetic. In-Fat Pointer will instrument both

of these operations.

Pointer check instrumentations. These instrumentations are made at pointer use (dereference) sites

and are represented by IFP Check() in earlier examples. The compiler must guarantee that for each

pointer being dereferenced, either the pointer is already poisoned, or the bound for that bound is large

enough for the access size of the dereference. For pointers that the guarantee cannot be proved statically,

the compiler will instrument (1) a bound retrieval, either by promote or by passing the bound across the

code boundary from the upstream of the value flow; and (2) a size check on the retrieved bound. The

compiler should attempt to propagate the pointer bound (i.e., propagate the IFPR form of the pointer)

across code boundary whenever possible if it reduces the performance overhead from the promote in

later checks. This is shown as “opportunistic passing” in Figure 3.11. The current implementation tries

to propagate the pointer bounds across function calls and returns unconditionally and drop the bound

using the demote operation if the pointer is saved to memory. When considering possible optimizations,

the compiler should also attempt to drop the pointer bound whenever the downstream of the value flow

no longer requires checking on the pointer value, so that the potential cost of the pointer bounds from

register spilling are reduced.
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Implementation Details

This chapter presents the prototype implementation of In-Fat Pointer on the 64-bit RISC-V instruc-

tion set. The In-Fat Pointer prototype implementation is based on an open-sourced RISC-V processor

CVA6[46], and the compiler instrumentation is implemented on LLVM[25] 10.0. The CVA6 fork of

Linux (based on kernel version 5.1.0) is modified to support IFP-protected user-level programs. The

prototype assumes that 48 bits out of a 64-bit pointer hold address bits and the top 16 bits can be used

as the pointer tag. The current prototype only supports protection for user-level programs, and only C

programs are supported. However, note that both are only the limitation of the prototype implemen-

tation and the design of In-Fat Pointer can support protecting kernel-level code and C++ programs.

Section 2.4 provides some background necessary to understand the implementation, notably the Control

and Status Registers (CSRs) of RISC-V instruction set.

Section 4.1 elaborates on the pointer tag and in-memory metadata format. Then, Section 4.2 de-

scribes the implemented instruction set extension, with a detailed description of the IFPR organization

and new instructions added. Section 4.3 covers on the micro-architectural modification on CVA6. Sec-

tion 4.4 is about the modifications made on the compiler, including a new LLVM IR pass and changes to

the RISC-V backend. Section 4.5 briefly discusses the changes to the Linux kernel and the functionality

of the runtime library.

4.1 Metadata Format

In this section, the metadata format of the pointer tag and all in-memory metadata for the current

prototype implementation are elaborated. Note that the design of In-Fat Pointer has many parameters

that can be tuned for specific applications or usage, and it is out of the scope of this work to find the

optimal values for each parameter.

The remaining text in this section uses the bit indexing and slicing syntax from Verilog/SystemVerilog

to represent bit positions and ranges of a value. All the bit positions are indexed from the least significant

bit, and the least significant bit has the index zero. For example, assuming that there is a 64-bit field

called value, then value[1:0] selects the lowest two bits from value, and value[63] is the most

significant bit of value.

Figure 4.1 lists all the pointer tag fields in the current prototype implementation. Among the 16

pointer tag bits at top of a pointer, the top 4 bits are interpreted in the same way for all pointer values.

31
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Figure 4.1: Pointer tag formats.

The highest two bits indicate the three poison states; bit 63 is the persistent poison bit to mark non-

recoverable errors, and bit 62 is the temporary poison bit that marks a temporary out-of-bound condition

of a pointer. The next two bits (bit [61:60]) are the scheme selector bits. They are zero if the pointer is

a raw pointer, which means that it points to an object without metadata. A non-zero bit pattern selects

one of the three metadata schemes used for the pointed object. The remaining 12 bits are for the object

metadata scheme and the subobject index and are interpreted differently for each scheme.

The following subsections introduce the pointer tag fields decomposition and metadata format for

each scheme in the order of increasing scheme selector values. This is also the order that the schemes

get implemented.

4.1.1 Global Table Scheme

For a pointer using the global table scheme, all the next 12 bits after the scheme selector bits ([59:48])

are used for the table index. The metadata table is currently a page-aligned global array declared in

the runtime library, and each array element is a pair of 64-bit addresses, the first address for the lower

bound and the second for the upper bound. Because only the runtime library would initialize the control

register storing the pointer to the table, and the table is not relocated throughout the lifetime of the

process, there is no risk of corruption from temporal memory errors in the application code, therefore

the table does not contain additional metadata for integrity or authenticity verification. An alternative

implementation may extend the metadata with a MAC if corruption from uninstrumented legacy code

is considered a valid concern.

The global table scheme introduced a CSR (named ifpstatus) for storing a pointer to the global

metadata table. Because the table is page-aligned, the lowest 12 bits of the CSR are re-purposed for

storing additional mode data. Currently, the lowest two bits are used in hardware and the rest bits are

reserved:

• Bit 0 controls whether the IFP extension is enabled (1) or not (0). This bit will be set by the

runtime library on application startup.

• Bit 1 is the no-promote bit. The implementation supports a no-promote mode where the promote

instruction always produce an IFPR with infinite bound and finish in a single cycle, and this bit

controls whether this behavior is needed. This mode is used solely for running evaluations. See

Section 5.3 for more details.
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4.1.2 Local Offset Scheme

For a pointer using the local offset scheme, among the 12 bits left, the top 6 bits ([59:54]) are used as

the granule offset, and the lower 6 bits ([53:48]) are used for the subobject index, as shown in Figure 4.1.

The implementation uses 16-byte in-memory metadata for each object, therefore the granule size is 16

bytes. Both the object and metadata will have a 16-byte alignment, which is the same as the natural

stack alignment on RISC-V. The 16-byte metadata has the following fields:

• a 64-bit layout table metadata word in the lower 8 bytes

• a 64-bit object metadata in the upper 8 bytes:

– The top 4 bits ([63:60]) are for software checking and not interpreted by hardware

– The next 12 bits ([59:48]) are the object size

– The lowest 48 bits are used for a MAC

The layout table metadata word wraps a pointer to the layout table with additional metadata.

Section 4.1.4 elaborates on this with greater details.

For the object metadata, because the address of the metadata can be implicitly used for object bound

computation, only an object size is necessary for computing the object bound. The rest of the bits in

the object metadata are used to make sure that the metadata is not confused by application data. To

ensure the authenticity and integrity of the metadata, a 48-bit MAC is included at the lower 48 bits of

the metadata. The MAC is computed by a new instruction ifpmac, and In-Fat Pointer introduces the

ifpkey CSR for storing the key that is used to generate the MAC. The top 4 bits of the metadata are

currently intended for software to mark different origins of MAC, so that one can find what scheme owns

the MAC and for what purpose when debugging the In-Fat Pointer implementation.

4.1.3 Subheap Scheme

The current implementation of the subheap scheme introduces 16 64-bit CSRs, ifpblk0 to ifpblk15,

each of which stores a possible configuration that describes the size and metadata offset of applied

memory blocks. In each of these CSR, the metadata offset is stored in the lower 48 bits and the size is

expressed in power of two and is stored in the upper 16 bits.

For a pointer using subheap scheme, among the 12 bits left on the pointer tag, the top 4 bits ([59:56])

are used as a configuration index to indicate which CSR store the block size and metadata offset, and

the left 8 bits ([55:48]) are for the subobject index. When the memory allocator allocates an object

inside a memory block, the allocator is responsible for setting the configuration index to point to the

CSR applied to that block.

The shared metadata in each block is 32-byte in size and the layout is shown in Listing 4.1. All

the metadata for object bound computation is grouped in the first 16 bytes, therefore the address

computation can start immediately after the first 16 bytes are loaded from memory without waiting for

the second 16 bytes. The lowest 8 byte describes the base and bound of the array of slots. The base is

represented in 4 bytes as an offset from the block base address to the address of the first slot, and the

bound is represented in 4 bytes as an offset from the base of the one-past-the-last slot to the base of the

next block (with the same power-of-two size). Expressing the upper bound of the array of slots in this

way saves the metadata size when the block size is larger than 4GB, in which case an offset into the
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Listing 4.1: Subheap per-block metadata

1 struct BlockMetadata {

2 // offset from block base address to allocation array start

3 uint32_t lb_offset;

4

5 // offset from allocation array end to "next" block base address

6 uint32_t ub_offset;

7

8 // Reserved [63:55]

9 // isTriple [54] and slotSize as power of 2 [53:48]

10 // allocation size [47:0]

11 uint64_t sizeWord;

12

13 // layout table metadata

14 uint64_t layoutTableMetadata;

15

16 // Identification [63:60]: 4’b1000

17 // reserved [59:52]

18 // configuration index [51:48]

19 // MAC [47:0]

20 uint64_t mac;

21 };

block may not be expressible using a 32-bit value. The next 8 bytes store the size of an allocation slot

in the upper bits and the size of each object in the lower 48 bits. The current implementation supports

2n or 3 × 2n slot size, and slot size is expressed in terms of the n (at bit [53:48]) and whether there

is a factor 3 (bit 54). While the flexibility of slot size is insufficient to support all size classes used in

contemporary parallel memory allocators [27, 15, 23] and will increase the memory fragmentation, this

choice is a reasonable trade-off that limits the hardware complexity. The next 8 bytes are for the layout

table metadata, and the last 8 byte is the MAC. To assist in detecting corruption on the metadata,

the upper 16 bits spared from the 48-bit MAC are used for additional checking. When a pointer using

subheap scheme is promoted, the hardware will verify that the bits [51:48] match with the configuration

index on the pointer, and that the top 4 bits match against a magic value 0b1000.

4.1.4 Layout table

The layout tables are generated on-demand at compile time whenever an allocation with type information

is available and the type contains subobjects. They are emitted by the compiler as global constant data

in LLVM (which will be stored in read-only memory pages) to prevent corruption, and they are linked

with LinkOnceODRLinkage so that multiple identical tables across different compilation units can be

merged by the linker. Each table is a flat array of elements, and each element is a tuple of (parent index,

base offset, upper bound offset, element size). While the implementation includes 4 layout table formats

to opportunistically shrink the layout table size, in practice, only 2 of them are in use. Table 4.1 lists

the two formats and the bit assignment. The compact form is the default for any type less than 128KB

in size, and the compiler will fallback to the full form if the type is too large.

Table 4.1: Layout table formats.

Format Size Per Row Parent Index Base offset Upper Bound offset Element size
Compact 8 Byte (12b) [62:51] (17b) [50:34] (17b) [33:17] (17b) [16:0]
Full 32 Byte (12b) [59:48] (48b) [47:0] (48b) [111:64] (48b) [175:128]
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Object metadata schemes supporting layout table will store a 64-bit layout table metadata. This

64-bit word is organized as follows, from MSB to LSB:

• [63]: Is array allocation (1) or scalar allocation (0)

• [62]: Reserved

• [61:60]: Layout table format; Compact form: 00, Full form: 10

• [59:48]: Layout table max subobject index

• [47:3]: Address of layout table

• [2:0]: Reserved

All layout tables are at least 8-byte aligned, therefore the lowest 3 bits of layout table address is expected

to be zero. The layout table metadata contains a maximum subobject index to catch out-of-bound layout

table access. This may happen when the pointer undergo a bad cast, or the pointer tag is corrupted

and the subobject index is invalid. Bit 63 of layout table metadata indicates whether the allocation

is allocating an array. Assuming that the depth of the root element of the layout table is zero, if the

allocation is an array allocation, then all the base and bound offsets for elements with depth = 1 represent

the offset from the base address of the array element instead of the base address of the entire array, and

the hardware will narrow the bound to the array element before accessing the current element indicated

by the subobject index from the pointer tag. Considering the example in Figure 3.10, if the object

allocation is struct S array[2]; then bit 63 of the layout table metadata in array’s object metadata

will be set, and when the hardware compute the subobject bound for a pointer to array[1].v1 after

getting the object bound of array, this bit will instruct the hardware to first compute the base address of

array[1] and then applying the base and bound offset of layout table element S.v1, instead of directly

applying the base and bound to the base address of the entire array, which would incorrectly yield the

bound for array[0].v1.

4.2 Instruction Set Extension

In this section, the design of current ISA extension is presented. All new instructions introduced by In-Fat

Pointer used the custom-0 and custom-1 major opcode which RISC-V reserves for custom extensions.

They corresponds to 0b00010 and 0b01010 for bit [6:2] in a 32-bit instruction. All CSRs introduced by

In-Fat Pointer has the CSR number ranging from 0x801 to 0x81f. In-Fat Pointer also introduces bound

registers to form logical IFPRs.

Section 4.2.1 introduces the design of IFPR and calling convention extension. Section 4.2.2 lists

all the new instructions introduced by In-Fat Pointer and elaborates their functionality and use cases.

Section 4.2.3 lists all the CSRs introduced to RISC-V.

4.2.1 IFPR and calling convention

RISC-V instruction set uses 32 registers for both general-purpose registers (GPR) and floating-point

registers (FPR), and instruction formats are defined with 5 bits for register operands. In-Fat Pointer

therefore also introduces 32 logical IFPRs to simplify the implementation.
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For spatial memory safety defense, comparing with a GPR value, an IFPR needs to include a pointer

bound in addition to the pointer value. There are three possible strategies for implementing IFPR:

• Standalone: implement IFPR physically as standalone fat pointer registers. Used by CHERI[44].

• Decoupled register pair: implement IFPR logically as a register pair that couples a GPR with a

bound register. The GPR and bound register association is made explicit by specifying the register

number of both the GPR and the bound register on an instruction that takes IFPR operand. Used

by Intel MPX[32].

• Shadowing: implement IFPR logically as a register pair that couples a GPR with a bound register.

The GPR and bound register association is made implicit by having one bound register for each

GPR, and therefore the same register number is used to reference both the GPR and the bound.

Used by HardBound[11].

The decoupled register pair approach is not considered for RISC-V implementation because all in-

structions that read or write bounds need to specify the bound registers explicitly. Because RISC-V

uses 32-bit fixed instruction size, almost all RISC-V instructions take at most two inputs while produc-

ing an output1, and no instruction encoding is designed yet for instructions that have more than one

destination registers. Therefore, instructions that write both the pointer and the bound (e.g., promote)

require a new instruction encoding, and any instructions reading or writing bounds will have to sacrifice

instruction encoding space for the additional bound register operand. The instruction encoding space

loss is considered undesirable. Therefore, only the standalone IFPR and the shadowing approach are

considered.

In the first iteration of implementation, the standalone IFPR approach is explored, and the following

observations are made:

• Standalone IFPR complicates binary-compatible ABI. When passing a pointer argument or re-

turning a pointer at function call/return interface, to pass the bound with the best effort while

maintaining binary compatibility with legacy code, the pointer needs to be duplicated in both the

GPR (for legacy code) and the IFPR (for instrumented code), and the instrumented code need spe-

cial instructions to merge their values to avoid picking up stale IFPR value from uninstrumented

caller that only populates the GPR input.

• Standalone IFPR increases the hardware cost for simple processors supporting at most 64-bit

datapath. Certain datapath width (e.g., store queue and internal forwarding from writeback to

operand read) need to be 3X or 4X of the original width because of the increase in the maximum

register size.

• When dereferencing a pointer in IFPR, the standalone IFPR implementation either needs new

instructions to perform load or store directly, in which case the implementation would consume

more instruction opcode space and complicates code generation2, or the IFPR needs to demote

to GPR first before using normal load/store instructions, resulting in code bloats. The latter

approach was used in the implementation and runtime overhead of around 30% was observed in a

crafted micro-benchmark with a tight loop.

1Except fmadd, which takes three register inputs and produces one output
2LLVM RISC-V backend tries to fold sign extension and truncation operations into load and store; create another

version of loads and stores would need to duplicate these optimizations as well
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Because of these experiences, the shadowing approach is used in the latest implementation.

4.2.1.1 IFPR basic organization

In-Fat Pointer introduces 32 bound registers, each of which is a 2 × 48 bits value where the lower and

upper address bound takes 48 bits each. Each GPR is implicitly paired to a bound register, and the

compiler models the register pair as a logical IFPR. An empty or infinite bound refers to a bound with all

zeros; raw pointers will get an infinite bound when being promoted, and In-Fat Pointer do not prevent

them from accessing any memory. For each pointer passed across a function interface, the bound register

associated with the GPR will contain the bound if it is available, or is cleared if not available.

To eliminate the need for explicit size checks in performance-critical loops, In-Fat Pointer defines two

sets of IFPRs:

• Bound-checked IFPR, where size checks can be folded into load/store when used as address

operand; and

• Normal IFPR, where explicit size checks are needed before dereferencing the pointer.

The semantics of load/store from the base RISC-V instruction set is also extended as follows. For

a bound-checked IFPR, when its GPR is used as the base address operand of a load or store, if the

associated bound is not empty, besides the check on poison bits, the load-store unit will also check

whether the computed access range falls inside the valid address range. In other words, the load using a

bound-checked address operand now include an implicit size check asserting that the access range falls

in the bound. This implicit size check is not made if the GPR belongs to a normal IFPR. The criteria

for selecting bound-checked and normal IFPR is described next.

4.2.1.2 Calling convention considerations

The challenge in extending the existing calling convention with backward-compatibility in mind is to be

able to pass the correct pointer bound across function call or return without sacrificing performance.

An instrumented function should not get a wrong bound for an uninstrumented callee’s return value,

or an uninstrumented caller’s argument. There should also be callee-saved bound registers so that

an instrumented function does not have to save all bound registers at each function invocation. The

extension is designed with the following deduction:

• All GPR used to pass function arguments and return values should have their associated bound

cleared by the hardware when the GPR is modified by existing instructions, so that an uninstru-

mented callee can return a pointer with no bound when the instrumented caller populates another

bound in the same register used for return values.

• All callee-saved GPR should have the associated bound registers preserved by callee as well, and the

hardware should not clear a bound register when the associated GPR is used in an uninstrumented

function.

Based on an observation that none of the registers for function argument and return value passing

is callee-saved, the In-Fat Pointer implementation selects bound-checked and normal IFPR using the

following criteria:
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• All IFPRs with a GPR that is not callee-saved in the original calling convention are bound-checked

IFPR

• All IFPRs with a callee-saved GPR in original calling convention are normal IFPR

In addition, the following semantics are introduced in hardware:

• Bound-checked IFPR will have their bound cleared when an instruction writes to the GPR3

• Normal IFPR will have the bound preserved when the GPR is modified

RISC-V only has one standard calling convention defined, so the choice of bound-checked or normal

IFPR is hard-coded in hardware implementation. When In-Fat Pointer is implemented on an ISA

with multiple possible calling conventions, the implementation may use a control register to encode the

calling convention for hardware. For systems mixing multiple calling conventions in the same process,

the bound-checked IFPRs would the union of bound-checked IFPRs for all used calling conventions.

4.2.2 New Instructions

All instructions introduced by current implementation use the custom-0 and custom-1 major opcode

in the RISC-V opcode map[20]. The 7 least significant bits of each instruction is therefore 0b0001011

and 0b0101011, respectively. All instructions under custom-0 use the R-type instruction format, where

each instruction has two source register operands (rs1, rs2) and one destination register operand (rd).

All instructions under custom-1 use either the S-type or I-type instruction format. Both formats have

a 12-bit immediate operand (imm12), and S-type instructions have two source register operands but no

destination register4, while I-type has one source and one destination register.

Table 4.2 lists all the instructions added by In-Fat Pointer. Instructions in each major opcode are

distinguished mainly by funct3 field (Instr[14:12]) that is common to all instruction formats, and

instructions in R-type also have a funct7 field (Instr[31:25]) to distinguish instructions or variants.

The implementation does not use the compressed instructions; all new instructions are 32 bits in size.

The [R], [I], and [S] annotates the instruction format. The rest of this subsection describes each

instruction and the usage in greater detail. Unless otherwise noted, R-type instructions have their

funct7 set to zero. If an instruction takes a pointer input operand, then unless otherwise specified, it is

the rs1 operand. When a single operation is available in both R-type instruction and I-type instruction

(e.g., promote and promotei), the later text may use the name of the R-type instruction (promote in

example) to refer to both instructions.

Promotion. The R-type promote and I-type promotei implements the promotion operation. Besides

the pointer bound retrieval that takes a pointer as one operand, both instruction variants can also fold

a size check immediately after the bound is retrieved, and the size is the other operand for promotion.

The I-type variant is preferred if the size is a compile-time known constant that fits inside the 12-bit

immediate.

3This behavior is only enabled when IFP extension is enabled and the processor runs in user mode. Currently, no
bound clearing is made in kernel mode to prevent the kernel from mistakenly erasing the bounds on a context switch.

4The S-type instruction format is designed for store instructions.
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Table 4.2: List of new instructions introduced by In-Fat Pointer. ifpmd, ifpsub, ifppoison are
differentiated with the funct7 field from the R-type instruction encoding.

funct3 [R] custom-0 custom-1

000 promote [I] promotei

001 ifpdbg [I] ifpidx

010 ifpextract [I] ldbnd

011 ifpmac [S] stbnd

100 ifpmd, ifpsub, ifppoison [I] ifpmdi

101 ifpbnd [I] ifpbndi

110 ifpadd [I] ifpaddi

111 ifpchk [I] ifpchki

Bound setup. The R-type ifpbnd and I-type ifpbndi sets the bound of a pointer. The two operands

are a GPR pointer and a bound size. The lower bound is set to the current address, while the upper

bound is set to the address plus the bound size. When the bound size is zero, however, the bound will

be cleared.

Subobject index change. The I-type ifpidx is used to add a fixed constant (subobject index offset)

to the subobject index field for an IFPR pointer in local offset scheme or subheap scheme. It is a no-op

for other pointers. It is also a no-op when the offset is zero. The addition uses saturated math; if

the subobject index would overflow (likely due to bad pointer casts), it will saturate at the maximum

possible value.

Pointer arithmetic. The R-type ifpadd and I-type ifpaddi adds an address offset to an IFPR, and

change the granule offset for pointers in the local offset scheme. This arithmetic includes an implicit

size check of 1 byte; if the current address is out of bound, the temporary poison bit is set, and if the

address is brought back in bound, the temporary poison bit is cleared.

Size check. The R-type ifpchk and I-type ifpchki performs the size check. One operand is an IFPR

and the other is the size. The compiler backend uses a zero-sized size check to implement a register

move for IFPR.

Bound load and store. The I-type ldbnd and S-type stbnd implements the load and store of bound

register’s value from/to the stack frame. Same to other load and store instructions, only Reg+Imm

addressing mode is provided, and the rs1 operand is the base address while the imm12 is the offset.

Because the applications are not expected to load or save IFPR from memory other than the stack

frame, ldbnd and stbnd do not perform implicit size checks in order to reduce hardware overhead.

Demote and field extraction. The R-type ifpextract extracts a value from the input IFPR. It

has following variants distinguished by the funct7 field:

• ifpextract.lb (funct7=0): Extract the lower bound and sign-extend it

• ifpextract.ub (funct7=1): Extract the upper bound and sign-extend it
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• ifpextract.demote (funct7=2): Perform the demote operation. If the pointer is not temporary

out-of-bound, return the GPR pointer part as is. Otherwise, if promotion cannot compute the

correct bound, then return the pointer with persistent poison bit set.5

Metadata tag manipulation. While the RISC-V base instruction set contains all necessary instruc-

tions for shifting and bitwise operations, they are inefficient in terms of instruction count when manip-

ulating the pointer tags. The R-type ifpmd and I-type ifpmdi is used to reduce number of instructions

needed for pointer tag manipulation. The rs1 input for both instructions is expected to be a pointer

and the lower 48 bits are copied to rd. Note that unlike other instructions where the R-type and I-type

variants only differ in input operand formats, ifpmd and ifpmdi has different semantics, each designed

for a distinct set of scenarios.

ifpmdi is designed for compiler instrumentation where all metadata is known at compile time and

can be encoded in the imm12 operand by the compiler. All upper 16 bits of rd are either covered by the

provided metadata or set to zero. It has the following two major modes:

• Layout table helper (imm12[11] = 1): this ifpmdi produces a 64-bit layout table metadata by

taking a pointer to layout table as rs1 and all additional metadata encoded in imm12[10:0].

– imm12[10]: array (1) or scalar allocation (0)

– imm12[9:8]: layout table format

– imm12[7:0]: layout table max row count

• Object metadata scheme helper (imm12[11] = 0): this mode is used in both the object meta-

data and tagged pointer computation. The highest 2 bits of output (rd[63:62]) is copied from

the “sign” bit of the address input (rs1[47]), and the next 2 bits (rd[61:60]) are specified by

imm12[10:9]. These two bits in addition defines the purpose of this ifpmdi instruction. Currently

only the following two variants are defined:

– imm12[10:9] = 00: arbitrary metadata manipulation; imm12[8:0] is copied to rd[56:48].

– imm12[10:9] = 10: local offset scheme pointer preparation. This is used to form a tagged

pointer to an object using local offset scheme. Because the subobject index is zero when

pointing to the top-level object, this variant copies imm12[5:0] to the granule offset field

(rd[59:54]) and set the object index (rd[53:48]) to zero.

ifpmd (funct7[6:2] = 0) is designed for accelerating object metadata scheme implementation for

both the compiler instrumentation and runtime library, where not all metadata is known at compile time.

No layout table helper mode is defined for ifpmd because all metadata of layout table is known at compile

time and ifpmdi alone is sufficient. Similar to the object metadata scheme helper mode of ifpmdi,

rd[63:62] is copied from rs1[47], and rd[61:60] is copied from funct7[1:0] and funct7[1:0] also

defines the metadata scheme it is serving for. The following ifpmd variants are defined: (6’d0 represents

6 bits of zero and 8’d0 represents 8 bits of zero)

5Note that in current implementation, only off-by-1 pointers will not set the persistent poison bit in this case.
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funct7[1:0], mnemonic rs2 is ... rd[59:48] is ...

00: ifpmd.raw (arbitrary metadata) rs2[11:0]

01: ifpmd.global Global table index rs2[11:0]

10: ifpmd.local Granule offset {rs2[5:0], 6’d0}
11: ifpmd.subheap Configuration index {rs2[3:0], 8’d0}

Pointer subtraction. ifpsub instruction (funct7 = 0x10) is used to implement the pointer subtrac-

tion operations in C/C++, in which the programmers to subtract two pointers to get an address offset

between them. When the pointers carry metadata tags, the integer subtraction (sub) no longer produces

an address offset; the metadata is also subtracted and the upper 16 bits of subtraction result will be

wrong. Instead of subtracting the entire 64 bits as the original sub, ifpsub will subtract the lower 48

bits only and sign-extend it to 64 bits. Besides the pointer subtraction, ifpsub with rs2 equal to zero

is used to clear the pointer tag.

Explicit Poisoning. ifppoison instruction (funct7 = 0x20) is used to explicitly set the persistent

poison bit of a pointer. This instruction is used when the application code produces a statically out-of-

bound pointer.

MAC computation. The R-type ifpmac is used to compute the MAC for protecting the metadata

of the local offset scheme and that of the subheap scheme. In-Fat Pointer use 48-bit MAC so that they

can carry additional metadata and use the same instructions for pointer tag manipulation to manipulate

the metadata with MAC. The lower 48 bits of rs1 contain a pointer to the address where the MAC will

be stored, and this is used as a nonce to prevent the attacker from copying another valid MAC from a

different address to overwrite the MAC undetected. The upper 16 bits of rs1 is then used for metadata

on the upper 16 bits of the output. The rs2 operand is the message for the MAC computation.

Debugging extension. The R-type ifpdbg is introduced to debug the implementation. It is not an

essential instruction and can be removed without affecting the functionality. The hardware implemen-

tation includes a buffer for storing hardware internal events and additional statistics counters, and this

instruction is used to access these facilities. Software simulators can safely emulate this instruction by

writing zero to the destination register.

4.2.3 New CSRs

This subsection lists all Control and Status Registers added by In-Fat Pointer implementation. All listed

CSRs are 64 bits in size, and user-level code has read/write access, except new hardware performance

counters that are read-only.

ifpstatus (address 0x801): This CSR stores (1) IFP enable/disable bit (ifpstatus[0]), (2) “no-

promote” mode enable/disable bit (ifpstatus[1]), and (3) address of global metadata table for global

table scheme (ifpstatus[48:12]). All remaining bits are reserved and should be zero.
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ifpkey (address 0x802): This CSR stores the secret key for all MAC computation, including ifpmac

instruction. Note that while this register should be set to a random number at the beginning of the

process, in the current implementation it is left as zero to simplify debugging.

ifpdbgs (address 0x803): This CSR is used to control the tracing component for the ifpdbg instruc-

tion6; it can disable, enable, and flush the trace by writing 0, 1, 2 respectively to this CSR.

ifpblk0 to ifpblk15 (address 0x810 to 0x81f): Each of these CSRs store a configuration for the

subheap scheme. The configuration index on the pointer tag selects one of these registers to load the

metadata offset (lower 48 bits) and the memory block size (upper 16 bits stored as power of two).

New hardware performance counters The implementation introduces the following new perfor-

mance counters for IFP specific events.

• IFP INSTR (address 0xc11): total number of IFP instructions retired

• IFP ARITHMETIC (address 0xc12): number of IFP ALU-only instructions retired. ifpmac is also

counted.

• IFP LSU INSTR (address 0xc13): number of ldbnd and stbnd retired.

• IFP PROMOTION (address 0xc14): number of promote and promotei retired.

4.3 Hardware Modification

This section describes the processor modification for implementing In-Fat Pointer. The hardware proto-

type is built on an open-sourced processor CVA6[46] (renamed from Ariane) that supports RV64IMAC

instructions. It has a 6-stage in-order pipeline that can issue one instruction and commit two instructions

per cycle. The source code is written in SystemVerilog. While CVA6 does not claim to fully support the

F and D floating-point extensions, it does contain a floating-point unit that can execute floating-point

instructions correctly.

The CVA6 repository contains a full System-on-Chip (SoC) that can be synthesized on an FPGA.

The CVA6 processor is connected to a 64-bit AXI bus with a DDR3 controller for the 1GB DDR3 RAM,

a UART controller for a console, an Ethernet controller, and an SD card controller in addition to other

necessary components. The default bootrom load the first 16MB of the SD card content to the beginning

of the RAM address range, and branch to it. The SD card is formatted such that the first 16MB is a

buildroot image wrapped by a bootloader, which can start a full Linux system on the FPGA. Almost

all hardware modifications for implementing In-Fat Pointer are inside the CVA6 processor module.

The micro-architecture changes made to the CVA6 processor are shown in Figure 4.2. The primary

changes are as follows:

• A new register file for pointer bounds is introduced, and the pipeline is widened so that each

instruction can optionally take a pointer bound operand and produce a pointer bound result. The

scoreboard is also modified so that bounds can also be forwarded in the same way as GPR values.

6Tracing control is not implemented in ifpdbg instruction because the instruction is implemented in the execution stage
and cannot flush the processor pipeline, while flusing the pipeline from CSR write is easier to implement.
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Figure 4.2: Processor micro-architecture changes. The current implementation introduces new modules
colored with dark gray, and modified the modules colored with light gray.

• The integer ALU is extended to implement new instructions that only involve combinational logic.

• A new execution unit, IFP unit, is added to the execution stage. All the remaining instructions

not implemented in the integer ALU are implemented in the IFP unit.

• The load-store unit is modified primarily to implement ldbnd and stbnd, and to support the IFP

unit for memory read.

• The remaining modules in the processor, including instruction decoder, CSR unit, and performance

counters, are extended to support new instructions or new features.

4.3.1 Load-store unit

The load-store unit is modified so that (1) the load unit can help the IFP unit to read data from memory;

(2) when a load or store is executed, the pointer tag (but not poison bits) is excluded from canonical

address check, and the implicit bound check is performed if needed; and (3) ldbnd and stbnd support

are added.

Supporting IFP unit for memory read. The baseline CVA6 uses a small queue for load/store

requests so that the load-store unit can signify the ready state early in a cycle and let the instruction
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issue logic to continue to the next instruction, even if the load or store may encounter situations that

require multiple cycles (e.g., TLB miss) at a very late time of the cycle. The queue is extended so that

besides the instruction issue logic, the IFP unit can also enqueue memory load requests to the load unit.

When the result is loaded, the data will also be forwarded to the IFP unit directly. Note that because an

earlier promote instruction may queue memory loads after a later store, and getting the wrong metadata

overwritten by the store, the instruction issue logic is modified so that no store will be issued when a

promote instruction is in execution7.

Pointer checking in load/store. When a load/store is executed, the address generation unit that

computes the actual address from Reg+Imm operands is augmented so that the result address with the

access size is checked against the input pointer bound. The canonical address check is also modified so

that when the IFP extension is enabled, the pointer tag bits are not checked. Therefore, for pointers from

the user-level code, a poisoned pointer will be considered as not conforming to the canonical address,

and an exception will be generated.

Bound load and store. The baseline CVA6 has two read ports and one write port from the data

cache to the load-store unit, and each of the port can handle 8 bytes of transfer per cycle. One port is

devoted to the load unit, one port to the TLB walker, and the last one for the store unit. When multiple

read ports are raising requests, one of the ports is granted access by an arbitrator. To implement ldbnd

and stbnd without compromising throughput, one additional read port is added for the load unit so that

it can load 16 bytes of memory per cycle by using two ports in parallel. At the same time, the cache

controller is modified so that parallel accesses on the same cache set can be satisfied in the same cycle8.

4.3.2 IFP Unit

The IFP unit contains all the component necessary to implement promote and promotei. Because

promotion logic requires MAC computation, ifpmac is also implemented in the IFP unit to share the

MAC computation module. The debugging facility tracks a lot of internal states of promotion logic,

therefore ifpdbg is implemented in the IFP unit as well.

In the current implementation, the IFP unit can read 16-byte for each request to the load unit.

However, the requests are not pipelined, and each request takes three cycles when there is no miss in

TLB or the data cache.

4.3.2.1 Object metadata scheme handling.

The IFP unit implements each of the three object metadata schemes in a distinct child module with an

identical interface to the rest of the logic in the IFP unit. The layout table is also encapsulated in a child

module. A main Finite State Machine (FSM) coordinates all resources in the unit, and when a promote

operation is executed, it activates the scheme handling module, grant it access to other resources in the

IFP unit, and waits for its completion. After the object metadata scheme is handled, if the layout table

metadata is available, the main FSM then activates the layout table handling module to walk the layout

table and narrow the bound.

7In the current implementation, no store will be issued when the IFP unit is busy, even when it is executing some other
instructions not accessing memory (e.g., ifpmac).

8The addition of the data cache read port and the change to the cache controller is only an optional improvement and
is therefore not listed as primary changes to the processor microarchitecture.
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Subheap scheme implementation. Subheap scheme handling is more complicated than the other

two schemes because of the more complex metadata. Assuming the pointer being promoted is not out

of bound and the lower 48 bits is the current address, to compute the address bound for the object, the

subheap scheme handler needs to:

• Find the block base address and the metadata address by (1) reading the block size from one of

the ifpblk CSR selected by the configuration index on the pointer tag, (2) mask out the lower

bits of current address to compute the block base address, and (3) add the metadata offset from

the CSR to get the metadata address.

• Load the per-block metadata and verify its integrity.

• Start to compute the object bound after the first 16 bytes of metadata are loaded. The bound is

computed by (1) compute the slot array base address and ensure the current address is not out of

bound of the entire slot array, (2) divide the offset from the slot array base address to the current

address with the slot size to determine the base address of the slot and the offset into the slot, and

(3) the object lower bound is the slot base address and the object upper bound is the lower bound

plus the allocation size.

The current implementation limits the slot size to be in forms of 2n or 3 × 2n. While the first form is

easier to divide, the latter one requires a multi-cycle divider. The implementation includes a table-based

high-radix divider that can compute 8 quotient bits per cycle.

4.3.2.2 Layout table walker

The layout table walker is activated after the object bound is computed when the subobject index is

non-zero and the layout table metadata is available. The main FSM in the IFP unit will not start a

layout table walk if the subobject index is zero (i.e., the pointer points to the entire object and no

subobject bound is needed) or the layout table metadata is not available. To perform a subobject bound

narrowing, the main FSM performs the following in order:

• If the top-level allocation is an array allocation (bit 63 is 1), the “object bound” from the object

metadata scheme is the bound of the entire array instead of an array element. Therefore, to get

the base address of the current array element, element 0 from the layout table is read first and the

bound is narrowed to the array element. This step is skipped if the top-level allocation is not an

array allocation.

• Starting from the element pointed by the subobject index from the pointer, fetch the layout table

element, and if the element is not a direct child of element 0 (i.e., the parent index field is non-zero),

the parent element is fetched next. All the fetched elements except the last one are pushed to a

register-based stack.

• Perform the bound narrowing in the reverse order the elements are fetched.

The register-based stack for saving layout table elements temporarily is necessary because the bound

narrowing operations must be replayed from the root element to the leaf element, which is in reverse

order of fetching.
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The bound narrowing operation is handled in a child module inside the layout table walker. The

bound narrower module maintains a notion of the “current most-narrowed bound” expressed as offsets

from the object lower bound, and each replayed bound narrowing operation will adjust the offsets. There

are two possible narrowing operations:

• array element bound narrowing: knowing that the current bound is the bound of an array, compute

the bound of the current pointed array element given the element size.

• struct member bound narrowing: knowing that the current bound is the bound of a struct in

C/C++ notion, compute the bound of a member given the base and bound offset from the struct

base address.

Whenever a layout table element is fetched from the memory, it is “decoded” into one or both of the

bound narrowing operations above. Then, after all the layout table elements are fetched, the FSM in

the layout table walker pops the operations from the stack and activates the bound narrower to perform

the operations. Note that while the struct member bound narrowing is single-cycle, the array element

bound narrowing requires the use of a divider that is likely multi-cycle. The current implementation

uses a simple shift divider that produces one bit of quotient per cycle.

The layout table walker is the most complex module in processor modification. When comparing the

number of lines of (manually written) code without comment or blank lines, the layout table walker has

1,030 lines of SystemVerilog while the three object metadata schemes have 676 lines of code in total. In

comparison, the original integer ALU has 104 lines of code and the modified one has 284 lines of code.

4.3.2.3 MAC Computation.

The IFP unit contains a MAC computation module that produces a 48-bit output given three 64-bit

inputs: a key, a message, and a nonce (where the lower 48 bits are the address where the MAC is stored

and the upper 16 bits are uninterpreted metadata). The IFP unit implementation makes no assumption

on the number of cycles the MAC would take. The main FSM in the IFP unit will coordinate the input

to the MAC computation module so that both ifpmac and promote logic can access them when needed.

For prototyping purposes, currently the MAC is a simple XOR of inputs with bit position shuffled. For

production uses, the MAC can be implemented using light-weight ciphers like QARMA[5].

4.3.3 Debug facility

The implementation of In-Fat Pointer started before gdb or gdbserver can work natively on RISC-

V architecture, and the software toolchain was stuck in old versions so that little debugging help is

available. The CVA6 implements the debugging extension and one can use OpenOCD to debug the

software through the JTAG interface, but the debugging utility is insufficient and breakpoints do not

always work. Therefore, besides the functional modification, two optional debugging modules are also

implemented to assist in debugging the implementation:

• A tracing module inside IFP unit implements ifpdbg instruction. It logs the execution history of

IFP introduced instructions to assist in debugging the software.

• A halt detection module is implemented outside the CVA6 processor to debug the hardware imple-

mentation. It is interposed between the UART controller and the AXI bus. In normal conditions,
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it transparently passes the communication between the AXI bus and the UART controller, and it

keeps a trace of selected internal signals from the CVA6 processor. When the module finds that

the processor stopped committing instructions for a configured number of cycles, it will take over

the UART controller and dump the recorded trace near the last time the processor committed an

instruction.

4.4 Compiler Modification

The Clang/LLVM 10.0 is modified to instrument the application programs and generate new instructions.

The changes include the following:

• New intrinsic functions are added to LLVM IR to represent IFP operations, and some of them are

declared as Clang builtin functions so that the runtime library can use them to generate specific

instructions when compiled by the modified Clang toolchain.

• An LLVM IR analysis and instrumentation pass is added after all the other IR optimizations com-

plete. This IR pass implements all the analysis and instrumentations, as well as some implementation-

independent optimizations.

• The RISC-V backend is modified so that it (1) can generate new instructions and make use of new

registers; (2) implements target-specific optimizations for the instrumented instructions.

• Some LLVM IR optimization passes (InstCombine and IndVarSimplify9) are modified to preserve

pointer and type information when IFP is enabled. This is necessary to fix false positives observed

on certain test programs.

Section 4.4.1 elaborates on the implementation of the LLVM IR pass. Section 4.4.2 describes the modi-

fication on the RISC-V backend.

In the text below, the analysis domain refers to all the code that the LLVM IR pass can analyze

and instrument in the single LLVM module the IR pass runs on. This domain excludes (1) functions

that are explicitly annotated to ignore, and (2) functions that the current IR pass implementation does

not support (e.g., variadic functions). A pointer is considered escaped if its value can be obtained from

outside the analysis domain through a memory location, or a call or return. Note that other works may

use the term escape to describe value flow crossing a function boundary, while in this work it describes

the pointer value flow crossing the analysis domain boundary.

4.4.1 IR Analysis and Instrumentation Pass

As described in Section 3.4, the LLVM IR pass for In-Fat Pointer (short-named as IFP pass below)

needs to (1) instrument object allocations and deallocations to setup object metadata and pointer tag,

(2) instrument pointer updates to keep pointer tag and bound up-to-date for checking, and (3) instrument

pointer checks with promote and size checks. The entire procedure is performed in the following stages:

9IndVarSimplify can optimize away redundant induction variables of each loop by preserving one of the variable and
express the rest using the chosen variable. In case there are multiple pointers with identical value but different type as
induction variables, IndVarSimplify is modified to favor the pointer with the largest type instead of blindly choose the
“first” one according to the (somewhat arbitrary) order of LLVM IR instructions as the induction variable.
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• Preprocessing: perform special handling for certain code patterns in input IR to prevent miscom-

piling troubling code and simplify the implementation in the rest of the pass.

• Graph-based Analysis and Instrumentation: the pass builds an inter-procedural pointer dataflow

graph that describes the value flow of data pointers, and then perform a (control) flow-insensitive

static analysis on this graph to generate instrument decisions. Finally, the instrumentation phase

goes over all the graph nodes to perform the instrumentation decision.

The Clang frontend is modified to run the IFP pass after all optimization passes when the IFP feature

is enabled, and it also runs additional optimizations10 after the IFP pass to further clean-up the in-

strumented code. Note that the current implementation use pointers pointing to address space11 254

to represent IFPR pointers; normal-sized pointers points to address space 0. Most of the new instruc-

tions are introduced in LLVM IR as intrinsic functions as recommended by the LLVM IR extension

guideline [35].

This subsection is organized as follows. Section 4.4.1.1 describes the special handling performed on

the input IR. Section 4.4.1.2 to 4.4.1.5 elaborates on the graph-based analysis and instrumentation.

The In-Fat Pointer IR pass is one of the most complex components in the In-Fat Pointer implemen-

tation. At the time of writing, the entire IR pass contains about 10k lines of code excluding comments

and blank lines.

Facts and assumptions relied on by the instrumentation implementation. When a pointer

requires checking, the pointer should be in IFPR form with the bound available for checking. The

compiler can create IFPR for checking with ifpbnd instructions if the pointed object can be statically

identified. Otherwise, to get the IFPR, the compiler either depends on promote, or expects IFPRs being

passed through function calls and returns. As mentioned in Section 3.4, the current implementation

always tries to pass the IFPR across function calls and returns whenever possible. The IR pass assumes

that promote instructions are expensive and are implemented to try to reduce number of promotes12.

4.4.1.1 Preprocessing

After the optimized IR input is received, the first task of the IFP pass is a preprocessing stage that

performs the following operations.

GetElementPtrInst simplification. The LLVM IR uses a single GetElementPtrInst (or gep in

shorthand) to represent all pointer arithmetics including struct member address computation and array

element address computation, and a single gep can contain more than one such member address com-

putation operations and they can mix in arbitrary orders. However, IFP needs to instrument bound

narrowing and subobject index change for struct member address computation, and therefore needs

to distinguish the “elementary” address computations from the mixed gep. The preprocessing stage

guarantees that all the gep after preprocessing is either (1) one or more “unsafe” arithmetics, which

corresponds to array element address computation, or (2) one or more “safe” arithmetics which corre-

sponds to struct member address computation. All gep mixing these two types of operations are broken

down into multiple geps.

10In the current implementation, this includes LICM, GVN, and DCE.
11LLVM include a backend-specific address space (an integer in the range of [0, 255]) as part of the pointer type.
12Section 5.2 and 5.3.1.1 evaluates the performance overhead imposed by promote instructions
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Pointer subtraction handling. The LLVM IR does not have pointer subtraction instructions. The

C/C++ code that performs pointer subtraction is lowered into an IR that first cast pointers to integers,

then subtract the values. This can cause wrong subtraction results after instrumentation: if any one of

the pointers contains a pointer tag, the integer subtraction result will include the difference of pointer

tags in addition to just the address offset, and is likely to lead to program misbehaving. To address

this problem, the preprocessing stage identifies all pointer subtraction patterns in the input IR, and

replaces them with calls to a new intrinsic function riscv ifp diff gpr which would lower to ifpsub

instructions in the backend.

Pointer value manipulation handling. Sometimes the application may perform manipulations on

the address part of the pointer for aligning data structure, for example allocating a 32-byte buffer and

mask off the lowest 4 bits to get a 16-byte aligned buffer. When represented in the IR, the code will first

convert the pointer to an integer (using ptrtoint instruction in LLVM IR), then apply the operations,

and finally cast the result back (using inttoptr instruction). This case also requires special handling

because of the following two reasons. Firstly, the arithmetics can cause the pointer tag to be stale. For

example, the granule offset of a local offset scheme pointer may have a wrong value if some arithmetic

is not performed by the instrumented pointer arithmetic instructions. Secondly, casting the pointer to

integer and cast manipulation result back to a pointer can cause the later analysis to believe that the

pointer before manipulation will escape, therefore if the pointer is from a local variable declaration,

the cast will force the local variable to be instrumented even if it will not have any pointers escaping.

To fix these issues, the preprocessing stage first identifies all such code patterns, and then replaces

the last inttoptr with an instruction sequence that (1) computes the offset introduced by the pointer

manipulation from the result of ptrtoint to the input of inttoptr, and (2) replace the inttoptr with a

gep that add the computed offset to the address. In other words, while the old code directly manipulates

the pointer value which looks like a black box to the later analysis code, the new code expresses the

address change as pointer arithmetic explicitly. In this way, the pointer tags of the source pointer can be

correctly updated, and the analysis can know that the first ptrtoint does not make the pointer escape.

Union workaround. LLVM IR does not support unions, and C/C++ unions are typically lowered

into character arrays or structs. It happens that when a C/C++ union contains a smaller type and a

larger array, the union becomes a struct in the IR, with the smaller type as the first element and the

array with the beginning “trimmed away” as the second element. Therefore, access to the beginning of

the array becomes out-of-bound access to the second member inside the struct and will result in false

positives. The preprocessing stage uses heuristics to identify all union types13, and all gep from them

will be replaced with a sequence of pointer typecast and gep such that the bound of the union is not

narrowed to the member even if the static type is the same as a struct type.

4.4.1.2 Graph-based Analysis and Instrumentation

To accomplish the task of compiler instrumentation described in Section 3.4, the IR pass needs a static

analysis phase that can answer the following two central questions:

1. What pointer use (dereferences) require checking; and

13Currently all structs with a name starting with “union.” is considered as a union.



Chapter 4. Implementation Details 50

2. What pointer source (object allocation) will have the value flow into checks.

For the first question, the analysis should eliminate as many checks statically as possible, and the

instrumentation phase will insert checks before the rest of the pointer use sites. For the second question,

the analysis should avoid instrumentation on objects or pointers that do not require promote-based

checks. The instrumentation phase will instrument the remaining object allocations. The analysis phase

can then find all pointer operations that require instrumentation for up-to-date metadata by identifying

all possible dataflow from pointer sources to pointer uses that require checking, and all pointer operations

along these value flow would need metadata update.

Because all the analysis above is based on the dataflow of pointer values, the core of the analysis and

instrumentation are performed on a pointer dataflow graph. Therefore, after the preprocessing stage,

the IR pass (1) loop over all the instructions in the IR and build the inter-procedural pointer dataflow

graph, (2) run multiple dataflow analysis over the graph to solve certain properties on the graph nodes or

edges to derive instrumentation decisions, and (3) perform the instrumentation on the graph. The rules

for the static analysis to make instrumentation decisions are described in Section 4.4.1.4 below. The

following explanation of the pointer dataflow graph will use the graph from Figure 4.3 as an example.

Nodes. A pointer dataflow graph contains three types of nodes listed below. Each node is displayed

as a record in Figure 4.3; the first two rows of each record form a summary of the node that all the

information is available from the source IR, and the (optional) third row is a summary of internal data

and flags introduced by the IFP pass.

• Pointer Def: A node representing a definition of a pointer value. Any variable declarations, function

arguments, etc. will create a pointer def node to represent the pointer value. These nodes are

displayed in Figure 4.3 with the first line starting with “PtrDef”.

• Pointer Use: A node representing a use of a pointer value. A pointer dereference through load or

store, a pointer argument to a call, etc. will create a pointer use node to represent a use of the

pointer value. These nodes are displayed in the figure with the first line starting with “PtrUse”.

• Hook: A node representing LLVM IR constructs (e.g., instructions, global variable declarations,

and function arguments) that backs associated pointer def or uses. Hook nodes and all their

outgoing edges are displayed with dotted lines. When a hook node represents an instruction or a

function argument, the first line of text on the node starts with the name of its parent function.

For example, a hook node starting with (@foo) means that its parent function is foo().

Each pointer def or use node is associated with exactly one hook node, while each hook node can

be associated with multiple def or use nodes. An edge drawn from hook nodes to pointer def or use

represents their association.

In the code example in Figure 4.3, the local array declaration (array) in line 6 is lowered to an alloca

instruction in LLVM IR that produces the pointer to the declared local array. The graph represents the

alloca instruction using a hook node (the top-most node with dotted outline) and attaches a pointer def

node under it. The left arm of the dataflow starting from that def node is an implementation artifact14

14The left arm of the dataflow is an artifact of LLVM’s way of representing the lifetime of local objects. LLVM use
lifetime intrinsics (llvm.lifetime.start() and llvm.lifetime.end()) to mark the live intervals of local objects to assist
optimizations including the stack coloring. However, because the input pointer type for these intrinsics is i8* (which
corresponds to void* in C/C++), the LLVM IR need to use a bitcast to cast the pointer to i8* before passing it to the
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demo.ll

(@foo) [Argument] ptr

i32* %ptr

PtrDef 0x556384bc27d8

i32* %ptr

ExtSrcd, DR{FOC[0,4+0)}, DS{0,B,V}

PtrUse #1 0x556384bc29a0

i32* %ptr

U{[0,4),0}

(@foo) [Instruction, store] <Anonymous>

store i32 0, i32* %ptr, align 4, !tbaa !2

(@bar) [Alloca] array

%array = alloca [4 x i32], align 4

PtrDef 0x556384bc2b70

[4 x i32]* %array

DR{FO[0,16+0)}, DS{0,V}

PtrUse #0 0x556384bc2e48

[4 x i32]* %array

U{[0,0),0}

PtrUse #0 0x556384bc3140

[4 x i32]* %array

U{[0,16),0}

PtrDef 0x556384bc2d38

i8* %0

DR{[0,16+0)}, DS{0}

PtrDef 0x556384bc3030

i32* %arraydecay

DR{FO[0,16+0)}, DS{0,B}

(@bar) [Instruction, bitcast] <Anonymous>

%0 = bitcast [4 x i32]* %array to i8*

(@bar) [Instruction, getelementptr] arraydecay

%arraydecay = getelementptr inbounds [4 x i32], [4 x i32]* %array, i64 0, i64 0

PtrUse #0 0x556384bc3328

i32* %arraydecay

U{[0,0),B,0}

(@bar) [Call] <Anonymous>

call void @foo(i32* nonnull %arraydecay)

(a) Generated graph

1 void foo(int* ptr) {

2 ptr [0] = 0;

3 }

4

5 void bar(void) {

6 int array [4];

7 foo(array);

8 }

(b) Code snippet

Figure 4.3: An example of pointer dataflow graph.

and is not related to the semantics from the source program. The right arm of the graph corresponding

to the dataflow from the source code. The declared array is passed as a function argument to the call

to foo(), and the pointer is dereferenced there. In LLVM IR, this procedure is expressed as follows:

1. Because the type of array is a pointer to int[4] while the call expects a pointer to int, the LLVM

IR uses a gep to compute &array[0] first, which yields a pointer to int. The first use and the

subsequent def at the right arm of the dataflow comes from this gep.

2. The output from the previous gep is used in the call to the function foo(). Because the call

instruction takes the pointer input, a use node for that pointer use is created.

3. Inside the function foo(), the pointer ptr comes from the function argument. The argument is

lifetime intrinsics. The lifetime intrinsics are specially handled and they do not appear in the dataflow graph. Therefore,
only the use and def nodes from the bitcast is left “dangling” in the left arm of the dataflow.
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represented with a hook node and the input pointer value is represented by a pointer def node

under the hook node.

4. The argument pointer is then dereferenced by a store instruction that stores the value 0 to the

memory pointed by the ptr from the argument. The address operand of the store is represented

by a use node.

The formal rules for adding edges between the nodes are discussed next.

Edges. The edges between pointer def and use nodes (shorthanded as def and use) are the edges that

later static analysis operates on. An edge from a def to a use means that the value represented by the

def node is exactly the value being used in the use node. In other words, the value of the def node “flows

into” the use node. Because the LLVM IR is in SSA form, each use will have one incoming edge from

exactly one def node. An edge from a use to a def indicates one of the following situations:

• The def and use is associated with the same LLVM instruction that modifies the input pointer

value from the use and produces the output pointer value to the def, and the semantics of the

instruction ensures that in absence of spatial memory safety errors, the input and output pointers:

(1) should point to the same top-level object; and (2) have the same value on poison bits.

• The edge represents a possible copy of the pointer value from the use to the def. This can happen

when the def and uses are associated with the same hook (e.g., a phi15 or select16 instruction) or

different hooks. For example, a function argument can pick up call arguments from multiple call

sites, and the hook of the def (the function argument) is distinct from the hook(s) of the use(s)

(all the call sites to the function).

The def may have multiple incoming edges from different uses, and the concrete value at the def will

be one of the possible values from the incoming edge. A use may also have multiple outgoing edges to

different defs, for example, a pointer return value may flow to any corresponding call sites. In the text

below, if there is a path from def or use node A to a def or use node B, then node A is in the upstream

direction of node B, and B is in the downstream direction of node A. If the path from A to B does not

go through any other node, then node A is the immediate upstream of node B, and B is the immediate

downstream of node A.

The graph representation allows the IR pass to efficiently attach data structures to nodes, and use

a single implementation of the dataflow analysis algorithm to solve different properties necessary for

instrumentation, which is explained next.

Analysis on the graph. The pointer dataflow graph is essentially a set of graph components where

each component is a one-variable dataflow graph of a pointer. Same as conventional dataflow analysis,

the IR pass uses forward and backward iterative dataflow analyses to solve the fixed-points of related

properties, where a forward analysis would propagate and update information from upstream nodes to

downstream nodes and a backward analysis would perform the operations from downstream nodes to

15A phi node is used in SSA forms to represent that a value can pick up different values depending on which basic block
is the predecessor. For example, if there is an if-else block that assigns a variable with value v1 from the if branch and
v2 from the else branch, then the LLVM IR would (1) contain code in the if and else branch to compute v1 and v2

correspondingly, and (2) create a phi node after the if-else block that takes v1 and v2 as inputs to represent the value
of the assigned variable after the if-else block.

16This instruction is equivalent to the ternary operator ((Condition)?(TrueValue):(FalseValue)) from C/C++.
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upstream nodes. How the data is updated and propagated is encapsulated in the meet operator of the

analysis. The iterative analysis is implemented by executing the meet operators for the node property

in depth-first traversal, and the traversal stops when the data on all the nodes converge. The converged

state is referred to as the fixed-point.

4.4.1.3 Graph building

The first task after the preprocessing stage is to build the pointer dataflow graph. The IR pass iterates

over all the functions that are not excluded for instrumentation17, iterates over all the instructions, and

creates nodes for all data pointer related operations. When a function call is encountered, the call site

information is saved first, and after all the functions are processed, the use nodes of call arguments in

callers are connected to the def nodes of function arguments in callees, and the use of return values are

connected to the def node of call return values. The implementation currently does not support variadic

functions; they are excluded from analysis and instrumentation, and the IR pass treats them as legacy

code. Besides creating the nodes, the graph-building code also initializes the flags or data used for later

analysis.

4.4.1.4 Graph-based Static Analysis

The static analysis phase needs to solve the following problems to guide the instrumentation:

• Object instrumentation: For each pointer def from a local/global variable declaration, whether any

pointer to it would escape. IFP assumes that every escaping pointer can be promoted at a later

time, so if one of the pointers does escape, then the variable allocation must be instrumented, and

the escaping pointer need to carry the valid pointer tag to pass later promote checks.

• Static check elimination: For each pointer use, whether it is statically safe and does not need

instrumentation, meaning that it is either (1) statically in bound in all possible scenarios, or (2)

poisoned18.

• Check placement: Where to insert size checks to make sure each pointer use that is not statically

safe is made safe at runtime by the checks. Either the pointer flowing into the use is made safe for

dereferencing, in other words a check is performed somewhere upstream, or the pointer should be

in IFPR form (i.e., carry a bound) and a size check is needed in place before the use.

The object instrumentation problem is solved using the following procedure. First, during graph

building, all pointer uses that can make a pointer escape is marked. Then, this static analysis phase uses

a backward dataflow analysis to identify and mark all pointer defs whose value may flow to an escaping

use. When a def has multiple uses, the def is marked if any of the use it flows to is marked, and the same

is applied when joining multiple defs to a single upstream use. Therefore, after the backward analysis

converges, all marked pointer defs belonging to local or global variable declarations represent allocations

needing instrumentation.

To perform the static check elimination, the IFP pass needs to (1) compute the address offset range

for pointer defs that are guaranteed safe to access (referred to as def range below), (2) compute the

17Clang is modified to support attribute ((ifpoption("ignore"))) function annotation, which disables the analysis
and instrumentation on the annotated functions.

18Dereferencing a poisoned pointer guarantees a crash, so if the pointer is poisoned in the “upstream” of value flow, then
this use can still be left uninstrumented and no compromise can happen
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address offset range that each pointer use may access (referred to as use range below), and (3) try to

prove that the use range always falls into the def range. The IFP pass uses both fixed-point iteration

(which can be inter-procedural) and the LLVM Scalar Evolution (shorthanded as SCEV) analysis pass

(which is intra-procedural) to compute the ranges. The overall algorithm for solving the problem is as

follows:

1. During graph building, all defs directly from object allocations (including local/global variable

declarations and dynamic memory allocations) have their initial def range set, and all uses that

dereference a pointer will have their initial use range set. There are following special handlings

involved:

• gep that computes struct member address are specially handled in that (1) the pointer use is

considered as accessing the entire struct; and (2) the pointer def has a def range of the entire

struct. This effectively hoists all bound checks on a pointer to a struct member to the input

pointer (to the base address of the struct).

• While pointers from unknown origin (including pointers loaded from memory, cast from inte-

ger, or passed from another unknown function) are not safe to dereference directly, they are

assumed to have a def range matching with the static type size, and a special flag is left so

that if any pointer use has the bound check eliminated because of the def range provided, a

size check is instrumented immediately after the pointer def.

2. In the first step of static analysis, all pointer defs that the graph-based analysis know how to

compute the def range better than SCEV are identified. The value of these def nodes will be

marked as SCEVUnknown so that SCEV will treat them as black boxes. These def nodes are referred

to as SCEV root nodes in the text below. The IR pass considered the following node as SCEV

root:

• The def nodes of gep instructions that compute struct member address. If they are not marked

as SCEVUnknown, the SCEV can “look through” the gep and express the range of downstream

def/use to be based on a def at upstream of gep instruction, causing later analysis code to

neglect the def range specified on the def node.

• The def nodes of phi or select that selects one value from multiple independent values.

Their def range can be computed as the intersection of the def range of all upstream values.

phi nodes for pointer-type loop induction variables (where one input value is derived from

the output value of phi) are still solved by SCEV.

• The def nodes of call return values and function arguments. SCEV is intra-procedural and

cannot solve the range across functions, while the inter-procedural analysis can.

3. After SCEV root nodes are found, their def ranges are computed using a forward analysis. When

a def has multiple incoming values from different upstream defs, their intersection is taken as the

result def range.

4. After all def ranges are solved, the IR pass iterates over all the uses and check if they always fall

into the def range of the immediate def node. If the immediate def node for a use is not set as a

SCEV root node (therefore may not have the def range computed), its def range is solved by (1)

querying the SCEV pass to express the value of the immediate def node as a sum of one SCEV root
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node and an offset expression from the SCEV root’s value, then (2) solving the bound of the offset

expression to compute the def range of the immediate def node, and finally (3) check it against

the use range. All uses not considered statically safe are marked.

After finding all uses that are not statically safe, the analysis code needs to determine where to

insert size checks. The IR pass should try to hoist the size check to the upstream direction so that the

live interval of pointer bounds can be shortened to reduce their spilling costs. The hoisting should also

avoid introducing false positives, in other words, no size check should poison the value to a use that only

requires a smaller check size.

To determine the instrument site for size checks, the IR pass performs a backward analysis to solve

the check size attribute. The check size attribute on a def is the maximum safe size in bytes that each

use can access without additional size checks, and the check size on a use is the minimum assured range

that the use expects when the pointer value flows into the use. Therefore, size checks are instrumented

(1) between a use and the upstream def when the check size of upstream def is smaller than the size on

use; and (2) immediately after pointer defs when the def has non-zero check size and the semantics of

the pointer source do not guarantee a safe-to-dereference size.

Initial condition. For all use nodes, the initial check size is the access size if the use is not statically

safe, and zero if it is safe or it does not dereference the pointer. For all def nodes, the initial check size

is the static type size for pointer sources that have a non-zero def range used in static check elimination.

Meet operator. When joining multiple uses to a single def, the check size of def is the smallest non-

zero check sizes among the uses. When propagating from def to use, the behavior depends on the LLVM

construct the def is associated with. If the def is from a function argument where the function can be

called from uninstrumented code, or when the def is from a gep that performs pointer arithmetics, then

the check size is not propagated as if the edges are ignored. In all other cases, the check size is copied

to all upstream uses.

After the check size on each node converges and instrument sites are identified, the analysis code

runs the last fixed-point algorithm to determine whether each node should carry an IFPR pointer or

a GPR pointer. This ensures that the bound is preserved along the dataflow from the pointer origins

(variable declarations, dynamic allocations, or promote-instrumented source) to the size checks.

4.4.1.5 Instrumentation

The instrumentation phase will take over the graph and modify the IR for the following tasks after the

analysis phase is completed:

• Object allocation instrumentation. The instrumentation phase will (1) instrument local and global

variable declarations that have pointers escaped, (2) instrument code to set up the pointer tags for

escaping pointers, and (3) rewrite dynamic allocation function calls to the counterpart provided

by the IFP runtime library. All these instrumentations should be performed on graph nodes.

• Pointer dataflow update. This includes (1) for all nodes that need the pointer to be in IFPR form,

modify or replace the node’s backing construct to a counterpart that uses IFPR pointer types;

(2) instrument pointer checks, including promote and size checks; (3) instrument subobject index

update and bound narrowing for gep. The promote and size checks can be instrumented at any
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code location between the def and uses (i.e., the checks are instrumented to edges), while the other

two modifications must be performed on nodes.

For object allocation instrumentations, if the type information is available and it is a composite type,

the instrumentation code will generate the layout table for the type of allocation and include the layout

table metadata in the object metadata. The type information for local and global variables can be

extracted from their declarations. The type of the object from a dynamic allocation is inferred from the

use of the returned pointer.

This instrumentation phase is implemented with the following two steps:

1. Node update. The code loops over all def and use nodes, perform all node-based instrumentation,

and update their declared pointer dataflow interface. Pointer uses with modified input interface

(e.g., input type and which operand of which instruction) will take input from a temporary def,

and pointer defs with modified out interface (e.g., output type and which instruction’s output) are

left unused. After this step, the input and output interface of each graph node is finalized.

2. Edge update. This step re-connects all stale or missing edges among modified nodes in the dataflow

graph. The IFP pass loops over all def and use nodes again, connect pointer defs to uses according

to the updated interface, and instrument all necessary edge-based instrumentation (promote and

size checks).

Algorithm 1: Pointer check instrumentation placement

Input: Location of pointer def Id and the locations of one or more use {Iun}
Result: The instrument location I that is dominated by Id and dominating all Iu ∈ {Iun}
if Id is in the same basic block as one of Iu ∈ {Iun

} or one of the use is phi then
return The first I immediately before the first of: (1)the end of the basic block for Id; (2)
Iu ∈ {Iun} in the same basic block as Id;

Candidate Basic Block BBc ← common dominator for all BB of Iu ∈ {Iun
};

if BBc in Loop Lc then
Lt ← ∅;
if Id in Loop Ld then

Lt ← common parent loop of Lc and Ld;

while BBc in Loop Lc, Lc 6= Lt, Lc 6= ∅ do
if Lc has preheader then

BBc ← preheader of Lc;
else

if exists BBh that dominates the header of Lc and is dominated by or equal to the
basic block of Id then

BBc ← BBh;
else

break;

return The first I immediately before the first of: (1)the end of basic block BBc; (2) Iu ∈ {Iun
}

inside BBc;

When the pass find that a promote or ifpchk needs to be instrumented during edge updates, the

instrumentation code use the heuristic in Algorithm 1 to determine the code location where the operation

is instrumented. This heuristic tries to strike the balance between (1) sinking the check to avoid its cost
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when the checked pointer is not used, and (2) execute the check as few times as possible. It first finds

the common dominator basic block for all uses, and then try to hoist the check out of unnecessary loops

if possible.

4.4.2 Backend Modification

The RISC-V backend of LLVM is run after all the IR pass to generate RISC-V instructions. It is

modified so that it (1) supports code generation for IFP operations, (2) implements the backward-

compatible calling convention for passing IFP across functions at call and return, and (3) performs

implementation-specific optimizations on IFP instrumentations.

Calling Convention. To pass IFPR across function calls and returns, the IR pass and the backend col-

laborate as follows. First, the IR pass annotate IFPR passed through call/return using new argpromote

and argdemote intrinsic functions. The formal function type is not changed for IFPR pointer passing19;

instead, the formal type for arguments and return values are still GPR, but the recipient code can

pickup the passed IFPR through argpromote, and the sender of IFPR will pass it to argdemote and

its return value is used as the actual call argument or return value instead. Then, the backend looks

for argpromote and argdemote intrinsics to copy the shadow IFPR for data pointer arguments if one is

found, and otherwise resort back to copying the GPR when inserting register.

Implicit Size Check Folding. The IFP ISA extension states that when the GPR of a bound-checked

IFPR is used as the base address operand of load or store, the instruction would perform an implicit

size check. Therefore, if the result of an ifpchki is only used as the address operands of loads or stores

and it is possible to fold the size checks into these pointer uses, the backend optimization should try to

allocate the input IFPR of ifpchki to a bound-checked IFPR to eliminate the check. The backend uses

a two-stage process to implement this optimization. First, before the register allocation, the backend

identifies all ifpchki that can be folded into uses. Then, after the register allocation, the backend checks

whether the identified ifpchki have their input IFPRs being allocated in a bound-checked IFPR, and

for each ifpchki passing the check, the backend updates the users of output from ifpchki to take the

IFPR input of ifpchki instead, and remove the unused ifpchki left.

4.5 Software Modification

In this section, the changes to software support on the target RISC-V platform are listed.

Operating System. The CVA6 SDK repository uses its own Linux fork [33], which is based on kernel

version 5.1.0. The kernel is modified so that (1) all bound registers and CSRs are saved and restored

when entering and leaving user mode, and (2) pointer checks on user-level pointers and data copy from/to

user-level memory are modified to ignore the pointer tag except the poison bits.

Runtime Library. The In-Fat Pointer implementation introduces a runtime library that is linked

to all IFP-protected user-level programs. This library populates CSR values at application start, and

19This is an arbitrary implementation decision made to avoid rewriting LLVM IR everywhere that must be consistent
with the function type.
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provide dynamic memory allocation functions that instrumented code calls to. To evaluate all of the

metadata schemes, there are two dynamic memory allocators implemented in the runtime library: (1) a

wrapped allocator built on top of libc’s malloc() and free() which uses Local Offset scheme if possible

and falls back to Global Table scheme; and (2) a subheap allocator implemented as a pool allocator on

top of a buddy allocator, which uses Subheap scheme. The compiler instrumentation will rewrite calls

to allocator functions like malloc() and free() to the counterpart from the selected allocator.
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Evaluation

This section presents the evaluation on the prototype implementation of In-Fat Pointer. First of all,

in Section 5.1, In-Fat Pointer is evaluated functionally by testing whether In-Fat Pointer can success-

fully catch spatial memory errors using the NIST Juliet test suite [31]. Then, Section 5.2 evaluates

the performance of promote with a microbenchmark. Section 5.3 measures the runtime and memory

overhead imposed by In-Fat Pointer on four applications. Finally, Section 5.4 estimates the hardware

area overhead from the prototype implementation.

Experimental setup. For all the experiments, Xilinx Vivado 2018.2 is used to synthesize the CVA6

SoC with the modified CVA6 processor on a Digilent Genesys 2 FPGA development board, which has a

Kintex-7 XC7K325T-2FFG900C FPGA device and 1GB of DDR3 RAM. The processor runs at a fixed

frequency of 50MHz.

Runtime library support for evaluation. As mentioned in Section 4.5, there are two allocators

implemented in the runtime library: a wrapped allocator built on top of libc’s allocator, and a subheap

allocator implemented with mmap(). The runtime library also collects additional performance statistics

including readings from hardware performance counters. The runtime library is statically linked into

the program with --whole-archive linker option to ensure the execution of stat collection code even

when no instrumentation is performed and none of the symbols from the runtime library is referenced

from the program body. Because of the current implementation of subheap allocator, all experiments

are run with /proc/sys/vm/overcommit memory set to 1.

5.1 Functional Evaluation

The NIST Juliet test suite 1.3 for C/C++ [31] is ran to evaluate the correctness of In-Fat Pointer. There

are 64,099 total test cases in the Juliet test suite, where each test case is a program with both good

and vulnerable code fragments, and the main() function calls the good code first, then the vulnerable

code. Programs under the following category are chosen: buffer overflow (stack-based and heap-based),

underwrite, overread, and underread. These programs feature out-of-bound memory access that In-Fat

Pointer intend to catch. Because In-Fat Pointer sets the poison bits whenever a pointer check fails, the

crash of instrumented programs because of poisoned pointer dereference is the indication that In-Fat

59
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Pointer detects spatial memory errors successfully. Among the total of 16,572 test cases in the selected

categories, all 6,484 C++ test cases are excluded because the prototype currently does not support

C++. For the remaining 10,088 test cases, those that have external dependencies (e.g., requiring network

connections, files, or input from stdin) and those that only run on Windows are excluded, leaving 9,328

test cases.

The test cases are further filtered down and some of them are modified as follows. Among the 9,328

initial test cases, at least 182 test cases only exhibit spatial errors when a randomly generated value

falls into specific ranges in the first round of experiments, so the random number generation functions

are modified to generate specific values according to an environment variable so that these programs

exhibit spatial errors at least once when multiple runs with different environment variable values are

used. Then, 2,672 test cases that satisfy one of the following conditions are also removed: (1) the

test program has the only memory error triggered in (uninstrumented) libc functions (e.g., strcpy());

(2) the crash requires specific (non-zero) initial value from uninitialized memory; (3) the test case only

trigger the memory error on a 32-bit platform. These test cases are suitable for evaluating static analysis

tools instead of dynamic checkers like In-Fat Pointer. After the adjustment, among the 6,656 test cases

remaining, 1,084 of them have their spatial error optimized away or becomes benign by the compiler at

-O1 optimization level, which is the minimum level that In-Fat Pointer compiler instrumentation pass

can run on1, therefore these test cases are excluded as well, leaving 5,572 valid test cases for In-Fat

Pointer. All 5,572 remaining test cases with both vulnerable and non-vulnerable code are then tested on

the In-Fat Pointer prototype, and In-Fat Pointer successfully crashes the vulnerable code while letting

all non-vulnerable code work, thus having full accuracy with no false positives on these selected test

cases.

5.2 Microbenchmark

promote instructions are the most costly instructions introduced by In-Fat Pointer because they require

one or more memory accesses and arithmetic operations for fetching and processing in-memory metadata.

In this section, the cost of each promote instructions is estimated using a microbenchmark. The goal is

to find the latency2 of a promote instruction when the following variables are changed:

• The object metadata scheme used by the pointer and the object;

• Whether the layout table is used or not; and

• The number of layout table element fetching needed for subobject bound narrowing.

To evaluate the performance impact from the first two factors, the microbenchmark used in this

section keeps executing promote instructions on pointers to the following object:

1. an uninstrumented object as the baseline

2. an object using the global table scheme3

3. an object using the local offset scheme, and the object metadata includes the layout table metadata

1The prototype implementation currently assumes that Mem2Reg optimization pass is run, which is enabled at -O1.
2Latency is the number of cycles needed to finish the execution of a single instruction. Because the IFP unit is not

pipelined in the current implementation, latency can fully describe the performance characteristics of promote.
3The global table scheme implementation does not support layout tables.



Chapter 5. Evaluation 61

4. an object using the local offset scheme, but no layout table is used

5. an object using the subheap scheme, and the layout table is used

6. an object using the subheap scheme, but no layout table is used

To evaluate the impact of the number of layout table elements needed, the microbenchmark uses the

type from Figure 3.10 for all objects, where the layout table has 6 elements that:

• promote on a pointer with subobject index 0 do not need to access the layout table, as usual.

• promote on a pointer with subobject index 1, 2, and 5 will need to fetch one element from the

layout table (which is the element directly pointed by the subobject index).

• promote on a pointer with subobject index 3 and 4 will need to fetch two elements from the layout

table (which are (1) element 2, and (2) the element pointed by the subobject index).

In each run of the microbenchmark, the code will prepare one pointer for each combination of objects

and valid subobject indices, and the address part of the pointers are adjusted so that each of them is an

in-bound pointer for the corresponding subobject. For each pointer, the microbenchmark uses a tight

loop with three instructions: a decrement of the loop counter, a promote, and a loop-exit branch. The

code reads RISC-V’s cycle performance counter immediately before and after the loop to get the total

number of cycles elapsed for the loop.
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Figure 5.1: Promotion performance microbenchmark

Figure 5.1 shows the average cycle count for each loop iteration for each combination of objects and

subobject indices. The primary series along the horizontal direction is the object, and the secondary

series represent the subobject indices. The subobject index increases from 0 to 5 when going from left

to right on the figure. Each loop runs 1,000,000 iterations, and the measured cycle count is divided by

the number of loop iterations to compute the average cycle count. The result is averaged from 10 runs

of the microbenchmark. Because each loop body consists of 3 instructions, and the CVA6 processor is

single-issue, the cycle count per loop is always at least 3. In practice, all the computed average cycle

counts are slightly higher than the real cycle counts in integers because of intermittent OS activities. All

the code and metadata used by the loops will fit in the cache. There are the following two notes from

further analysis on the microbenchmark4:

4These conclusions are derived from observing the execution of the microbenchmark on the cycle-accurate emulator
generated by Verilator
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• The performance bottleneck in the baseline scenario is at the front end of the processor pipeline.

The abnormal 4-cycle iteration for subobject index 0 and 4 are caused by the instruction memory

layout as an implementation artifact. For these two cases, the loop-exit branch instruction is at

the end of a cache block in the instruction cache, and the cache needs an extra cycle to cancel the

request to the next block when the instruction fetch logic realizes that there is a branch that is

predicted to jump backward. This problem does not occur on other objects with metadata because

the promote operation is the bottleneck and the latency at the front end is hidden.

• The promote operation becomes the performance bottleneck in the loop body when it takes a

pointer from an instrumented object. In these cases (except in baseline where the promote is

single-cycle), the latency of promote equals to the average cycle count minus one cycle. The

branch prediction and speculative execution do not completely hide the latency because the register

renaming is not enabled and the issue logic needs an extra cycle to resolve the write-after-write

hazard on the destination register of promote.

As mentioned in Section 4.3.2, the memory load from the IFP unit is not pipelined, and each load has

3 cycles of latency and can at most load 16 bytes of metadata in each request. Therefore the empirical

results from Figure 5.1 match well with the implementation, which is first concluded as follows and then

explained in the rest of this section:

• A promote to a pointer using the global table scheme takes 4 cycles, with 1 cycle for fixed overhead

and 3 cycles for a metadata load;

• A promote to a pointer using the local offset scheme takes 5 cycles, with 2 cycles for the fixed

overhead and 3 cycles for a metadata load;

• A promote to a pointer using the subheap scheme takes 8 cycles, with 2 cycles for the fixed overhead

and 6 cycles for two metadata loads.

• The cost of a promote on layout table is (1) 3 cycles per element fetch and (2) one (or more) cycles

for each bound narrowing operations from the layout table.

Performance impacts from object metadata schemes. The cost of promote from each metadata

schemes can be found by computing the latency5 of promoting pointers to objects instrumented with

that scheme but with no layout table. Because no subobject bound narrowing is present due to lack of

layout table, the cycle count stays the same for different subobject indices.

All the handling logic for object metadata schemes need to make at least one metadata load request,

which has 3 cycles of latency. The IFP unit also has a one-cycle overhead to handle the instructions and

assemble the results. Therefore, all promotes on an object with metadata need at least 4 cycles in the

current implementation. Besides the cycles spent on metadata load, the extra fixed one cycle overhead

for the local offset scheme and the subheap scheme comes from the use of MAC; after the metadata is

fetched, the logic needs to wait until the MAC verification finishes. The subheap scheme is currently the

slowest because it both uses the MAC and needs to fetch 32 bytes of metadata which is larger than the

metadata of the other two schemes. Although its 32-byte metadata is contiguous in memory, the IFP

unit still has to make two un-pipelined requests to fetch the metadata. For future works, to improve the

5The latency equals to the average cycle count minus one, as explained in the earlier notes.
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performance of promote, one may optimize the implementation to pipeline the memory access or reduce

its latency and improve the design of the subheap scheme to shrink the metadata size.

Performance impacts from layout table usage. The performance impact from the layout table

and the subobject bound narrowing can be found by comparing the latency of promoting pointers from

objects instrumented with the same metadata scheme but one with the layout table is enabled and the

other disabled. As shown in Figure 5.1, except that the local offset scheme implementation can hide one

cycle of latency from layout table operations, the layout table incurs the same overhead on local offset

scheme and subheap scheme for the same subobject index as expected, therefore the discussion below

does not distinguish the “base” object metadata schemes that support the layout table.

As shown from the figure, the performance overhead from the layout table is highly dependent on

(1) the number of layout table elements fetched, and (2) the number of bound narrowing operations

replayed on the object bound. In the current implementation, each layout table element fetch takes 3

cycles, which is the same as other metadata loads. Then, as described in Section 4.3.2.2, each fetched

layout table element will be “decoded” into one or both of (1) a single-cycle struct member bound

narrowing in which only additions and subtractions are involved, and (2) a multi-cycle array element

bound narrowing where there is a division on the array element size. For the example in Figure 5.1,

the array element size for S.array (element #2) is 8, which is a power-of-two size6, therefore the array

element bound narrowing is also single-cycle. Therefore, for each non-zero subobject index, the layout

table imposes:

• a fixed 4-cycle latency when the subobject index is 1, 2, or 5; 3 cycles come from the layout table

element fetching and 1 cycle from the struct member bound narrowing operation.

• a fixed 9-cycle latency when the subobject index is 3 or 4. In addition to the bound narrowing to

#2, #3 and #4 need to (1) fetch one extra layout table element (3 cycles), (2) one array element

bound narrowing from the entire S.array (#2) to the bound of the array element (1 cycle), and

(3) one struct member bound narrowing from the array element to the struct member (1 cycle).

As shown from the previous discussions, the variance of imposed performance overhead from the

layout table is large, and the variance depends on many factors including array element type size and

the type (or subobject) hierarchy in the layout table. Therefore, one can expect that the evaluated

impact is different when evaluating the layout table on real programs.

5.3 Performance Evaluation

The evaluation in this section aims to answer the following questions: (1) what is the overall runtime

and memory overhead imposed by In-Fat Pointer; and (2) where is the imposed runtime overhead comes

from. In-Fat Pointer can impose runtime overhead due to the following reasons:

• Additional pointer checking and metadata update code being instrumented, which can be further

broken down into:

– promote instructions that are few but are slower than all other instructions because of the

memory loads and complex logic

6The divider can perform divisions on power-of-two divisors in a single cycle.
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– slightly more store instructions for object metadata maintenance

– other arithmetic-only instructions that increase the dynamic instruction count

• Additional register pressure because of instrumented checks and incomplete optimization support

in the implementation7.

• Additional cache pressure caused by accesses to in-memory metadata (for data cache) and addi-

tional instructions (for instruction cache)

Therefore, to understand the contribution of each factor of overhead, the following factors are mea-

sured or estimated:

• The slower performance of promote instruction

• The increase in register pressure and memory working set size

• The increase in instruction count

The following programs are selected to evaluate the runtime and memory overhead: (1) bzip2 [39]

1.0.8 compressing its own source code tarball, (2) 458.sjeng from SPEC2006 benchmark [18](short-

handed as sjeng in the text below) with reduced search depth and runtime, (3) CoreMark [16] with fixed

1000 iterations, and (4) WolfCrypt’s Diffie–Hellman benchmark [43] (short-handed as wolfcrypt-dh).

CoreMark is a popular benchmark for embedded systems, and it tests the performance of matrices and

linked lists, which are expected to have the performance results generalizable to real programs that use

arrays and other pointer-rich data structures. The remaining programs are selected to represent common

workloads including compression/decompression, artificial intelligence, and encryption/decryption. Each

program is run for at least three iterations and the average is taken when gathering the statistics. The

time -v command is used to execute the program, and the elapsed wall time and maximum resident set

size is used for runtime8 and memory usage.

To evaluate all of the metadata schemes, each program is compiled into three variants: (1) uninstru-

mented baseline, (2) instrumented version using wrapped allocator, and (3) instrumented version using

subheap allocator, and their runtime and memory consumption is compared to compute the overhead

data. To investigate the contributing factors of the runtime overhead, the experiment is extended to

(1) use hardware performance counters to measure the change in total dynamic instruction count and

executed load/store instruction count; (2) create the runtime library variant that enables a no-promote

mode in hardware introduced below, and run the instrumented programs linked against this runtime

library variant in addition to the normal one.

The no-promote hardware mode helps to isolate the performance impact caused by promote instruc-

tions from all the other factors. In the no-promote mode, whenever a promote instruction is executed,

the hardware populates the IFPR with an infinite bound in a single cycle and does not make any

memory access, making it equivalent (in cost) to a register move. Therefore the no-promote version of

instrumented programs will have the same memory footprint and instruction count (subject to small

7The current compiler implementation of In-Fat Pointer do not support rematerializing a pointer with pointer tag
from another pointer to the same object but different address. This includes pointers to local variables; they cannot be
rematerialized from stack pointers. Instrumented checks can introduce multiple versions of the same pointer. For example,
a single pointer may have an unchecked version for pointer comparison, and one or more checked versions (differentiated
by check sizes) for other uses.

8Note that the runtime overhead of CoreMark is retrieved from CoreMark’s own reporting output instead of time -v

because it runs the shortest time and the start-up overhead becomes non-negligible when time -v is used.
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variations) but reduced runtime overhead, and the reduction in runtime is then measured to compute

the contribution of promote instruction in the overall runtime overhead.

Note that all program versions run on the same modified OS and are linked to the IFP runtime

library, including the uninstrumented baseline programs. Additional experiments show that whether the

uninstrumented program runs on a modified OS or vanilla OS has a negligible impact on runtime or

memory consumption, and linking to the IFP runtime library incurs negligible runtime overhead but may

incur a small fixed memory overhead. The discussion on this fixed memory overhead is in Section 5.3.2

below.

Note that according to statistics from the hardware performance counters, no promote instruction

accessed the layout table during the evaluations. In other words, the performance result presented below

does not show the performance impact of layout tables. This is caused by the following two factors:

• The layout table is only accessed when promoting an interior pointer, which are pointers pointing to

a subobject inside the allocation. However, the evaluated programs usually either simply allocate

large arrays with no subobjects, or only pointers to the beginning of objects are saved and loaded

from memory (in which case the IFPR cannot be passed and a promote is needed). In-Fat Pointer

provides subobject-granularity protection even when layout tables are not accessed in these cases,

because the pointer bound is already exact after promote, and any subsequent pointer arithmetic

that triggers a bound narrowing will let the compiler narrow the object bound to the subobject

immediately.

• For dynamic memory allocations, three out of four benchmarks (except 458.sjeng) do not use

libc’s allocators directly. bzip2 uses function pointers to support replacing allocators. wolfcrypt

uses its own memory allocation wrappers to support both allocator callbacks and memory allo-

cation tracing and debugging. These behaviors stop the compiler from inferring the use type of

dynamically allocated objects and therefore no layout tables for these objects are created.

The author acknowledges that it is unclear from the current evaluation which factors contribute more to

the absence of layout table access. The support for custom allocation wrappers is left as future works.

5.3.1 Runtime Overhead

In this subsection, the experimental results are presented and explained first, then the analysis and

discussion on the overhead distribution are elaborated.
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Figure 5.2: Runtime overhead on evaluated applications.
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Table 5.1: Average runtime (in seconds) of evaluated applications

wolfcrypt-dh sjeng coremark bzip2
baseline 93.15 384.23 16.55 369.73
subheap 109.13 446.78 20.37 404.30
wrapped 107.77 444.40 18.89 402.63
subheap (no promote) 108.18 444.70 18.11 402.83
wrapped (no promote) 107.78 444.44 18.14 401.86

Figure 5.2 shows the runtime overhead of In-Fat Pointer on the selected programs, and Table 5.1 is

the original runtime data. The geo-mean runtime overhead for the wrapped allocator variant is 13.57%

and that of the subheap allocator is 16.37%. To better understand the decomposition of the runtime,

the dynamic instruction count statistics are presented next.

Table 5.2: Dynamic instruction counts and composition on evaluated applications

Total Instr Load Store IFP Total Promote Bound L/S
wolfcrypt-dh
baseline 3.257× 109 6.386× 108 2.576× 108 2.284× 104 0 2.284× 104

(19.609%) (7.909%) (< 0.001%) (< 0.001%)
subheap 3.742× 109 6.495× 108 2.660× 108 9.020× 108 2.565× 106 7.909× 106

(114.902%) (19.945%) (8.168%) (27.698%) (0.079%) (0.243%)
wrapped 3.697× 109 6.415× 108 2.626× 108 8.919× 108 2.517× 106 7.773× 106

(113.517%) (19.697%) (8.064%) (27.387%) (0.077%) (0.239%)
sjeng
baseline 5.743× 109 8.001× 108 7.880× 108 9.324× 104 0 9.324× 104

(13.931%) (13.720%) (0.002%) (0.002%)
subheap 6.089× 109 8.718× 108 8.639× 108 7.062× 108 2.263× 106 1.044× 108

(106.024%) (15.179%) (15.042%) (12.296%) (0.039%) (1.817%)
wrapped 6.088× 109 8.714× 108 8.636× 108 7.057× 108 2.176× 106 1.044× 108

(106.000%) (15.173%) (15.037%) (12.287%) (0.038%) (1.817%)
coremark
baseline 4.556× 108 6.732× 107 2.756× 107 3.992× 103 0 3.992× 103

(14.777%) (6.049%) (< 0.001%) (< 0.001%)
subheap 4.927× 108 7.142× 107 3.153× 107 6.392× 107 2.142× 107 3.026× 106

(108.159%) (15.677%) (6.922%) (14.031%) (4.701%) (0.664%)
wrapped 4.919× 108 7.120× 107 3.136× 107 6.392× 107 2.142× 107 3.025× 106

(107.968%) (15.629%) (6.884%) (14.031%) (4.701%) (0.664%)
bzip2
baseline 8.344× 109 1.565× 109 2.949× 108 9.035× 104 0 9.035× 104

(18.760%) (3.534%) (0.001%) (0.001%)
subheap 9.096× 109 1.592× 109 3.001× 108 2.103× 109 1.221× 107 1.706× 107

(109.014%) (19.076%) (3.597%) (25.198%) (0.146%) (0.204%)
wrapped 9.097× 109 1.592× 109 3.001× 108 2.103× 109 1.221× 107 1.706× 107

(109.017%) (19.076%) (3.596%) (25.198%) (0.146%) (0.204%)

Table 5.2 shows the dynamic instruction count gathered from the hardware performance counters

by the runtime library. The “IFP Total” column counts how many instructions introduced by In-Fat

Pointer is executed, including promote, IFPR bound load/store instructions (which is the “Bound L/S”

column in Table 5.2), and other IFP instructions that do not access memory and is not present in original

RISCV instruction set. The “Total Instr” column includes the count for all instructions, including IFP
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instructions. The “Load” and “Store” column counts the total number load and store instructions

being executed, including IFPR bound load/store instructions. In other words, a ldbnd instruction

will be counted in both the “Bound L/S” column and “Load” column, in addition to “Total Instr”

and “IFP Total” column. All the percentage values below the absolute instruction counts use the total

instruction count (“Total Instr”) of the baseline as the reference. Note that all these instruction counts

also include kernel activities in addition to the user-level code, therefore the baseline versions of the

evaluated programs also have the execution of bound load and store instructions counted during context

switches.
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Figure 5.3: Dynamic instruction count composition on evaluated applications. All numbers are percent-
age over baseline total instruction counts.

To better visualize the data from Table 5.2, A chart showing the overall instruction distribution is

in Figure 5.3 shows the overall distribution of dynamic instructions executed. Instruction counts from

Table 5.2 are normalized against the total number of instructions in the baseline version of each program,

therefore the cumulative value is the percentage increase in dynamic instruction count for each variant

compared against the baseline. The IFP instruction component from Figure 5.3 is further broken down

in Figure 5.4. Note that because IFP replaced pointer arithmetic instructions for pointers (that are

subject to checks) with new IFP instructions, the sum of dynamic instructions from the original RISC-V

ISA is less than 100%; their reduction results from the increase in dynamic counts of IFP instructions.

5.3.1.1 Runtime overhead from promote instructions

The performance of promote instruction can be compared by (1) comparing the promotion-enabled

version and no-promote version using the same allocator; and (2) comparing two promotion-enabled ver-

sion using different allocators. Besides the cost of promote instructions, the dynamic memory allocator

performance could also contribute to the overhead. However, as shown in Figure 5.2, the runtime over-
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Figure 5.4: IFP instruction dynamic count composition on evaluated applications.

head between subheap allocator variant and wrapped allocator variant in no-promote mode is less than

0.5%, therefore one can consider that the cost of promote is the dominating factor for the performance

difference for both comparison methods.

As shown in Figure 5.2, the difference in runtime overhead between the no-promote versions and the

corresponding original versions are approximately less than 1% for three out of four benchmarks, with

an exception on coremark where the difference is 13.68% for the subheap allocator variant and 4.52% for

the wrapped allocator variant. According to Table 5.2, 4.347% of total executed dynamic instructions

are promote instructions in instrumented coremark, while all remaining benchmark has < 0.2% promote

instructions, which explains the difference in runtime between promotion-enabled an no-promote versions

for these benchmarks. Therefore, 4.347% of promote instruction causes an additional (comparing with a

no-op) runtime overhead of approximately 13.68% for the subheap scheme and 4.52% for the other two

scheme because of the memory accesses and the promotion logic. Note that the overhead from coremark

may be close to the upper bound of performance overhead imposed by In-Fat Pointer; according to

Table 5.2, the ratio between regular load and promote is approximately 3.19 : 1, meaning that one load

among every 3.19 load is loading a pointer that gets promoted later on. No other evaluated programs

have this ratio smaller than 100 : 1.

5.3.1.2 Runtime overhead from other factors

Beside the promote instruction, the increased instruction count is the other significant factor in the

runtime overhead. As shown from Figure 5.3 and Table 5.2, the dynamic instruction count increase

ranges from 6.0% (for sjeng’s wrapped allocator variant) to 13.5% (for wolfcrypt-dh’s subheap allocator

variant). This instruction count increase is roughly in-line with the runtime overhead increase for both

wolfcrypt-dh and bzip2.

The missing gap between the runtime overhead (≈ 16%) and dynamic instruction count increase

(≈ 6%) on sjeng can be explained by the increased register pressure and cache footprint. sjeng

has the largest working set size among all evaluated programs, and is sensitive to changes in cache
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footprint, especially when the cache is as small as 32KB. Firstly, as shown from Table 5.2, among the

6% instruction increases, about 43% are loads and stores, which is likely caused by register spilling.

Next, from the hardware performance counters, the subheap allocator variant suffers 52.11% more data

cache misses and the wrapped allocator variant suffers 47.32% more data cache misses, and both of

them have about 37.08% more instruction cache misses. This increase is significantly higher than that

from other benchmarks; wolfcrypt-dh has the increase in data cache miss of approximately 22% for

both subheap allocator variant and wrapped allocator variant, and the rest two benchmarks have that

increase close to or much lower than the runtime overhead.

To reduce the overhead from instruction count increase and register pressure, the implementation

of In-Fat Pointer needs to (1) improve the optimization support for IFP constructs, and (2) explore

more aggressive compiler optimization techniques, including whole-program or link-time optimization.

These techniques may help the compiler to prove that more pointers are statically safe and therefore the

compiler can instrument fewer pointers and objects. In the current implementation, the graph-based

analysis and instrumentation do not exploit control flow information, and the (edge-based) pointer check

instrumentation placement is made by a heuristic. One of the possible future work is to combine the

control flow information into the dataflow graph to (1) statically optimize away more checks (e.g., the

second iteration over an array should be safe after the first iteration on the same array), and (2) place

the checks and pointer tag updates using better algorithms.

5.3.2 Memory Overhead

In this subsection, the memory usage of selected applications is analyzed. The results are from the

maximum resident set size reported by time -v command. There is only random fluctuation in memory

overhead for instrumented programs between the case when promotions are disabled and when they are

enabled, so only the result when promotions are enabled is present.
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Figure 5.5: Memory overhead on evaluated applications.

Table 5.3: Average memory consumption (in KB) of evaluated applications.

wolfcrypt-dh sjeng coremark bzip2
baseline 13024 719440 4592 32944
subheap 15253.33 719744 4848 34368
wrapped 13248 719632 4592 32992

Figure 5.5 and Table 5.3 shows the peak memory overhead of listed programs for both the wrapped

allocator version and the subheap allocator version. First of all, the wrapped allocator version incurs less
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than 2% additional memory overhead in all benchmarks, and the overhead drops when the baseline uses

more memory. The overhead mainly comprises the increased code size, register pressure (and therefore

stack size), as well as additional object metadata. Comparing with previous fat pointer schemes imposing

2× memory overhead[32] which can scale linearly with the program’s memory consumption, In-Fat

Pointer’s object metadata approach is more memory efficient, and the overhead scales sub-linearly with

the total memory usage. For the subheap allocator version, the larger memory overhead comparing with

the wrapped allocator version mainly comes from the fragmentation from the pre-allocation of blocks

in subheap allocator implementation, which is still bounded and becomes negligible when the program

uses more memory.

Note that all memory usage is collected when the IFP runtime library is statically linked into the

program, which incurs about 200KB of fixed memory overhead for sjeng and coremark but near-zero

overhead for wolfcrypt-dh and bzip2. First of all, if the baseline is changed to the program version

without the IFP library linked in, then only the memory overhead of coremark will increase to about

13.5% and 7.5% for the subheap allocator variant and wrapped allocator variant respectively because the

baseline use the least amount of memory, and all other benchmarks have the change less than 1%. The

overall memory overhead is still less than 18% in all cases. Secondly, this fixed overhead is an artifact of

the (memory-inefficient) implementation of the IFP runtime library instead of the fundamental memory

usage increase from In-Fat Pointer instrumentation. The size of the library can be reduced by simply

removing statistics gathering code, drop the --whole-archive linker option, or change the global table

from a global array to a dynamically allocated array, for example.

5.4 Hardware Overhead

To evaluate the hardware cost of the prototype implementation, the resource utilization and timing

reports from Vivado is analyzed. All hardware debug modules introduced by IFP implementation were

disabled before the synthesis when generating the reports. Only the usage inside the CVA6 module is

reported, which excludes all the other components from the SoC. While the exact resource usage varies

on each synthesis, the variation is usually less than 0.1%, so only the numbers of a single synthesis run

are presented. After the debugging logic is disabled, the modified CVA6 processor uses 59,261 LUTs and

32,545 FFs in total. Comparing with the vanilla CVA6 that uses 37,088 LUTs and 21,993 FFs, there is

a 59.78% increase in LUTs and 47.98% in FFs. Correspondingly, the critical path delay increased from

16.420ns to 18.590ns where all the increase is contributed by the extra routing delay9. Because in almost

all hierarchies the design consumes more LUTs than FFs, all the following area analyses use LUTs to

approximate the area cost.

Figure 5.6 shows the LUT usage decomposition at each stage of CVA6. While the usage breakdown

is not fully precise because the synthesis tool can perform cross-boundary optimizations, it still provides

insight on overhead distribution. The largest contributing factor of the LUT usage increase comes

from the new IFP unit in the execute stage (31.57%), followed by the change to the load-store unit

(15.36%), then the scoreboard (14.65%). The IFP unit and changes to the load-store unit are elaborated

in Section 4.3 and their high contribution to the LUT usage increase is expected. The growth in the

scoreboard likely comes from the increased writeback port count and the forwarding logic for pointer

bounds. The vanilla CVA6 core features a scoreboard with eight entries and four writeback ports that

9The critical path delay breakdown is available from the Vivado-generated synthesis reports.
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Figure 5.6: LUT usage increase in the modified processor.
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Figure 5.7: LUT usage breakdown for the IFP unit. Each data label contains the module name, the
LUT count, and the LUT usage percentage in the IFP unit.

have full operand forwarding paths for both integer and floating-point registers. The IFP implementation

added one writeback port for the IFP unit and replicated the forwarding logic for bounds. The remaining

usage increase in the issue stage comes from the additional bound registers. The small increase in the

cache subsystem comes from (1) one more read port to the load unit, and (2) the support for parallel

loads on the same cache block.

Figure 5.7 shows the LUT usage decomposition inside the IFP unit. The layout table walker is the

largest module in the IFP unit that uses 3059 LUTs in total, and its bound narrowing module alone is

using 1476 (48.25%) of layout table walker’s LUTs. The MAC computation unit is the second-largest

module in the IFP unit, and it is expected that a production-quality MAC computation unit will take

more overhead. Comparing with the global table scheme, the more complex object bound computation

and the use of MAC pushes up the overhead of the local offset scheme and that of the subheap scheme,

but their LUT usage is lower than the MAC computation and the layout table walker.
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Limitations

There are several limitations of the current design and implementation of In-Fat Pointer. Some limita-

tions are inherited from the tagged-pointer scheme, and some are the artifacts of the design or imple-

mentation.

6.1 Tagged Pointers

Tagged-pointer based schemes cannot guarantee the integrity of pointer tags on programs that exploit

low-level pointer representations. These programs may use the upper bits on the pointer for custom

data storage, conflicting with the pointer tag usage of defense schemes. In-Fat Pointer is not designed

to support these programs, and they may not execute correctly when instrumented by IFP.

Another problem is that tagged pointers on their own cannot ensure the integrity of pointer tags,

unless either a pointer integrity scheme is deployed, or the full memory safety and type safety is enforced.

While In-Fat Pointer stops spatial memory errors from corrupting pointers and their tags, temporal

memory errors (i.e., use-after-free) and type confusion can still corrupt application data, including the

data pointers. The future design of In-Fat Pointer may explore more optimized pointer tag bits allocation

to embed a MAC on the tag to detect corruption on pointer values and tags.

6.2 Object Metadata Schemes

While the three object metadata schemes are designed to be complementary, their current design does

not ensure full coverage for all possible objects that a program can allocate, and some design elements

impose limits on their coverage or efficiency. The global table scheme has a capacity limit on the

number of supported objects, therefore programs using too many global arrays can have some arrays not

protected from overflow. The runtime initialization of MAC on local offset scheme metadata prevents

their use on read-only global constant data. The design space for the subheap scheme is not fully

explored. For small allocations, it is challenging for a compiler alone to identify whether a dynamic

allocation is frequent enough or not so that the benefit of the subheap scheme’s metadata sharing can

show up, and the evaluation shows that its current design has much larger overhead than the local offset

scheme. For large allocations, the design would reserve so much virtual memory space that the system

virtual memory setting needs to be adjusted for it. The future design of In-Fat Pointer should redesign
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or propose workarounds for these problems.

6.3 Subobject Protection and Layout Tables

The type information in weakly-typed languages like C/C++ is not guaranteed to be reliable or avail-

able, and so does the subobject bound narrowing of In-Fat Pointer that depends on the availability

and accuracy of the allocated type. The compiler optimizations can cause the type information to be

inaccurate or missing. Programs using wrapper functions for dynamic allocation can prevent the com-

piler from knowing the use types of allocated objects when no whole-program or link-time optimization

techniques are used. Besides, the allocated type may not be statically solvable when the allocators are

called using function pointers. Comparing with traditional fat pointer schemes that only rely on the

actual use type of the object for bound narrowing, In-Fat Pointer does not always guarantee subobject-

granularity protection; in the worst case, the subobject-granularity protection is only guaranteed after

a bound narrowing is made.

The current design of the layout table does not support arbitrarily complex types. First of all, because

C/C++ programs can arbitrarily nest arrays of structs, the depth of the tree embedded in layout tables

with bound narrowing paths are unbounded. However, a hardware implementation will likely impose a

limit on the tree depth (and therefore the level of array-of-struct nesting in source C/C++ code) so that

the layout table elements can be fetched only once into the execution unit, therefore programs with more

nesting levels will not have full subobject-granularity protection. Secondly, the size of the layout table is

constrained by the width of the subobject index on the pointer, therefore types with too many subobjects

cannot be supported1. Future implementation of In-Fat Pointer may use aggressive program analysis

techniques to emit layout table elements that are only actually needed, instead of conservatively emit

all subobjects under the type. A study on application behavior for statistics on array-of-struct nesting

and the number of subobjects will also be helpful for tuning design parameters (e.g., bit assignments)

and guiding future design iteration of layout tables.

Because of the sequential fetching of layout table elements and bound narrowing operation replaying

necessary when handling array-of-struct nesting, the current layout table design also results in a large

variation in the latency for subobject bound narrowing. A future implementation may use better program

analysis techniques to opportunistically expand applicable arrays as structs to reduce the depth of array-

of-struct nesting.

1The current implementation can support layout tables with at most 256 elements for the subheap scheme and 64
elements for the local offset scheme.
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Conclusion

It remains an unsolved problem for spatial memory safety defenses to achieve low overhead, high com-

patibility, and fine-grained protection granularity at the same time. This thesis presents In-Fat Pointer,

a hardware-based tagged-pointer scheme as one more step toward solving the problem. Existing tagged-

pointer schemes using object metadata can achieve both low overhead and high compatibility with

hardware assistance, but they cannot enforce fine-grained pointer bounds. These schemes devote all tag

bits for object metadata lookup, leaving no space for per-pointer metadata that is necessary for subob-

ject bound enforcement. In-Fat Pointer improved the protection granularity to subobject bound by first

using three complementary object metadata schemes to spare precious pointer tag bits, and then propose

the layout table as the mechanism to utilize the spared pointer tag bits for subobject bound narrowing

after the object bound is retrieved. The evaluation shows that In-Fat Pointer is effective in enforcing

spatial memory safety, and it imposes performance overhead from 9% to 23% and memory overhead of

less than 18%. Later works can expand the idea of complementary metadata schemes for more efficient

metadata scheme specialization and re-purpose the saved pointer tag bits for other security policies.

7.1 Future works

The current design and implementation of In-Fat Pointer still need improvement to tackle the limitations

described in Section 6.

Improvement on the layout table. The current design of the layout table only support C/C++

structs with a limited number of elements. The current implementation also cannot handle deep nests

of arrays of structs. One of the future work is to move the compiler instrumentation to the link-

time optimization phase so that all unused layout table elements can be optimized away and only the

necessary elements are put into the table. In addition, the compiler may identify all pointers to deeply

nested subobjects, and the compiler may perform aggressive program transform (including using inline

fat pointers) around these pointers to avoid burdening the layout table when it can prove that the

transform does not break compatibility with legacy code.

Improvement on metadata schemes. The implementation of current object metadata schemes ex-

posed some unexpected performance impact and usage limitations. The subheap scheme implementation
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is significantly slower than using the local offset scheme with the global table scheme for dynamic allo-

cations. The current design does not provide an efficient scheme for protecting overflow (overread) on

constant global data. These issues will be addressed by a better exploration of the possible design space

of metadata schemes.

Language support. Current implementation of In-Fat Pointer only support C programs. However,

C++ involves language constructs that are hard to efficiently support in the current design, for example,

pointer to members, and pointer down-casting. In-Fat Pointer implementation will likely be extended

to support C++ programs in future iterations.
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