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ABSTRACT

Programming languages like C and C++ are not memory-safe be-

cause they provide programmers with low-level pointer manipu-

lation primitives. The incorrect use of these primitives can result

in bugs and security vulnerabilities: for example, spatial memory

safety errors can be caused by dereferencing pointers outside the

legitimate address range belonging to the corresponding object.

While a range of schemes to provide protection against these vul-

nerabilities have been proposed, they all suffer from the lack of one

or more of low performance overhead, compatibility with legacy

code, or comprehensive protection for all objects and subobjects.

We present In-Fat Pointer, the first hardware-assisted defense

that can achieve spatial memory safety at subobject granularity

while maintaining compatibility with legacy code and low over-

head. In-Fat Pointer improves the protection granularity of tagged-

pointer schemes using objectmetadata, which is efficient and binary-

compatible for object-bound spatial safety. Unlike previous work

that devotes all pointer tag bits to object metadata lookup, In-Fat

Pointer uses three complementary object metadata schemes to re-

duce the number pointer tag bits needed for metadata lookup, allow-

ing it to use the left-over bits, along with in-memory type metadata,

to refine the object bounds to subobject granularity. We show that

this approach provides practical protection of fine-grained spatial

memory safety.
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1 INTRODUCTION

Memory corruption vulnerabilities in programs written in non-

memory-safe programming languages like C and C++ have been

a research focus for more than a decade [40]. When a pointer is

dereferenced, errors, causing memory-safety violations, can result

in the unintended disclosure or corruption of memory. Such errors

are a powerful primitive for attackers to mount further attacks,

such as code reuse attacks [34] and data-only attacks [18]. Memory-

safety violations usually result from spatial memory errors, where

incorrect pointer arithmetic causes an address to point outside the

intended memory range when it is dereferenced.

To detect all spatial memory errors, the value of the pointer

must be checked against pointer bounds, which are metadata that

describes the memory range over which the pointer may safely

point [40]. Traditional fat-pointer schemes are able to maintain full,

fine-grained bounds, by either storing these bounds in a separate

memory region (i.e., out-of-band), which incurs 50% or higher per-

formance and memory overhead on average with high (sometimes

an order of magnitude) variance depending on the program [10, 29,

32]; or inline with the pointer, which changes the memory layout

and loses pointer-size compatibility with legacy code [42]. There-

fore, more recent work explores coarse-grained spatial protection

approaches [5, 24, 30, 36, 38], but must still trade-off protection

granularity, compatibility, and efficiency. As a result, none of these

approaches are able to achieve spatial protection at the same gran-

ularity as fat-pointers without losing compatibility or efficiency.

In this work, we propose In-Fat Pointer, a hardware-assisted spa-

tial memory defense that provides fine-grained protection on-par

with traditional fat-pointer schemes but preserves compatibility

and efficiency. To provide pointer-size compatibility with legacy

code without storing pointer metadata in a separate region, In-Fat

Pointer employs a tagged-pointer scheme, which uses the unused

upper bits (which we call the tag) on the pointer [24]. Because

the size of the tag (usually 16 bits or less) is too small to store full

metadata, In-Fat Pointer follows the approach used in previous

work [5, 14, 22, 30] which uses the tag to facilitate lookups to per-

object metadata stored in memory. However, previous work using

this approach alone can only provide object-granularity protec-

tion and cannot detect intra-object overflow as fat-pointer schemes

would. Considering the short code example in Listing 1. Such a

scheme may detect overflow from vulnerable array at Line 2 only

if the overflow corrupts memory outside of struct S, while a finer-

grained scheme providing subobject-granularity1 protection should

also detect intra-object overflow that corrupts the sensitive sub-

object at Line 3. To achieve this protection granularity, the pointer

1A subobject represents a C struct member, array, or any data field.
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1 struct S {

2 char vulnerable[12]; /* attacker can overflow */

3 char sensitive[12];

4 };

Listing 1: Simple Intra-object Overflow Example

bounds must be maintained as per-pointer metadata2 so that, for

example, when a pointer to struct S derives another pointer to

vulnerable, the bounds of the derived pointer can be narrowed

to exactly cover vulnerable without affecting the source pointer.

Therefore, In-Fat Pointer needs to find an efficient way to (1) com-

pactly represent the subobject bounds on pointer tags, and (2) save

pointer tag bits from object metadata lookup to be used for bounds

narrowing operations.

To address the two challenges, In-Fat Pointer utilizes two key

techniques. First, In-Fat Pointer efficiently narrows the object bounds

to that of a subobject by (1) identifying which subobject the nar-

rowed pointer points to using per-pointer metadata in the tag

and (2) using per-type metadata indexed by subobject to compute

the subobject bounds. Second, by designing multiple object meta-

data schemes with each scheme for one category of objects, In-Fat

Pointer can devote fewer bits to object metadata lookup (and there-

fore more bits for subobject information) without losing efficiency,

as opposed to previous approaches that devote all pointer tag bits

to object metadata lookup.

To the best of our knowledge, In-Fat Pointer is the first hardware-

based spatial memory defense using a tagged-pointer approach that

is able to protect against intra-object overflow while maintaining

the same pointer size as legacy code. We show that with these

approaches combined, In-Fat Pointer can provide spatial memory

safety comparable with fat pointer schemes while preserving com-

patibility and low overhead.

This paper makes the following contributions:

• We present the design and implementation of In-Fat Pointer,

a hardware-assisted tagged-pointer scheme that provides

subobject-granularity spatial memory protection. We de-

scribe how In-Fat Pointer uses hardware-software co-design

to enforce fine-grained spatial memory safety with binary

compatibility with legacy code and low overhead.

• We describe three complementary metadata schemes used

by In-Fat Pointer. We show that by designing separate object

metadata schemes for each category of objects, the three In-

Fat Pointer schemes reduce consumption of precious pointer

tag bits without losing efficiency.

• We describe the subobject bounds narrowing mechanism

that In-Fat Pointer uses to refine the object bounds to subob-

ject granularity during pointer bounds retrieval.

• We implement an In-Fat Pointer prototype on an FPGA. We

evaluate its ability to detect memory safety violations using

the Juliet test suite, and performance and memory overhead

against a set of application benchmarks.

2We use łper-pointer metadata" to refer to metadata on each pointer that can change
without affecting the metadata on other pointers. For example, if all pointers to the
same object must be associated with identical metadata, the metadata is per-object.

2 BACKGROUND AND RELATED WORK

Because pointer safety cannot always be determined at compile

time, all defenses enforcing spatial memory safety introduce ad-

ditional metadata and dynamic checks into the program to verify

that memory accesses are safe. Table 1 summarizes previous work

in this area. There is a large design space on possible metadata and

assertions, which results in varying protection granularity and limi-

tations, including loss of compatibility and dependence on hardware

or software features. We group the related work into (1) fat-pointer

schemes, (2) object-based schemes, (3) memory-based schemes, and

(4) tagged-pointer schemes in the table according to the subject

of introduced in-memory metadata and the use of tagged-pointer.

Note that while the use of tagged-pointer is orthogonal to the use

of in-memory metadata, all schemes using tagged-pointers in their

designs are considered tagged-pointer schemes in this section.

Because the only way to detect all spatial memory errors is to

associate pointer bounds to pointers and perform bounds check-

ing [40], and retrieving and maintaining pointer bounds tends

to contribute most to the cost of spatial safety enforcement [32],

when discussing related works that enforce object- or subobject-

granularity protection, we focus on the schemes used for pointer

bounds retrieval and maintenance.

2.1 Fat-Pointer Schemes

Traditional fat-pointer schemes maintain persistent3 per-pointer

bounds throughout the lifetime of a pointer, and then check the

pointer against the bounds when it is dereferenced. Such pointer-

based schemes can detect overflows at the subobject level: when a

pointer to an object derives a pointer to one of the subobjects, for

example, by taking the address of a struct member, the bounds for

the derived pointer can be narrowed to stop overflow that would

corrupt other struct members. To maintain the bounds (and addi-

tional metadata if any) with the pointer, the most straightforward

way is to store them along with the pointer itself [9, 42], thus in-

creasing the apparent size of the pointer. For example, CHERI [42]

extends each 64-bit pointer to a capability pointer, which includes

permissions and bounds information and is 256 bits in the worst

case. However, storing metadata with the pointer has two draw-

backs: (1) it increases memory overhead as each pointer is increased

in size, and (2) it creates binary incompatibility between the instru-

mented code and legacy code that makes assumptions about the

size of pointers. Another approach is to store all the metadata

in a shadow memory, where the scheme can use the address of a

pointer to compute the address of its metadata. For example, Hard-

Bound [10] manages pointer bounds in a direct-mapped shadow

memory that is logically twice the size as the address space, while

Intel MPX [32] manages them in a two-level directory structure to

relax the constraint on virtual address space layout. Unfortunately,

storing metadata separately impacts performance, as the locality

of the metadata with the pointer is lost and the shadow memory

address computation can be costly.

Per-pointer bounds can also be extended with additional meta-

data to enforce other memory-related security properties. Watch-

dogLite [28], Shakti-MS [9], and ALEXIA [21] can detect temporal

3The scheme stores and propagates the full pointer bounds along with the pointer
value.
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Table 1: Comparison between In-Fat Pointer and Related Works on Memory Safety.

(Hardware- or Software-based) defense Subject of introduced in-memory Spatial protection Lost Required

or software sanitizer [39] metadata for checking granularity1 compatibility2 feature3

Intel MPX [32] Pointer Subobject Ð S○

HardBound [10] Pointer Subobject Ð S○

WatchdogLite [28] Pointer Subobject Ð S○

SoftBound [29] Pointer Subobject Ð S○

CHERI [42] Pointer Subobject B○ S○ T○

Shakti-MS [9] Pointer + Object Subobject B○ Ð

ALEXIA [21] Pointer + Object Subobject B○ Ð

BaggyBound4 [1] [12] Object/None2 Object Ð S○/Ð2

PAriCheck [43] Object Object ś S○

AddressSanitizer [36] Memory Partial Ð S○

REST [38] Memory Partial Ð T○

Califorms [35] Memory Partial B○ S○ T○

Prober [26] None (page permissions only) Partial Ð Ð

Low-Fat Pointer [24] None2 Object Ð Ð

SMA [8] None2 Object Ð Ð

CUP [5] Object2 Object Ð Ð

FRAMER [30] Object2 Object Ð Ð

AOS [20] Object2 Object Ð Ð

EffectiveSan [14] Object2 Subobject Ð Ð

ARM MTE [2] Memory2 Partial Ð T○

In-Fat Pointer Object2 Subobject Ð Ð

2 The scheme uses tagged-pointers.
1 Whether the work can detect spatial memory errors at the bounds of the subobject (Subobject), at the bounds of the object (Object), or

the detection is conditional or probabilistic (Partial).
2 Whether the work increases pointer size and loses binary compatibility ( B○) or requires source code change ( S○)
3 Whether the work requires a shadow memory( S○) (can be either software-based or hardware-based) that either grows with the number

of metadata subjects or reserves a fixed percentage of memory in the virtual address space, or a hardware-based tagged memory( T○) [19]
4 BaggyBound describes (1) a 32-bit system design that uses shadow memory for in-memory bounds table, and (2) a 64-bit system

implementation that uses tagged-pointers to store bounds on pointer tags.

memory errors, for example, when a dangling pointer is derefer-

enced. They use a lock-and-key approach, where the metadata for

each pointer also carries a value as łkeyž that is required to match

with the łlockž value from per-object metadata when dereferencing.

2.2 Object-Based and Memory-Based Schemes

Object-based schemes maintain per-object metadata in memory,

either along with the objects they describe, or with a 1-to-1 map-

ping from the object [1, 12]. The per-object metadata is usually

immutable over the lifetime of the corresponding object and can

be efficiently shared among all pointers pointing to anywhere in

the same object. However, without per-pointer information, the

granularity of protection is limited to the object (or coarser) level.

To add per-pointer information, recent work uses pointer tags to

lookup in-memory object metadata, and these works are catego-

rized to tagged-pointer schemes described in Section 2.3 below.

In-Fat Pointer is able to achieve finer granularity protection by

associating a per-pointer subobject index with each pointer.

Memory-based schemes associate metadata at a fixed ratio with

application memory, and enforce łdigestedž security policies de-

rived from object allocations, types, or higher-level programming

language constructs [35, 36, 38]. AddressSanitizer [36] is a software

sanitizer that marks all memory containing live objects as valid

with one byte of shadow memory for every eight bytes in the ap-

plication memory, and catches all the access to invalid memory

regions. It also uses a quarantine zone that delays reuse of freed

memory locations to assist in catching some temporal memory

safety violations. REST [38] and Califorms [35] use hardware-based

taggedmemory [19] to blacklist memory that the application should

not access, and the hardware will trap any access to the blacklisted

memory rages. Instead of introducing metadata, Prober [26] pads

on-heap array allocations with guard pages to catch overflows us-

ing the existing page permission checks. While it is possible to use

heavy-weight metadata to enforce fine-grained protections (e.g.,

SDMP [11] assigns pointer-sized tags to each word in memory),

most work trades security for low overhead and therefore provides

incomplete protection [26, 35, 36, 38].
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Figure 1: Pointer Bounds Retrieval in Previous Tagged-

pointer Schemes using Object Metadata. The subobject

bounds narrowing is unique to EffectiveSan [14].

2.3 Tagged-Pointer Schemes

The top bits of a 64-bit pointer are often not used in 64-bit archi-

tectures due to physical limitations in addressable memory. These

unused bits can thus be used to store pointer metadata, known as a

tag. We refer to any scheme that makes use of pointer tags in its

design as a tagged-pointer scheme. Note that it is possible for a

software protection scheme to manipulate the virtual address space

layout to embed metadata in the used virtual address bits [13]Ðwe

also consider such schemes as tagged-pointer schemes.

Tagged-pointers open up newpossibilities for efficient and binary-

compatible memory safety enforcement because (1) they can intro-

duce per-pointer metadata without growing pointer size; and (2) the

pointer tag can be propagated along with the pointer value without

additional instructions to move them. For example, schemes may

encode the pointer bounds directly into the tags without in-memory

metadata [8, 13, 24]. Memory-based schemes can also use the tags

to express stronger security policies. ARM MTE [2] combines 4 bits

of a pointer tag with an in-memory tag to achieve probabilistic de-

tection of spatial and temporal memory errorsÐobjects are assigned

with a specific tag upon allocation, and all pointers derived from the

object will copy the object tag. Therefore a pointer dereference on

an object with a tag that doesn’t match the pointer tag is a memory

error.

More recent works use the pointer tag to lookup an object meta-

data in memory and retrieve the object bounds from the metadata

when a bounds check is needed, as shown in Figure 1. CUP [5]

stores all object bounds in a metadata table, and embed the table in-

dex into the pointer tag. FRAMER [30] is a generic object metadata

scheme that uses 16-bit pointer tags to lookup an object metadata

near the object. AOS [20] maintains all heap object bounds in a hash

table, and the ARM Pointer Authentication Codes [2] on pointers

are used as keys to access the hash table. EffectiveSan [14] uses

the software Low-Fat Pointer scheme [13] to lookup the object

metadata prepended to each object. However, these works need all

pointer tag bits for object metadata lookup, therefore they cannot

store mutable per-pointer metadata in the tags and can thus only

provide spatial safety at an object bound granularity. The only ex-

ception is EffectiveSan [14], which can narrow the bounds to the

current subobject by using in-memory type metadata and taking

the use type of the pointer and the address offset as inputs.

Inspired by the approach of EffectiveSan, In-Fat Pointer also

uses a two-stage process for bounds retrieval that involves an ob-

ject metadata lookup and a subobject narrowing stage, but is able

Object Metadata
Schemes

Subobject 
Bounds 
Narrowing

Scheme
Metadata

Object
Metadata

Subobject
Index

Layout
Table

Object
Bounds

Subobject
Bounds

Pointer

Figure 2: Pointer Bounds Retrieval in In-Fat Pointer

to achieve more efficient subobject narrowing through the use of

pointer-tag bits freed up by the use of multiple object-specific meta-

data lookup schemes. In addition, EffectiveSan depends on accurate

type information when retrieving bounds to perform narrowing,

so the narrowing is not possible for a void pointer. In-Fat Pointer’s

mechanism does not rely on types during bounds retrieval and thus

does not suffer from this limitation.

3 IN-FAT POINTER’S APPROACH

The goal of In-Fat Pointer (short for łInternal Fat Pointerž) is to

provide hardware-assisted fine-grained spatial memory protection

on par with fat pointers without either compromising compatibility

with legacy code, as inline fat pointers would (e.g., CHERI [42]),

or suffering high overhead from per-pointer metadata, as shadow-

space-based fat pointers would (e.g., Intel MPX [32]). To do this,

In-Fat Pointer uses a novel pointer bounds retrieval mechanism

shown in Figure 2, which uses tagged-pointers to accelerate lookups

of in-memory metadata and narrows the object bounds to the most

accurate subobject bounds. First, In-Fat Pointer uses three separate

object metadata schemes that optimize the tagged pointer space

usage so that additional bits can be used to track the dynamic in-

formation required for precise subobject bounds checking. Second,

In-Fat Pointer keeps track of the currently pointed subobject by

maintaining the subobject index field on pointer tags so that the

subobject bounds for precise checking can be computed by narrow-

ing the bounds from the object metadata. The retrieved bounds are

saved in registers and used for bounds checking as traditional fat

pointers. In-Fat Pointer is designed for a 64-bit architecture with at

least 16 bits available for pointer tags.

Protection Scope and Guarantees. Due to the use of pointer tags

as metadata storage, In-Fat Pointer assumes that the application

will preserve those pointer tag bits, therefore it does not support

applications that modify these bits.

For applications that use pointers as a black box, In-Fat Pointer

guarantees that all spatial memory errors will generate exceptions

when application source code is available for instrumentation. In-

Fat Pointer requires protected binaries to have been compiled with

additional instrumentation. For applications that link with legacy,

uninstrumented binary libraries, In-Fat Pointer provides no guar-

antee on overflow of objects allocated in the legacy code, or spatial

errors that occur in the legacy code.

227



In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject Granularity Protection ASPLOS ’21, April 19–23, 2021, Virtual, USA

Object Allocation

Pointer

Dereference

Arithmetic

Bounds Retrieval

Pointer Check

Object Metadata Initialization

Pointer Tag Update

Object Deallocation Object Metadata Cleanup

Figure 3: Operations Instrumented by In-Fat Pointer. In-Fat

Pointer introduce new instructions for hardware-assisted

pointer checks, bounds retrieval (promote), and pointer tag

updates.

In-Fat Pointer supports pointer casting with void pointers. In

the presence of incorrect casts on a pointer, In-Fat Pointer may not

be able to correctly determine which subobject is being addressed.

As a result, In-Fat Pointer guarantees the absence of spatial errors

only at the level of the object bounds if a pointer does not have

the correct type during bounds narrowing. Otherwise, the same

guarantee is provided at the level of the subobject bounds.

In-Fat Pointer supports multi-threaded programs. The intro-

duced object metadata is read-only after initialized during object

allocation, therefore these metadata can be safely accessed from

multiple threads. However, In-Fat Pointer cannot detect temporal

memory errors (i.e., use-after-free) beyond those that invalidate

object metadata.

3.1 Overview

In-Fat Pointer uses compiler instrumentation to protect the applica-

tion code, and introduces new hardware instructions to accelerate

commonly instrumented operations. Figure 3 shows the high-level

compiler instrumentation performed by In-Fat Pointer. The mod-

ified compiler first identifies all pointers whose safety cannot be

statically determined and instruments these for runtime checking.

In addition, the compiler also adds hardware provided promote

instructions to retrieve the bounds when they are needed. The

promote instruction implements the entire object metadata lookup

and subobject bounds narrowing procedure shown in Figure 2. To

support the bounds retrieval, the compiler instruments object alloca-

tion and deallocation to initialize and clean up the object metadata.

A modified dynamic memory allocator also assists in instrumenting

heap-allocated objects. Finally, the compiler instruments pointer

arithmetic with pointer tag update to ensure correct pointer tags

for bounds retrieval. In addition to bounds retrieval, the hardware

also provides new instructions for bounds checking and pointer

tag update that help reduce instruction and performance overhead.

To illustrate, consider the code example shown in Listing 2. IFP-

prefixed functions represent high-level instrumented code frag-

ments. Inside function main(), the compiler will instrument boo

because its use cannot be statically determined to be safeÐa pointer

derived from boo (&boo.value) is saved to a global variable gv_ptr

and used in another function. Therefore, the compiler will (1) in-

strument the allocation of boo to create object metadata for it; and

1 struct Boo {

2 int value;

3 int dummy;

4 };

5

6 // layout table generation

7 const uint64_t __IFP_LT_...[] = {...};

8

9 struct Boo* gv_ptr;

10 void foo();

11

12 int main(void) {

13 struct Boo boo;

14 // object metadata init and pointer tag setup

15 struct Boo *ptr = IFP_Register(

16 /* base addr, size */&boo, sizeof(boo),

17 /* layout table */__IFP_LT_...

18 );

19 // gv_ptr = &boo.value;

20 // pointer arithmetic with tag update

21 gv_ptr = IFP_GEP(ptr, offsetof(struct Boo, value), ...);

22 foo();

23 IFP_Deregister(ptr);// object metadata cleanup

24 return 0;

25 }

26

27 void foo() {

28 // *gv_ptr = 1;

29 // pointer checking involving bounds retrieval

30 int *ptr = IFP_Check(gv_ptr, sizeof(int));

31 *ptr = 1;

32 }

Listing 2: Code Example of In-Fat Pointer Instrumentation.

(2) return a pointer to boo that has the correct pointer tag. This in-

strumentation is represented by IFP_Register() at line 15, whose

return value is used to initialize ptr. Because the type information

(struct Boo) is available, the instrumentation to object boo also

triggers the generation of the in-memory type metadata (which we

call layout table) for struct Boo at the compile time, and the infor-

mation of the layout table is also included in the object metadata.

The object metadata will be cleared by IFP_Deregister(ptr) at

line 23 when boo goes out of scope. To ensure that the tag on the

pointer &boo.value assigned to gv_ptr is up-to-date, the compiler

replaces the pointer arithmetic of &boo.value with IFP_GEP() at

line 21 and uses its result as the assigned value to gv_ptr. The

hardware provides specialized instructions to update the pointer

tag along with the address computation. Finally, inside function

foo(), the compiler cannot guarantee that gv_ptr is safe to derefer-

ence, therefore the pointer is checked with IFP_Check() at line 30,

which involves a promote that retrieve the bounds and a subse-

quent bounds check. In-Fat Pointer uses poison bits on pointer tag

to mark the validity of a pointer, and any check failure is indi-

cated by setting the poison bits on the output pointer (also referred

to as poisoning the pointer). The poison bits indicate whether a

pointer is valid or not, and instructions that access memory check

these bits. A memory fetch using a poisoned pointer generates an

exception. Therefore, the returned pointer from IFP_Check() is

dereferenced directly. We discuss poison bits in greater detail in

Section 3.2. Whenever a pointer needs checking, the compiler will

insert a new promote instruction is used to recompute the pointer

bounds from available metadata, and then the bounds can be used

for later checking.
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Tag Address

  Scheme Metadata
 +Subobject Index
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Figure 4: Pointer Tag Bits Decomposition. The numbers

above each field represent bit widths of the fields.

To facilitate reuse of retrieved pointer bounds and reduce the

number of promotes being executed, In-Fat Pointer introduces In-

Fat Pointer Registers (IFPRs), which are a set of logical fat-pointer

registers that hold bounds information corresponding to pointers

stored in general-purpose registers. All new instructions introduced

by In-Fat Pointer use IFPRs as storage for pointer bounds; for exam-

ple, the promote instruction takes a 64-bit pointer as an operand

and produces an IFPR output (i.e., łpromotes" a 64-bit pointer to a

fat pointer), and IFP_Check() checks a pointer against the bounds

stored in the corresponding IFPR. Thus, In-Fat Pointer conceptually

uses fat pointers under-the-hood but maintains binary compatibil-

ity as these fat pointers are never visible to the application. As a

result, the fat pointers are łinternalž to our designÐhence the name

łInternal Fat Pointerž.

3.2 Promotion and Pointer Tag Fields

In-Fat Pointer embeds multiple metadata fields on the pointer tags

to store necessary metadata for promote operations, as shown in

Figure 4. The top 16 bits of each pointer are used as tags. The lowest

12 tag bits are used for object metadata lookup and subobject bounds

narrowing, and these two fields are referred to as scheme metadata

and subobject index. As mentioned in the introduction and shown

in Figure 2, In-Fat Pointer introduces multiple object metadata

schemes for object metadata lookup. Eachmetadata scheme encodes

distinct metadata on the pointer tag and in the object metadata, and

they do not use the same width for scheme metadata. To distinguish

object metadata schemes that the pointer (and therefore the pointed

object) is using, each pointer tag includes two bits as scheme selector

to indicate the object metadata scheme in use. The bit pattern that

conforms to the canonical addressing (i.e., 00 for pointers in user-

level code) are reserved for legacy pointers, which are pointers that

carry nometadata. These pointers are created by legacy code or used

for statically-safe objects in instrumented code. The top two bits of

each tag are poison bits that encode whether the pointer is in one

of three states: (1) valid, meaning that it points within the bounds;

(2) invalid, meaning that the pointer has encountered irrecoverable

errors (e.g., invalid object metadata, or indexing into a struct after

a failed bounds check) and cannot be dereferenced again; and (3)

out-of-bounds but recoverable, which is any other state, notably

off-by-one4. All standard load and store instructions check the

poison bits and will trap if the poison bit state is anything other

than valid, allowing In-Fat Pointer to provide partial protection

for legacy code. Poison bits are updated each time an operation

changes the value of the underlying pointer, or when a bounds

check fails.

4C legally permits pointers to points one byte beyond the object’s upper bound

promote Start

Pointer
Invalid?

Poisoned
IFPR

Y

Has Metadata?

IFPR with
Bounds Cleared

N

N (Legacy Pointer)

Bounds
Retrieval

Metadata 
Invalid

IFPR with
Retrieved Bounds

Success

Y

M+I

P

S

Figure 5: Overview of Promote Operation. Grey boxes rep-

resent pointer tag fields in Figure 4 involved in the promote

operation. The bounds retrieval is presented in Figure 2.

In-Fat Pointer introduces a promote instruction to drive the

bounds retrieval procedure, as shown in Figure 5. First, promote

will complete without retrieving any bounds if the poison bits on

the pointer tag indicate the pointer is invalid. As we shall see, some

object metadata schemes depend on the pointer value to perform

a metadata lookup, therefore retrieving metadata with an invalid

pointer value may generate an unexpected exception or introduce

false positives if the promoted pointer is never dereferenced. If the

pointer is not invalid, In-Fat Pointer checks the scheme selector field

to see if the pointer contains metadataÐlegacy pointers will have

bounds retrieval bypassed, and they will have the bounds cleared

and are not subject to bounds checking. Finally, the hardware starts

the bounds retrieval shown in Figure 2. It first uses the scheme

selector bits from the pointer tag to dispatch the object metadata

lookup and object bounds retrieval to corresponding logic. If the

object metadata includes layout table information and the pointer

is pointing to a subobject (indicated by a non-zero subobject index),

then subobject bounds narrowing is performed after the object

bounds are retrieved. In this procedure, the promote hardware

will fetch metadata from memory, and any generated exception

(e.g., page faults) will stop the bounds retrieval and the exception is

reported as generated from the promote instruction. If anymetadata

is successfully fetched but found invalid, the bounds retrieval is

terminated and the output IFPR will be poisoned.

We now present the object metadata schemes and the object

metadata lookup in Section 3.3 below. The subobject bounds nar-

rowing is described in Section 3.4.

3.3 Object Metadata Schemes

In-Fat Pointer introduces three complementary metadata schemes,

each of which is designed to suit a category of objects. By having

separate schemes, In-Fat Pointer can make assumptions on the

objects each scheme would serve and is able to make better use

of the limited pointer tag bits to reduce the overhead of lookup.

Table 2 compares the three schemes on the imposed constraints

and the intended use scenario.

Each lookup scheme retrieves object metadata, which contains

(1) the base address and size of the object for bounds checking, (2) a

pointer to a layout table which describes the size and placement of

subobjects for pointer bounds narrowing, and optionally (3) a MAC
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Table 2: Object Metadata Schemes Comparison.

Cons1 Use scenario

Local Offset Scheme - S - Small Objects, Local Variables

Subheap Scheme B - - Heap-allocated Objects

Global Table Scheme - - C Global Arrays, Fallback

1 Whether the scheme impose constraints on a metric:

• The scheme require control on object base address (B)

• The scheme has a limit on maximum object size (S)

• The scheme has a limit on number of objects supported (C)

Padding

Metadata

Granule SizePointer

M

+

Granule 
Offset

Current 
Address

Object

Figure 6: Local Offset Scheme

to protect the integrity of the metadata. Because the metadata is

stored in memory and may be vulnerable to modification by legacy

code or due to temporal memory errors, the MAC, which is checked

during promote, is an additional security measure to detect tam-

pering of metadata. In our prototype, the object metadata in each

scheme uses different encodings to omit redundant information.

Storing the layout table as a pointer allows our prototype to store

one layout able for all objects of the same type as they will all have

the same layout. We now describe the three metadata schemes.

3.3.1 Local Offset Scheme. The local offset scheme is designed

for lightweight compiler instrumentation on small objects, espe-

cially local variables. Figure 6 provides an illustration of the local

offset scheme. The object metadata is appended to each object,

and both the object and metadata base address is aligned to an

implementation-defined granule. The pointer tag contains an off-

set field, which represents the offset from the current address to

metadata in granules. Thus, the promote operation retrieves the

metadata by adding the address with granule offset and retrieving

the metadata. When the address is not granule-aligned, the lower

bits are truncated. The local offset scheme also contains a subobject

index field in the tag. When pointer arithmetic moves the pointer

to a subobject, the instrumented instructions will update both the

granule offset and the subobject index. Whereas it is possible to

put the metadata at the beginning of an object, placing it at the end

means that pointers are usable by legacy code as they still point

to the object as opposed to the metadata. Because the metadata

address is known from the granule offset, knowing the size is suffi-

cient to derive the object base address. In our prototype, the local

offset scheme’s object metadata are 128 bits divided into 16 bits for

the object size, a 64-bit pointer to the layout table for the object

type, and a 48-bit MAC.

The advantage of the local offset scheme is that it has no con-

straints on the object placement, and is thus suitable for global,

heap-allocated, and stack-allocated objects. The main disadvantage

is that it places a limit on the size of the objects it can handle, which

Metadata

Object Size Slot Size

...

2N -sized Block

Metadata Offset

Object
Pointer

(N, Metadata Offset)

M

Control Registers

Index

Figure 7: Subheap Scheme. The dashed box represents an im-

plementation defined function that maps assigned tag bits

to memory block size and metadata offset.

is constrained by the size of the granule and the offset field in the

tag. A larger granule will result in fragmentation, while a smaller

granule results in a smaller maximum object size. The tag bits are

shared between the object field and the subobject index, so while

increasing the object field allows larger objects, it decreases the

number of subobjects that can be supported. In our prototype, we

use 6 of the 12 bits for the offset, the other 6 bits for the subobject

index, and a granule of 16 bytes. Therefore, the implementation

can support objects up to (26 − 1) × 16 = 1008 bytes in size and

object types with at most 26 = 64 elements in the layout table. We

expect that most of the objects are smaller than the imposed size

limit [7, 45].

3.3.2 Subheap Scheme. The subheap scheme intends to be imple-

mented by dynamic memory allocators that group objects with

the same sizes or types (e.g., Slab allocator [4]). As shown from

Figure 7, the subheap scheme places objects inside power-of-2-sized

and aligned memory blocks, where all objects inside the same block

share the same copy of metadata in the memory block. The memory

allocator will guarantee that only objects having the same size and

type (and therefore identical metadata) would be placed inside the

same block. Each block contains an array of slots where each slot

stores a single object, and the slot has a size constrained to be effi-

cient for hardware to perform division (e.g., power of two or fixed

integer multiple of power of two). Besides the layout table informa-

tion, the common metadata in each block encodes the layout of the

slot array, including the start and end offset of the slot array, the

size of a slot, and the object size. In the current implementation, the

size of the common metadata in each block is 32 bytes. To locate the

metadata given a pointer to one of the objects inside the block, the

hardware still needs to know the block size and the offset from the

block base address to the common metadata base address. In our

prototype, we dedicate 16 control registers to store this information.

The pointer tag bits in the subheap scheme thus only need to store

an index of the control register being used. Thus our prototype

uses 4 bits to select the control register, and the remaining 8 bits

are used to store a subobject index.

Because the subheap scheme constrains objects to be allocated

in the same subheap as other objects of the same size, it is not

appropriate for stack-allocated objects. However, unlike the local
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Figure 8: Global Table Scheme

offset scheme, it has no constraints on object size and can support

a larger number of subobjects.

3.3.3 Global Table Scheme. The global table scheme is designed to

handle objects that cannot use the previous two metadata schemes,

for example, global variables that are too large to use the local offset

scheme. As shown in Figure 8, it stores all object metadata inside

a global table whose base address is stored in a control register.

Whenever an object needs to be registered, an empty row in the

table is chosen to store the metadata, and the table index is stored

in the pointer tag. When the pointer bounds are requested, the

hardware simply indexes into the table to retrieve the metadata.

The number of objects that can use the global table scheme is

limited by the size of the table, which is limited by the size of the

index stored in the pointer tag. In our prototype, we allocate all 12

bits for the index, and thus objects using the global table scheme

cannot narrow pointer bounds in promote. The size of each row in

the global table is 16 bytes.

3.4 Layout Table

In-Fat Pointer uses a structure called a layout table to encode the

relationship between nested objects so that the correct bounds for

subobjects can be calculated during bounds-narrowing operations.

Consider the example given in Figure 9. The code example shows

struct S, which contains several elements as well as an array

of nested structs. Each (sub-)object is given a number (i.e., 0 for

struct S, 1 for S.v1, etc...), which indicates the element that ob-

ject or subobject occupies in the layout table. Figure 9b illustrates

the structure as a logical tree, which is flattened and stored as an

array of entries in the layout table. Each element contains the tuple

{𝑝𝑎𝑟𝑒𝑛𝑡, 𝑏𝑎𝑠𝑒, 𝑏𝑜𝑢𝑛𝑑, 𝑠𝑖𝑧𝑒}, where the base and bound is the bounds

of the subobject represented as offsets from the base address of the

parent subobject. For example, for S.array, which corresponds to

element #2, 𝑝𝑎𝑟𝑒𝑛𝑡 would be pointing to element #0, 𝑏𝑎𝑠𝑒 would be

the offset of the array field from the base of element #0, struct S,

𝑏𝑜𝑢𝑛𝑑 would be the upper bound of the S.array, and 𝑠𝑖𝑧𝑒 would be

the size of each element in the array (i.e., sizeof(struct Nested

Ty)). Note that the number of elements in S.array is not explicitly

recorded, but can be computed by evaluating 𝑏𝑜𝑢𝑛𝑑−𝑏𝑎𝑠𝑒
𝑠𝑖𝑧𝑒

.

The compiler instrumentation will update the subobject index to

follow changes of the currently pointed subobject. When a pointer

is set to point to a subobject, the bounds retrieved by promote is

narrowed by incrementing the pointer’s subobject index to point

to the appropriate layout table element, thus updating the lower

base and upper bound the pointer can legally point to.

The layout table design optimizes subobject bounds narrowing

for common struct nesting. If a type hierarchy only contains struct

members or arrays of elementary type, then it can be flattened such

1 struct S { // 0: struct S

2 int v1; // 1: S.v1

3 struct NestedTy {

4 int v3; // 3: S.array [].v3

5 int v4; // 4: S.array [].v4

6 } array [2]; // 2: S.array

7 int v5; // 5: S.v5

8 };

(a) Code Example

0 [0, 24), size = 24 S

1 [0, 4), size = 4 S.v1

2 [4, 20), size = 8 S.array

3 [0, 4), size = 4

4 [4, 8), size = 4

5 [20, 24), size = 4 S.v5

S.array[].v3

S.array[].v4

[<base>, <bound>), size = <element size>

<parent>

(b) Generated Layout Table. The top part shows the
fields in each layout table element.

3 4 3 4

21 5

0

Address Increase Direction

Bounds Narrowing Order 
+ Parenting Relationship

Layout Table Element 
Fetching Order

(c) Memory View and Operation Orders

Figure 9: Layout Table Example

that all subobject bounds can be computed by indexing into the

layout table. Consider the element for S.v1 and S.v5 (element 1

and 5) from Figure 9; their bounds are represented as offsets from

struct S (element 0), which corresponds to the object bounds.

Therefore, when narrowing the bounds of a pointer to element

S.v1, the subobject bounds can be computed by adding the offsets

retrieved from the layout table element to the object base address.

For array-of-struct nesting, the subobjects bounds under the

nesting are represented as offsets from the parent, which does not

correspond to the object bounds. Therefore, the hardware needs to

compute the bounds for the parent (sub-)object before child subob-

jects. In this case, the subobject bounds narrowing is essentially a

recursive procedure: to solve the bounds of the current subobject

given the subobject index, the hardware will (1) fetch the layout

table element to identify the parent element, (2) recursively solve

the parent bounds, and (3) narrow the parent bounds according

to the fetched element to get the current subobject bounds, as

shown in Figure 9c. The base case of recursion is element 0, whose

bounds are the object bounds and are known when the narrow-

ing starts. If a pointer to S.array[1].v3 (which corresponds to

element 3) is promoted, for example, the hardware will first fetch
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the layout table elements for S.array[].v3 (element 3) and then

its parent, which is S.array[] (element 2). Because the parent of

S.array[] is struct S (element 0), which is the base case, the

bounds are the object bounds. Then, the hardware narrows the

bounds to S.array[] first, compute the base address of the array

element for the subobject (S.array[1]), and finally add the offset

from element 3 to the base address of S.array[1] to obtain the

bounds for S.array[1].v3. While the subobject bounds narrowing

in this scenario can be costly, we expect this cost to be rarely paid

because pointers to subobjects under array-of-struct nesting tend

to be derived from another pointer to the parent (sub-)object, and

the derived pointer can obtain the bounds statically without using

promote instruction in this case. The compiler instrumentation

can hoist promotes so that only pointers not derived from another

pointer (e.g., just loaded from memory) need promote to obtain the

bounds, therefore it is rare to promote pointers to subobjects under

deep array-of-struct nesting.

The design of the layout table and subobject index has a number

of benefits. First, the subobject index does not need to be updated

when performing pointer arithmetic on an array, for example, a

for loop that traverses S.array using pointers. Because all array

elements are represented by the single layout table element, no

instruction is needed to update the subobject index in such loops,

which helps reduce the instrumentation overhead. Second, the

layout table is efficient for common subobject bounds narrowing

because of the simple indexing with the subobject index from the

pointer tags. Finally, the layout table is memory-efficient because

all objects of the same type can share a single table, as mentioned

earlier.

4 IMPLEMENTATION

In this section, we present the prototype implementation on 64-bit

RISC-V architecture. We implemented the hardware prototype of In-

Fat Pointer on CVA6 [44], an open-source 64-bit RISC-V processor

core with a single-issue in-order pipeline implementing RV64IMAC

features. We modified the RISC-V Linux port from the PULP plat-

form [33] (based on Linux kernel 5.1.0-rc7) for the operating system

support. The compiler instrumentation is implemented in Clang/L-

LVM [25] 10.0.0. We also link in a runtime library to initialize the

additional states and support the metadata schemes.

4.1 ISA Extension and Hardware Support

Table 3 lists the essential instructions introduced by In-Fat Pointer.

Our In-Fat Pointer implementation introduces one bounds regis-

ter for each of the 32 general-purpose registers (GPRs), and each

(GPR and bounds) register pair is treated as a logical IFPR. Each

bounds register is 96 bits (48×2 bits) in size, and can be loaded or

stored with ldbnd or stbnd instructions. The promote instruction

encapsulates the bounds retrieval operations, and the compiler will

instrument themwhen it cannot statically determine the bounds for

a pointer. If the object a pointer points to is known, or the bounds

of a pointer need to be narrowed to a specific size, the compiler

will instrument ifpbnd instructions to set the bounds to the known

size. When the pointer needs to drop the associated bounds, for

example, when the pointer will be stored to heap memory, In-Fat

Pointer instruments ifpextract to łdemotež the IFPR into GPR,

Table 3: Core Instructions from In-Fat Pointer

Mnemonic Description

promote pointer bounds retrieval

ifpmac MAC computation

ldbnd load bounds from memory

stbnd store bounds to memory

ifpbnd create pointer bounds with given size

ifpadd address computation and tag update

ifpidx subobject index update

ifpchk (bounds) access size check

ifpextract2 extract fields from IFPR / demote

ifpmd2 pointer tags manipulation

2 Multiple variants of the instruction exists.

which is essentially a truncation but will also update the poison

bits if the pointer is (wildly) out-of-bounds and the exact bounds

cannot be retrieved. The ifpadd instruction is used to implement

address computations, for example when indexing into an array or

a struct. If the code is indexing into a struct, besides the address

computation, the compiler will also instrument ifpidx to update

the subobject index on the pointer tag, and instrument ifpbnd to

narrow the pointer bounds if needed. In-Fat Pointer implements

bounds checking as an access size check, which checks both the

current address against the lower bound and the address plus a size

against the upper bound. To reduce the instruction overhead from

pointer checks instrumentation, In-Fat Pointer can check a pointer

either explicitly by instrumenting ifpchk instructions, or implicitly

by using a subset of registers as the address operand of loads and

stores. The implicit size checks are explained in Section 4.1.1 below.

In addition, promote fuses a size check and ifpadd will update the

poison bits when the address computation result is out of bounds.

To reduce the instruction overhead from object allocation instru-

mentation, In-Fat Pointer provides ifpmac for MAC generation and

ifpmd for pointer tags setup when instrumenting object allocations.

The prototype implementation introduces a new execution unit,

IFP unit, to the execute stage of the processor pipeline. The IFP unit

implements the promote and ifpmac instructions. The load-store

unit from CVA6 is modified to (1) implement ldbnd and stbnd

instructions, (2) perform implicit size checks and poison bits checks

on address operands, and (3) serve metadata load requests from the

IFP unit. The remaining instructions in Table 3 are implemented in

the integer ALU and take a single cycle to execute.

4.1.1 Implicit Checking. In-Fat Pointer implementation selects a

subset of IFPRs (referred to as bounds-checked IFPRs) to perform

implicit bounds checking to reduce the instruction overhead. When

a RISC-V load or store takes a GPR from the selected IFPRs as the

address operand, the instruction issue logic will read the bounds

associated with the pointer, and the load-store unit will check the

bounds for the dereference. In this way, when the application code

contains a loop that iterates over an array, In-Fat Pointer can incur

no overhead on bounds checking by allocating the pointer loop

variable into a bounds-checked IFPR. However, to prevent unin-

strumented callee from accidentally picking up bounds from an

instrumented caller when dereferencing pointers in callee-saved
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registers, the implicit bounds-checking should only be enabled

when the bounds are caller-saved. Therefore, the In-Fat Pointer

implementation apply implicit bounds checking for caller-saved

registers. Bounds checking on other registers still require ifpchk

instructions.

4.1.2 Calling Convention. In-Fat Pointer implementation extends

the RISC-V calling convention to apply the same caller-callee saving

and argument passing rules on GPRs to the bounds registers. Each

function will save and restore all clobbered callee-saved registers,

including both the bounds registers and the GPRs. In addition, if

pointers are passed as function arguments or return values, the

bounds should be passed in the corresponding bounds registers.

This allows In-Fat Pointer to pass pointer bounds across functions

more efficiently, without performing full promotion for all pointer

arguments and return values. This property is also significant for

our implementation to provide subobject granularity protection

when there is no layout table for the object, because the bounds

can be inherited from previous bounds narrowing operations. How-

ever, without additional measures, the pointer bounds may not

match with the pointer value when there are calls between unin-

strumented and instrumented code. For example, when the calling

convention uses a register for both a call argument and the return

value, an instrumented caller may obtain wrong bounds of a pointer

returned from the uninstrumented callee; the callee will not update

the bounds and the resulting bounds likely come from a function

argument that the caller passed in. To address this problem, In-Fat

Pointer introduces implicit bounds clearing; when a GPR involved

in an argument or return value passing is modified by an existing

instruction from RISC-V (i.e., not introduced by this work), the as-

sociated bounds register is automatically cleared by the hardware.

Using this approach, the legacy binary either leaves the register

value intact, in which case the bounds register still contains the

correct bounds, or modifies the register using an existing instruc-

tion, which clears the bounds register. The instrumented code will

therefore never obtain invalid bounds.

Because RISC-V has a single standard calling convention, the

implementation currently enables implicit bounds checking and

clearing on all caller-saved registers. For an architecture with mul-

tiple calling conventions, one possible implementation is to intro-

duce a control register to encode which registers to enable implicit

bounds checking and clearing. For applications that mix calling

conventions in a single process, the selected set can be the union of

caller-saved registers; this may result in callee-saved GPRs to pair

with caller-saved bounds registers, but the compatibility can be

preserved. If a pointer argument is passed in memory, the prototype

implementation will demote the pointer and drop the bounds before

saving the pointer to memory, and promote the loaded pointer after

loading it back. We leave binary-compatible bounds-passing for

in-memory arguments as future work.

4.2 Software Support

The In-Fat Pointer prototype implementation modifies the software

stack from the operating system to the applications. First of all, the

OS kernel is modified to save and restore additional registers when

entering and leaving kernel mode, as well as ignoring pointer tags

(but not poison bits) when checking pointers from user space. Next,

the implementation introduces a runtime library to (1) provide

allocator functions for heap allocations, (2) initialize the In-Fat

Pointer environment at application startup, and (3) manage the

global metadata table from the global table scheme. Lastly, the

modified compiler is used to analyze and instrument the programs.

4.2.1 Dynamic Memory Allocators. To evaluate In-Fat Pointer with

dynamic memory allocators that may not support subheap scheme,

we implemented two allocators in the runtime library: (1) a wrapped

allocator on top of libc’s malloc() and free() which uses the

local offset scheme if possible and falls back to the global table

scheme; and (2) a subheap allocator implemented as a pool alloca-

tor on top of a buddy allocator, which uses the subheap scheme.

The wrapped allocator transparently over-allocates memory for ob-

jects when using the local offset scheme, and allows us to evaluate

the impact on existing allocators that cannot support the subheap

scheme. The subheap allocator implementation, however, intends

to model state-of-the-art scalable memory allocators [15, 23, 27]

modified to support the subheap scheme.

To utilize the provided allocator functions, during compiler in-

strumentation, all malloc(), free(), and other allocator calls in

the source programs are rewritten to call the counterparts from

the runtime library. For malloc()-like allocation functions, extra

information (e.g., layout table metadata) is passed as additional

arguments to the allocator. The runtime library guarantees that

the pointers returned from the allocation functions (e.g., malloc())

have the tags properly initialized. The prototype implementation

uses a compiler option to select which allocator to use for all such

allocator function calls. However, we note that it is possible to

use both allocators simultaneously and the runtime library can

dynamically select allocators and metadata schemes. We leave such

exploration as future work.

4.2.2 Local and Global Objects Instrumentation. For local objects,

the compiler will instrument metadata setup and cleanup code into

the functions they are declared. The compiler will prefer the local

offset scheme if the object is within the size limit, and fall back to

the global table scheme otherwise. The runtime library provides

functions to register and deregister the objects for the global table

scheme, and the compiler will instrument calls to these library

functions if the global table scheme is used.

For each global objects requiring instrumentation, the compiler

will create a łgetptrž function in the program, and this function is

called when the application needs to obtain the pointer with tag. It

will initialize the object metadata once in its first invocation, and

simply return the pointer in subsequent calls. The compiler will cre-

ate stub code in source files that only contains the declaration of the

object, and create complete code in the source file the object is de-

fined. The compiler will set the linkage so that the getptr function

from the source file defining the object is prioritized during linking.

Therefore, the stub version of getptr will only be used when the

object is defined in an uninstrumented source file. Although getting

a pointer to the global variable would involve a function call, it is

only needed for code that makes the pointer escape, e.g., storing

the address of the object to memory. Referencing global variables

by name, for example, is not affected by the instrumentation.
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5 EVALUATION

We evaluate In-Fat Pointer (1) functionally by testing whether In-

Fat Pointer can successfully catch spatial memory errors at runtime,

(2) by measuring the performance and memory overhead of bench-

marks and real workloads, and (3) by estimating hardware area

overhead from our prototype implementation.

We used Xilinx Vivado 2018.2 to synthesize our modified CVA6

on a Digilent Genesys 2 FPGA development board, which has a

Kintex-7 XC7K325T-2FFG900C FPGA chip and 1GB of DDR3 RAM.

The processor runs at a fixed frequency of 50MHz. We run all

experiments with /proc/sys/vm/overcommit_memory set to 1 to

accommodate the subheap allocator implementation.

5.1 Functional Evaluation

To evaluate the correctness of In-Fat Pointer, we ran the NIST Juliet

test suite 1.3 for C/C++ [31]. There are 64,099 total test cases in

the Juliet test suite, where each test case is a program with both

good and vulnerable code fragments, and the main() function calls

the good code first, then the vulnerable code. We chose programs

under the category of buffer overflow (stack-based and heap-based),

underwrite, overread, and underread, which features out-of-bounds

memory access that In-Fat Pointer intends to catch. Among the total

of 16,572 test cases in the selected categories, we excluded all 6,484

C++ test cases because our prototype currently does not support

C++. For the remaining 10,088 test cases, we excluded those that

have external dependencies (e.g., requiring network connections,

files, or input from stdin), and those that only run on Windows,

leaving 9,328 test cases. We found that at least 182 test cases only

exhibit spatial errors when a randomly generated value falls into

specific ranges in the first round of experiments, so we modified

the random number generation function to generate specific val-

ues according to an environment variable so that these programs

exhibit spatial errors at least once when multiple runs with differ-

ent environment variable values are used. After the adjustment,

among all the 9,328 test cases, we found that 2,672 of them either

have the spatial error triggered in uninstrumented libc, or do

not involve spatial errors on our test environment because they

either require special (non-zero) initial value in uninitialized mem-

ory or are only vulnerable on a 32-bit system. Among the rest

6,656 test cases, there are 1,084 of them have their spatial error

optimized away by the compiler, leaving 5,572 valid test cases for

In-Fat Pointer. We ran all 5,572 vulnerable and non-vulnerable

test cases on our In-Fat Pointer prototype and found that In-Fat

Pointer successfully detected all vulnerabilities while passing all

non-vulnerable cases. While all intra-object overflow test cases

have the overflow optimized away by the compiler and therefore

excluded from the evaluation, the result validates our prototype for

object-granularity protection, which increases our confidence of

correctly implemented subobject-granularity protection.

5.2 Application Evaluation

To show that In-Fat Pointer is a practical approach for spatial mem-

ory safety defense, we run all programs from Olden [6], four pro-

grams (anagram, ft, ks, and yacr2) from PtrDist [3], and the fol-

lowing selected programs: (1) bzip2 [37] 1.0.8 compressing its own

source code tarball, (2) 458.sjeng from SPEC2006 benchmark [17]

with reduced search depth and runtime, (3) CoreMark [16], and (4)

WolfCrypt’s DiffieśHellman benchmark [41]. These four programs

are selected because they cover common application domains and

can run on our prototype with limited resources and complete in a

reasonable time. We modified yacr2’s file parsing code to embed

input data into the program to circumvent an implementation bug.

PtrDist’s bc is excluded because In-Fat Pointer detects the over-read

from glibc’s strlen() in its instrumented versions5.

To measure the runtime overhead from the promote instruction,

we implement a version of In-Fat Pointer we call no-promote. No-

promote is identical to the standard In-Fat Pointer prototype except

that promote treats all pointers as legacy pointers and do not per-

form any metadata access, therefore promote has the same cost as

a nop. By comparing the performance of no-promote with the stan-

dard version of In-Fat Pointer, we can then isolate the performance

impact of the promote instruction. We note that no-promote has

no difference in memory overhead and has essentially identical

memory usage as the standard version.

Our experiments show that uninstrumented programs have no

observable change in runtime or memory consumption when run-

ning on modified Linux or vanilla Linux, so all our analysis below

uses uninstrumented programs running on modified Linux as a

baseline. All reported overheads are normalized to the baseline

results.

5.2.1 Instrumentation Statistics. Table 4 lists the statistics on object

instrumentation, promote, and the total dynamic instruction counts.

The results involving layout table and subobject index usage are

collected from the subheap allocator versions of the programs. The

local offset scheme is used for all local objects and most of the

global objects, except one global object from sjeng and three from

bzip2 using the global table scheme. The metadata scheme for each

heap-allocated object depends on the used allocator. Therefore, the

metadata scheme usage of each program version can be computed

from the object instrumentation statistics. The subheap allocator

versions have 5% geo-mean dynamic instruction increase and the

wrapped allocator versions have a 14% increase. The difference

results from the performance difference of the dynamic memory

allocator which is explained in Section 5.2.2 below.

In our experiments, In-Fat Pointer provides the same protection

granularity as traditional fat pointers in 16 out of 18 programs

except for CoreMark and bzip2. Most of the promotes only need

to retrieve object bounds; among the 18 programs, only CoreMark,

bzip2, and health contain promote of pointers to subobjects6 (29%,

50%, and less than 1% of promote instructions respectively), and

our results indicate that all subobject bounds narrowing in health

are successful while all narrowing in CoreMark and bzip2 fail be-

cause the object metadata does not contain layout table information,

and the bounds are coarsened to the object granularity. We found

that CoreMark, bzip2, and wolfcrypt use custom wrapper functions

for memory allocation, and both bzip2 and wolfcrypt use function

pointers to invoke memory allocation functions. Our compiler in-

strumentation therefore cannot deduct the allocated type and create

5The strlen() implementation makes word-sized (64-bit) read for word-aligned
strings, including short strings allocated with less than 8 bytes of memory.
6These promote instructions take a pointer operand with non-zero subobject index.
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Table 4: Dynamic Event Counts on Object Instrumentation, Promotion, and Instructions Executed

Benchmark Global objects1 Local objects1 Heap objects1 Valid promote2 Dynamic instruction counts

# Object % LT # Object % LT # Object % LT # promote % Total Baseline Subheap Wrapped

bh 0 1.24 × 107, 100% 6.15 × 103, 33% 4.89 × 106 (99%) 1.11 × 109 1.21× 1.21×

bisort 0 0 1.31 × 105 1.53 × 107 (55%) 3.38 × 108 1.04× 1.14×

em3d 0 0 1.60 × 104 3.25 × 106 (≈ 100%) 2.38 × 108 1.11× 1.11×

health 0 0 1.73 × 105, < 1% 2.44 × 107 (94%) 2.02 × 108 1.10× 1.32×

mst 0 0 838, < 1% 9.15 × 106 (78%) 1.78 × 108 1.12× 1.11×

perimeter 0 0 1.40 × 106 1.95 × 107 (82%) 1.03 × 109 0.80× 1.11×

power 0 0 1.83 × 104, 9% 1.08 × 106 (100%) 1.54 × 109 1.00× 1.00×

treeadd 0 4, 100% 2.10 × 106 2.10 × 106 (50%) 8.22 × 108 0.61× 1.21×

tsp 0 0 1.31 × 105 1.04 × 107 (99%) 3.37 × 108 1.00× 1.09×

voronoi 0 1.67 × 103, 100% 3.28 × 104, < 1% 4.34 × 106 (44%) 3.29 × 108 1.04× 1.07×

anagram 3, 33% 1, 100% 314, ≈ 100% 2.37 × 105 (41%) 2.01 × 107 1.18× 1.18×

ft 0 1 9.01 × 104, < 1% 2.27 × 108 (≈ 100%) 1.50 × 109 1.22× 1.28×

ks 4 0 2.01 × 103 6.67 × 108 (79%) 4.20 × 109 1.21× 1.21×

yacr2 0 0 85, 2% 1.97 × 106 (≈ 100%) 2.02 × 108 1.16× 1.16×

wolfcrypt-dh 1, 100% 592, 89% 8.34 × 103 2.51 × 106 (≈ 100%) 3.25 × 109 1.14× 1.13×

sjeng 5 4.69 × 106, < 1% 4 2.08 × 106 (26%) 5.68 × 109 1.06× 1.06×

coremark 2, 100% 2, 50% 1 2.12 × 107 (98%) 4.53 × 108 1.08× 1.08×

bzip2 4, 25% 9, 33% 11 9.07 × 106 (74%) 8.31 × 109 1.09× 1.09×

1 Each cell contains (1) the number of objects instrumented, and (2) percentage of object metadata which includes layout table metadata. If

no layout table is used, the zero is omitted.
2 Each cell contains (1) the number of promote not bypassing object metadata lookup are executed, and (2) their ratio within all promote.

layout tables for these allocations. We leave support for allocation

wrappers as future work.

Another observation is that more than 20% of promote instruc-

tions executed on average have NULL or legacy pointers as input.

The approach used by In-Fat Pointer can perform better than tra-

ditional fat pointers in such scenarios because In-Fat Pointer can

bypass the bounds retrieval for legacy or NULL pointers while tra-

ditional fat pointers cannot. Table 4 lists the statistics on promote

that access object metadata in the Valid promote column. The ra-

tio of NULL and legacy pointers operands depend on the program.

In bisort, health, perimeter, treeadd, ks, and CoreMark, almost all

promote bypassing metadata lookup encountered a NULL pointer.

In voronoi, anagram, sjeng, and bzip2, almost all such promotes

encounter pointers from legacy code. Among 23% of promotes that

bypass metadata lookup in mst, 60% encounter a legacy pointer

and 40% encounter a NULL pointer. In our experiments, these legacy

pointers mostly come from the uninstrumented libc. For example,

the source code of anagram contains multiple calls to isalpha()

in loops, and each of them compiles to a call to __ctype_b_loc()

that return a double pointer to a character traits table, a dereference

on the double pointer followed by a promote on the result pointer,

an array indexing that load the trait of the character, and a bitfield

test on the trait. The instrumented promote will always get legacy

pointer operands. We leave better support for libc functions and

reduction of unnecessary promotes for future work.

We also found that almost all valid promotes retrieve bounds for

pointers to heap-allocated objects; only CoreMark and sjeng has

negligible (less than 1%) promote for local or global objects. This

shows that passing pointer bounds through function arguments

and return values is effective at reducing the number of executed

promotes. The following discussion will also emphasize more on

heap-allocated objects than local or global objects.

5.2.2 Performance Overhead. Figure 10 shows the normalized run-

time overhead for all programs. The subheap allocator versions

incur about 12% geo-mean overhead, and the wrapped allocator

versions incur 24% overhead. These overheads are lower than the re-

ported values from software-only FRAMER (223%) and the hardware-

based Intel MPX (50%).

First of all, our subheap allocator implementation is more ef-

ficient in handling frequent dynamic allocations, especially the

allocations of objects with the same size and type, than the al-

locator from glibc. Therefore, the subheap allocator versions of

both perimeter and treeadd outperform the baseline because they

perform a lot of dynamic allocations as shown in Table 4 and the

performance gain from the allocator exceeds the instrumentation

overhead.

For the rest of the programs, the largest contributing factor of the

overhead are promote instructions. Figure 11 shows the counts of

new instructions introduced by In-Fat Pointer including promote.

The instruction counts are normalized against the baseline instruc-

tion counts in Table 4. The wrapped allocator versions of health

and ft have the highest overhead (81% and 93% respectively), and

as shown in the figure, promotes make up more than 10% of the

instruction overhead introduced by In-Fat Pointer. The baseline

of the two programs suffer from cache thrashing; they have ap-

proximately one L1 data cache miss in every 8 and 6 instructions

executed, respectively. In this case, the metadata sharing in the

subheap scheme reduces the memory footprint of the metadata

and results in fewer cache misses. The wrapped allocator version
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from In-Fat Pointer

increases L1 data cache misses by 93% and 96%, while the sub-

heap allocator version increases cache misses by 26% and ≈ 0%,

respectively. However, when the metadata can fit in the cache, the

subheap scheme is slower than the other two schemes because of

the larger metadata and unpipelined metadata fetching from the IFP

unit. For example, ks has 17% promotes in the dynamic instruction

count, and its subheap allocator version is slower than the wrapped

allocator version.We also note that C programswritten for resource-

constrained environments tend to make fewer dynamic memory

allocations and therefore cannot benefit from the metadata sharing

of the subheap scheme. For example, CoreMark only performs a

single dynamic allocation and builds all data structures inside the

allocated memory. It has about 5% promotes among all instructions

executed, and the overhead is 24% for the subheap allocator version

and 15% for the wrapped allocator version.

Although promote instructions are slow, they contribute to less

than 2% of total executed instructions in 10 out of 18 benchmarks. As

shown in Figure 11, In-Fat Pointer also instrumentsmany arithmetic

instructions that update the pointer tags and bounds or maintain

object metadata. We expect future work to use better compiler

optimizations including whole-program analysis to optimize away

more pointer checks and object instrumentations to reduce the

overhead.

5.2.3 Memory Overhead. Figure 12 shows the normalized memory

overhead (maximum resident size reported by time -v) for both

the wrapped allocator version and the subheap allocator version

of the programs. Three programs (ks, yacr2, and CoreMark) are

excluded in the figure because they use less than 6MB of memory

in all versions and time -v reports no difference in maximum

resident size. The geo-mean overhead from the rest of the programs
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80%
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Figure 12: Memory Overhead of Applicable Benchmarks

is −6% for the subheap allocator version and 21% for the wrapped

allocator version. The overhead from the wrapped allocator version

is comparable with FRAMER [30] and CHERI [42], is much lower

than Intel MPX’s 1.9× to 2.1× [32].

Comparing with the allocator from glibc, the subheap allocator

reduces the memory footprint in 6 of the 15 benchmarks. These

benchmarks allocate objects individually (i.e., malloc(sizeof(T))),

therefore the subheap allocator implementation can tightly pack

these objects without per-object allocation metadata as the allo-

cator from glibc would. On the opposite, em3d contains many

array allocations for structs (i.e., malloc(num*sizeof(T))), and

the subheap allocator must allocate arrays with different sizes to

different memory blocks, resulting in the highest memory overhead

among these benchmarks.

5.2.4 Performance Prediction on ASIC Implementation. We may

take several factors into account when trying to extrapolate the

performance of our FPGA prototype to an ASIC implementation.

First, the CVA6 core that our In-Fat Pointer prototype is based on

is a simple single, in-order issue processor with relatively small

caches. Second, the clock speed of our FPGA core is much slower

than an ASIC compared to the speed of memory. As shown in

Figure 11, in some of the programs, promote instructions are rare

and most of the dynamic instructions introduced by In-Fat Pointer

are arithmetic instructions that do not access memory. An out-of-

order, superscalar processor may thus be able to hide the costs of

the additional In-Fat Pointer instructions better thus having lower

overhead than our prototype. However, there are programs that

use pointers heavily and more promote instructions are executed

than other arithmetic instructions introduced by In-Fat Pointer. The
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Figure 13: LUT Increase in the Modified Processor

overhead will therefore also be application dependent, as data de-

pendencies (especially on pointer values) may still limit the amount

of instruction-level parallelism, and promote instructions may in-

crease the load-to-use latency of pointers. We expect the relatively

slower memory as compared to processor clock speed to have min-

imal impact, as In-Fat Pointer does not affect caches, and an ASIC

implementation will likely have larger caches.

5.3 Hardware Cost Evaluation

To evaluate the hardware cost of our prototype implementation, we

analyzed the resource utilization reports from Vivado. Although

the resource utilization on FPGA is not a reliable prediction for chip

area in ASIC implementations, it reflects the relative logic complex-

ity of introduced hardware changes and shows possible trade-offs

among hardware area cost, memory safety protection features, and

performance. In addition, the FPGA resource utilization is relevant

for embedded systems using soft-core processors synthesized on

FPGAs.

While the vanilla CVA6 processor uses 37,088 LUTs and 21,993

FFs, our modified code uses 59,261 LUTs and 32,545 FFs in total,

which is about 60% increase in LUTs and 48% in FFs. Because in

almost all hierarchies the design consumes more LUTs than FFs, all

the following area analyses use LUTs to approximate the area cost.

Figure 13 shows the LUT usage decomposition at each pipeline

stage of CVA6. Among all the pipeline stages, about 62% of the

overall utilization increase comes from the execute stage, where

the IFP unit and the load-store unit contributes most to the increase

(38% and 19% respectively). The usage increase in load-store unit

mainly comes from the widened buffers and logic to implement

bounds load and store. The 29% usage increase in the issue stage

comes from the bounds registers and their operand forwarding

logic, and an additional writeback port from the IFP unit. The rest

of the changes, including data bandwidth improvement to the data

cache, additional control registers and performance counters, and

instruction decoding logic incurs less than 10% increase. The usage

increase from the IFP unit is 38%. Therefore, if a system using a 64-

bit soft-core processor wants to implement IFP support but at the

same time limit the area overhead below 30%, the implementation

should consider avoiding implementing additional bounds regis-

ters and redesign the instruction set, because the bounds registers

contribute more LUT usage increase than the IFP unit.

In the IFP unit, the layout table walker uses 3,059 LUTs, which

is 36% of LUTs in the IFP unit. In comparison, the logic for all three

object metadata schemes uses 2,501 (30%) LUTs. The layout table

walker is the most complex component in the processor modifi-

cation. In the prototype, it has 1,030 lines of SystemVerilog code,

while the three object metadata schemes have 676 lines of code in

total. Most of the complexity arises from the support for array-of-

struct nesting, in which case the layout table walker needs complex

state machines and multi-cycle division logic. Therefore, if a soft-

core-based system is concerned about performance but wants to

reduce area, the IFP implementation may simplify or drop support

for layout table and rely on bounds narrowing in application code

for fine-grained spatial protection.

6 CONCLUSION

In this paper we present In-Fat Pointer, a hardware-based tagged-

pointer scheme that can provide spatial memory safety guarantee

at subobject bound granularity without breaking compatibility with

legacy code. We show that multiple object metadata schemes can

reduce both the demand of pointer tag bits and the cost of object

metadata lookup, and the spared tag bits can be used to assist

subobject bound recomputation with the help of per-type layout

table. We implemented and evaluated In-Fat Pointer on RISC-V

architecture.

In the future, In-Fat Pointer can be improvedwith better compiler

analysis and optimization to reduce the performance overhead and

support more complex programs with full coverage. The design

parameter selection of In-Fat Pointer metadata schemes will also

benefit from a better knowledge of application behaviors. We also

look towards better metadata scheme designs that can make more

efficient use of pointer tag bits and the object metadata.
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A ARTIFACT APPENDIX

A.1 Abstract

The artifact mainly contains the source code for (1) the modified

CVA6 processor, (2) the modified Clang/LLVM compiler, (3) the

modified Linux kernel, (4) the runtime library for supporting In-Fat

Pointer instrumentation, and (5) patches and configuration files for

Ariane-SDK and its RISC-V GNU toolchain to generate the bootable

Linux image and provide the linker and glibc for the Clang/LLVM

toolchain. Unfortnately, we could not make the artifact publicly

available.

A.2 Artifact Check-List (Meta-Information)
• Program: Benchmarks used in Section 5.2

• Compilation: Modified Clang/LLVM compiler

• Run-time environment: Modified RISC-V 64-bit Linux

• Hardware: Digilent Genesys 2 FPGA Board

• Metrics: Runtime andMemoryOverhead reported by time -v

• Output: Terminal Logs that can be parsed to produce Figure 10

and 12

• How much disk space required (approximately)?: 70-120GB
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• Howmuch time is needed to prepareworkflow (approximately)?:

6-12 hours

• Howmuch time is needed to complete experiments (approx-

imately)?: 14+ hours

• Publicly available?: No

A.3 Description

FPGA BoardHost Machine

NFS (Ethernet)

Terminal (USB-UART)

SD Card

Bootable Image
Vivado

Bitstream

CVA6
SoC

Build Environment

Application Binary

Figure 14: Overview of Prototype Setup
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Figure 15: Software Build Procedure

Figure 14 shows the general setup of the prototype implementa-

tion. A build environment is configured to prepare the application

binaries and the bootable Linux image. The image is written to an

SD card for use by the FPGA system. We use the Digilent Genesys

2 FPGA board for the prototype system, and the bitstream is gener-

ated from the CVA6 SoC with the modified processor with Xilinx

Vivado 2018.2. A host machine is physically connected to the FPGA

to communicate with the system. We used the USB UART serial

port for the terminal and NFS over Ethernet for file sharing.

Figure 15 shows how the application binaries are built in the build

environment. The runtime library is first compiled and archived

into a static library, and then linked into all instrumented programs.

We use the modified Clang/LLVM compiler to cross-compile all

source files to RISC-V object code, including the runtime library. We

then use the RISC-V GNU toolchain from the patched Ariane-SDK7

for linking. To compile and instrument applications with minimal

change to the normal build procedure, our implementation includes

wrapper scripts as drop-in replacements to CC for Makefiles and

configure scripts.

A.3.1 How to Access. We provided reviewers with a docker image

containing the cross-compilation toolchains, and remote access to

our machine connected with the FPGA board. This artifact is not

publicly available; please contact the authors if access is desired.

7The upstream Ariane-SDK is available at https://github.com/pulp-platform/ariane-
sdk. The Ariane processor was renamed to CVA6 around the time of publication.

A.3.2 Hardware Dependencies. A Digilent Genesys 2 FPGA board

is required to run the experiments. A Linux-capable host machine

with at least one USB port and one Ethernet port is needed to

communicate with the FPGA system.

A.3.3 Software Dependencies. Xilinx Vivado 2018.2 is needed to

synthesize the SoC and generate the FPGA bitstream. Vivado must

have a license for synthesizing and implementing on the Xilinx

XC7K325T-2FFG900C FPGA device (which is from the Kintex-7

series). Note that Vivado’s free WebPACK edition does not contain

these licenses.

A.4 Installation

The setup of the build environment and the creation of application

binaries and the Linux image consists of the following steps:

• Patch Ariane-SDK and install the RISC-V cross-compilation

toolchain

• Patch Linux kernel and build the boot image with the Ariane-

SDK

• Build the Clang/LLVM cross-compilation toolchain

• Build the runtime library

• Build the application binaries

We have scripts for most of the steps, including the configuration

and building of the applications.

The FPGA bitstream generation procedure of the modified CVA6

is identical to the procedure in upstream CVA6 repository8. During

experiments, we run the following command on the host machine

to open a terminal to the FPGA system after the cables are correctly

connected:

$ sudo screen -L /dev/ttyUSB0 115200

In all evaluations, the execution statistics of the programs are

printed to the terminal, and -L option of the screen command will

save the logs to a text file. We use scripts to parse all the terminal

logs and generate spreadsheet files.

A.5 Experiment Workflow

The performance evaluation of In-Fat Pointer involves (1) build

the applications9, (2) copy the application binary to the NFS share

on the host machine (if the build environment is not on the host

machine), (3) run the benchmarks with the inputs in Listing 3, and

(4) parse the terminal log file to extract the printed statistics. We

have scripts to automate all the steps above (except the second step).

$FILES points to the directorywith the input files. The input files for

PtrDist are distributed with the source code. The input sjeng.txt

is based on 458.sjeng/data/ref/input/ref.txt with the depth

(the even rows) changed from:

12, 13, 13, 12, 12, 16, 11, 13, 18

to:

6, 7, 7, 6, 6, 8, 5, 7, 8

The input source.tar for bzip2 is created with

$ gunzip -k bzip2-1.0.8.tar.gz

8The CVA6 repository is available at https://github.com/openhwgroup/cva6
9Details for the benchmarks are available at: https://github.com/dlgroupuoft/
InFatPointer-ASPLOS2021-Eval.
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# Olden

bh 4096 1

bisort 250000 1

em3d 2000 100 75 1

health 5 500 4

mst 1024 0

perimeter 10 0

power

treeadd 21 1 1

tsp 100000 1

voronoi 20000 1

# PtrDist

anagram $FILES/words < $FILES/input.in

ft 10000 30000

ks $FILES/KL-4.in

yacr2 $FILES/input2.in

# Others

benchmark -dh # wolfcrypt-dh

sjeng $FILES/sjeng.txt

coremark

bzip2 -k -z $FILES/source.tar

Listing 3: Inputs to the Benchmarks

All the commands are run with time -v and the stdout redi-

rected to /dev/null.

The functional evaluation of In-Fat Pointer follows a similar pro-

cedure above, although more manual configuration and analysis is

involved. We use scripts to generate the Makefile, and all the bina-

ries are run with a test script on the FPGA system. One can also test

In-Fat Pointer with custom programs; a spatial error should result

in a segmentation fault from dereferencing a poisoned pointer.

A.6 Evaluation and Expected Results

For the performance evaluation, Figure 10 and 12 should be repro-

ducible from the spreadsheet generated by parsing the terminal log.

For the functional evaluation, all applicable programs should pass

the test.

A.7 Notes

The evaluation on Olden and PtrDist benchmark suites was added

after the artifact evaluation procedure started, therefore their results

are not independently verified for the reproducibility badges.
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