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Abstract. Side-channel attacks are a threat to secure software running
in a Trusted Execution Environment (TEE). To protect Intel SGX ap-
plications from these attacks, researchers have proposed mechanisms to
detect cache-probing and repeated interrupts that these attacks rely on.
These defenses often rely on high-resolution timers. However, since there
is no trusted high-resolution timer hardware module, developers have re-
sorted to software timers, which unfortunately underestimate the scope
of possible attacks. In this paper, we propose Aion attacks that manip-
ulate the speed of a reference software timer to subvert defensive mech-
anisms against SGX side-channel attacks. Specifically, we introduce a
CPU thermal attack that leverages the thermal management mechanism
to change the execution speed of the timer thread, and a cache eviction
attack that evicts the target timer counters and forces the system to load
them from memory instead of cache. We evaluated the above Aion at-
tacks and introduced an analytical model and show that software timers
cannot be improved to fit the defenders under our attacks.

1 Introduction

The threat model of Intel SGX assumes that only CPUs are trustworthy, placing
code and data of protected applications in a secure enclave isolated from other
system software. However, the protection guaranteed by SGX does not take into
account an attacker who monitors information leakage via side-channels. As a
result, various defense mechanisms have been proposed [5,17] to defend against
side-channel attacks on SGX applications [25,4,19,1,15,10,8,7,3].

Many of these defenses rely on the ability to measure the frequency and du-
ration of certain events, such as cache access and code execution time, or the
number of asynchronous enclave exits. Since SGX does not provide a trusted
hardware timer, these defenses instead use high-resolution software timers to
measure the passage of time. All software timers make assumptions about the
processor they are executing on: They assume that 1) CPU instructions execute
at a relatively constant speed, and that 2) the clock frequency the CPU oper-
ates at stays within a well-defined range. For example, they acknowledge that
SGX must defend against an adversary who might modify the processor clock
frequency. Thus, they are resilient to an adversary who can slow down the clock
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frequency by a factor of 3.25 − 4.25×, as this is the typical ratio between the
maximum and minimum operating clock frequency of modern processors.

In this paper, we show that both of these assumptions can be broken by a
significant margin. We present Aion attacks, which can be mounted by both
privileged and unprivileged attackers, and enable an adversary to tamper with
software timer accuracy by 2.5−202×. We also build a model of software timers
and show empirically that secure software timers are not possible on current
architectures. This renders all current software-timer-based SGX side-channel
defenses useless.

Our Aion attacks use two mechanisms to break the assumptions made by
software timers. The first attack manipulates the thermal management facilities
of the processor to cause execution slowdown below that of the lowest supported
clock frequency of the processor, violating the assumption that slowdowns are
bounded by the lowest clock frequency. As far as we are aware, this is the first
instance of a security attack that abuses CPU thermal management, and does
not actually need to physically overheat or damage the CPU in any way. In-
stead, we trigger thermal management features using software-only attacks. The
second attack generates cache evictions to slow down the execution of instruc-
tions in the software timer, violating the assumption that the execution time of
instructions is relatively constant. We show these attacks can compromise the
security properties of applications running in SGX enclaves, and can allow exist-
ing side-channel attacks to evade detection by existing defenses. We implement
a prototype of Aion attacks and evaluate them in a real-world environment. We
make the following contributions in this paper:
• We propose an analytical model which suggests that no existing software
timers used in SGX enclaves are reliable, meaning that current SGX side-channel
defences are ineffective if timers are manipulated by attackers.
• We present two generic Aion attacks and show that they are able to ef-
fectively exploit all existing SGX software timers, invalidating current defense
mechanisms.
• We evaluate two prototypes of Aion attacks on two different CPUs. Ex-
perimental results indicate that both are able to consistently break the desired
properties of the software timers. With our mechanism, an end-to-end attack is
demonstrated where existing side-channel attacks can evade detection.
• We prove that, under our attack model, it is impossible to build a software
timer immune to Aion attacks, motivating the need for hardware support.

The remainder of this paper includes: Section 2 provides related backgrounds.
We propose our analytical system model in Section 3 and describe our attack
design in Section 4, implementation in Section 5, and evaluations in Section 6.
We finally conclude the paper in Section 7.

2 Background and Related Work
2.1 Intel SGX and TSX

Intel Software Guard Extensions (SGX) [11,6] is an instruction set extension
introduced in 2015 to the Intel architecture. SGX is designed for security and
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system properties such as confidentiality, execution isolation, memory integrity,
and verifiability. It provides a trusted execution environment (TEE) for user-
level applications to securely run in a shielded environment called an enclave.
Security properties are guaranteed by putting application code and data into
the processor reserved memory (PRM) which is isolated from the main memory
and transparently encrypted by the memory encryption engine (MEE). Secure
applications in enclaves can be interrupted by other applications outside the
enclave, triggering an asynchronous enclave exit (AEX) event.

Intel Transactional Synchronization Extensions (TSX) [11] is an Intel ISA
extension for hardware transactional memory. It ensures that when a sequence
of instructions is executed, either the execution is completed without interruption
or memory read-write conflicts (i.e., concurrent access to the same data where
at least one access is a write) with other threads, or the transaction is aborted
and the execution is rolled back. The original purpose of TSX was to speed up
multi-threaded applications by reducing locking, while recent work has leveraged
it to notify secure enclaves about interruptions by other threads [20] and protect
cryptographic keys against memory disclosure attacks [9].

2.2 Power and Thermal Management of Intel CPU

Recent CPUs have power and thermal management features for energy efficiency
and protection of the processors from overheating. For example, Intel has sev-
eral digital thermal sensors (DTS) in each CPU package to monitor processor
temperature [11], and the results can be retrieved from model-specific registers
(MSRs) or the platform environment control interface (PECI). When a certain
temperature limit is reached, a thermal control circuit (TCC) will be activated
and it may take following three actions: 1) Reducing core frequencies so the
clock runs slower, 2) Reducing the core voltages to make the processors use less
power and generate less heat, and 3) Forcing one or more cores to enter a hard-
ware duty cycling (HDC) mode, in which the processor forces its components
in the physical package into the idle state for a certain fraction of time. The
TCC can be configured by privileged system administrators to automatically
activate under certain circumstances. Such thermal events can also be triggered
by software, trapping the CPU into a mode where processors reduce their power
consumption by clock modulation.

To the best of our knowledge, our attack is the first academic work to use
CPU thermal management features for SGX defence exploitation. We point out
that if this thermal management feature is maliciously used, CPU execution
speed can be a target that is easily manipulated without being detected by
threads running on the controlled core.

2.3 Cache-Based Side-Channel Attacks and Defences in SGX

Cache-based side-channel attacks on SGX are based on general timing attacks on
cache like Prime+Probe [16] and Flush+Reload [26]. The basic idea is to measure
the access times to a series of specific addresses, and use the information to
infer whether or not the victims have accessed data in related addresses. With
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this knowledge of the victim’s memory access patterns, attackers can retrieve
confidential data like private keys. General defence mechanisms have also been
proposed for detection and prevention of side-channel attacks like CacheD [23],
CaSym [2] and CEASER [18].

Cache-based attack methods have been commonly used in exploiting SGX
applications. Malware Guard Extension [19] and CacheZoom [15] develop Prime-
+Probe type of attacks with the help of a high-resolution timer to distinguish
cache hits and misses, and uses the LLC cache channel. Other side-channel at-
tacks [1,8,7,24] are based on similar methods, with the common strategy of using
a high-resolution timer to measure the access latency when probing the victim
enclave application’s cache and infer secret data from the enclave.

Defensive mechanisms against side-channel SGX attacks also depend on high-
resolution software timers inside the SGX enclave. Varys [17] defends cache-based
side-channel attacks by enforcing that security-sensitive threads be reserved on
the same CPU physical cores and detecting attacker threads that attempt to
access shared CPU resources. Déjà Vu [5] measures application execution time
with a more complex software timer using Intel TSX, but not all of the timer
thread is under TSX’s protection because some parts of the timer need to be
shared across threads. Vulnerabilities in these designs will be further discussed
in Sec 3 and 4.

3 System Model
3.1 Model of Software Timers

To establish a software timer model, we first define a concept of wall time,
denoted Tw, as an imaginary clock that is always accurate and up-to-date with
physical time in the real world. We assume that all software timer designs should
serve the same purpose: to track the wall time as accurately as possible and
provide the current time to software that needs it. Since there is no dedicated
hardware available in the enclaves for time, we assume that any software timer
would need to use a sequence of instructions to track wall-time and use them
to mimic an ordinary clock’s behavior. To achieve this, a software timer should
maintain a clock time Tc, and make it available to other threads that need to
learn what the current time is.

In the ideal case, the wall time is proportional to clock time by some constant
factor, so the clock time can emulate the wall time by executing a sequence of
instructions, and the constant factor is decided by how much time the sequence
of instructions take to run. This is the best that a software timer could do since
a program inside an SGX enclave has no access to a high-resolution hardware
timer that can directly provide wall time. We measure its margin of error from
wall-time, and define a measure Mt that indicates how accurate the software
timer is comparing with the absolute time:

|∆tc −∆tw|
∆tw

< Mt (1)

In the above form, the clock-time at t1 and t2 are Tc1 and Tc2, the wall-times
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are Tw1 and Tw2, with the times passing by ∆tc and ∆tw respectively. Mt is
generally assumed to be so small in practice that ∆tc ≈ ∆tw, and is affected by
the execution speed of the sequence of instructions, which is in turn affected by
CPU execution speed and memory/cache access speed, so the timer model can
take this into account by adjusting the measure Mt.

We can now construct a generalized software timer with the above concepts,
and use a global variable VG to simulate the clock ticks. We call VG the “clock
variable”. As different machines have different micro-architectures and speed of
operations and accesses to cache, for the same timer algorithm, we use a varying
parameter Ic to reflect the relation between variable increase and the clock time.
Ic represents how much the clock time increases per tick of VG in average. With
this model, the problem of simulating a dedicated timer is transformed to the
problem of using an increasing clock variable to indicate the current time, where
the parameter Ic makes it generally adaptable under different settings of different
machines.

In this way, when a user or an application needs to measure some ∆tw and
since ∆tc ≈ ∆tw (previously assumed due to small Mt), then they can just
measure ∆tc to learn how much time it passes in the clock-time and will get the
result in the form of: ∆tc = Tc2 − Tc1

= Ic · (VG2 − VG1)
(2)

Where VG1 and VG2 are the value of VG at time t1 and t2. In this software model,
the key problem for system developers is how to determine the value of Ic, and
all current software timer approaches assume the value to be relatively stable
as it would result in a small accuracy measure Mt. From our previous empirical
findings, we have:

Ic ∝
TInc(VG)

FCPU
(3)

Thus, the value Ic is proportional to TInc(VG), the time taken to increment VG,
and reciprocal to FCPU , the CPU speed, which we may estimate to be the
average clock frequency of the CPU during the time measured.

To summarize, the software timer model measures the accuracy Mt of a
software timer by comparing the clock time it generates with the wall time.
The accuracy is affected by an intermediate parameter Ic, which depends on the
execution speed of the CPU (FCPU ) and the time TInc(VG) it needs to increment
a global variable. To slow down a software timer, Equation 2 says the adversary
should make Ic larger, so that it takes longer to increment the clock variable by
some amount. To increase Ic, Equation 3 tells us that the adversary may either
make the execution of instructions take longer, or reduce the speed of the CPU.

With these components modeled, we next need to take a look at the victims:
The enclave applications and defenders, and how they use the software timers.

3.2 Defender Model

The goal of an SGX side-channel defender is to recognize attacks. A number
of defenses do this by measuring the rates or latency of certain events, so they
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depend on a software timer. As an example, we here consider two strategies taken
by previous work [5,17] that use the rate or the execution time of a measured
event as a component of an SGX side-channel defense:
– Cache hit time: The Prime+Probe cache channel attacks on SGX enclaves
require the adversary code to run on the same physical core with the victim
thread [17], because they have to share the L1/L2 cache to perform the probe.
Thus, one method for preventing this attack is filling a core entirely with the
application’s own threads. To confirm that two threads share the same physical
core, we can measure and compare the time that the two threads take to access
a shared variable in the L1/L2 cache: if it is an L1/L2 cache hit, the access time
should be within around 10 cycles, which implies they share a physical CPU
core. A software timer must be used for this measurement.
– Counting Asynchronous Enclave Exits (AEXs): To perform the Prime+Probe
cache channel attacks, which give the adversary a fine-grained cache channel for
probing, the adversary actively and frequently preempts the target SGX enclave
using, for example, the high-precision Advanced Configuration and Power In-
terface (ACPI) or the High Precision Event Timer (HPET). The preemptions
trigger an AEX every time they interrupt the victim enclave, which is an indica-
tor of side-channel attacks if it happens too frequently. The defensive mechanisms
can count the number of AEX events during a period of time or measure the
time that a certain known sequence of executions takes [17,5] and decide whether
the rate of AEX events is too high to raise an alert of side-channel attacks.

In general, these methods all attempt to measure the delay or frequency of
some phenomenon. For example, they may monitor whether there is an irregular
rate of events NEv (such as AEXs) that happen during a certain period of time.
Similarly, the delay of a variable access can be viewed as just the inverse of the
number of times the variable is accessed within some period of time. Thus, all
tests essentially compare some measured rate of events, NEv, against a threshold,
NTh to detect whether an attack is taking place or not in one of the possible
scenarios: NEv > NTh : attack = true (4)

One dilemma that the defender faces is the choice of threshold: Setting NTh

too high will result in missed attacks or false negatives, while setting NTh too
low will result in false alarms or false positives. The usual solution is to set it
according to a calibration run, during which the system is assumed to not be
under the influence of an attacker.

However, even then, the defense mechanism must still account for the fact
that the measured rate of events NEv is dependent on both the true rate of
events and the ratio between the wall clock and the rate of increment of the
clock variable:

NEv =
∆tw
∆tc

·REv (5)

where REv is the true rate of events according to the wall clock. Normally, we
expect that ∆tw ≈ ∆tc , so NEv ≈ REv. However, recall that ∆tc is proportional
to Ic in Equation 3. Even under benign conditions, there is some variability to
Ic, which may result in some number of false positives and false negatives—
typically NTh is set slightly higher so as to bias the detection method for fewer
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Fig. 1: A model of how a software timer works and is used by an application thread.

false positives. However, so long as Ic is similar to the value of Ic during cali-
bration when NTh is set, this will constrain REv to be roughly NEv. Since REv

corresponds to how fast an attacker is able to read a side-channel, constraining
REv effectively slows the rate of information leakage to the attacker. However,
if the attacker is able to arbitrarily increase Ic, then she can also arbitrarily
increase the true rate of events REv without being detected. This allows her to
probe the side-channel faster and thus reduces the time taken for the attack to
extract sensitive information from the enclave.

With this general model of a software timer thread, we now discuss why a
best-effort software timer design is still vulnerable to attacker manipulation.

3.3 Timer Countermeasures

We illustrate the general structure of a software timer in Figure 1. A software
timer thread updates a global clock variable, which is read by application threads
to the current time.

An attacker that wants to tamper with the timer might attempt to interrupt
the timer so as to make the difference between ∆tc and ∆tw arbitrarily large.
To defend against this, both Déjà Vu and Varys use TSX to detect if the timer
has been interrupted. However, TSX can only protect the component of the loop
that generates the delay ∆tc, and can not protect the update of the global clock
variable, as the clock variable is simultaneously accessed by both the timer thread
and application threads. As a result, the update of the global clock variable must
be outside the TSX-protected region.

To prevent an attacker from interrupting and delaying the thread as it up-
dates the global variable, TSX is combined with a randomized delay function
inside the TSX region, and the global clock variable is updated with the random-
ized delay. This makes it hard for an attacker to guess when the timer thread
is outside of the TSX region and can be interrupted without detection. Thus,
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Fig. 2: Illustration of Intel cache slice and cache set structure.

we summarize that a secure timer that provides a timing service to other secure
application threads needs to include at least the following parts:

1. A global clock variable VG inside the secure enclave that records the current
clock time. The clock time can be read from the clock variable by other threads
in the same enclave.

2. A timer loop that increments the clock variable by an amount assumed to be
proportional to the amount of time that has passed.

3. A protection mechanism that can either prevent the timer loop from being
interrupted or detect if the loop has been interrupted. An example of such a
mechanism is TSX.

4. If the entire loop cannot be protected from interruption, a random delay ele-
ment such that the attacker cannot predict when the timer is in the unprotected
region of execution, i.e., right before the clock variable is incremented.

As we can see, a TSX-protected timer should ideally spend a minimal amount
of time outside the TSX region. In other words, the only action taken outside of
the TSX region should be to increment the clock variable.

With the extra protection of the software timer loop, trivial attacks that ma-
nipulate the software timer by interrupting it frequently and/or de-prioritizing
the timer thread in an OS thread scheduler to make the software timer deviate
from the wall clock would not work. Such scheduler attacks that have OS-level
privilege would attempt to preempt the timer thread, which requires interrupt-
ing into it. This interruption would be easily caught by the TSX mechanism and
the interrupted transaction would be aborted and detected by the defender.
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4 Attack Design

4.1 Aion-1: CPU Thermal and Frequency Attack

The Aion-1 attack manipulates the rate of increase of the clock variable indicat-
ing the internal time in the software timer thread, i.e., the FCPU in Equation 3
of our software timer model in Sec 3.1. Intuitively, this can be done by changing
the CPU working frequency via the CPU power management modules of the
operating system kernel, such that the clock variable increases out of sync with
wall time. The strawman method of simply changing CPU frequencies has been
described [5], where procfs is used to control the CPU frequency from userspace
in on-demand mode, and its effect was generally considered to be bounded by
CPU frequency scaling. Taking the Intel i7-6600U as an example: The processor
base frequency (PBF) is 2.6GHz; the max turbo frequency (MTF) is 3.4GHz. If
the attacker obtains control of a CPU power management module, the minimum
controllable frequency of a single core is 800MHz. Thus, it was generally believed
that the maximum achievable scale-down of CPU frequency ∆tw/∆tc was be-
tween 3.25× and 4.25×, a value that most previous defenses could tolerate and
still prevent an adversary from mounting an effective attack.

However, our attack can break the above assumptions using CPU thermal
management features. As mentioned in Sec 2, Intel CPU thermal management
is controlled by a thermal control circuit, whose settings are controlled by a soft-
ware adaptive thermal monitor. We find that an attacker with root privileges can
trigger a thermal event on the CPU thermal control circuit using only software.
This not only causes the CPU core frequency and voltage to be throttled down,
but can also force the processor into the HDC mode where CPUs are paused for
part of the clock duty cycle. Thus, while the clock frequency does not change
in HDC mode, the effective execution speed of the CPU is lowered below that
of the minimum clock speed, as the CPU is effectively idle for a fraction of the
clock cycles. By doing this, we can make the effective execution speed of a CPU
approximately equivalent to that of a 100MHz CPU.

According to our software timer model in Sec 3, the accuracy of a soft-
ware timer depends on the execution speed of the CPU core that the software
timer thread runs on. In side-channel defensive mechanisms, the defenders need
to make sure the secure enclave has occupied both hyper-threads on the same
physical core, such that they do not share L1/L2 cache with other, potentially
malicious threads. They do this by measuring the access latency of a shared
variable to see if it hits the L1/L2 cache, since if both threads can hit the cache
of the same clock variable within around 10 cycles, they must share the same
physical core. To evade detection, the Aion-1 attacker only needs to slow down
the software timer to make the tester believe that the cache hit time is within 10
cycles in its calibration run, even if it actually hits LLC and takes around 40 cy-
cles or more. It can also do the reverse, depending on which thread the attacker
wants to slow down. In this way, any secure application that uses the software
timer will read values inconsistent with wall time. This tricks the defender into
thinking that the variable access has hit in the L1 cache when it could have hit
in the L2 or higher.
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The effectiveness of this attack depends on the highest and lowest possible
processor execution speed on a single CPU core. The processor execution speed
can be regarded as equivalent to the average core frequency during a period of
time. When the attack is being mounted, the core that the software timer thread
runs on should be set to the lowest possible running speed, and other threads,
including the attacker threads, should be set to the highest running speed (or
the other way around, when needed). Without the ability to know its own clock
speed reliably, the software timer can unknowingly run slower or faster than the
original settings. This type of attack also has some limitations, including:

– The attack can only happen if the attackers are able to access CPU MSRs,
requiring kernel privileges. In SGX applications on a multi-tenant cloud scenar-
ios, an attacker may not be able to get such privileges as they would need to
compromise the hypervisor.

– The attack also assumes the CPU should support thermal control features
including clock modulation via MSRs to issue a software signal that activates
the TCC. Most of the Intel CPUs available on the market support these features,
but not all of them do.

Due to these limitations of privilege and feature availability, we present an-
other attack that uses cache eviction to achieve the goal of manipulating the
software timer, possibly as an unprivileged attacker.

4.2 Aion-2: Cache Eviction Attack

The Aion-2 attack directly targets the clock variable used in the secure software
timer thread using an attacker thread in user space. We call this a cache eviction
attack, as it slows down the speed of the reference software clock by evicting the
clock variable from the CPU cache to DRAM. According to the software timer
model in Sec 3, this attack exploits the stability assumption of the cache/memory
access speed of the clock variable, i.e., the TInc(VG) in Equation 3.

Intel L1/L2 caches are shared by two logical threads on the same physical
core, and all threads share the LLC. Because most Intel CPUs use an inclusive
cache policy between different levels of cache, evicting the cache line containing
the clock variable from LLC would also evict it from L1 and L2 cache. In this
way, whenever the software timer thread needs to increment the clock variable,
the thread has to wait for extra cycles to complete the request because it has
to be served from DRAM. From our experimental results, it takes almost the
same number of clock cycles (though not the same wall time) for accessing the
same level of cache, and the DRAM access time is about 150 cycles on average,
which means the attacker knows how much she can slow down the increment of
the clock variable by each eviction. For the rest, the only job that the attacker
threads in the user space need to do is to evict the cache line where the clock
variable is located. Note that since the clock variable indicating the internal time
in the software timer thread is not protected by TSX transactions, access to the
clock variable does not trigger a transaction abort, regardless of whether it hits
cache or DRAM.
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To perform the attack, the attacker threads need a minimum cache eviction
set. A minimum cache eviction set is a set of virtual addresses with which a user
thread can make sure the target cache line is evicted out of the cache. For ex-
ample, if the virtual address of the clock variable address on a CPU with 4-way
associative LLC is 0x00007E30, then the attacker could find an eviction set of ad-
dresses that shares the same cache set: {0x00013D30, 0x00026A30, 0x000E2730,
0x0009AB30}, and according to the Intel cache structure, this means they should
also reside on the same LLC cache slice. The allocation of LLC matters because
cache entries on different cache slices do not belong to the same cache set. After
finding the eviction set, to make sure that the clock variable is evicted from all
levels of cache, one just needs to access all the addresses in the eviction set. Once
the cache entry is successfully evicted, the secure timer thread needs to hit the
DRAM to read or write to the clock variable, which slows down the increment
speed of the software timer ticks.

We now explain how the cache eviction set can be found. As in Figure 2, the
physical address of each memory request is decomposed into three parts when
mapping the address to an LLC cache line. The part with the lowest bits of the
address indicates the offset in the line, and the set bits decide which cache set
it is mapped to. In recent Intel CPUs, LLC are further divided into slices, and
an undocumented hash function maps the set and tag bits of the addresses to a
specific LLC cache slice. While the hash function itself is undocumented, there
have been attempts [14] to reverse-engineer it. Alternatively, other methods [22]
can successfully find a minimum eviction set with user-level programs with high
probability. We adopt existing methods for finding an LLC eviction set and use
them for our attack.

After finding a cache eviction set, as shown in Figure 3, the attacker thread
can then access all the virtual addresses in the eviction set of the clock variable
in the software timer thread, so that the clock variable is evicted from the cache
and the incrementing speed is much slower. The attacker can repeatedly access
the eviction set and keep evicting the clock variable in a loop, so that whenever
the software timer thread accesses the clock variable again and makes it cached,
the cache entry will actively be evicted by the attacker again.

Because the attacker thread runs concurrently with the software timer thread,
the eviction of the cache line containing the clock variable is probabilistic without
the knowledge of the exact hardware cache replacement algorithm used by the
CPU. However, the attacker can also improve the chance of cache eviction by
parallelizing the accesses to the cache eviction set. The attackers can distribute
the elements of the cache eviction set to different threads that are controlled by
the attacker, preferably filling all the rest of available CPU cores with attacker
threads. This approach turns the single-threaded attack into a multi-threaded
coordinated attack and gives the attacker a better chance to evict the target
victim cache entry more efficiently.

The attacker achieves the maximum timer slow-down effect by ideally forcing
every increment of the clock variable to miss all levels of cache and hit DRAM.
In this way, the software timer runs slower in comparison with the wall time at
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Fig. 3: Illustration of Aion-2: Cache eviction attack.

the maximum limit, which is the theoretical worst case for the reference timer.
However, due to the nature of multi-core and scheduler, it is difficult for an
attacker with only user-level privilege, to achieve this guarantee. We will show
in the evaluation section how practical the attack is and describe our results.

To summarize, the target of both types of the Aion attacks is to manipulate
the accuracy of the software timer, either to slow it down or speed it up without
being noticed by the victim system. According to our software timer model, it
is the accuracy measure Mt that the attacker focuses on. To attack Mt, the
malicious party may either change the execution speed of CPU FCPU , or the
time TInc(VG) needed to increase the global clock variable.

5 Implementation

5.1 Reference Software Timer

In our experiments on Aion attacks, we use a real-world software timer as an
implementation of the general model described in Section 3. We choose the
software timer implementation from Déjà Vu [5], because (1) it has high accuracy
for event rate measurement, and (2) it can detect repeated interruptions and
protect itself from malicious preemptions from privileged threads. It not only
includes an essential loop that increments the clock variable, but also additional
defense code using Intel TSX that protects the software timer threads from
frequent interruptions by malicious attackers as shown in Listing 1.1:
L1: The timer thread starts an infinite loop from an SGX enclave.
L2: It enters into a TSX-protected zone, where any interruption to the middle
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1 while ( i n f i n i t e l o o p f l a g ) {
i f ( xbeg in ( ) == XBEGIN STARTED) { /∗ TSX beg in s ∗/

3 asm volat i le {
” rdrand %0\n\ t ”

5 : ”=r ” ( rand )
} ;

7 rand = ( rand & 0x7 ) + 1 ;
for ( i = 0 ; i < rand ; i++) {

9 for ( k = 0 ; k < 5 ; k++)
my udelay ( 1 ) ;

11 }
xend ( ) ; /∗ TSX ends ∗/

13 } else {
i n t f l a g ++;

15 }
cur r en t t ime = cur r ent t ime + rand ;

17 }

Listing 1.1: Reference Timer Thread Implementation in C

of the TSX zone will fall into a trap, generate an exception, and rollback to the
beginning of the entry point.
L3–7: It generates a random integer number between 1 and 8. Here the random-
ness is provided by rdrand as the original authors use it, while other pseudo-
random functions could also work.
L8–11: This is a loop creating a delay proportional to the generated random
value, so it is harder for attackers to guess when TSX protection covers the
thread execution.
L12 and L16: The code leaves the TSX-protected region and the clock variable
is updated. As mentioned in Section 4, the reason for ending the TSX zone be-
fore the timer tick number is updated is that the clock variable is intended to
be read from other threads concurrently. If the update is in TSX zone then any
concurrent read will abort the transaction and roll back the timer thread.

The clock variable (current time in L16) is exposed to both the timer thread
and the application threads. With some randomness, the timer thread period-
ically increment the clock variable. When the application thread needs to take
a high-resolution time measurement of a particular event, it first retrieves the
clock variable’s value before the event and reads the same variable again after-
ward to calculate the interval. In this standard procedure, the TSX protection
does not apply to the clock variable. Thus, theoretically, anyone can access it
without triggering the TSX or SGX trap as long as they are in the enclave. How-
ever, the accuracy of the timer is questionable for two reasons. First, the thread
execution speed is relevant to the CPU clock speed, because the real-world time
of instructions being processed by the CPU and on which the clock speed is not
known or controlled by the enclave applications. Secondly, the time of access of
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the clock variable, whether from the timer thread or any other thread, cannot
be assumed to be constant because there is no guarantee of which level of cache
or memory it may hit. Therefore, the software timer is not as reliable and secure
as was thought, even if it is running in an SGX enclave.

5.2 Implementing Aion-1: CPU Thermal and Frequency Attack

This type of attack focuses on changing the speed of targeted CPU cores. The
two methods manipulating CPU core speed include triggering thermal events
to force a core into HDC mode, and adjusting CPU frequency directly via the
power control module of the OS. Because HDC mode stops a CPU core from
running in a certain percentage of the time, and therefore both methods can be
regarded equivalent to making a CPU core running at a certain frequency, we
refer to it as the “equivalent frequency” later in this section.

The thermal management attack needs to be implemented in a thread with
root privilege. We trigger thermal events by changing the respective MSRs:
IA32 CLOCK MODULATION and operate on the programmable bits of [3:1].
For direct frequency adjustment, there are three kernel modules we can use for
scaling the CPU core frequencies: intel pstate , acpi-cpufreq , and
p4-clockmod. We have tested them all and found that 1) intel pstate as a
new power management module cannot achieve per-core frequency scaling, and
2) p4-clockmod as a relative last-generation kernel driver has dependency on
the Intel speedstep-lib driver which is not compatible with our test CPUs. We
therefore chose acpi-cpufreq as the driver that facilitates the attacker thread.

We set the kernel driver to use a “userspace” power governor, so that a user-
level application with root privilege can configure any CPU core to run at a
specified frequency. In this case, it is the attacker thread that controls the CPU
core frequency of the software timer thread and other threads. Many methods
can be used to trigger CPU thermal events, such as configuring TCC offset of
CPU, increasing CPU workloads to stress out the cores, blocking physical airflow
or stopping case fan from working, and sending software signal to CPU to force
clock modulation. We choose the last approach that only requires a write to an
MSR register 0x19A for implementation, however, we believe that an attacker
can use various creative approaches to generate thermal events.

In the attacker thread, we set the target execution speed for the software
timer thread to Fc and other threads to Fx. The attacking thread first gets the
information of which CPU core the software timer thread executes on, and then
runs in a loop while Loop Flag is TRUE to set the frequencies of the software
timer thread and other threads. The attacker thread stops when Loop Flag is
changed to FALSE.

5.3 Implementing Aion-2: Cache Eviction Attack

The cache eviction attack needs the address of the timer variable used in the
software timer thread to find the cache eviction set. We here assume that the
image of the victim SGX application is openly available to all, which makes sense
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because it is supposed to be loaded by the OS into an SGX enclave. The address
can be determined by doing a binary analysis on the application image.

Once the address Addr t is found after loading the SGX application, the
attack can start to slow down the software timer: First, the attacker thread
finds a cache eviction set for Addr t. This can be done by an unprivileged user-
level process using a group reduction algorithm [22], or like in our experiment
for the ease of implementation, use the page map and get the physical address
Addr p of Addr t to find the cache eviction set directly.

As is shown in Listing 2, with the physical address, the undocumented hash
function is required to determine which LLC cache slice an address belongs
to. We obtain the hash function by reverse engineering using the algorithms
mentioned in previous work [14]. Then, with the cache eviction set EV t in hand,
the attacker thread can loop accessing the addresses in the eviction set to keep
evicting the software timer thread’s clock variable out of all levels of cache. This
will then slowing down the timer because every time it increments the clock
variable, it should hit DRAM instead of the cache.

We have optimized the attack by parallelizing the attacking loop: the ad-
dresses in the eviction set EV t can be further divided and assigned to multiple
threads. The attacker threads can keep accessing the addresses in the same evic-
tion set and evicting the target clock variable from the cache faster, because the
multithreaded attacker still shares the same LLC and it should take less time
for all addresses in EV t to be accessed to evict the target address Addr t.

6 Evaluation

6.1 Purpose and Experiment Setup

We conduct all experiments on two machines with different CPUs: (1) Intel
i7-6700K with 4 cores; and (2) Intel Xeon E3-1230 v6 with 4 cores. For the
system software environment setup, we use Intel SGX v2.11 SDK on top of
Linux with kernel v5.4, and all of the machines have hyper-threading enabled.
The experiments in this section are conducted to demonstrate the following:
• Software timers in SGX enclaves are vulnerable to Aion attacks, which can
manipulate the reported clock time from outside the enclave.
• Without compromising the software timer of the defender, a representative
cache-based side-channel attack will be detected and prevented from exploiting
the victim applications.
• With the help of Aion attacks, the same side-channel attacks can evade
detection by the defender.

In the remaining parts of this section, we first demonstrate experiments and
results that show that Aion attacks can successfully manipulate software timers
in SGX enclaves. We then present an end-to-end attack to show that our attacks
can facilitate an existing cache-based side-channel attack on SGX enclaves, evad-
ing the detection of a defender based on a software timer.
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Xeon E3-1230v6 i7-6700K

Random Func
(+CPU Thermal)

RD RD+TA TF TF+TA RD RD+TA TF TF+TA

Baseline 256.3
7.0

(37×)
337.4

8.7
(39×)

225.9
5.8

(39×)
302.5

7.9
(38×)

Single-thread
(Cache Eviction)

156.2
(1.6×)

5.2
(49×)

181.5
(1.9×)

6.1
(55×)

148.9
(1.5×)

4.7
(48×)

148.1
(2.0×)

4.1
(73×)

Multi-thread
(Cache Eviction)

94.3
(2.7×)

2.3
(111×)

54.6
(6.2×)

1.8
(187×)

90.6
(2.5×)

1.9
(120×)

41.7
(7.3×)

1.5
(202×)

Table 1: Results of software timer readings affected by the Aion attacks.

6.2 Aion Attack Evaluation

Both types of Aion attacks have the same goal of manipulating the running speed
of the software timer, and their effectiveness will be evaluated in this section.
As we previously analyzed, Aion attacks can assist the side-channel attackers in
evading the detection of existing defensive mechanisms that rely on the software
timer to be accurate. We evaluate the extent to which our attacks can speed up
or slow down the software timer, as this determines the probability of a successful
side-channel attack.

We combine the two types of Aion attacks and demonstrate their effectiveness
in manipulating the software timer as a unit test. We test the reduction rate (how
much the attack can slow down the software timer) by the CPU thermal attack
and cache eviction attack under different settings.

The baseline workload runs in an SGX enclave as a simple loop that runs
operations from AES encryption. We compare the time intervals under different
scenarios in Table 1, including: a) the baseline scenario where the timer is not
under attack, and only affected by the thermal attack at the row of “baseline”;
b) a single-thread attacker scenario where only one attacking thread of Aion-2
attack is running; and c) a multi-thread attackers scenario where the number
of Aion-2 attacking threads is the (# of total hyper threads - 2), and the
other two threads are taken by the software timer thread and the application
thread.

Another variant we are comparing in the evaluation shown in Table 1 is the
different random functions used in the software timer thread. Because random-
ness is not free of cost, all random number generators take different amounts
of execution time which may affect how much time the software timer thread
spends in a loop to increment the clock variable. We use four different sets of
functions for randomness generation and combined them with or without CPU
core execution speed manipulation by the thermal attack: (1) RD: RDRAND in-
struction; (2) RD+TA, which combines CPU thermal attack and use it under (1)’s
settings of RDRAND instruction; (3) TF, which is a simple pseudo-random number
generator called T-Function [12]; and (4) TF+TA, which combines the CPU ther-
mal attack and uses it under the same settings of (3) for the evaluation. We note
here that since the T-Function() is so cheap in execution costing less than 30
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cycles after optimization, that we did not repeat a separate evaluation with no
randomness generated, which also makes sense in the scenario of real defence.
Again, we make sure that the software timer thread, the application thread, and
the attacking thread(2) in our evaluation do not share the same core to avoid
them from competing for the same processor resource. After each number, the
number in a bracket (e.g., 202×) indicates its slow-down factor comparing with
the baseline.

From the above results, we can see that under various settings, the CPU
thermal attack is powerful and can achieve 30-40× slow-down on its own. Also,
both single-threaded and multi-threaded attacking methods can effectively slow
down the software timer via the cache eviction attack, and in all but the RD
case, achieve a slow down that exceeds the range of slowdowns that previous
systems claim to be able to defend. Moreover, when combined with the core
frequency manipulation attack, the effectiveness is further improved, in total
slowing down the software timer by a factor greater than 200 for software timer
using T-function() under both types of Aion attacks, and by a factor about 120
for software timer using RDRAND instruction under both types of Aion attacks.

6.3 End-to-End Attack Evaluation

We previously showed how much the Aion attacks can slow down the software
timer, but the timer slow-down ratio alone may not be enough evidence to prove
that the software timer slow-down rate can effectively assist other side-channel
attacks to go undetected by SGX side-channel defenders. Therefore, for a full
evaluation, we have mounted an end-to-end attack to demonstrate the complete
procedure, combining the traditional SGX side-channel attack and our Aion
attacks to defeat the software timer that defenders rely on. The end-to-end
attack experiments consist of three parts: (1) a known side-channel attack on
SGX; (2) a defender used to detect the side-channel attack in (1); and (3) our
Aion attacks that can compromise the defensive mechanism in (2).

In our experiments, the side-channel attack is implemented based on the
SGX-Step framework [21] and uses a Prime+Probe [13] type cache-based side-
channel attack to extract an AES key that is used to do encryption operations
repeatedly inside an SGX enclave. We use the OpenSSL 0.9.7a library, which is
known to be vulnerable against cache timing attacks and is also known to work
in the environment of SGX, as a proof-of-concept demonstration. The ratio of
successful key extractions of the attack on our Intel i-7 6700K machine is above
98.4% under 100K rounds of victim encryption operations.

For the defender, we have tested our implementation of SGX side-channel at-
tack defender based on the defense paper [5]. Our results are comparable to the
evaluation data shown in the original work: the defender can successfully detect
at least 95% of the basic SGX side-channel attacks under a trained threshold
value δ. The threshold value is gathered and calculated by running normal ap-
plications in SGX enclaves without being attacked, so it counts and tracks the
normal number of AEX events happening and decides to trigger the alarm when
there is a burst of an abnormal amount of such events. The results with the Intel
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Benchmark
Baseline Defence Defence Under Aion Attack

Threshold Acc % FP% Threshold Acc % (E3) Acc % (i7)

Numeric sort

4 100 97 4 95 94
40 100 40 40 17 15
80 95 3 80 2 2
160 87 2 160 1 0
320 40 0 320 0 0
640 9 0 - - -
1280 3 0 - - -

Fourier

4 100 98 4 95 92
40 100 46 40 19 18
80 96 4 80 2 1
160 74 2 160 0 0
320 30 0 320 0 0
640 10 0 - - -
1280 2 0 - - -

Table 2: End-to-end evaluation of Aion attacks against existing defences.

i7-6700K machine environment are shown in the column of Baseline Defence in
Table 2 with the randomness generator of RDRAND in its software timer loop.

Distinct from the previous evaluation that shows the effect of Aion attacks
on the software timer, the evaluation with end-to-end attacks combines our two
types of Aion attacks with the basic side-channel attacks, and the SGX side-
channel attack defender. We measure how effectively our attacks can assist the
base side-channel attack to evade detection of the defender. Experiments run on
two of the machines with SGX with the defender using RDRAND as the randomness
generator, using both types of Aion attacks combined, and results are shown in
Table 2. From the results, we can see that under Aion attacks, the defender
identifies less than 2% of the side-channel attacks in its normal setting of the
threshold value 80. For the threshold value of 40, the accuracy is less than 15–
19%, however, without the knowledge of the ongoing Aion attacks, the defender
would not choose to use a low threshold value by taking the risk of a high
false-positive rate. The results demonstrate that the combined Aion attacks can
effectively assist the base side-channel SGX attack to make it undetectable by
the SGX defensive software that is based on a software timer.

To summarize our findings, software timer-based defenses are not viable in
the face of tampering of timers from Aion attacks. Comparing the left part of
Table 2, which shows false positive rates under benign conditions at various Eth

thresholds, with the right part of Table 2, which shows detection accuracy after
tampering with the Aion attack, we can see that the detection rate is on the
order of the false positive rate. At threshold 80, both of the false positive rates
in benign conditions are 3-4% while the detection rates under attack are 1-2%.
Even if we decrease the threshold to 40, the detection rates only range from
14-19% while the false positive rates have increased to 40-46%. As a result, it is
not possible for the defender to select a threshold that permits good detection
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when under attack, but still keeps false positives at acceptable levels. We see this
trend holds for all thresholds. As a result, our empirical analysis shows that it
is not possible to use a software timer in any defense due the adversary’s ability
to manipulate the timer.

7 Conclusion
Side-channel attacks are major threats that TEEs currently face, including Intel
SGX. Although software-based defences have been proposed for detection and
prevention of cache-based side-channel attacks, the lack of a reliable hardware
timer for secure applications to use inside the enclave makes such solutions vul-
nerable against Aion attacks. In this paper, we design and implement two types
of Aion attacks, one based on manipulating the software timer thread execution
speed by triggering CPU thermal events, and the other focusing on cache evic-
tion to slow down the rate at which the target timer is increased, both of which
can effectively change the how fast the software timer in an SGX enclave runs
and invalidate the defensive approaches that rely on accurate high-resolution
software timers. We also argue that in our general software timer model, there
is no way to design a reliable timer purely in software that makes the defense
usable and effective in detecting side-channel attacks, unless the defence can
tolerate up to 200x slowdown of their timer, but this is unlikely.

The core of the problem we show through our model analysis is that when
system designers use a software timer to measure the time certain critical events
take, they made an invalid assumption: That the increment speed of the variable
used in the software timer is nearly constant, and can not be significantly altered
by an adversary. However, this fails to account for dramatic changes in execution
speed when accessing a global variable that can occur when the CPU frequency
varies or when cache behaviour is manipulated. By breaking the high-resolution
measurement of time, Aion attacks are able to exploit existing defences.
Acknowledgements. We would like to thank Professor Yinqian Zhang, Dr.
Sanchuan Chen and Oleksii Oleksenko for their help in SGX defensive frame-
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