Accelerating Symbolic Analysis for Android Apps

Mingyue Yang, David Lie, Nicolas Papernot
University of Toronto, Toronto, Canada
Email: myshirley.yang@mail.utoronto.ca, {david.lie,nicolas.papernot}@utoronto.ca

Abstract—While tools based on symbolic execution are com-
monly used to analyze mobile applications, these tools can suffer
from path explosion when real-world applications have more
paths than available computing resources can handle. However,
many of the paths are unsatisfiable, that is, no input exists
that can satisfy all the path constraints and cause the path
to execute. Unfortunately, analysis tools cannot determine this
without constraint collection and constraint solving, which are
expensive to perform. As a result, analysis tools waste valuable
computational resources on unsatisfiable paths.

In this work, we demonstrate that machine learning classifiers
can predict unsatisfiable paths, resulting in a savings of computa-
tional resources. Our classifiers take path-level statistical features
as input, and model inference can run immediately after a path is
found. This saves analysis time spent on both constraint collection
and constraint solving for unsatisfiable paths. We enhance the
TIRO Android application analysis tool to avoid paths that
are predicted to be unsatisfiable and show that a Random
Forest model can achieve 95% balanced predication accuracy
in Android applications. We also show that modified TIRO is
able to avoid analyzing 51% of paths as they are unsatisfiable,
resulting in a savings of 14% of the analysis time.

I. INTRODUCTION

Symbolic execution is a powerful program analysis tool
for mobile applications and has been demonstrated to be
effective for detecting malware [9], deobfuscating applications
code [10], privacy leakage analysis [13] and application au-
diting [11]. However, one challenge with symbolic execution
is path explosion. Path explosion occurs because real-world
applications have a large number of paths for symbolic exe-
cution to explore: analyzing all of them costs more time and
computing power than allocated resources can handle.

We observe that in many cases, there exists no input that
could satisfy the constraints of a given path. In other words,
such program paths cannot be executed in reality, as no input
can trigger it. Our measurements show that the vast majority
of individual paths, roughly 70%, are themselves unsatisfiable.
Unfortunately, trying to determine if a path is unsatisfiable
requires constraint collection and solving collected constraint
using a SAT-solver' [1], which are expensive to perform. In
our experiments, it can take several seconds to find solution
for a satisfying set of inputs on an average path. Collecting
and solving constraints for unsatisfiable paths waste resources
as they do not enable further symbolic exploration of the
program, yet consume valuable analysis time.

In this work, we hypothesize that similarities between An-
droid applications can be exploited to train a machine learning

'We use SAT-solver, constraint-solver and theorem-prover interchangeably
as they are all similar tools.

model that can predict with reasonable accuracy whether a
path is satisfiable or not. Since a machine learning model
can return predictions considerably faster than collecting and
solving constraints for satisfiability, using the model to filter
out paths will result in a speedup. While previous work has
applied machine learning to speed up constraint solving [7],
[8], [4], they predict over abstracted boolean constraints. In
contrast, we predict over program features available earlier in
the program analysis process, allowing greater time savings.
We believe that program features may contain more informa-
tion about code functionality than the derived constraints.

To evaluate our hypothesis, we conduct experiments using
the TIRO [10] Android application analysis tool. We train sev-
eral models and demonstrate that they can predict satisfiability
both within applications, as well as, more importantly, across
applications. Being able to predict across applications means
that the models can predict accurately on applications they
were not trained on, due to general similarities among Android
applications. This allows our models to save analysis time for
unseen applications. With only benign apps in the training
set, the models are also able to generalize to malware, with
high recall for satisfiable paths. This means paths that present
malware behaviors are not likely to be missed.

II. SYMBOLIC ANALYSIS IN ANDROID
A. Analysis Platform

To study the cost of symbolic analysis on Android, we use
TIRO [10], a deobfuscation tool that uses symbolic analysis
to generate inputs that drive dynamic execution down paths
that trigger code deobfuscation in Android applications. TIRO
has a static analysis component that performs analysis on call
paths leading to a target deobufscation location. A path is a
sequence of method calls starting from an Android framework
entry-point and ending in a target location. Such a call path
may have constraints on its inputs that need to be satisfied to
execute. In some cases, it may also depend on constraints that
need to be satisfied by executing other dependent paths—for
example, a heap variable may need to be set by executing
another path first. In those cases, TIRO will also generate
inputs for those dependent paths.

To execute call paths, TIRO also contains a dynamic anal-
ysis component that injects the inputs generated by the static
component. If successful, the execution will trigger the appro-
priate code in the application to deobfuscate the obfuscated
parts of the application. Additionally, for dynamic analysis,
TIRO also instruments the analyzed application to collect
deobfuscated information and discover more obfuscated code.

100% T

80% +

60% 1

40%

Percentage of Satisfiable Paths

20% ~

0% -

Applications

Fig. 1. Sorted Percentage of Satisfiable Paths per App

TIRO found that obfuscated code is widespread and present
in the bulk of benign and malicious applications.

B. Application Path Properties

We collect 868,474 paths extracted from 127 popular play-
store applications (all from the top 200 most popular apps
in Google playstore 2019). Within these paths, TIRO finds
only 258,510 (29.8%) satisfiable paths, while the remaining
609,964 paths are unsatisfiable. Although we find that on
average it takes less time to analyze an unsatsifiable path,
perhaps because the constraint solver can quickly identify a
logical conflict, these unsatisfiable paths still consume 15.9%
of analysis time on average for each application.

Figure 1 presents the percentage of satisfiable paths per app
(for 123 apps each with at least 125 paths), sorted in ascending
order. This percentage varies broadly across applications,
ranging from 2.6% (android.apps.docs.editors.slides) to 95.5%
(zxing.client.android). The distribution of the percentage of
satisfiable paths across apps is roughly uniform, with the
median percentage around 33%, indicating that there are more
unsatisfiable paths in general.

C. Path Processing Costs

We measure the cost to process satisfiable paths and unsatis-
fiable paths. TIRO processes a path in two phases. First, a path
finding phase traverses the app’s call graph to identify paths
to targeted locations where deobfuscation code might exist.
Then a path analysis phase collects constraints and attempts
to solve them using the Z3 [1] constraint solver. Table I shows
the average and standard deviation of running times that TIRO
took to find and analyze paths. We find that the analysis time
for unsatisfiable paths is several magnitudes larger than path
finding. Indeed, the constraint generation/solving process for
TIRO is much more time-consuming compared to path finding.

Analysis time spent on unsatisfiable paths does not con-
tribute to the goals of the application analysis since the paths
can never execute in reality. However, as path-finding time is
relatively cheap compared to analysis time, this suggests that
if we may find a way to predict whether a path is satisfiable
from information that can be collected after path finding, then
we may save the expensive path analysis phase.

TABLE I
PATH PROCESSING TIME

mean (ms) | std (ms)
Unsatisfiable Path Analysis 1720 15026
Overall Path Finding 32 107

III. APPROACH

For hybrid and dynamic analysis tools such as TIRO, it is
often the case that there are far more paths in an application
that can be realistically analyzed in a finite amount of time.
As a result, it is beneficial to focus analysis time on paths that
are satisfiable, that is, executable with some set of inputs.

To this end, we deploy machine learning on the program
path information available immediately after TIRO’s path
finding phase, to predict whether TIRO’s constraint analysis
process can successfully generate satisfying inputs or not. This
allows TIRO to discard paths that are likely to be unsatisfiable
and focus its resources on call paths that are more likely to
have inputs that can satisfy the path constraints. If the machine
learning model is faster than TIRO’s path analysis phase and
has reasonable accuracy, it will improve TIRO’s analysis speed
and enable it to analyze more application paths within the same
amount of time.

We conduct our experiments with simple statistical models,
and leave the exploration of more complex machine learning
models, such as those involving deep-learning for future work.
Deep-learning generally requires larger amounts of labeled
training data, and our data can only be labeled by running
TIRO in full, which is time consuming. A simple model allows
us to evaluate our hypothesis in a shorter amount of time. A
positive result with a simple model suggests that refinement
with a more complex model with access to control- and data-
flow should yield even greater analysis time improvements.
As a result, we currently use a logistic regression model and
a random forest model to classify samples.

We note that in TIRO, path constraints are not collected until
the path analysis phase. Thus the model only has available
to it basic program analysis path information. Since TIRO
relies on the Soot analysis framework [6], which uses the
Jimple IR, we use Jimple-specific path features as predictors
for path satisfiability. For each path, we first collect method-
level feature vectors for every method in the path. We then add
up all method-level feature vectors to be a path-level feature
vector. Path-level features (# of methods in path, entry method,
target method) are then appended at the end of the path feature
vector for the path sample. Below lists details of all features:

Control Flow Statement: Control flow statements include If,
Goto, LookupSwitch and TableSwitch. These statements add
diverging paths in code: the complexity of code is thus in-
creased and it is more likely to result in conflicting constraints
that make the path unsatisfiable

Loops and Statements in Loops: Loops also add complexity
by significantly increasing the number of possible execution

paths. We also include the number of statements in the loop
as a feature to indicate the loop size.

Return Statement: Return statements interrupt the control
flow by exiting the current method. Returning early in method
body may result in simpler paths that are more likely to be
satsifiable. However, a large number of returns in a method
may result in complex, unsatisfiable constraints. We track both
return statements with and without return values.

Method Invocation: Method invocation indicates more code
will be executed other than the statements in the method
body itself. This increases the probability that there will be
greater complexity in the code. We currently do not include the
features of called methods. Instead, the number of invocations
and the number of methods invoked are tracked separately.
This distinguishes the case when a method is invoked several
times from the case when several methods are invoked.

Identity Statement: In Jimple, Identity statements are used
to assign “’this” references and parameters to locals. More
Identity statements means there are more variables used as
input / output for the current method. This may also add
complexity to the code and thus the generated constraints.

Assign Statement: The number of assign statements may be
related to data flow complexity and are thus included.

Cast Expression: Cast expressions indicate existence of dif-
ferent types in code, and may reveal information about code
style/functionality along with other features.

Arithmetic / Logical / Shift / Comparison Operation: These
operations adds computation in the method, which may be
included as part of a constraint.

Nop Statement: While nop statements themselves have no
effect, they could be correlated to other statements and may
imply some information like code alignment specific to the
application/path.

Block and Unit: Blocks represent number of basic blocks
in a method. Number of blocks and units would reflect both
method size and complexity of control flow.

Def, Use, and Local: We also keep track of the number of
defs, uses and locals in method body, as they may complicate
data dependencies in code.

New Array/Expression: New arrays / expressions are special
types of objects that can be more complex than ordinary
variables and may complicate the resulting constraint.

Array/Field Reference: As an array can contain multiple
elements, reference to the same array may or may not refer
to the same element. This adds more loads to the constraint
solver. A field in class may be updated by methods that do
not exist in current path and result in more dependencies that
need to be satisfied. The number of references and arrays/fields
referred are used as separate features, to take into account
cases when a single array/field is used multiple times.

Length Expression: The length expression for arrays could
be variable, and may not be obvious to determine. This

could result in complication in code and increase loads to the
constraint solver.

Class Constant, Concrete Value Constant, and Null: Usage
of constants may denote special usages and functionality in
code. We specifically separate class type constant and null
from other constant values.

Enter/Exit Monitor: Enter/exit monitor could be correlated.
Existence of only enter/exit may imply dependency paths or
invalid path.

Throw Statement: Existence of throw statements denote
possibility of error in code. The conditions that result in errors
may not be easily captured.

Number of Methods in Path: More methods mean more
constraints need to be satisfied in order to reach a deep call.

Common Entry/Target Method: As different entry methods
and target methods vary by functionality, certain entry methods
are more/less likely to reach certain target methods. For these
features, we find common entry / target methods that are used
more than 500 times as a entry / target method among the
868,474 paths we collected. This left us with a list of 81 entry
methods and 89 target methods as features. Recorded entry /
target methods are indexed starting from 1. For entry / target
methods that are not in the list, we use the value O to denote
it is not a common entry / target method.

IV. EVALUATION

In this section, we evaluate how our proposed models per-
form on real-world applications. We use both cross-validation
on the same set of apps and evaluation across different apps.
The recall on malware samples is also checked to ensure
malicious paths are not incorrectly predicted as unsatisfiable,
which would cause TIRO to skip analyzing them.

A. Dataset Collection

To collect path samples for evaluation, we run TIRO on 127
apps among the 200 most popular apps in Google Playstore
from July 2019. Entrypoint preprocessing is already done as a
separate job before the analysis. For the analysis run, we set
a timeout to be 24 hours for TIRO. For each app, we use 4
threads and 240G of memory in total. While some apps run
out of memory during analysis, we still keep paths from all
analysis runs in our dataset to get more samples. In total, we
collected 868,474 paths from the 127 applications. On average,
there are 31.6 methods for each path.

B. Performance on All Applications

In this section, we evaluate the performance of the statistical
models on the dataset we collected. We use a 5-fold cross-
validation by randomly splitting paths from all applications
into 5 groups. In this experiment, the training set and test
set may contain paths from the same application. As shown
in Table II, the models are able to learn patterns that pre-
dict satisfiability. The simple logistic regression model yields
considerable accuracy for both classes, and the more complex
random forest has better performance than logistic regression.

TABLE II
PERFORMANCE ON GOOGLE PLAYSTORE APPLICATIONS

Evaluation Model Satisfiable Precisi Satisfiable Recall | Unsatisfiable Precisi Unsatisfiable Recall | Average Accuracy | Balanced Accuracy
— TLogReg 0.820 0.883 0.039 0.002 0.896 0.803
All Apps (Section IV-B) | g0 (Forest 0.913 0.947 0.973 0.955 0.952 0.951
- » LogReg 0.743 0.895 0.049 0.858 0872 0877
Cross-App (Section IV-C) | g1 fForest 0.751 0914 0.956 0.864 0.880 0.889

C. Cross-Application Evaluation

More realistically, our machine learning models need to
make predictions for paths from unseen applications. Thus,
we randomly split all applications into 5 groups for 5 different
runs. For each run, we choose one corresponding group as the
test set and the other groups as the training set: the paths in
training set and test set are thus from different applications. In
the training set, for paths with duplicate feature vectors and
same label (likely duplicate paths), only one such sample is
kept to avoid overfitting. In the test set, however, we keep
the original data to model realistic scenarios for model usage:
paths with the duplicate feature vectors are kept as separate
samples. The averaged results for 5 runs are shown in Table II.

Overall, the results from the two models are similar.
The models achieve considerable balanced accuracy for both
classes despite of class imbalance, showing ability to gen-
eralize to unseen applications. The recall for the satisfiable
class is around 90%, indicating that the likelihood to miss
satisfiable paths is reasonable. Moreover, without any tuning,
we found that both models naturally have higher recall rather
than precision in the satisfiable class. This is beneficial, as
higher recall ensures fewer satisfiable paths are missed. While
the precision for the satisfiable class is not as high, the model
is still able to eliminate a number of unsatisfiable paths and
improve performance.

For cross-application evaluation, the more complex random
forest model has only a small advantage over the simple
logistic regression model. This is different from the case when
paths from the same application exist in both training set and
test set, in which the more complex random forest model
have a large advantage over simple logistic regression. This
suggests that the random forest model overfits for specific
applications, with little improvement for generalized patterns
across applications.

D. Cross-Application Evaluation for Different Path Types

We further inspect how the models perform on paths with
different analysis time across applications. This allows us to
get a brief overview of how the models act differently on
different types of paths and how much path analysis time may
be saved. We group all path samples from the test sets in
Section IV-C based on their analysis time, and evaluate the
performance in each group using the same models trained in
Section IV-C. The results are shown in Table III.

The number of and the types of paths in each group varies.
The unsatisfiable paths mostly concentrate in the 10ms-100ms
group and the 100ms-1s group, while the satisfiable paths
are mostly in the 1s-10s group and the 10s-100s group. In

each group, there exists a different class imbalance for the
satisfiable and unsatisfiable paths. Along with the types of
paths, the total analysis time TIRO spends on each group is
also different. The analysis time is mainly spent on paths that
take more than 1s. The 15% of paths in the 10s-100s group
takes up more than half of the total analysis time. The 1.4% of
paths that take more than 100s uses 35% of the total analysis
time. While the satisfiability and analysis time is different in
each group, most savings come from paths that have analysis
time >1s. As the recall for unsatisfiable class increases, the
saved time also approaches the theoretical maximum.

For paths that take less than 1s to analyze, the models have
high recall on the satisfiable class, missing few satisfiable ones.
Although the precision for satisfiable paths is low, this would
not affect the speed of the analysis much, as these groups in
total only cost less than 2% of total analysis time.

As paths become more expensive to analyze, the recall
for the satisfiable class degrades, while the precision for
satisfiable paths increases. For paths that take more than 100s
to finish, the recall for satisfiable paths is around 0.78. This
results in some time-consuming satisfiable paths being missed.
However, we generally would want to bias the predictor to
avoid skipping satisfiable paths as this may miss behavior
the analysis is intended to detect. As the confidence for the
long running paths is not as high, we configure TIRO to skip
paths only when the predicted unsatisfiable path is above some
confidence threshold. By adjusting the threshold, one may
achieve considerable saved analysis time, while reducing the
number of missed satisfiable paths.

E. Cross-Application Model Speedup

To show the effect of our models on TIRO’s analysis time
and accuracy, we estimate the cost of the feature extraction
and model inference, the saved analysis time for unsatisfiable
paths and percentage of missed satisfiable paths.

As the original TIRO tool does not extract features required
for model prediction, extra computation is required to extract
the feature vectors: this consists of feature extraction time and
model prediction time. For feature extraction, we measure the
cost for each method separately. The feature extraction time
is different for every method, ranging from 0.12ms to 796ms.
On average, the feature extraction time per method is 3.5ms.
The feature extraction cost for a path is the sum of cost for
all methods in the path. While not currently implemented, the
feature extraction cost can be reduced by caching the features
of each method in a hash map, so that extraction is only
performed once per method. We estimate the cost of insertion
into the hash map as 0.03ms and the cost to lookup and retrieve
a method’s features from the hash map as 0.025ms.

TABLE III
CROSS-APPLICATION PERFORMANCE ON DIFFERENT TYPES OF PATHS

Path Prediction Type Sat Performance Unsat Performance | Confid Num Paths Analysis Time (sec)
Path Time Model Precision | Recall | Precision Recall Sat : Unsat Total Paths Saved Time Max Save Time Total Time
LogReg 0463 1000 | 0999 0239 0.826 i 13.6 (0.00018%)
<loms | pOERE 1 0sa3 | ooos | 0991 045 0828 4651:7088 (0.66) 11739 (14%) | 50 0 o00a 106y | 48 (000063%) | 67 (0.00088%)
: LogReg 0079 | 0982 | 0999 0.671 0817) 5110 (0.067%)
10ms-100ms | O8O ks | 099 0675 0746 385T:135175 (0.029) | 139032 (160%) | 348 (0'0ess) | 7092 0093%) | 7231 (0.095%)
LogReg 0346 | 0.996 1.000 0.920 0.926 i 115711 (1.52%)
100ms-1s | o0 1 | Goss | 099 0017 0861 13670:320514 (0.043) | 334184 (38.5%) | | 300 To) | 122830 (161%) | 130343 (171%)
: LogReg 0058 | 0933 | 0949 0.968 0.921) 356483 (4.68%)
15-10s R | om0 | 09 | 0986 0961 0289 105522:135863 (0.78) | 241385 27.8%) | 327063 (430 | 368698 (484%) | 888698 (11.7%)
LogReg 0984 | 0852 | 0323 0.836 0814 i 200206 (2.75%)
10s-100s | o808 1 s | o | 0363 0816 0785 119996:10168 (11.8) | 130164 (15.0%) | 07 Y'gle) | 270983 (B.56%) | 3924772 (51.5%)
: LogReg 0987 | 0.778 | 0.304 0.907 0.809) 240624 (3.16%)
>100s roee | oo | oass | 050 0825 0743 10814:1156 (9.4) 11970 (1L4%) | J31e10 (bo1g) | 279367 B67%) | 2667137 (35.0%)
TABLE IV
PERCENTAGE OF AVERAGE PREDICTION SPEEDUP ACROSS APPLICATIONS
Threshold Model Prediction Time Unsatisfiable Path Savings isfiable Path Savings
Added Prediction Overhead | Saved Analysis Time | Max Achievable Analysis Time | Saved Paths | Max Achievable Paths | Missed Analysis Time | Missed Paths
0.5 13.9% 51.7% 13.8% 3.6%
0.7 LogReg 0.021% 13.2% 47.3% 6.8% 1.6%
0.9 12.1% 40.5% 1.9% 0.49%
0.5 13.9% 15.9% 51.2% 61.4% 12.4% 31%
0.6 3 13.0% 47.5% 7.18% 1.8%
0.7 RandForest 0.022% 11.7% 43.0% 3.8% 0.97%
0.9 7.4% 26.9% 0.53% 0.17%
The model prediction time per path instance is 0.013ms for
Cpl : 35%1 Confidence Threshold = 0.5
logistic regression and 0.078ms for random forest. The cost :
K X . R . . Confidence Threshold = 0.7
of feature extraction, insertion, retrieval and model prediction n 30% Confidence Threshold = 0.9
5
are summed into an overall prediction time to represent the € 59 |
o
additional cost of our approach. & 0%
. . 2 509 |
In order to reduce missed satisfiable paths, we also set a f; ¢
confidence threshold as mentioned in Section IV-D: TIRO will g 15% .
. 8
only skip a path when it is both predicted as unsatisfiable and £ 10% .
. . . E h
the confidence of prediction is greater than the selected thresh- g . 0
. . . 07
old. We calculate saved/missed analysis time as a percentage /H"_
of the overall analysis time per app. The saved/missed paths 0%

are also calculated as a percentage of all paths in the app.
To ensure results are not dominated by a few apps with large
number of paths or analysis time, we calculate the result per
app and average the result for all used apps. To avoid result
being affected by apps with very few paths, we only keep 123
apps in Section IV-A that have at least 125 paths.

Table IV shows the projected speedup at different thresh-
olds. With a default threshold of 0.5, the models save around
13.9% of analysis time, close to the max achievable analysis
savings: 15.9%. A small number of missed paths (3.6% / 3.1%)
take up 13.8% / 12.4% analysis time respectively. This is
consistent with results in Table III, as the model performance
degrades for the small groups of time-consuming paths.

With higher confidence threshold, the reduction in missed
paths outweighs the reduction in saved analysis time. As
shown in Table IV, the logistic regression model has a 3.6% to
0.49% reduction in the number of missed paths Vs 13.9% to
12.1% in saved analysis time. This shows that conservatively
using a high threshold allows TIRO to greatly reduce the
number of missed paths while still saving a considerable
amount of analysis time. The random forest model permits
lower confidence thresholds than logistic regression as its
average confidence values are lower for most types of paths.

The percentage of missed paths also varies across apps as

Appliéations '

Fig. 2. Sorted Percentage of Missed Paths per App (Logistic Regression)

shown in Figure 2. The missed percentage of paths is generally
low for most apps except for a few outliers at the right. As
the confidence threshold increases, the missed percentage of
paths consistently decreases for all applications.

FE. Malware Performance

In this section, we evaluate the use case of cross-application
evaluation on malware. Paths in malwares have only 4.1
methods on average. In the malware dataset, 61% of the paths
are satisfiable, much more than the proportion in ordinary
apps. However, with malware, it is important not to miss paths
as they may cause TIRO to miss malicious behavior, which as
a result, motivates good recall for satisfiable paths.

We collect 470,471 paths from 1,260 malware samples in
the Android malware Genome dataset [15]. We use 8 threads
and 240G of memory for analysis. The timeout is set to 6
hours, while most analysis jobs finish before timeout. We
classify these paths using models trained with all paths from
benign apps in Section IV-A—no malware paths exist in the
training set.

TABLE V
CROSS-APPLICATION PERFORMANCE ON MALWARE

Threshold Model Satisfiable Precision | Satisfiable Recall
05 LogReg 0.765 0.934
’ RandForest 0.723 0.967
07 LogReg 0.714 0.976
’ RandForest 0.647 0.998
0.9 LogReg 0.657 0.995
’ RandForest 0.621 1

Table V demonstrates the ability of our models to generalize
to malware. With a default confidence threshold of 0.5, the
logistic regression model and the random forest model achieve
93.4% and 96.7% recall for the satisfiable class respectively.
This demonstrates that our models are able to achieve cross-
application recall on malware that is comparable to that
on benign applications. With higher confidence values, the
satisfiable recall further increases to be nearly perfect.

V. RELATED WORK

Tools such as [7], [8], [4] use machine learning to pre-
dict time for constraint solving or constraint satisfiability in
symbolic execution. They may be used to discard infeasible
symbolic states or select best constraint solver. The main
difference is that these tools predict over constraints instead of
path features. Thus, they examine statistical constraint features
like the number of nodes, constraint structures and variables or
convert constraints to matrix representations, while our work
uses basic program-analysis information from program paths.
In addition, previous works require constraints to be collected,
while our models are able to predict without constraints and
thus can save constraint collection time.

There also exists work [5], [3] that uses machine learning
to predict satisfying values for constraints that are difficult
for constraint solver to solve. These models attempt to solve
constraints when symbolic execution gets stuck, instead of
predicting whether constraints may be satisfied.

There are existing Android program analysis tools [9], [13],
[11] that find sensitive program paths statically and execute
the paths dynamically to verify them. These tools are used for
various purposes such as malware detection, privacy leakage
detection, app auditing. [9] and [13] statically finds for input
for the path and dynamically injects the input to execute it. As
[11] uses dynamic taint analysis and approximated execution,
it does not need to solve for input statically. Although these
analysis tools are different, they also have invalid program
paths and may experience path explosion. In future, our
proposed approach may also be experimented on these tools.

To reduce path explosion, existing work [14], [12], [2]
improves search algorithms that construct paths. As opposed
to generically filtering infeasible paths, they take an analysis-
specific approach of guiding the symbolic execution only
towards paths that are more likely to match their objectives.

VI. CONCLUSION

To reduce path explosion, we use machine learning classi-
fiers to predict unsatisfiable paths that do not yield meaningful

results. Our models take statistical features with basic program
analysis information at path level. We evaluate them on the
Android program analysis tool TIRO. This technique is able to
capture patterns for satisfiable paths and generalize to unseen
applications including both benign apps and malware. On
average, the saved analysis time we achieve is close to max
achievable save time if all unsatisfiable paths are known be-
forehand. Model inference adds negligible time overhead and
only misses a small percentage of time-consuming satisfiable
paths. By adjusting the confidence threshold for prediction,
one can also tradeoff a small amount of saved analysis time
to reduce missed long-running satisfiable paths.

REFERENCES

[1] L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337-340.

[2] A. Kolchin, “A novel algorithm for attacking path explosion in model-
based test generation for data flow coverage,” in 2018 IEEE First
International Conference on System Analysis & Intelligent Computing
(SAIC). IEEE, 2018, pp. 1-5.

[3] X. Li, Y. Liang, H. Qian, Y.-Q. Hu, L. Bu, Y. Yu, X. Chen, and
X. Li, “Symbolic execution of complex program driven by machine
learning based constraint solving,” in 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2016,
pp. 554-559.

[4] S. Luo, H. Xu, Y. Bi, X. Wang, and Y. Zhou, “Boosting symbolic
execution via constraint solving time prediction (experience paper),” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 336-347.

[5] S. Shen, S. Shinde, S. Ramesh, A. Roychoudhury, and P. Saxena,
“Neuro-symbolic execution: Augmenting symbolic execution with neu-
ral constraints.” in NDSS, 2019.

[6] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a Java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON 1999). 1BM, 1999, p. 13.

[71 J. Wen, M. Khan, M. Che, Y. Yan, and G. Yang, “Constraint solving with
deep learning for symbolic execution,” arXiv preprint arXiv:2003.08350,
2020.

[8] S.-H. Wen, W.-L. Mow, W.-N. Chen, C.-Y. Wang, and H.-C. Hsiao, “En-
hancing symbolic execution by machine learning based solver selection,”
in Proceedings of the NDSS Workshop on Binary Analysis Research,
2019.

[91 M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for
the dynamic analysis of android malware.” in NDSS, vol. 16, 2016, pp.
21-24.

, “Tackling runtime-based obfuscation in Android with TIRO,” in

Proceedings of the 27th USENIX Security Symposium (USENIX Security

2018). USENIX Association, 2018, pp. 1247-1262.

M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time Android

application auditing,” in Proceedings of the 2015 IEEE Symposium on

Security and Privacy, 2015, pp. 899-914.

T. Xie, N. Tillmann, J. De Halleux, and W. Schulte, “Fitness-guided

path exploration in dynamic symbolic execution,” in 2009 IEEE/IFIP

International Conference on Dependable Systems & Networks. 1EEE,

2009, pp. 359-368.

[13] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,

“Applntent: Analyzing sensitive data transmission in Android for privacy

leakage detection,” in Proceedings of the 2013 ACM SIGSAC Conference

on Computer & Communications Security (CCS), 2013, p. 1043-1054.

F. Yao, Y. Li, Y. Chen, H. Xue, T. Lan, and G. Venkataramani,

“Statsym: vulnerable path discovery through statistics-guided symbolic

execution,” in 2017 47th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). 1EEE, 2017, pp. 109-120.

Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization

and evolution,” in 2012 IEEE Symposium on Security and Privacy.

IEEE, 2012, pp. 95-109.

[10]

[11]

[12]

[14]

[15]

