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Abstract

It is widely understood that most downtime is accounted for by
programming errors and administration time. However, recent
work has indicated an increasing cause of downtime may stem
from transient hardware errors caused by external factors,
such as cosmic rays. Moving to denser semiconductor technol-
ogies at lower voltages will cause an increase in transient
errors. We investigate the trends in transient errors and the
susceptibility of operating systems and applications to them,
and we introduce ideas regarding software transient error
recoverability.

We believe that if transient errors become a prominent prob-
lem, that it will be possible to improve commodity system
availability with simple software recovery. Results indicate
that in the Linux kernel and a Java virtual machine few errors
need to be fatal. We also propose two recovery examples which
we believe indicate that it is possible to increase error detec-
tion and recovery without the cost of a fail-over cluster.

1 Introduction
Demand for increased performance and high availability
of commodity computers is increasing with the ubiqui-
tous use of computers. While commodity systems are
tackling the performance issues, availability has
received less attention. It is a common belief [11] that
software errors and administration time are, and will
continue to be, the most probable cause of the loss of
availability. While such failures are clearly common-
place, especially in desktop environments, it is believed
that certain other hardware errors are also becoming
more probable [18].

Hardware errors can be classified as hard errors and
transient (soft) errors. Hard errors are those that require
replacement (or otherwise relinquished use) of the com-
ponent. These typically happen as a consequence of
physical damage of the component, e.g. by damage to
connectors. Transient errors are those that result in an
invalid state that can be corrected, for example, over-
writing a corrupt memory location. Ziegler et al. have
discovered that cosmic rays and alpha particles cause
semiconductor transient errors (or soft errors) in memo-
ries [27, 28]. Initial results demonstrated approximately

6000 FIT (failures in 109 hours) for one 4Mbit DRAM.

Tandem indicate that such errors also apply to processor
cores and on-chip caches at modern die sizes/voltage
levels [24]. They claim that processors, cache, and main
memory are all susceptible to high transient error rates.
A typical CPU can have a soft error rate of 4000 FIT, of
which approximately 50% will affect processor logic
and 50% the large on-chip cache.

Techniques such as Error Correction Codes (ECC) and
ChipKill [10] have been used in main memories, storage
media and interconnects to correct some of these errors
(90% correction rate for ECC [24]). Unfortunately, such
techniques only help reduce visible error rates for semi-
conductor elements that can be covered by such codes,
i.e. large memories. Undetected errors either due to an
absence of protection or escaping existing ECC protec-
tion lead to random corruption to execution state, known
as silent data corruption.

We believe that due to increasing speeds, denser tech-
nology, and lower voltages which affect transient error
rates, such that ECC may be unable to address all the
soft error problems, and that such errors may become
more probable than other single hardware component
failures. For example, a 1GB memory system based on
64Mbit DRAMs still has a combined visible error rate
of 3435 FIT when using Single Error Correct-Double
Error Detect (SEC-DED) ECC [10]. This is equivalent
to around 900 errors in 10000 machines in 3 years.
Unfortunately, current commodity hardware and soft-
ware provide little to no support for recovery from
errors whether detected by ECC or not.

Such problems have been considered by mainframe
technology for years using expensive proprietary hard-
ware and software [9, 20]. However, in the field of com-
modity systems, it is currently not cost-effective to
provide full hardware redundancy/detection support to
mask errors. Instead, commodity systems choose to rely
on slower fail-over clusters as an economic solution to
providing availability in general. Therefore, when using
commodity hardware the burden of providing availabil-
ity falls to using the existing hardware and software to
attempt to handle these errors to provide the highest
availability. For example, most contemporary commod-
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ity computer systems, while providing good perfor-
mance, pay little attention to availability issues resulting
from memory soft errors. The IA-32 architecture sup-
ports only ECC on main memory rather than across
other components in the system, requiring system reboot
on errors not covered by this ECC. Consequently, com-
modity software such as the OS, middleware and appli-
cations have not dealt with the problem of recovery.

Given that technology trends are causing increased
prevalence of these errors, future commodity processors
have improved their level of support. Most notably,
future IA-64 processors [13], while not recoverable in
the general case, do offer some support with certain lim-
itations.

The goal of this paper is to investigate this processor
support, the soft error rate that might be seen, and the
effect on software running in future commodity sys-
tems. Based on this understanding, we illustrate the
severity of these errors and outline some simple tech-
niques that could be used to improve availability
through software error handling when using future com-
modity processors.

The rest of the paper is organized as follows. Section 2
presents related work. In Section 3, we present the kind
of support found in commodity systems and the trends
in soft error rates that they are likely to see. We then
describe our investigation into the influence of these
errors on operating systems (Section 4) and a sample
application (Section 5). In Section 6, we present the les-
sons learned from this work, and in Section 7, we sum-
marize the paper and propose potential future work.

2 Related Work
Availability in computer systems is determined by hard-
ware and software reliability. Hardware redundancy has
traditionally existed only in proprietary servers, with
specialized redundantly configured hardware and criti-
cal software components, possibly with support for pro-
cessor pairs [1]. Examples include the IBM S/390
Parallel Sysplex [20] and Tandem NonStop Himalaya
[9]. The IBM S/390 Sysplex supports internal processor
checking, hot swap execution, redundant shared disk
with fault-aware system software for error detection,
and fail-over restart. For example, every processor has
dual instruction/execution logic that validates every
instruction executed. If a problem occurs, the processor
automatically retries, or all necessary state is transpar-
ently moved to another processor.

Tandem supports redundant fail-over lock-stepped pro-
cessors with a NonStop kernel and middleware, to pro-
vide improved integrity through the software stack. Two
lockstep processors run identical copies of the same pro-

gram and a checker circuit compares their outputs. On a
mismatch, a software recovery sequence is initiated.
These systems provide full automatic support to mask
the effects of data corruption and resource loss.

Cornell’s Hypervisor-based fault tolerance system pro-
vides a similar software system, providing execution in
one primary virtual machine and n-1 backup virtual
machines on n processors to provide an n-1 fault-toler-
ant system [2]. The virtual machines are static, such that
once all the n virtual machines are dead, the system
must be manually restarted.

Another approach is fault containment and recovery at a
“node” granularity. In these systems, each node is sup-
ported by a multi-cellular kernel. When one node fails,
the others can recover and continue to provide services.
Systems of this type include cluster systems [21], and
NUMA architectures, such as Hive [6, 25].

Hardware faults are difficult to catch and repeat. There-
fore, a lot of research and development is based on emu-
lation and injection of hardware faults [14, 15]. Faults
can be injected by specially designed hardware or by
software. Hsueh et al. give a survey and comparison of
different injection methods [12].

Software reliability has been more difficult to achieve in
commodity software even with extensive testing and
quality assurance [19]. Commodity software fault
recovery has not evolved very far. Most operating sys-
tems support some form of memory protection between
units of execution to detect and prevent wild read/
writes. But most commodity operating systems have not
tackled problems of memory errors or taken up software
reliability research in general. They typically rely on
fail-over solutions, such as Microsoft’s Wolfpack [21].

A lot of work has been undertaken in the fault-tolerant
community regarding the problems of reliability and
recovery in software [3, 11, 16]. These include tech-
niques such as checkpointing [11] and backward error
recovery [3]. A lot of this work has been conducted in
the context of distributed systems providing fail-over
support rather than increasing single system availability,
the focus of our work. Rio [8] takes an interesting soft-
ware-based approach to fault containment for a fault-
tolerant file cache, but with general uses. By instrument-
ing access to shared data structures with memory pro-
tection operations, wild access to the shared data
structures becomes improbable.

3 Commodity Soft Error Support
In most processors, a machine-check exception notifies
execution of a serious error, but leaves the processor in
an undefined state requiring a system reboot due to loss
of containment [23, 22]. The IA-64 architecture [13]



extends support for soft errors in two ways. Additional
hardware detection support has been added to the pro-
cessor to provide either parity or ECC to the system bus
and the three on-chip caches. These provide good cover-
age of most common errors while limiting cost impact.
In addition, the recoverability of machine-checks has
been improved providing several types of well-defined
error scenarios. This provides the potential for more
information to allow software containment of the error.

However, IA-64 is a complex architecture. The current
processor implementations (Merced, McKinley) support
out-of-order completion of memory operations, specula-
tive prefetching, advanced instruction retirement, and an
exposed VLIW (Very Long Instruction Word) architec-
ture [23]. This leads to difficulties in providing full error
detection/handling while remaining cost-effective due to
the extra complexity.

To isolate software from implementation dependencies,
the IA-64 architecture abstracts machine-check han-
dling. This allows implementations to support different
detection and logging approaches while maintaining the
same architectural interface [22]. The IA-64 architecture
defines five flags to describe the state of the error and
the processor in the presence of a machine-check (see
Table 1). Depending on the processor/platform imple-
mentation, a combination of these flags will be signalled
to the operating system by the processor firmware.

If storage integrity is not synchronized, execution is not
continuable, or storage damage is not contained (see
Table 1), then the repercussions for software using the
processor are quite severe. The current execution may
not be restartable or corruption may have occurred to
state in user or kernel space. But these are less severe
than if the machine-check was solely isolated and not
contained at all by the processor, resulting in permanent
state damage. We believe that in the former cases, there
is scope for software recovery for the most probable
error cases [18]. However, since containment may have
been lost, corrupt state may have propagated through the
system hierarchy.

Table 2 outlines the typical kinds of error handling in an
IA-64-based system. Current commodity systems do not
support software recovery from certain classes of hard-
ware faults, limiting recovery to the firmware and hard-
ware only. This enables simple recovery for some
common cases when sufficient information is available
at this low level.

However, in the cases of “non-continuable” execution,
we believe that processor-only recovery is insufficient
and requires memory usage information in the operating
system and application levels. In the shaded area one
cannot recover because the architectural assertion has
been that unless one can exactly identify the effects of
the loss of containment. We believe that with some sim-
ple software modifications using the semantics of mem-
ory usage, a number of these errors need not be fatal.

3.1 Memory Soft Error Rates

Initially, we built an analytical model of a large memory
subsystem to understand the trends with which soft
errors would lead a Machine Check Abort (MCA)
exception or silent data corruption under the IA-64
architecture. For ECC protection this equates to two-bit
and multiple-bit errors; for parity, this also includes sin-
gle-bit errors.

This analytical model used available research on semi-
conductor physics [27, 28, 30] to allow the parameter-
ization of the memory system at an abstract level, while
simplifying its manageability. Events model cosmic-ray
strike impacts according to probability distributions fit-
ted to existing research data on supply voltage, cell size,
etc.). The effects of these impacts (bit flips) are inserted
into a simulated memory subsystem considering DRAM
placement and bit interleaving. Errors accumulate due to
strikes until they are erased by a model of write traffic to
the memory system. In Figures 1 and 2, we present the
results of experiments with one such factor, supply volt-
age, and show how this affects the probability of such

Flag Description

Storage Integrity
Synchronized

All loads and stores before the machine-check occurred
and those following appear to have not occurred.

Continuable
All in-flight operations are completed or tagged as erro-
neous/incomplete and are restartable on re-issue.

Uncontained
Storage Damage

Error contained in the storage hierarchy, but storage may
contain corruption; safe to reboot.

Machine-Check
Isolated

The machine-check was isolated by the system and may or
may not be recoverable. If no other flag is present, fatal
permanent corruption has occurred.

Hardware
Damage

Non-essential hardware has been damaged and the pro-
cessor will continue to run at degraded performance.

Table 1: Description of the IA-64 Machine-Check System State

Level
Recovery

Detection Interpretation Containment Recovery

Hardware

cache ECC,
memory ECC,
bus errors,
interconnect

HW signals to
form error log-
ging information

certain types of
memory access
(instruc. access
exceptions, etc.)

those with no
platform side-
effects (e.g.
refetch instruc.)

Firmware N/A
implementation-
specific error
information

sensitive error
cases

mask and report
nested errors

OS
is error critical
to OS data struc-
tures?

architectural
error info. &
OS error detec-
tion info.

error effects on
units of execu-
tion (threads,
processes)

if possible - notify
it else if localized
- terminate it
else reboot

Applica-
tions

transaction error
error notifica-
tion &
info. from OS

errors within
single transac-
tion

restart operation

Table 2: Error Detection/Containment/Recovery on IA-64 System



errors. As can be seen, the number of errors increases
significantly as supply voltage decreases. Similar trends
occur as the proximity of neighboring bits in a memory
word is decreased and as cell size is decreased (not
shown).

Based on Moore’s law, both cache and DRAM sizes will
grow significantly over the next 5 years (to around
2Gbits per DRAM) indicating the possibility for a large
increase in error rates due to shrinking cell sizes and
supply voltage. However, ongoing research into semi-
conductors indicates that changes in semiconductor fab-
rication techniques have so far been used to effectively
prevent error rates from increasing dramatically. Bau-
mann et al. have shown that alpha particle cascades in
the semiconductor substrate cause soft-errors, leading
many manufactures to adopt alternative semiconductor
substrates [5]. Similar benefits are expected from Sili-
con-on-Insulator fabrication technologies [26].

Research has shown that DRAM manufacturers have
effectively reduced their soft-error susceptibility by
altering the cell construction to minimize soft-error sus-
ceptibility [4]. Ziegler’s most recent research shows that
initial accelerated testing and modelling continues to be
truly accurate and shows that SRAM sensitivity to high
energy particles has dropped as a result of manufactur-
ing changes [29]. At the same time, hardware protection
technologies have also improved, e.g. IBM’s ChipKill
technology [10].

It is unclear how long semiconductor techniques will be
able or cost effective enough to cope with future
increases in soft error rates. It is clear that the complex
interactions of various semiconductor features and
materials lead to a complex model for soft error suscept-
bility. However, as technology density increases and
voltages decrease, underlying semiconductor physics
certainly indicate the potential for such errors to
increase. Given that these underlying causes seem to
indicate continued concern, our work has focused on the

affect on software of such errors, if or when they
become a prominent availability issue.

4 Influence on Operating Systems
Even with simple error correction techniques, it is still
possible for a noticeable number of memory errors to
escape that protection. Commodity operating systems
can be affected in two ways when an uncorrectable soft
error is detected and an exception is raised. First, a
memory location will be corrupted and must be handled.
Second, because execution may not be restartable and
the exception may be delivered imprecisely, the current
execution flow may be severely affected. Because of
this, systems usually halt or reboot when encountering
such exceptions.

To determine the effect of these errors on a typical sys-
tem, we tried to determine the amount of execution time
spent in the kernel using Linux’s time accounting. We
used generated Web traffic between clients and an
Apache Web server for this experiment. Figure 3 shows
that a substantial fraction of the Apache server process-
ing time, as high as 70%, is spent executing within the
context of the operating system (network and disk I/O).
This indicates that recovery at this level could have a
significant benefits for these types of applications.

4.1 Experiments on OS Consumption

In order to be affected by errors, the execution must
access the memory location containing the error. We call
this error consumption. If a memory location contains

Figure 1: Soft error rates of two-bit errors as voltage is reduced
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an error and is never accessed or if it is overwritten with
new data, this will not result in a fatal exception and
therefore availability will not be effected. Given high
involvement of the kernel in our sample workload, we
first investigated the effect of consuming errors on the
operating system, Linux in this case.

Analyzing error consumption and propagation requires
the use of an error injector. Given the lack of an appro-
priate IA-64 environment for our experiments, we per-
formed our investigations on an IA-32 platform,
simulating memory errors with watch points. A set of
three debug registers allows our injector to detect data
read/write accesses, or instruction fetches at any given
physical location. The fault injector inserts watch points
at periodic intervals, one at a time. Either the OS con-
sumes the error (e.g. hits the watch point) or the injector
deletes the watch point after some time-out.

Analyzing error casualty “a posteriori” at the time the
OS halts or reboots is difficult. If the system halts and
human intervention is required, it will be difficult to
gather enough samples. If the system reboots, the error
context will probably be lost. Instead, the kernel is mod-
ified to capture the relevant state at memory error con-
sumption time. For our investigations, we wanted to
record the consumption delay, memory type, access
mode, execution mode, interrupted task and program
counter.

To obtain memory type information, the OS (Linux in
our case) was instrumented such that every byte of main
memory can be classified. This is accomplished by
modifying the memory allocators (the buddy and Slab
systems for Linux) such that they register the
requestor’s return PC with the memory object.

Once detected by the exception handler, the state is
logged, the error is cleared, and the OS is allowed to
proceed. This method is non-intrusive and permits the
collection of as many as 3000 samples.

For the experiments in this section, we used the follow-
ing experimental setup:

• A 64 MB 500 MHz Pentium III server platform run-
ning the Linux kernel version 2.2. The working set of
the application does not fit in the CPU memory cache.

• The server runs an Apache Web server and repetitively
recompiles the Linux kernel.

• A single client (600 MHz Pentium III Windows NT)
connected over a 10 Mbit Ethernet link. The client
runs the WebStone benchmark against the Apache
server, simulating 20 users. The network traffic is
close to saturation.

• Across 11 experiments, 3125 error injections were
performed over a 20 hour period, resulting in 1169

consumptions. To gather enough samples, we artifi-
cially injected errors at a much higher rate than a real
error rate would be. We believe this does not influence
the error distribution or the consumption delays,
because the events are independent, and non-intrusive
to the kernel (e.g. the kernel is never halted, and the
tasks never killed)

The first set of experiments (first 4 rows of table 3) mea-
sure the error consumption distribution over the various
memory objects for a fixed period of time (4 hours). The
second set characterize the consumption rates, where the
elapsed time is proportional to the time-out (x 10).

Figure 4 depicts the average memory usage while run-
ning the benchmark. Up to 200 distinct memory object
types co-exist. The top 15 types account for 90% of the
allocated memory. 75% of the memory (48 MB) is dedi-
cated to user processes. For these benchmarks, a total of
280 processes are allocated.

Excluding the user private objects, the mapped files and
the free memory, 21% of the memory belongs to kernel
objects and is presumably highly sensitive to soft errors,
potentially leading to kernel failures.

Given our model, the consumption rate is expected to
vary with the injection time-out. The larger the time-out
is, the greater the consumption rate should be. The con-
sumption rate reaches 55% for a 120 second time-out
and 85% for a 30 minute time-out (Figure 5).

Injection time-out Elapsed Injections Consumptions

10 sec. 4 hours 1690 464

30 sec. 4 hours 670 278

60 sec. 4 hours 382 197

120 sec. 4 hours 228 132

10 sec. 100 sec. 12 2

30 sec. 5 min. 15 5

1 min. 10 min. 17 9

2 min. 20 min. 18 10

5 min. 50 min. 18 12

10 min. 100 min. 28 20

30 min. 5 hours 47 40

Total ~24 hours 3125 1169

Table 3: OS Error injection experiment sets

Figure 4: Linux memory objects classification by size



The average consumption delay (Figure 6) increases
insignificantly for injection time-out values greater than
5 minutes. A closer analysis reveals that 90% of the con-
sumed errors are consumed within a minute.

These results motivates our choice for analyzing the
consumption distribution for up to 2 minutes time-out
values (Table 3). For a same duration experiment, larger
time-outs would not significantly increase the total error
distribution.

Error Distribution

Figure 7 illustrates that error injections are distributed
across memory object types accordingly to their mem-
ory usage. This is no surprise, since the injector uses a
uniform random generator to compute the physical
addresses. The consumption (detection) distribution is
not as close; in particular, the user private memory hit
rate is unexpectedly high and the mapped file hit rate is
unexpectedly low.

Two factors contribute to this:

• The task/thread creation rate for this workload is
high and the private data pages lifetime is short.
Every byte of a freshly allocated private page is
cleared by the kernel (for security reasons) whether
or not it will be used by a task. Our statistics confirm
that 90% of the error detection for private data pages
occur at page clear time, within kernel space.

• The text (here classified as a mapped file) locality is
also high. The server tasks are repetitive. Only a
small fraction of the text pages are referenced.

The error severity (Figure 8) is classified as follows:

• Overwritten. The memory is accessed in write
mode. If the trapped instruction is re-startable the
kernel can proceed. This is interesting because some
processes read cache lines first on a write.

• Signaled. The memory is accessed in read mode, but
it belongs to a user area (as opposed to kernel). In
this case, the kernel may just signal the user task and
proceed. This applies whether or not the processor
was running in kernel or user mode.

• Fatal. The memory is accessed in read mode and
belongs to the kernel space. In the general case, this
is fatal. There may be cases where the error could be
ignored or surmounted, but this would require a thor-
ough kernel analysis.

Overall, only 8% of the detected errors are considered
fatal to the system in our sample workload. 81% of the
errors can simply be ignored provided that the inter-
rupted instruction stream can be re-startable. Assuming
that the hardware does not signal overwritten errors, an
unmodified Linux system would be affected by 19% of
the errors. The kernel already handles appropriately user
data errors by signaling the relevant task. It would only
panic for 8% of the errors if the processor (as opposed to
the OS) is restartable after such a user data error is
raised.

4.2 OS Recovery and Containment

Our results show that up to 92% of memory errors we
consider should be non-fatal to the operating system.

Figure 5: Fault consumption rate vs. injection time-out

Figure 6: Consumption delay

Figure 7: Affected memory by type for the Linux kernel

Figure 8: Error severity



This assumes that the operating system has been instru-
mented to capture relevant information at error detec-
tion time and is able to pinpoint the affected memory
object type.

The remaining 8% is much more difficult to handle.
Looking more closely at the error distribution in Figure
7, one can observe that apart from the non-kernel object
types (user private and mapped files) a significant pro-
portion of kernel objects may be altered without affect-
ing the overall kernel availability:

• User page table entries - Some may be re-built; at
worst, the task can be signaled.

• Buffer cache - Non-dirty blocks can be recovered from
disk; at worst, an I/O error may be raised.

• Kernel stacks - If locks can be successfully unwound,
in some circumstances the task may be destroyed.

• Network buffers - The data may be retransmitted, or
an I/O error can be raised.

• Kernel text - May be reloaded if the page-in code path
is not altered.

• More generally, corruptions within logs or statistical
counters should not bring the system down.

We believe that decreasing the 8% fatality by half is
possible, but at the cost of more complex modifications
to the operating system core.

5 Influence on Application Software
System recoverability is a complex problem that
involves participation at each level from the hardware
through to the application software. We have seen that
the operating system can be extended with simple
instrumentation to increase recoverability when it
receives a memory error exception.

To avoid application termination the application must
consider recovery too, if the operating system finds that
the error occurred in application space. The operating
system can be extended to signal the application that an
error occurred, but recovery for the application is not
necessarily straightforward. The data corruption which
caused the exception may have affected an important
data structure. As we have seen for future commodity
processors, if the error exception occurred during user
execution, that execution is unlikely to be restartable.
Therefore, the application will either need to consider
recovery from such exceptions or the system will need
to have mechanisms to preserve application state inor-
der to provide recovery for the application.

In this section, we present two initial investigations into
application susceptibility to and recovery from, soft
errors. First, we investigate a Java VM running Java
applications and its susceptibility and recovery poten-

tial. Second, because business costs often mean that
changes to applications are not economical, we present
initial work into a simple mechanism for trading off per-
formance for availability by preserving application
state.

5.1 Influence on Java VM Error Consumption

To determine how the Java Virtual Machine (VM) and
its Java applications can respond to soft errors and
potentially detect silent data corruption, we performed
several investigations instrumenting and adapting the
Kaffe VM [7]. This section briefly outlines these results.

At the application level, JVMs and Java applications are
of particular interest due to the large garbage collected
heaps, the machine abstraction presented, and the inte-
gral exception mechanism. By presenting an abstraction
between the operating system and the applications, the
virtual machine simplifies application-level recovery.
Because, the virtual machine has increased details of the
application’s status and semantics, such as memory
usage, there is an improved chance of recovery when the
operating system cannot transparently recover for the
application.

In a Java VM, the data areas can be divided roughly into
two partitions, those allocated statically for the VM and
those allocated on the heap for Java objects. In a manner
similar to the OS fault injector described in Section 4.1,
the byte-code interpreter inserts watch points and waits
for the error to be consumed. Once a byte is randomly
chosen, its bits are flipped to mimic silent data corrup-
tion.

Results show that for the static data region around 5-6%
of injected errors cause application errors (crashes or
incorrect results), and around 2% of errors are con-
sumed but cause no adverse result. Similar experiments
on the Java object heap show that error consumption is
much higher there. Between 16% and 63% of errors are
consumed causing no error and between 7% and 13%
are consumed causing application errors [7].

Most of this consumption comes from the Kaffe Gar-
bage Collector (GC) using a mark and sweep strategy
that touches most objects periodically. Although most of
the error consumption takes place in the garbage collec-
tor, relatively few errors actually cause real problems.
The main reason is that the garbage collector only uses
certain data in the heap (e.g. object references) on its
traversal reducing its susceptibility to the number of
actual errors. On average, only 7% of the error con-
sumption in the GC cause application errors. In compar-
ison, 56% of static data error consumption cause
application errors.



5.2 Java VM and Application Error Detection

Java VMs will be used in systems (set-top boxes, PDAs)
that may not have any error protection mechanisms,
such as ECC. Based on our experimental results on error
consumption, we implemented a prototype solution for
detecting silent data corruption for the Kaffe virtual
machine.

The basic idea is that in a Java VM every Java object or
array is accessed through a well-known group of byte-
code operations, such as getfield and putfield. For each
of these byte codes, we add code to do a checksum com-
putation. The heap object management can be modified
to store the checksum results [7].

Results show the effectiveness of the detection depends
on the nature of the application. If the objects and arrays
account for most of the actual errors occurring, the tech-
nique is more effective. For example in Javac, where
errors in objects and arrays account for nearly 80% of
all error occurrences, our prototype implementation can
detect up to 38% of all errors. The limitations of this
implementation are that neither large objects nor some
native code references are considered.

We also compared relative slowdown of the prototype
implementation with the original Kaffe implementation.
The results are summarized in Table 4.

5.3 Lockstep Processes

One of the biggest problems with application recovery
is that execution is potentially not restartable when it
receives a MCA exception. This can result in the appli-
cation losing part of its execution state, making recovery
complex. Ideally, the system requires a mechanism to
capture the complete application state to allow recovery.

We believe that duplication of software resources (such
as memory and execution state can be used to preserve
state in a similar fashion to checkpointing. Resource
duplication for availability can performed at different
levels, such as at the hardware level [9, 20], OS level,
virtual machine level [2], process level, or thread level.
Each approach trades off recoverability and availability
against system software complexity and resource costs.
For example, duplication at the OS level offers the best
availability, but at the highest complexity and resource
overhead (everything must be duplicated). Mainframe
machines [9, 20] provide a large amount of hardware
support, trading off performance for cost while main-
taining good availability.

Our investigations have shown that soft errors need not
be fatal to the operating system with the correct instru-
mentation and recovery. Given that there is a high busi-
ness cost to adding complexity at the application level,
we believe that duplicating resources on a process basis
may be able to capture application state with reasonable
overhead (see Figure 9).

We propose to duplicate processes and their resources so
that there is a background ‘twin’ process executing
simultaneously. If either process receives an MCA and
dies, then it is possible that a new copy of the uncor-
rupted process can be duplicated from the twin. The
twin processes solution is similar to lockstep processors
[24] and fail-over clusters [21], but trades off perfor-
mance for expensive duplicated hardware while provid-
ing appropriate availability for soft errors. In fact, our
approach could allow selective hardware duplication in
order to regain performance. For example, using SMP
machines or increased memory size could compensate
for the performance burden without using proprietary
hardware solutions.

To achieve duplicate processes with separate resources,
modifications are required to the existing system soft-
ware. Modifications can be done either at the OS kernel
level or at the application level, such as by intercepting
system calls and replacing or wrapping library func-
tions. Two important modifications are required:

Process Duplication. Process state, including its mem-
ory space and state information such as registers,
open file descriptors and pending system signals need
to be duplicated.

There is a trade-off in how much of the memory
space to duplicate against performance. Duplicating
the entire memory space including code, data, and
stack will consume a lot of memory space and slow
down the replication speed, but it can guarantee that
the twin processes won’t be hit by the same transient
errors. Another alternative is to share code pages,
because code pages are never changed and can be
reloaded from disk. The third approach is to use

Jess DB Javac Jack

Slowdown 57% 43% 47% 32%

Table 4: Slowdown with silent data corruption detection enabled

Process

Kernel

I/O

Twin

MCA

Synchronization
Buffer
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Copy-On-Write semantics, which costs less in extra
memory space and has the fastest replication, but is
vulnerable if a memory error occurs on a shared page.

Synchronization. To ensure the existing system seman-
tics, the twin processes should present a single pro-
cess image to rest of the environment. To provide this
abstraction, the twin processes must synchronize
whenever there is an interaction with the outside
world, such as I/O, signals, IPC, etc.

The first process that executes such an input opera-
tion retrieves the information from the environment
leaving the second to read a buffered copy. The first
process that executes a write operation is sent to a
buffer, then when the twin writes its output is com-
pared to the buffered data. If the two copies of the
data are consistent, the data is written to the outside
world, so the error won’t be able to propagate outside
the process.

Besides guaranteeing the same input and output for the
two processes, synchronization also helps avoid extra I/
O traffic. However, the synchronization delay is what
causes most of the performance penalty. From single
processor’s performance point of view, this approach
buys availability at the expense of performance, because
the system workload is doubled and the synchronization
introduces additional delay.

Lockstep processes provides a pure software approach
for building high availability systems from commodity
hardware. The benefits of this approach are low cost and
no hardware modification or duplication. It also pro-
vides flexibility to allow users to only duplicate critical
processes or applications instead of all the processes in
the system. The drawback is that we cannot maintain
availability when errors are fatal to the operating sys-
tem. Instead it provides good coverage of application
failures due to MCAs.

Using a prototype implementation under Linux, we
measured the system performance under two lmbench
benchmarks [17]; one memory intensive (lat_mem_rd)
and one file I/O intensive (lmdd). Our preliminary
results indicate that performance of our system under
memory intensive workload approximately halved when
its working set fits in physical memory. This is due to
the worse-case situation of twice the processor work-
load with no idle processor resources. Our results indi-
cate a 3-4 times slowdown with I/O intensive
workloads, probably due to the use of synchronization
per synchronous I/O. While these results aren’t conclu-
sive, they indicate that the worse-case overhead of this
approach is poor and that intercepting I/O can be highly
performance sensitive. On systems with idle/spare

resources it may be possible to achieve a better perfor-
mance/availability trade off.

6 Lessons Learned
From the experimental data and analysis, we believe the
following interesting observations can be derived:

• Currently semiconductor techniques are managing to
mask the affects of memory soft errors, but this may
not continue to be true in the future as technology
becomes more dense.

• Future commodity processors have begun attacking
these problems, but due to the complexity of such pro-
cessors the exceptions raised are not likely to be
restartable.

• Our investigations show that the affect of soft errors
on a modified operating system may be small, since
for our sample workload we measured that 92% of
memory errors need not be fatal to their execution.

• Operating system execution time can be significant on
modern processors and workloads. In the presence of
potentially imprecise, non-restartable exceptions, this
means that consideration of kernel execution recovery
could have a large potential for improved availability.

• For the Kaffe virtual machine and sample Java appli-
cations running on it, the memory errors in the object
heap have a higher error consumption rate and suscep-
tibility rate than those in the static data area.

• A large portion of heap error consumption is caused
by the garbage collector (up to 75% for Jack). But this
consumption causes fewer application errors than
other sources of consumption (7% vs. 56%).

Given these factors, it seems appropriate to consider
software recovery from these errors, because future
semiconductor techniques may not continue to be able
to mask them.

• By adding simple checksums to the Kaffe VM, nor-
mally undetected errors can be detected, increasing
error coverage and detection by 30-40%. Using an
unoptimized checksum routine, this functionality
increased run-time costs by 32-57%.

• By executing twin processes to duplicate application
state and resources, our results indicate that it is possi-
ble to trade-off performance for availability without
the high business cost of requiring application modifi-
cation.

7 Conclusions and Future Work
Semiconductor techniques are currently helping to mask
soft-errors. However, given that the underlying technol-
ogy trends will continue to increase the susceptibility of
semiconductors to soft errors, it seems wise to consider
their affect on software when hardware cannot mask



them sufficiently. Future commodity processors have
started considering soft-errors as more of a problem.
Given this improved support, we have looked into the
affect of soft errors on software if or when soft errors
become a prominent problem.

Our investigations into the susceptibility of both the
Linux kernel and Kaffe VM are revealing. Despite the
potential data corruption that can occur, with simple
instrumentation of the Linux kernel, only 8% of mem-
ory errors actually need to be fatal for our sample work-
load. While for the VM, a large number of errors are
consumed by the garbage collector in the object heap.

Given that application modification presents a high
business cost, we then investigated application recover-
ability from such errors. When considering silent data
corruption, adding simple unoptimized checksumming
to a Java VM can effectively detect 30-40% of errors at
a run-time cost of between 32-57%. For more traditional
applications, we also proposed that duplication of pro-
cess state and resources can effectively trade-off perfor-
mance for availability, while potentially using idle
resources. Initial results seem to indicate that doing so
improves application availability at a worst-case run-
time slowdown of between 2-4 times depending on the
workload for initial simple unoptimized experiments.

In the future, we would like to continue to investigate
into the underlying soft error trends and the ability of
hardware techniques to mask them. We would also like
to perform more detailed experiments on the effects of
caches to mark error consumption rates from main
memory using an IA-64 simulator we are extending.
Finally, we would like to extend and optimize the pro-
posed techniques for application recovery, in order to
better understand their affects and applicability.
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