
Accelerating Symbolic Analysis
for Android Apps

Mingyue Yang, David Lie, Nicolas Papernot
University of Toronto

myshirley.yang@mail.utoronto.ca,
{david.lie,nicolas.papernot}@utoronto.ca

1

Motivation

- Symbolic execution challenge: path explosion
- Unsatisfiable paths: no input can trigger
- Require constraint collection & solving to find out satisfiability (expensive!)

2

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path
Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Unsatisfiable path

Satisfiable path

No time to analyze :(

Idea

- Predict satisfiability => skip potentially unsatisfiable paths

3

- Use program features instead of constraint features
- More info about code functionality
- Save constraint collection time

satisfiable?

yes

no

- Criteria:
- Satisfiable recall: miss fewer (potentially malicious) satisfiable paths
- Satisfiable precision: better speedup
- Security-related analysis => satisfiable recall more important than

satisfiable precision

Analysis Platform
- TIRO: symbolic analysis on Android apps
- Overall, only 29.8% of satisfiable paths (258,510 / 868,474)

- From 127 out of 200 popular Google Playstore apps

path analysis cost >> path finding cost

4

Approach

- Statistical features (specific to Jimple IR)
- Simple models: logistic regression & random forest

- more complex model as future work (require more data; time-consuming to collect)

Model
path feature

vector
(statistical
features)

satisfiable?

Path
Analysisyes

no
skip

path

method 1

method 2

method n

…

5

Approach: Statistical Features Used
Method-level features:
Control Flow
of If / Goto / LookupSwitch / TableSwitch
of loops, # of statements in loop
of returns / void returns

Method Invocation
of method invocation, # of methods invoked

Operation
of identity statements / assign statements
of cast expressions
of arithmetic / logical / shift / cmp operations

Program Size / Structure
of nop statements
of blocks, # of units

Variables & Expressions
of defs / uses / locals
of new arrays, # of new expressions
of array references, # of arrays referred
of field references, # of fields referred
of length expressions
of class constants / concrete value constants / nulls

Others
of enter monitors / exit monitors
of throw statements

Path-level features:
of methods in path
entry method type (if common)
target method type (if common)

complex execution =>
satisfiability

Complex data reference =>
hard for solve

certain entry easier to reach
certain target

program style

6

Approach: Feature Vector Construction
feature vector 1

[1, 3, 0, .., 4]
feature vector 2

[1, 0, 0, .., 2]
feature vector n

[0, 1, 0, .., 3]…
sum of method features

[7, 12, 0, .., 11]

method 1 method 2 method n…Path:

path feature vector:
[7, 12, 0, ..., 11, 5, …, 23]

7
Modelsatisfiable?

Method-level features

Get statistical features:
of Ifs
of blocks
…

Path-level features [5, …, 23]# of methods
entry method type
target method type

Evaluation: Google Playstore apps
- Dataset: 127 out of 200 most popular apps in Google Playstore (July 2019)

- All Apps: Randomly split all paths into 5 groups & do 5-fold cross validation
- Paths in training & test set could be from same app

- Cross-App: predict paths for unseen apps; more realistic scenario
- Randomly split all apps into 5 groups for 5 runs
- In each run, pick 1 group as test set & other groups as training set

- Random forest overfits for specific apps
- Satisfiable class: higher recall than precision (without tuning)

- Higher satisfiable recall: miss fewer (potentially malicious) satisfiable paths
8

Cross-app evaluation: different path types
Inspect paths used in previous cross-app validation (popular Google Playstore apps)

9

Cross-app evaluation: different path types
Inspect paths used in previous cross-app validation (popular Google Playstore apps)

For better satisfiable recall >10s: can
increase overall confidence threshold 10

di
re

ct
io

n
of

 in
cr

ea
se

Cross-application speedup
- Project speedup for Google Playstore apps

- Additional prediction overhead: feature extraction + model prediction
- Method-level feature: save extracted features for encountered methods

into hash-map; later retrieve (only retrieval overhead)

- Presented as proportion of total path analysis time
- Added overhead negligible

11

Cross-application speedup

- Saved analysis time close to max achievable
- Some time-consuming paths are missed
- Adjust confidence threshold

- Find points that balance missed path
rate & saved analysis time

12

Cross-application speedup

13

Cross-app evaluation on malware
- Train on benign apps & test on malware (Genome dataset)
- Malware: important not to miss paths (potentially malicious) => require

high satisfiable recall
- 61% of malware paths are satisfiable

14

Conclusion
- Reduce path explosion: predict unsatisfiable paths with ML classifiers
- Use statistical features with path-level program analysis info

- Evaluation: TIRO deobfuscation tool for Android
- Able to generalize patterns about satisfiability to unseen apps & malware
- Saved analysis time close to max achievable save time
- Miss a small number of time-consuming satisfiable paths

- Adjust confidence threshold: trade-off small amount of saved analysis time => reduce
missed satisfiable paths

15

Thank you!

16

Related Work
- Use constraint features to predict best constraint solver / satisfiability: [DeepSolver,

Path Constraint Classifier(PCC), SMTimer]
- Still need to run constraint collection
- We use program features before constraint collection: more info about code functionality

- Predict satisfying values for constraints that are difficult to solve: [NeuEx, MLB]
- Android program analysis tools: [IntelliDroid, AppIntent, AppAudit]

- find paths statically and then dynamically execute them
- also path explosion: can apply our technique

- Reduce path explosion: [Statsym, Fitnex, Mutation-based Validation Paradigm (MVP)]
- Instead of filter out unsatisfiable ones, use path search algorithm to select paths matching specific

objectives

17

References
[1] Wong, Michelle Y., and David Lie. "Tackling runtime-based obfuscation in android with {TIRO}." 27th {USENIX} Security
Symposium ({USENIX} Security 18). 2018.

[2] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution." 2012 IEEE symposium on
security and privacy. IEEE, 2012.

[3] Wen, Junye, et al. "Constraint Solving with Deep Learning for Symbolic Execution." arXiv preprint arXiv:2003.08350
(2020).

[4] Wen, Sheng-Han, et al. "Enhancing symbolic execution by machine learning based solver selection." Proceedings of the
NDSS Workshop on Binary Analysis Research. 2019.

[5] Luo, Sicheng, et al. "Boosting symbolic execution via constraint solving time prediction (experience paper)." Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 2021.

[6] Shen, Shiqi, et al. "Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints." NDSS. 2019.

[7] Li, Xin, et al. "Symbolic execution of complex program driven by machine learning based constraint solving." 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2016.

18

References
[8] Wong, Michelle Y., and David Lie. "IntelliDroid: A Targeted Input Generator for the Dynamic Analysis of Android
Malware." NDSS. Vol. 16. 2016.

[9] Yang, Zhemin, et al. "Appintent: Analyzing sensitive data transmission in android for privacy leakage detection."
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. 2013.

[10] Xia, Mingyuan, et al. "Effective real-time android application auditing." 2015 IEEE Symposium on Security and Privacy.
IEEE, 2015.

[11] Yao, Fan, et al. "Statsym: vulnerable path discovery through statistics-guided symbolic execution." 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2017.

[12] Xie, Tao, et al. "Fitness-guided path exploration in dynamic symbolic execution." 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks. IEEE, 2009.

[13] Kolchin, Alexander. "A novel algorithm for attacking path explosion in model-based test generation for data flow
coverage." 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC). IEEE, 2018.

19

