Accelerating Symbolic Analysis
for Android Apps

e Mingyue Yang, David Lie, Nicolas Papernot ____

University of Toronto
myshirley.yang@mail.utoronto.ca,
{david.lie,nicolas.papernot}@utoronto.ca

Motivation

Saé§ﬁ§b/:p6th s on | No time to analyze :(
g

Satisfiable path

- Symbolic execution challenge: path explosion
- Unsatisfiable paths: no input can trigger

- Require constraint collection & solving to find out satisfiability (expensive!)

2
s

Idea satisfiable?

no

- Predict satisfiability => skip potentially unsatisfiable paths
- Criteria:
- Satisfiable recall: miss fewer (potentially malicious) satisfiable paths
- Satisfiable precision: better speedup
- Security-related analysis => satisfiable recall more important than
satisfiable precision

- Use program features instead of constraint features
- More info about code functionality
- Save constraint collection time

Analysis Platform

- TIRO: symbolic analysis on Android apps

- Overall, only 29.8% of satisfiable paths (258,510 / 868,474)
- From 127 out of 200 popular Google Playstore apps

100% A

TABLE 1

80% PATH PROCESSING TIME

60%

mean (ms) | std (ms)
Unsatisfiable Path Analysis 1720 15026
Overall Path Finding 32 107

_atilll \

path analysis cost >> path finding cost

40%

20%

Percentage of Satisfiable Paths

0% -

Applications

Approach

path
method 1 yes
] path feature
vector satisfiable?
method 2 a (statistical a - >
k features) no i
l SKIP
method n

- Statistical features (specific to Jimple IR)

- Simple models: logistic regression & random forest
- more complex model as future work (require more data; time-consuming to collect)

Complex data reference =>

Approach: Statistical Features Used hard for solve

Method-level features: complex execution => Variables & Expressions

Control Flow satisfiability # of defs / uses / locals
of If / Goto / LookupSwitch / FableSwitch # of new arrays, # of new expressions
& of loops, # of statements in loop > & of array references, # of arrays referred >
of returns / void returns # of Tield references, # of fields reterred
of length expressions
Method Invocation # of class constants / concrete value constants / nulls
of method invocation, # of methods invoked
Others
Operation # of enter monitors / exit monitors
of identity statements / assign statements # of throw statements
of cast expressions
of arithmetic / logical / shift / cmp operations Path-level features:
of methods in path
Program Size / Structure entry method type (if common)
§ o; nop statements >-.— program style @get method type (if common)
; S

certain entry easier to reach
certain target

Approach: Feature Vector Construction

Method-level features

feature vector 1 feature vector 2 feature vector n sum of method features

[1,3,0,..,4] .|. [1,0,0, .. 2] .|. .|.[o,1,o,..,3] — [7,12,0, .., 11]

Get statistical features:

of Ifs
of blocks
» [eieda] » - [meiodn 0
\ | /
Path-level features # of methods [5, ..., 23]
entry method type S

target method type path feature vector:

[7,12,0, .., 11,5, .., 23]
¢

7

Evaluation: Google Playstore apps

- Dataset: 127 out of 200 most popular apps in Google Playstore (July 2019)

- All Apps: Randomly split all paths into 5 groups & do 5-fold cross validation
Paths in training & test set could be from same app

Evaluation Model ,ﬁﬁﬁable Precision | Satisfiable Recall\ Unsatisfiable Precision | Unsatisfiable Recall ﬁage Accuracy | Balanced Accura?

All Apps (Section IV-B) LogReg 0.820 0.883) 0.939 0.902 0.896 0.893

Pps (Sed i RandForest 0.913 0947 _/ 0.973 0.955 0.952 0.951
N

LogR 0.743 0.895 0.949 0.858 0.872 0.877

. gReg ; ; : ; : :

Cross-App (Section IV-C) | g dForest (0.751 0.914 ‘} 0.956 0.864 (0.880 0.889

N— 7 N—

- Cross-App: predict paths for unseen apps; more realistic scenario
Randomly split all apps into 5 groups for 5 runs
In each run, pick 1 group as test set & other groups as training set
- Random forest overfits for specific apps
- Satisfiable class: higher recall than precision (without tuning)

Higher satisfiable recall: miss fewer (potentially malicious) satisfiable paths

Cross-app evaluation: different path types

Inspect paths used in previous cross-app validation (popular Google Playstore apps)

Num Paths
Path Time Sat : Unsat Total Paths Max Save Time Total Time
<10ms 4651:7088 (0.66) 11739 (1.4%) 48 (0.00063%) | 67 (0.00088%)
10ms-100ms 3857:135175 (0.029) | 139032 (16.0%) 7092 (0.093%) | 7231 (0.095%)
100ms-1s 13670:320514 (0.043| (334184 (38.5%) 122830 (1.61%) 630343 (1.71%3
15-10s 105522:135863 (0.78] | 241385 (27.8% 368698 (4.84%) | 888698 (11.7%)
10s-100s 119996:10168 (11.8N | 130164 (15.0%), 270983 (3.56%) | 3924772 (51.5%)
>100s 10814:1156 (9.4)f 7 11970 (1.4%1 279367 (3.67%) (2667137 (35.0%3)
A . S > 4
|

|

Cross-app evaluation: different path types

Inspect paths used in previous cross-app validation (popular Google Playstore apps)

RandForest

Path Prediction Type Sat Performance ‘ Unsat Performance | Confidence |
Path Time Model Precision | Recall] | Precision | Recall Total Paths Saved Time Max Save Time
" | rm B0 [oooa]| oser | oam | oa | umsaam | i OSSR T s oo,
toms-100ms | L8815 D0 | Goto|| 0599 | oers | onwe | 1390320a60%) | Jug Goein | 7092 0093%)
s-1s LogReg :g‘;g g:ggg é:% 0.920 g:gé? 334184 (38.5%) }g;}é (}'2%2‘? 122830 (1.61%
15-10s | . 9331 ; 241385 (27.8%) 353 (4.63) 368698 (4.84%)

130164 (15.0%)

% 0
213817 (2.81%)

270983 (3.

>100s

ﬁ—r&—
(

LogReg

RandForest _

11970 (1.4%)

240624 (3.16%)
221619 (2.91%)

279367 (3.67%)

E—

For better satisfiable recall >10s: can

increase overall confidence threshold

10

Cross-application speedup

- Project speedup for Google Playstore apps

- Additional prediction overhead: feature extraction + model prediction
- Method-level feature: save extracted features for encountered methods
into hash-map; later retrieve (only retrieval overhead)

- Presented as proportion of total path analysis time
- Added overhead negligible

Model Prediction Time
Added Prediction Overhead
LogReg 0.021%
RandForest 0.022%

Cross-application speedup

Threshold Model Unsatisfiable Path Savings
e_|_Max Achievable Analvsis Time | Saved Paths | Max Achievable Paths
05 51.7% >
0.7 LogReg 47.3%
0.9 —121% 40.5
0.5 < 13.9% J C 159% Y | 512 61.4%
0.6 RandForest 13.0% 47.5%
0.7 7% 30% >
0.9 1.4% 26.9%
Threshold Model Satisfiable Path Savings .. .
Missed Analysis Time | Missed Paths - Saved analysis time close to max achievable
05 8% 20 - Some time-consuming paths are missed
0.7 LogReg 6.8% 1.6% . :
0.9 % 1.9% 0.49% - Adjust confidence threshold
o 124%] - Find points that balance missed path
07 | RandForest 3% 097% rate & saved analysis time
0.9 0.93% U.1'/%

12

Cross-application speedup

35% 1 . Confidence Threshold = 0.5 o
5 Confidence Threshold = 0.7
@ Y2 T . Confidence Threshold = 0.9
©
Q- 25% 41—
?
a 20%
U] b -
E qf.
(o] .
o 15% A =
g -
S 10% .
o /_-
] #
& 5% - - ~ ; e
(] /’.—,I f
0% A/
o

Applications

Fig. 2. Sorted Percentage of Missed Paths per App (Logistic Regression)

13

Cross-app evaluation on malware

- Train on benign apps & test on malware (Genome dataset)
- Malware: important not to miss paths (potentially malicious) => require

high satisfiable recall
- 61% of malware paths are satisfiable

TABLE V
CROSS-APPLICATION PERFORMANCE ON MALWARE

Threshold Model Satisfiable Precision | Satisfiable Recall
05 LogReg 0.765 0.934
‘ RandForest 0.723 0.967
07 LogReg 0.714 0.976
- RandForest 0.647 0.998
0.9 LogReg 0.657 0.995
’ RandForest 0.621 1

14
s

Conclusion

- Reduce path explosion: predict unsatisfiable paths with ML classifiers
- Use statistical features with path-level program analysis info

- Evaluation: TIRO deobfuscation tool for Android
- Able to generalize patterns about satisfiability to unseen apps & malware
- Saved analysis time close to max achievable save time

- Miss a small number of time-consuming satisfiable paths
Adjust confidence threshold: trade-off small amount of saved analysis time => reduce
missed satisfiable paths

15

Thank you!

16

Related Work

- Use constraint features to predict best constraint solver / satisfiability: [DeepSolver,
Path Constraint Classifier(PCC), SMTimer]

- Still need to run constraint collection
- We use program features before constraint collection: more info about code functionality

- Predict satisfying values for constraints that are difficult to solve: [NeuEx, MLB]
- Android program analysis tools: [IntelliDroid, Appintent, AppAudit]

- find paths statically and then dynamically execute them
- also path explosion: can apply our technique

- Reduce path explosion: [Statsym, Fitnex, Mutation-based Validation Paradigm (MVP)]
- Instead of filter out unsatisfiable ones, use path search algorithm to select paths matching specific
objectives

17

References

[1] Wong, Michelle Y., and David Lie. "Tackling runtime-based obfuscation in android with {TIRO}." 27th {USENIX} Security
Symposium ({USENIX} Security 18). 2018.

[2] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution." 2012 IEEE symposium on
security and privacy. IEEE, 2012.

[3] Wen, Junye, et al. "Constraint Solving with Deep Learning for Symbolic Execution." arXiv preprint arXiv:2003.08350
(2020).

[4] Wen, Sheng-Han, et al. "Enhancing symbolic execution by machine learning based solver selection." Proceedings of the
NDSS Workshop on Binary Analysis Research. 2019.

[5] Luo, Sicheng, et al. "Boosting symbolic execution via constraint solving time prediction (experience paper)." Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 2021.

[6] Shen, Shiqi, et al. "Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints." NDSS. 2019.

[7] Li, Xin, et al. "Symbolic execution of complex program driven by machine learning based constraint solving." 2016 31st

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2016. "

References

[8] Wong, Michelle Y., and David Lie. "IntelliDroid: A Targeted Input Generator for the Dynamic Analysis of Android
Malware." NDSS. Vol. 16. 2016.

[9] Yang, Zhemin, et al. "Appintent: Analyzing sensitive data transmission in android for privacy leakage detection."
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. 2013.

[10] Xia, Mingyuan, et al. "Effective real-time android application auditing." 2015 IEEE Symposium on Security and Privacy.
IEEE, 2015.

[11] Yao, Fan, et al. "Statsym: vulnerable path discovery through statistics-guided symbolic execution." 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2017.

[12] Xie, Tao, et al. "Fitness-guided path exploration in dynamic symbolic execution." 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks. IEEE, 2009.

[13] Kolchin, Alexander. "A novel algorithm for attacking path explosion in model-based test generation for data flow
coverage." 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC). IEEE, 2018.

19

