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Motivation

- Symbolic execution challenge: path explosion
- Unsatisfiable paths: no input can trigger
- Require constraint collection & solving to find out satisfiability (expensive!)
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No time to analyze :(



Idea

- Predict satisfiability => skip potentially unsatisfiable paths
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- Use program features instead of constraint features
- More info about code functionality
- Save constraint collection time

satisfiable?

yes

no

- Criteria:
- Satisfiable recall: miss fewer (potentially malicious) satisfiable paths
- Satisfiable precision: better speedup
- Security-related analysis => satisfiable recall more important than 

satisfiable precision



Analysis Platform
- TIRO: symbolic analysis on Android apps
- Overall, only 29.8% of satisfiable paths (258,510 / 868,474)

- From 127 out of 200 popular Google Playstore apps

path analysis cost >> path finding cost
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Approach

- Statistical features (specific to Jimple IR)
- Simple models: logistic regression & random forest

- more complex model as future work (require more data; time-consuming to collect)
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Approach: Statistical Features Used
Method-level features:
Control Flow
# of If / Goto / LookupSwitch / TableSwitch
# of loops, # of statements in loop
# of returns / void returns

Method Invocation
# of method invocation, # of methods invoked

Operation
# of identity statements / assign statements
# of cast expressions
# of arithmetic / logical / shift / cmp operations

Program Size / Structure
# of nop statements
# of blocks, # of units

Variables & Expressions
# of defs / uses / locals
# of new arrays, # of new expressions
# of array references, # of arrays referred
# of field references, # of fields referred
# of length expressions
# of class constants / concrete value constants / nulls

Others
# of enter monitors / exit monitors
# of throw statements

Path-level features:
# of methods in path
entry method type (if common)
target method type (if common)

complex execution => 
satisfiability

Complex data reference => 
hard for solve

certain entry easier to reach 
certain target

program style
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Approach: Feature Vector Construction
feature vector 1

[1, 3, 0, .., 4]
feature vector 2

[1, 0, 0, .., 2]
feature vector n

[0, 1, 0, .., 3]…
sum of method features

[7, 12, 0, .., 11]

method 1 method 2 method n…Path:

path feature vector: 
[7, 12, 0, ..., 11, 5, …, 23]
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Method-level features

Get statistical features:
# of Ifs
# of blocks
…

Path-level features [5, …, 23]# of methods
entry method type
target method type



Evaluation: Google Playstore apps
- Dataset: 127 out of 200 most popular apps in Google Playstore (July 2019)

- All Apps: Randomly split all paths into 5 groups & do 5-fold cross validation
- Paths in training & test set could be from same app

- Cross-App: predict paths for unseen apps; more realistic scenario
- Randomly split all apps into 5 groups for 5 runs
- In each run, pick 1 group as test set & other groups as training set

- Random forest overfits for specific apps
- Satisfiable class: higher recall than precision (without tuning)

- Higher satisfiable recall: miss fewer (potentially malicious) satisfiable paths
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Cross-app evaluation: different path types
Inspect paths used in previous cross-app validation (popular Google Playstore apps)
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Cross-app evaluation: different path types
Inspect paths used in previous cross-app validation (popular Google Playstore apps)

For better satisfiable recall >10s: can 
increase overall confidence threshold 10
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Cross-application speedup
- Project speedup for Google Playstore apps

- Additional prediction overhead: feature extraction + model prediction
- Method-level feature: save extracted features for encountered methods 

into hash-map; later retrieve (only retrieval overhead)

- Presented as proportion of total path analysis time
- Added overhead negligible
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Cross-application speedup

- Saved analysis time close to max achievable
- Some time-consuming paths are missed
- Adjust confidence threshold

- Find points that balance missed path 
rate & saved analysis time
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Cross-application speedup
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Cross-app evaluation on malware
- Train on benign apps & test on malware (Genome dataset)
- Malware: important not to miss paths (potentially malicious) => require 

high satisfiable recall
- 61% of malware paths are satisfiable

14



Conclusion
- Reduce path explosion: predict unsatisfiable paths with ML classifiers
- Use statistical features with path-level program analysis info

- Evaluation: TIRO deobfuscation tool for Android
- Able to generalize patterns about satisfiability to unseen apps & malware
- Saved analysis time close to max achievable save time
- Miss a small number of time-consuming satisfiable paths

- Adjust confidence threshold: trade-off small amount of saved analysis time => reduce 
missed satisfiable paths
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Thank you!
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Related Work
- Use constraint features to predict best constraint solver / satisfiability: [DeepSolver, 

Path Constraint Classifier(PCC),  SMTimer]
- Still need to run constraint collection
- We use program features before constraint collection: more info about code functionality

- Predict satisfying values for constraints that are difficult to solve: [NeuEx, MLB]
- Android program analysis tools: [IntelliDroid, AppIntent, AppAudit]

- find paths statically and then dynamically execute them
- also path explosion: can apply our technique

- Reduce path explosion: [Statsym, Fitnex, Mutation-based Validation Paradigm (MVP)]
- Instead of filter out unsatisfiable ones, use path search algorithm to select paths matching specific 

objectives
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