
Evolutionary Search for Authorization Vulnerabilities in Web
Applications

by

Akshay Kawlay

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

© Copyright 2021 by Akshay Kawlay

ii

Abstract

Evolutionary Search for Authorization Vulnerabilities in Web Applications

Akshay Kawlay

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2021

Proper access controls are essential to protect private resources in web applications. However, autho-

rization vulnerabilities resulting from broken access controls have been common in the past. Existing

techniques to detect such vulnerabilities require manual effort and suffer from false positives as automat-

ing authorization vulnerability detection in an app agnostic way is challenging.

We present two subproblems - automated discovery of app resources and automated detection of

authorization vulnerabilities. This thesis attempts to solve these subproblems by introducing AuthZee,

a tool designed to automatically discover resources in a web app and automatically detect if those

resources are vulnerable to improper authorization, without requiring details about the app logic. We

propose a novel way of crawling using an evolutionary algorithm to generate app objects and triad testing

for detection. AuthZee requires login credentials for three user accounts in the target app which allows

it to crawl user account space and perform triad testing.

Upon testing with 7 popular open source web applications diverse in size and logic, we find that

our approach is able to discover more resources than existing crawling techniques and perform detection

with 0 false positives in most apps.

iii

Acknowledgements

I’m very grateful for the support and guidance I received from my supervisor, Professor David Lie.

His patient approach and invaluable feedback allowed me to explore many unconventional ideas and

incrementally improve my solution throughout the course of my Master’s degree.

I am also grateful for the financial support from the Department of Electrical and Computer Engi-

neering of the University of Toronto

I would like to thank Truman Jian for helping me run experiments and gather data for my project.

I would like to extend my thanks to the online community on platforms like stackoverflow, github,

especially testcafe developers for answering my questions in a relatively short time.

Lastly, I would also like to appreciate my family for always believing in me and supporting me

throughout my life.

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Structure . 3

2 Background 4

2.1 Access Control and Authorization . 4

2.1.1 Examples of IDOR vulnerabilities . 5

2.2 Web Applications and Browser Automation . 6

2.3 Evolutionary Algorithms . 7

2.4 Gestalt Pattern Matching . 8

3 Design 10

3.1 Simple Crawler . 11

3.2 Evolutionary Crawler . 12

3.2.1 Generating New Sequences . 14

3.2.2 Reward System . 15

3.3 Public Filter . 16

3.4 Vulnerability Detector . 17

4 Implementation 19

4.1 Custom Testcafe Framework . 19

4.2 Apache Kafka . 20

4.3 Bypassing Browser Security . 20

4.4 Additional Requirements . 21

5 Evaluation 22

5.1 Experiment Setup . 22

5.2 Discovery of Request URLs . 23

5.2.1 Evolutionary parameter tuning . 23

5.2.2 Simple crawler vs Evolutionary crawler . 27

5.2.3 Blind evolutionary crawling . 28

5.3 Detection by Triad Tests . 29

5.3.1 Triad : Proof of Concept . 29

5.3.2 Minimizing False Positives . 31

iv

CONTENTS v

5.3.3 Testing different levels of Authorizations . 33

5.4 Vulnerability Discovered . 33

6 Limitations 34

6.1 False Positives . 34

6.2 Input Validations . 35

7 Related Work 36

7.1 Existing black box web vulnerability scanners . 36

7.2 Other black box techniques . 37

7.3 Grey box . 38

7.3.1 OpenAPI specifications . 38

7.3.2 Network traffic Logs . 39

7.4 Whitebox Static Analysis . 39

7.5 Evolutionary Algorithms with Novelty Search . 40

8 Conclusion 41

8.1 Future Work . 41

Bibliography 42

List of Tables

3.1 Reward/Penalty for specific UI behaviors after interacting with an html element 15

5.1 EV Crawler parameter tuning for Openstack . 25

5.2 EV Crawler parameter tuning for Gitlab . 25

5.3 EV Crawler parameter tuning for Hotcrp . 25

5.4 EV Crawler parameter tuning for Overleaf . 25

5.5 EV Crawler parameter tuning for Dokuwiki . 26

5.6 EV Crawler parameter tuning for Humhub . 26

5.7 EV Crawler parameter tuning for Kanboard . 26

5.8 Blind Evolutionary Crawling Results . 29

5.9 Triad Test Scenarios . 30

5.10 URLs of Triad Tests . 30

5.11 Triad Test Results . 31

5.12 False positives during simple crawling for horizontal privilege escalation 33

5.13 False positives during simple crawling for vertical privilege escalation 33

vi

List of Figures

2.1 Illustrating Insecure Direct Object Reference . 5

2.2 Structure of a typical request(left) and response(right) . 6

2.3 Structure of a typical request URL . 7

3.1 Block Diagram of AuthZee . 11

3.2 Block Diagram of Evolutionary Crawler . 12

3.3 An ideal element-action sequence on the ‘/projects/new’ page in Gitlab 13

5.1 Illustrating non-deterministic behavior of Evolutionary crawler. Results from three ex-

perimental runs with same parameters s = 5, p = 10, i = 25 24

5.2 Comparing results of simple Crawler (SC), Evolutionary crawler (EC) and combined

crawler (SC+EC) in AuthZee . 27

5.3 Illustrating object generation ability. Highest number of POST requests generated by

Evolutionary crawler (EC) and combined crawler (SC+EC) for parameters s=5, p=10,

i=25 AuthZee . 28

5.4 Triad Results Plot . 32

vii

Chapter 1

Introduction

More and more important services are provided via web applications today. The transition of services

like banking, government, businesses, education, entertainment and e-commerce to the web has greatly

improved their quality and accessibility, but has also exposed them to adversaries who may seek to access

private information or perform unauthorized actions. Web apps can fall victim to such adversaries due

to mismanaged access controls, missing or improper authorization checks or software defects in the web

app logic, allowing adversaries to perform unauthorized actions on the web application like accessing

somebody else’s private resources. Such software defects are called authorization vulnerabilities and the

resources exposed are said to be vulnerable to unauthorized access. Such vulnerabilities have allowed

malicious adversaries to compromise and access millions of user accounts in vulnerable web applications

in recent years [46] [40].

Authorization vulnerabilities have been growing year by year and have been in OWASP’s top 10 most

common vulnerabilities for the last four years [16] [19] [17]. Of these vulnerabilities, IDOR which stands

for Insecure Direct Object Reference, are very common. Bug bounty platforms like Hackerone report

over 200 IDOR vulnerabilities every month [28]. One of the main reasons for this is that authorization

rules and user permissions are often specific to the web application logic. This results in developers

having to manually craft bespoke user permissions and authorization rules into the web application

logic. For a reasonably complex application, the number of access rules increases quickly and becomes

difficult to maintain in the face of frequently changing designs and requirements [34] [23].

There exist static analysis tools that can detect authorization vulnerabilities [55]. However, because

such tools do not actually execute the applications, they are limited by static analysis imprecision and

thus may suffer from a large number of false positives or false negatives. Dynamic analysis approaches

that find vulnerabilities by executing the web applications can offer more precise results, but require

more manual effort from the human tester. One such approach is manual testing—in the simplest case,

the tester human logs in with two different user credentials. Then the tester attempts to visit a user’s

resource URL from a different user’s account and visually verifies that the response to a request does

not contain data of another user or the unauthorized request to fetch, modify or create an object is

unsuccessful. Despite its simplicity, some variant of this basic manual approach has been behind the

discovery of IDOR vulnerabilities in web apps such as Shopify [37], Twitter [44], New Relic [38], the US

DoD [35] and Crowdsignal [26]. These instances of IDORs are typically found manually using a web

1

Chapter 1. Introduction 2

proxy interceptor, repeater like Burp [22], ZAP [14]. There exist semi-automated techniques however

human effort is still required for detection.

Due to the diversity of web application user interfaces (UI), it is difficult to automatically determine

whether an access to a resource URL is successful or not. For example, many applications do not properly

set the HTTP response code to indicate whether a request is successful or not. While web applications

are supposed to return a 200 code on successful requests and a 4xx or 5xx code on an error, many

applications do not obey this convention. Instead, they may return a 200 code, but indicate in the web

page HTML that the request was not successful. As a result, HTTP response codes cannot be used to

reliably determine whether an access is successful or not and thus determine whether an unauthorized

user is able to access a resource they should not have access to.

Another challenge is to discover and specify the request URLs and API endpoints through which

resources can be accessed. For example, while tools such as Autorize [20], an extension to the Burp Suite

[6], which automatically repeats every request made by a user in another user’s session can automate

the driving of test inputs, but still requires a human to specify the requests or APIs to interact with

the web application. Similarly, AuthMatrix [4] takes a table of users, their roles, and requests and then

tries all combinations to detect if some combination results in a vulnerability. However, the requests

must still be manually specified in the table given to AuthMatrix. To get these requests and APIs,

previous work, such as Fuzz-lightyear [18] and Restler [24] have relied on OpenAPI specifications, but

such specifications are not ubiqutously available. Automatically finding the request URLs also has a

number of challenges. Existing approaches like website scanners and crawlers can discover new pages

and requests, but they are limited in two ways. First, they interact directly with the web application

and are not able to interpret Javascript, limiting their ability to crawl web applications that use AJAX

requests or dynamically generated Javascript content and resources [33] [29], both of which are common

on complex web application where authorization vulnerabilities exist. Second, existing crawlers and

scanners are often not able to interact with web applications to submit forms or create new objects

on the web application. For example, they typically cannot create a new submission on a conference

submission application like HotCRP, or create a new Git repository on a Git management application

like GitLab. Without the ability to interact with the web application, they will most likely only discover

publicly accessible web pages, which can’t be vulnerable to authorization vulnerabilities since they are

not access controlled. This can lead to false positives—for instance, Fuzz-lightyear needs a tester to

manually specify the publicly accessible resources to ignore during testing, otherwise it may mistake a

successful access to a public page for a vulnerability that allows an unauthorized access to a private

resource.

In summary, there are two challenges to improving the effectiveness of automated authorization

vulnerability detection in web applications. First, since every web application is different, we must

automatically discover the URLs that are used to access protected objects in the web application.

Second, we must be able to automatically detect if an unauthorized access was allowed to a web object

via the discovered URLs. To overcome these two challenges, we propose the first automated tool for

object generation and authorization testing designed to find IDOR vulnerabilities - AuthZee, in an app

agnostic manner. AuthZee uses a crawler enhanced with an evolutionary search algorithm to interact

with web applications to generate and discover web object URLs. The thesis introduces a search problem

Chapter 1. Introduction 3

to find sequences of interactions on the app UI elements that sends requests to app server to generate

new objects. The Evolutionary Algorithm (EA) empowers the crawler to search for such multi step

interactions on the app UI. This allows AuthZee to both automatically create and access private objects

on web applications. To detect unauthorized accesses, AuthZee uses a novel Triad test, which compares

the HTML or JSON the web application responds with among three users in a web application-agnostic

way.

1.1 Contributions

This thesis makes following contributions in the field of web authorization vulnerability detection:

• A novel crawling technique leveraging an evolutionary algorithm to generate objects and discover

web app resources. A custom browser automation tool built on testcafe framework, is developed

to implement this technique.

• Triad detection - an app agnostic way to automatically test for authorization vulnerabilities.

• An evaluation of our crawling and detection techniques showing that they discover deeper app

resources and successfully detect if a resource is vulnerable to unauthorized access

1.2 Thesis Structure

The thesis provides the necessary background on concepts such as Authorization, IDOR vulnerabilities,

Evolutionary Algorithms and Gestalt Pattern Matching in Chapter 2. Following that, the design of

AuthZee is described in Chapter 3. Next, Chapter 4 explains the implementation of AuthZee along with

additional requirements needed. Subsequently, Chapter 5 presents various experiments run to evaluate

the performance. Furthermore, the limitations learnt are explained in Chapter 6 and a literature review

of related work is conducted in Chapter 7. Finally, Chapter 8 presents the future work and concludes

this thesis.

Chapter 2

Background

This section explains the concepts necessary to understand our design and the authorization vulnera-

bilities it is designed to detect. We start by differentiating between authentication and authorization,

followed by describing the types of broken access controls. We then mention basic client-server archi-

tecture of web applications and how browser automation powers end to end testing. Finally, we briefly

explain evolutionary algorithm concepts.

2.1 Access Control and Authorization

It is important to distinguish between authentication and authorization. Authentication (AuthC) is

the process where the web server attempts to identify the user whereas authorization (AuthZ) is the

process where the web server may already know who the user is and then determines if that user should be

allowed to perform the action they requested. Authorization in a web application is modeled by its access

control rules. There are three types of access controls - Horizontal, Vertical and Context-dependent [52].

Horizontal access controls restrict access to functionality within the same privilege level. For example,

a user would be restricted viewing/modifying another user account’s private details. Similarly, vertical

access controls restrict access to functionality needing a higher privilege level. For example, a regular

user would be restricted from accessing admin pages. On a different note, the context-dependent access

controls restrict access to functionality based on the application state as a result of user interactions. For

instance, a user in an ecommerce application would be restricted from updating her transaction details

after that transaction was completed.

Authorization vulnerabilities can result from poor implementation or mismanagement of the appli-

cation’s access controls. Following are the examples of broken access controls that this thesis focuses on

- Vertical privilege escalation - user gains access to resources belonging to a higher privileged user or

admin; Horizontal privilege escalation - user gains access to another user’s resources at same privilege;

Horizontal to vertical privilege escalation - a horizontal privilege escalation attempt leads to gain of

higher privilege;

IDOR is a common type of authorization vulnerability that results from broken access controls. It

stands for Insecure Direct Object Reference where modifying the input parameters to a resource (URL)

allows direct access to unauthorized content [52]. For instance, a URL of the form :

4

Chapter 2. Background 5

Figure 2.1: Illustrating Insecure Direct Object Reference

http://www.website.com/some-object-path?param1=val1¶m2=val2

takes two input parameters - param1 and param2, set to val1 and val2 respectively. Visiting this

URL would send a request for some object in the app. Thus, the URL is a reference to that object.

An attacker looking for IDORs may change the input parameter values i.e val1 and val2, such that

the resultant URL references some other object belonging to another user. An app with an IDOR

vulnerability would comply with the attacker’s crafted request to access another user’s objects.

2.1.1 Examples of IDOR vulnerabilities

IDORs are mostly manually detected since automated blackbox techniques like web vulnerability scan-

ners cannot detect them. There are two main manual methods to perform an IDOR attack. First,

parameter tampering, where a request is sent with modified input parameters that point to another

private object. Here, guessing the correct input parameters (objectIDs) that actually refer to an object

can be challenging, especially if the app uses randomized objectIDs. Second, cookie swapping, where the

request is replayed with the original legitimate input parameters but the session cookies in the request

header are modified to an unauthorized user’s session cookies. This method requires a web proxy to

intercept the request, update the cookies and resend. Furthermore, IDORs in object creation requests

(POST request) would also require a web proxy. Both the methods essentially test if an unauthorized

user can access a resource. IDORs can impact applications in many different ways. We describe some

past IDOR vulnerabilities reported on the bug bounty platforms.

Crowdsignal app provides services to create customized surveys, polls and quizzes. Last year, an

IDOR vulnerability in their invite-user.php resource -

https://app.crowdsignal.com/users/invite-user.php?id=(userid)&popup=1

allowed the attacker to send the request with a victim’s userid resulting in receiving a response with

the victim’s email and subsequently leading to account takeover after clicking on the ‘update Permissions’

button on the response page [26]. This example showcases how an IDOR can be used to trigger other

vulnerabilities, causing a higher severity impact.

Another IDOR was reported to Twitter 7 months ago. This was found in a create request in Revue

http://www.website.com/some-object-path?param1=val1¶m2=val2
https://app.crowdsignal.com/users/invite-user.php?id=(userid)&popup=1

Chapter 2. Background 6

Figure 2.2: Structure of a typical request(left) and response(right)

(getrevue.co). Revue is an editorial newsletter tool built by Twitter for writers, publishers to create

newsletters and get paid. An attacker was able to add images, descriptions and titles to other user’s

issues. A issue in Revue is a weekly or monthly newsletter, in other words a user object in the application.

The vulnerability was reported in the endpoint to create images/descriptions/titles in an issue. The

attacker could create images/descriptions in the victim’s issue by sending a POST request with the issue

id modified to the victim’s issue id. The URL endpoint hasn’t been disclosed yet [44].

IDOR attacks can also allow attackers to bypass the app business logic. For instance, in bWapp, an

intentionally vulnerable web app, the business logic can be bypassed in a movie ticket booking platform.

Here, an attacker, using a web proxy interceptor, sends a crafted request with the ‘ticket price‘ input

parameter changed to zero, thus allowing her to book tickets for free. This is explained in [27]. In this

example, although the attacker was authorized to access the ticket booking URL, the improper logic

implementation allowed the attacker to successfully exercise an IDOR attack.

2.2 Web Applications and Browser Automation

Modern web applications can be broadly split into two components - the frontend that users see and

interact with and the backend which contains web server, app logic [30]. The frontend sends requests to

the backend as per the user interactions and receives the corresponding responses. The requests could

be for a webpage or for a smaller component/feature within a webpage. Accordingly, the web server

may respond back to frontend with a page HTML or a JSON object respectively. Further, not each user

interaction may result in a request being sent to the web server, for instance opening up a dialog box or

expanding drop down menu options. This is due to javascript code running in the frontend.

The request sent to server by frontend typically contains the a URL, method, headers and body and

the response received contains the a response code, headers and body as shown in Figure 2.2. The URL

stands for Universal Request Locator and is a reference to app resources. The method indicates the action

to be taken on that resource. It can be GET(read), POST(create), PUT(modify) or DELETE(delete).

Chapter 2. Background 7

Figure 2.3: Structure of a typical request URL

The header contains useful metadata like cookies, content-type, language, encoding..etc. The request

body is usually empty for GET requests. For other method requests it contains information like what

values must the newly created object have or what should it be changed to. Similarly, the response body

contains the page HTML or JSON data. It is usually compressed in gzip format for faster transmission.

Note that we define a resource as a request sent to the server that the server accepts. In other words,

the server responds without a client side error or 400 HTTP response code. Additionally, we define

an object as some data for which a state is maintained in the app database, for instance a repository

in Gitlab or a paper submission in Hotcrp. Therefore, although resources or requests themselves are

stateless, they can create or modify objects, affecting the app state. Typically, requests with method -

POST create new objects and requests with method - GET retrieve objects/pages.

The request URL typically comprises of protocol, hostname, pathname and search/input parameter

fields as described in Figure 2.3. The hostname is the address of the system where the server is running.

Pathname is the directory path or an endpoint within the application. Search or input parameters

reference specific objects of that endpoint.

The users interact with the frontend, also known as User Interface (UI), through a browser. These

interactions can be automated via browser automation tools [47]. Such tools are usually used to perform

end to end testing where we can automate user defined interactions to specific page’s HTML elements

and assert the expected response of the UI.

2.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are heuristic search algorithms used to find approximate solutions to

computationally hard problems that cannot be solved in polynomial time. They leverage the Darwinian

theory of evolution or survival of the fittest strategy as seen in biological evolution of species.

A solution or, in evolutionary terms, a chromosome of an individual, consists of smaller building

blocks called genes. A set of genes are joined in a sequence to form a chromosome. The idea is that

with evolution’s natural selection, individuals with stronger chromosomes will persist in the population

while weaker chromosomes will perish.

Genetic algorithms are popular EAs [51]. They are used for problems where it is easy to construct

Chapter 2. Background 8

some solution but hard to construct the optimal solution. GAs comprise of five main steps - initializing

population, crossover/mutation, fitness/cost function and selection [45].

The GA starts by initializing a population of solutions usually randomly constructed. Next, crossover

and mutation operations are performed over the existing population to produce new solutions in the pop-

ulation. All solutions are assigned a fitness value by the fitness function which defines the optimization

criteria. Following that, the fitter solutions are selected to survive to the next generation and rest are

discarded. The new generation follows the same steps - crossover/mutation, fitness value assigning,

selection and this process is repeated until the termination condition is met. The termination condition

is usually set to a fixed amount of run time, generations or if an acceptable fitness value is reached. In

other words, the GA aims to find an optimal solution or ‘sequence of genes’ as per the fitness function,

in a very large search space.

The population is generally initialized by randomly selecting genes and creating sequences. A higher

diversity in the initial population usually leads to better results [45]. This is because with diversity,

the algorithm is able to overcome local optima, allowing it to better explore the search space before

converging on a solution.

There are many strategies for selection steps such as the tournament selection, rank selection, Trun-

cation selection [45]. Selection strategies are selected as per the problem since no one strategy works

best for all. The goal is usually to ensure faster convergence and diversity in population is maintained

to avoid getting stuck in a local optimum.

The crossover step produces new sequences in the population from existing sequences. In crossover,

two parent (p1,p2) sequences are broken into two parts - head(H), tail(T) and recombined to produce

two new sequences. For instance - Hp1+Tp2, Hp2+Tp1. Similarly, many other strategies have been

proposed [45]. Mutation also produces new sequences but it only needs one parent sequence. Some

mutation strategies include - randomly swap two genes of the sequence, add/delete a gene. Furthermore,

mutation can be performed based on some feedback to make the algorithm adaptive. For instance, when

the algorithm is converging or the fitness values aren’t improving over generations, the probability to

mutate can be increased and similarly when there is high fluctuation/variance in fitness values, the

mutation probability can be decreased.

Note that evolutionary algorithms are non deterministic. Multiple runs may lead to different results.

Therefore, these algorithms are usually evaluated over multiple runs. Also, they are non terminating

unless a terminating condition is specified like runtime or target fitness score.

2.4 Gestalt Pattern Matching

The Gestalt Pattern Matching is a method to measure the similarity between two strings. This approach

is designed to find how similar two strings are, resembling human analysis. It uses the Longest Common

Substring (LCS) to recursively keep matching longest contiguous characters and calculate the ratio as

the number of matching characters divided by the total characters in the two strings [50]. Concretely,

SimilarityRatio =
2 ∗M

|S1|+ |S2|
(2.1)

Chapter 2. Background 9

where M are the number of matching characters between strings S1 and S2, |S1| and |S2| are number

of characters in S1 and S2 respectively.

The time complexity of this algorithm is cubic polynomial time in the worst case. The is because

finding LCS takes O(|S1| ∗ |S2|) in space and time. And this would be repeated |S1| times in worst case.

Thus, in total the algorithm takes O(|S1|2 ∗ |S2|) time.

Chapter 3

Design

We designed AuthZee in a modular style where each module can run independently and communicate

with its peer modules. There are four key modules - Simple crawler, Evolutionary crawler, Public Filter

and Vulnerability Detector. The crawler modules discover new pages and record all requests originating

from those pages. The Public Filter module filters out all the shared or publicly accessible URLs, so

only private URLs are sent to the Vulnerability Detector. And finally, the Vulnerability Detector module

automatically checks the authorization of a URL.

The simple crawler generates a stream of new URLs discovered by crawling the target web app. This

crawler is fast at discovering static links in a webpage however, it cannot explore the user generated

content that requires complex user interactions to be discovered. This is because it cannot perform

dynamic multi step interactions like creating an object, submitting a form, selecting from a drop down

menu, updating object settings, handling javascript dialog boxes. The evolutionary crawler attempts

to solve this problem. It leverages an evolutionary algorithm to perform multi step interactions on a

webpage like a human user. However, the evolutionary crawler is much slower. Therefore, this crawler

prioritizes which page to crawl first based on the page interactivity score. The page score is calculated by

counting the number of interactive elements contained in the page for instance input, button, textarea

etc. This is done to avoid spending time on non-interactive pages which are usually public pages. Once

a new object is created by an evolutionary crawler, we need the simple crawler to quickly crawl any

new static links associated with that object, which in turn will be shared with evolutionary crawler for

further object creation. Thus, using simple crawler in combination with evolutionary crawler enables a

deeper exploration of the web app.

Concurrently, all the pages discovered or requests made to the app by the two crawlers are sent to

the public filter module. Here, the requests that are public or shared among multiple users are identified

and discarded, and the remaining ones are sent to the vulnerability detector. The public pages must be

filtered out because they confuse the vulnerability detector causing it to produce false positives. And

the requests that fail authorization checks are reported by the detector.

The following subsections will explain the modules in more detail.

10

Chapter 3. Design 11

Figure 3.1: Block Diagram of AuthZee

3.1 Simple Crawler

The simple crawler crawls the target web application in a bread first search (BFS) fashion. It takes in a

target URL as input and then visits all the links on the target URL’s page. This generates new URLs

and for each new URL, all links on those pages are visited and this process continues until all the pages

associated with the target domain have been visited. This way of discovering URLs is called website

crawling and it isn’t novel.

Existing crawling techniques do not perform well over web applications of our interest that require

user authentication to explore app features and resources, assuming authentication cannot be bypassed.

This is because the app resources are hidden from public/non registered or unauthenticated users and

crawlers by themselves do not contain user credentials or authentication capabilities. Therefore, we

designed the simple crawler to accept as input - the user credentials and instructions to login. For

instance, navigate to the login URL, fill specific HTML elements like username and password input

fields and click the login button. The HTML elements are located using CSS identifiers like id, class

name or other HTML tag attributes. The tester must pass this login info to the crawler. This allows the

simple crawler to automatically crawl as an authenticated user and explore more deeper resources. Note

that the simple crawler does not automatically register or create a new user account in the application.

We manually create user accounts and then pass the login instructions as input to our crawler.

The simple crawler also captures dynamic component level URLs. Web applications featuring inter-

active user interfaces are mostly Single Page Applications (SPAs) or make heavy use of AJAX (Asyn-

chronous Javascript and XML) [21] [2]. SPAs are a style of development where the page is made up of

multiple smaller components and instead of loading the entire page for any request (A request can be sent

to the server as a result of user interaction with a page component) only that specific component gets

reloaded. These kinds of applications leverage AJAX to communicate with servers without reloading

the entire page [2]. In other words, visiting a page can be accompanied with other AJAX (XMLHttpRe-

quest) requests to fetch the individual components of that page. The simple crawler captures such

AJAX requests during its crawling. These requests are of interest because even if a page request is

access controlled, their individual components or function requests may not have proper access control.

Finally, the crawler also performs some validations like dropping out of domain URLs and keeping

Chapter 3. Design 12

Figure 3.2: Block Diagram of Evolutionary Crawler

track of visited URLs to avoid redundant loops.

3.2 Evolutionary Crawler

In web security, crawlers are primarily used in web application vulnerability scanners such as Burp

spider [22] and ZAP active scan [14]. These tools can automatically crawl through the target website

and detect vulnerabilities. However, they can only find certain types of vulnerabilities. Authorization

vulnerabilities like IDORs resulting from broken access control cannot be detected by web vulnerability

scanners due to their inability to create new objects and detect unauthorized accesses from server

response [14]. Scanners perform poorly for applications with a high number of dynamically generated

pages where new pages or objects are generated because of user actions. Furthermore, many of them do

not handle dynamic AJAX content and complicated Javascript interactions, for instance new components

like popups, dropdowns, modals etc becoming visible as a result of some user activity like typing and

clicking [33]. Such interactions are important for extensively exploring app features and discovering new

resources like URLs or API endpoints which the simple crawler cannot discover. Thus, there exists a

gap between discovery of app resources by automated simple crawling and manual user interactions.

Most applications, depending on their design and logic, have a multi step process (in terms of user

interactions) to create, modify or delete objects, thus changing the user account state or app state.

Chapter 3. Design 13

Figure 3.3: An ideal element-action sequence on the ‘/projects/new’ page in Gitlab

However, for a crawler that only looks at the page elements like hyperlink, text input, button etc from

the page HTML, it is very challenging to determine what exact order of interaction will result in a

change in app/useraccount state. The Burp crawler does try to look for form elements on web pages and

submits them; however not all objects are created or updated by submitting forms. Also, submitting

forms generally results in reloading the page. Therefore, most AJAX communication that does not

accompany page reloads cannot be captured after submitting forms. Furthermore, there may be multi

step user interactions required before the form element is even visible on the page.

To close the gap mentioned earlier, we need to find the ideal sequences of user actions that yield

either a new component visible on the web page or a new request sent to the server. Figure 3.3 shows

an ideal sequence which would yield a new request for creating a new project in Gitlab. This is quite

challenging as there can be a large number of possible permutations of user actions with elements for a

web page, especially when the length of sequence is also unknown. A naive randomized brute force search

is therefore impractical. Our evolutionary crawler tries to close this gap by leveraging an evolutionary

genetic algorithm. The genetic algorithm attempts to search specific sequences of user interactions

when simulated on the webpage, result in the web app sending new requests to the web server, thereby

performing a higher degree of crawling. Thus, it attempts to find the sequences of interactions that a

human would do to interact with a webpage.

Genetic algorithms algorithms apply the concept of natural selection which states that given an

environment, only the fit or most adaptable survive over many generations of evolution. Here, we set

the environment and a reward system such that over generations, ideal sequences have a higher chance

of survival. Thus, finding ideal sequences that produce new requests when executed on the webpage.

Chapter 3. Design 14

We apply the genetic algorithm to our problem as follows. A gene is defined as an element-interaction

pair. For instance, an <input> HTML element can be interacted with by clicking, typing, hovering etc.

And so the resulting genes for that input element could be input-click, input-type, input-hover etc.

Thus, our search space is then made up of different sequences of such genes. The goal of the algorithm is

to find certain sequences which when executed on the webpage will generate new requests that Create,

Read, Update or Delete application data objects, also known as CRUD requests.

Initially, all the interactable elements are detected from the page html and they are combined with

different user interactions to create genes. The algorithm starts with an initial population of randomly

creating sequences of genes. A random sequence is created by picking a set number of elements equal

to the initial sequence size, from the webpage in random order and assigning them an interaction. At

each iteration or generation, each sequence in the population is evaluated by the heuristic based reward

system which assigns a score to it. The sequences are then sorted based on their score and an elitist

selection strategy - always picking top X number of sequences, is used to choose the sequences that will

propagate to the next generation. The top scoring half of the population propagates to next generation

and the rest gets discarded. Now, in the next generation, we produce new sequences from the top scoring

population of the previous generation. The basic idea of evolutionary algorithms, that is - higher scoring

parents will produce even higher scoring offspring perfectly applies to our use case. More concretely,

a sequence with strong genes will have a high score and thus those genes will be passed on to next

generations. Note that high scoring sequences are the sequences that have a higher chance of changing

the app state.

The following paragraphs will explain how new sequences are generated from previous generations

and how the reward system assigns a score to a sequence.

3.2.1 Generating New Sequences

When producing new sequences, we care about the order in which the element-interaction genes are

executed due to the underlying dependency constraints. For instance, interacting with one element may

make the next element in the sequence visible on the web page. The popular crossover and mutation

techniques may often break the dependency order and thus mostly produce lower scoring sequences than

previous generations. To avoid this, we add web page specific heuristics. We detect if interacting with an

element makes new elements visible and mutate the sequence by inserting one of those dependent genes

obtained by assigning an interaction to the newly visible element after the element in the sequence that

was interacted upon previously. Also, at each iteration, some sequences are still generated randomly as

a source of new genes.

The mutation operation increases the size of the sequence as we are inserting new genes. We imple-

ment two things to ensure the sequence size does not increase without bound. Firstly, we make sure the

sequence has no duplicate genes. Second, we assign a gene score to individual genes. The gene score

indicates the desirability of a gene. And the genes with low desirability are removed from all sequences.

The reward system assigns the gene score and sequence score.

We emphasize that the idea that parents with higher fitness produce fitter offspring applies here.

Since we reward sequences based on browser feedback as listed in Table 3.1, a parent with higher score

Chapter 3. Design 15

Browser UI behavior after element interaction Reward

Sample file uploaded on UI +ve

Typing successful on a page element ++ve

New elements visible ++ve

New request sent +++ve

Chosen valid option from a select element ++ve

Outside domain request sent —ve

Duplicate request sent -ve

No UI change / timeout –ve

Element invisible –ve

Browser disconnect/restart —ve

Table 3.1: Reward/Penalty for specific UI behaviors after interacting with an html element

indicates that it is more closer to an ideal sequence. Therefore, mutating the parent with a higher score

has a higher chance of turning into one of the ideal sequences, compared to mutating a lower scoring

sequence. Hence the sequence population improves over generations eventually leading to ideal sequences

that yield new requests when executed on the webpage.

3.2.2 Reward System

The reward system guides the evolution towards a population of sequences that produce desired outcomes

like new requests generated or changes in app user interface (UI). This is also referred to as the fitness

or cost function in traditional genetic algorithms. Here, the fitness or reward is calculated dynamically

upon executing the particular sequence or gene, meaning we perform the interactions on elements in the

web page as per the sequence and calculate the reward based on feedback from the app UI.

There are two kinds of scores assigned here - sequence score and gene score.

The sequence score determines how promising the sequence is in updating account state. Since the

actual request generating sequences are very sparse compared to the entire search space of sequences,

we need to incorporate reward shaping in order for the evolution to be efficient and practically useful.

Therefore, instead of only rewarding the sequences that generate new requests, we reward sequences

based on interactions that may lead towards request generation. For instance, if an input field was

successfully filled in, if a file was successfully uploaded, new elements became visible, or when a new

request was seen. For the latter, we also assign a bigger reward. Table 3.1 lists the rewards for different

UI behaviors after interaction with an element. In other words, we reward the sequence when it is realized

that the interaction with an element was successful or the gene was successfully executed. Similarly, the

interactions that are impossible or unfavourable are penalized. For example, when an out of domain /

previously seen request is generated or if the sequence took too long to execute, or the page element of

the gene is not yet visible since the visibility could be dependent on interactions with other elements.

Over generations, this promotes interactive sequences. However, when there are many unproductive

genes in the search space, it may take many generations to evolve to an interactive sequence of genes.

Chapter 3. Design 16

Therefore, we introduce gene score to reduce the search space by getting rid of unproductive genes.

The gene score tells us how useful that gene is by itself. Initially, a set score is assigned to all genes.

Over generations, the gene score is affected by two factors - Intractability and Novelty. For intractability,

a reward or penalty is awarded depending upon whether the specific interaction for that element was

successful. For example, performing typing on hyperlink or clicking on text fields, unsuccessfully typing

into a disabled input and clicking an element that has no effect on the web page. This criteria is similar

to the one for assigning sequence score in that it gets response feedback from the web app’s UI but it is

more focused on the individual gene itself. We do this to avoid flooding the population with genes that

do not make meaningful interactions and make evolutionary search less efficient. The purpose of gene

score is only to eliminate low scoring genes from the population of gene sequences. It is not used during

the evolution selection process like the sequence score is.

Note that genetic algorithms have been traditionally used for optimization problems, where the goal

is to optimize the fitness/cost of a population of solutions through the process of natural selection. The

optimization usually converges, meaning that as time passes, the fitness/cost of the solution will improve

less and less until it doesn’t improve at all, indicating that the algorithm has converged and the resulting

solution is close to optimal if not optimal. However, this does not quite fit with our needs. Instead of

finding one optimal solution, we want to find as many solutions as possible. Here, a solution is any

sequence of element-useraction pairs (aka genes). Ideally, the more permutations of element-action pairs

we explore, the higher the chance of finding a sequence that generates a request to create/modify/delete

objects (POST, PUT, DELETE). Therefore, we take a novelty search approach, to guide evolution to

yield many useful sequences.

To this end, the gene score is also affected by the novelty of the gene in the population. It gets

reduced at the end of each generation by a set amount. Thus, a lower score also means that the gene has

been in the population for a long time. Since we don’t want the algorithm to converge, as is the natural

tendency of genetic algorithms, we remove the genes that are very old so new genes have a higher chance

to be explored, even if they initially don’t look promising.

3.3 Public Filter

For real world apps, there can be many pages and even dynamically user generated resources that are

supposed to be accessible by multiple users as per the app logic. This can cause a large number of false

positives when detecting authorization vulnerabilities. It is because the detector relies on differences in

responses of users to verify authorization. If multiple users receive the same legitimate response, the

detector wrongly reports this as an authorization vulnerability. Therefore, the purpose of this module

is to mitigate this issue by inferring developer intention.

We try to identify if a resource is intended by the app developers to be public or shared as follows.

Our assumption is that if a user is able to discover a URL or resource by navigating on the website

without forced browsing or protocol field substitution, then the developers intended for that resource to

be accessed by that user. Thus, we run two instances of the simple crawler, but they crawl logged in

as two different users, let’s say userA and userB. We call the second simple crawler instance the twin

Chapter 3. Design 17

crawler. So if a resource is discovered by both simple crawler and twin crawler i.e both userA and userB

can access that resource then it is a shared or public resource and must not be tested for authorization

failures. Then we filter out such public resources i.e the requests or pages that were discovered by both

the simple and twin crawler and only send the supposedly private resources to the vulnerability detector

module. Thus, mitigating false positives during detection as shown in section 5.3.2.

3.4 Vulnerability Detector

This module is responsible for automatically detecting if a request to a resource fails authorization in

an application agnostic way. Previous solutions have either relied on error codes in the response or

manual visual analysis by human eyes. As we mentioned in the introduction section, the error codes are

unreliable as the app may not always return proper error codes, and instead return 200 OK (success)

for every request, thus resulting in false positives when checking authorization.

The vulnerability detector resends each website request captured earlier by the crawlers, three times

with three different user’s session cookies. We refer to this as a triad run. The session cookies are

obtained after automatically logging in with the user’s credentials. Therefore, this module requires three

sets of user credentials. The first - userA that was used during simple and evolutionary crawler, the

second - userB used during twin crawler and the third - a userC that must be at the same privilege level

as userB. So, ideally with a successful authorization implementation, we expect the request sent with

userA’s cookies to contain a legitimate authorized response or the ground truth. And since, the request

made is for userA’s private resources, the response received with userB and userC’s session cookies must

be different. Otherwise, there exists an authorization failure.

Note that it is not enough to run the request only twice, for example with userA and userB’s session

cookies. Although by comparing the page html of the two responses, we will still be able to determine

if response to userB is different from response to userA, however we would not know if that is because

the page content is different or just because of user specific data such as username, user-email on the

webpage. For example, when we login to an account, it is fair to assume that for most apps, we will see

some indication of who is logged in like our username at the top-left corner of the page. This static user

specific content can result in false negatives or missed authorization failures since they would always

make the responses different. Therefore, we must find a way to isolate the user specific content, so we

ignore it when comparing with the ground truth or the response to userA. This is where userC is needed.

Since, both userB and userC are at the same privilege level and neither must have authorization to access

the resource, their responses must be similar with the only difference in the user specific content. Thus,

we can detect the user specific data and ignore it when comparing userB’s response with the ground

truth.

To make comparison easier, we work with similarity ratios. We calculate the similarity ratio between

userA’s HTML response and userB’s HTML response - simRatioAB and between userB’s response and

userC’s HTML response - simRatioBC. The similarity ratio is calculated using gestalt pattern matching

by Ratcliff and Obershelp [50] as explained in section 2.4. Although it is a cubic polynomial time

algorithm in the worst case, in practice this is not the bottle neck of the design because web server

responses cannot be infinitely large as this would affect the app quality

Chapter 3. Design 18

For our use case, the simRatioBC tells us what percentage of content is common between userB’s

response and userC’s response. Or (1- simRatioBC) is the percentage of content that is different or user

specific. Thus, the % difference between responses of userA and userB must be greater than the % user

specific content or (1-simRatioBC). Thus,

(1− simRatioAB) > (1− simRatioBC) (3.1)

when authorization is working correctly. This is same as simRatioAB < simRatioBC. Concretely, there

exists an authorization vulnerability for a resource if

(simRatioBC − simRatioAB) ≤ 0 (3.2)

However, this is too strict and we need to allow for some degree of margin. Therefore, we introduce a

margin factor (M.F) which can be set to a small value ex. 0.001. In conclusion,

simRatioBC − simRatioAB ≤ MF (3.3)

indicates other users were able to access userA’s resource, implying there is an authorization vulnerability.

Thus, we are checking if the response to userB was more similar to the ground truth(userA’s response)

than userC’s response.

Chapter 4

Implementation

As mentioned earlier, we designed a modular system to automatically detect authorization vulnerabilities

in web applications and this section provides more details on the frameworks and packages used to build

it.

4.1 Custom Testcafe Framework

The simple, twin and evolutionary crawlers are built using a customized version of testcafe 1.13.0 [7].

Testcafe is an end to end web application testing framework. It provides browser automation capabilities

along with useful features like capturing all requests-responses sent and received, user roles to automati-

cally login as a user, checking if an html element is visible on screen, interacting with an element, running

javascript code in the browser, automatic waiting for elements to appear [7]. This allows us to identify

desired behaviors like if new elements were visible on the screen after a click interaction, if a typing

interaction was successful on an element, if the html element - ‘select’ was successfully clicked to select

one of its options, and if a new request was generated due to some sequence of interactions. This is used

by the reward system where sequences showing desired behaviors are rewarded and similarly, uneventful

sequences are penalized. Since these behaviors are application agnostic, we can hard code the reward

system to look for such behaviors and still be able to generalize the crawling for all web apps. Further-

more, testcafe also supports monitoring the automated user interactions in real time, taking snapshots

or recording video of the activity on the browser [15].

However, testcafe expects the tester to know the app structure where the tester must specify the

HTML elements to interact with by providing element identifiers like CSS class name or id. This is not

ideal for crawlers since you don’t know the element ids beforehand. Furthermore, Testcafe is designed

to halt on encountering a failure or unsuccessful interaction and for a crawler that is an undesirable

quality, especially for evolutionary crawler where we often encounter unusual interactions. Therefore,

we modify the testcafe package to keep running even after errors. And on discovering a new page, we

fetch all interactable elements from the response HTML dynamically during run time and assign them

internal ids to reference them during evolution. We also lower some wait timeout values to speed up the

crawling. Testcafe is configured to use chrome browser in AuthZee but any other browser can be used.

Ideally, a browser that is most compatible with the target app UI should be selected.

19

Chapter 4. Implementation 20

Futhermore, we store the data items describing the current crawling state, such as url queue, visited

urls, current population of sequences..etc. This allows us to handle any unexpected interruptions in

the crawling process like loosing browser connection or opening a plain text page which causes testcafe

to hang, in which case it automatically restarts after browser heartbeat timeout. And as the crawler

restarts, it picks up from where it left off, thus avoiding loosing previous progress. This however does

lower the performance since we now must write to the hard disk during each crawling iteration. This also

requires enough memory for the metadata like current population, gene scores, element dependencies,

visited pages, queue and running Kafka. The memory usage thus depends on the evolutionary crawler

parameters and target app.

All modules are built in Javascript mainly because Testcafe only supports Javascript. Furthermore,

we use the difflib package to calculate similarity ratios in the triad detector module. And to run the

experiments, we leveraged the pm2 process manager package for nodejs.

4.2 Apache Kafka

Apache Kafka is used to transfer data between modules. Kafka is an event streaming framework that pro-

vides permanent storage [3]. AuthZee uses it as a persistent queue. The simple crawler and evolutionary

crawlers send new discovered page URLs to pageurls queue. They also consume from the pageurls queue

but in different consumer groups. This enables simple crawling and evolutionary crawling to consume

the queue separately as though there were two separate queues. The two crawlers also send all URLs to

allurls queue which are consumed by the filter module. Concurrently, the twin crawler sends all URLs

to twinallurls. The filter module consumes from allurls and twinallurls to filter out public URLs and

sends the private URLs to filteredurls queue which is then consumed by the triad detector.

4.3 Bypassing Browser Security

Browsers implement a security feature that prevents users from accessing secure cookies using javascript.

App servers can mark cookies as secure by including an attribute flag - “HttpOnly=1” at the end of the

cookie [54]. This instructs the web browsers that this cookie must be accessed only through HTTP, thus

preventing it from being disclosed through javascript’s ‘document.cookie‘ call. All modern applications

use this feature to protect from cookie theft against attacks like Cross Site Scripting (XSS), Cross Site

Request Forgery (CSRF).

This security feature however prevents AuthZee from receiving the user session cookies of userB and

userC. These cookies are needed to perform triad tests which replace userA session cookies with userB’s,

in the request logs discovered during crawling. And then this request log is resent to the app server.

Thus, it enables sending the exact same request that userA sent but with an unauthorized user’s session

cookies - ex. userB. The same is repeated for userC.

Since the secure session cookies cannot be fetched from the browser, testcafe’s ability to auto login

and log requests,responses is leveraged to procure the secure cookies. All applications upon successful

login, redirect users to their account dashboard or home page. Since this page would contain the user’s

private data, the request sent to fetch this page must contain the user session cookies. Therefore, the

Chapter 4. Implementation 21

user session cookies are successfully extracted from the last request logged following a user login.

Bypassing the HttpOnly flag allows AuthZee to perform triad tests for AJAX requests as well as

POST/PUT requests. However, the requests returning empty responses like empty string, array, json

object - ””, [], { } are not triad tested, since it would lead to a false positive.

Further note that because we use cookie swapping method to find IDORs, we can test all URLs for

unauthorized access unlike the parameter tampering method where the URL must contain objectIDs,

which are then altered.

4.4 Additional Requirements

This subsection states the initial setup needed to use AuthZee. It also clarifies additional steps that our

implementation takes for optimal results.

The vulnerability detector requires three sets of pre-created user credentials and css selectors of the

login form to automatically login to the app. This one time small effort to manually register 3 users is

required to run AuthZee on a web app.

Further, the genetic algorithm in evolutionary crawler, for best results, requires tuning of some

parameters like the sequence length, population size, number of generations or iterations and behavior

rewards and penalties to evaluate the sequence and gene score per iteration. In the future, this can

be extended to be adaptive where the parameters are not fixed and adapt to the environment based

on some feedback. For instance, if the sequence scores are converging over iterations then increase

the novelty reward. Similarly, the triad detector may also require tuning of the margin factor (M.F)

parameter. A larger MF can result in increased false positives but setting it too small could miss some

of the authorization failures.

Our design takes a long time to complete. This is mainly because the evolutionary crawler runs

many iterations per page, hence the bottleneck in our design. However, this is not a limitation as we can

improve crawling throughput by horizontally scaling with additional evolutionary crawler programs that

consume from the same kafka queue. Kafka allows programs running on different machines to consume

it’s queue. This will allow us to concurrently run multiple evolutionary crawler programs that distribute

the crawling load and thus reduce the total amount of time it takes to fully explore the app.

Another point worth mentioning is that during crawling we need to ignore the elements that logout

or sign out from the user account. These elements exit the user account space and cause the crawler

to explore the public space. This isn’t a major problem as those public pages will be filtered out later,

however it does waste time. Therefore for optimal performance, the tester needs to specify which element

to ignore by providing it’s html/css identifier. In our implementation, this is hard coded by checking for

specific keywords like ‘logout’ or ‘sign out’ before clicking an element.

Chapter 5

Evaluation

We formulated the automatic blackbox authorization vulnerability detection problem by putting to-

gether two subproblems - resource discovery and authorization detection. Therefore, we evaluate our

implementation over the two metrics: number of resources discovered and number of false positives dur-

ing detection. The following subsections explain the experiment setup and different experiment runs to

evaluate AuthZee.

5.1 Experiment Setup

We chose 7 open source web applications as our targets to evaluate our apps - Openstack [8], Gitlab

(Community Edition) [11], HotCRP [9], Overleaf (ShareLatex) [10], DokuWiki [5], HumHub [13] and

Kanboard [12]. Openstack is an infrastructure-as-a-service application and is used to deploy and manage

cloud infrastructure. Gitlab is a code sharing application with many features such as git repository,

wiki, issue-tracking and continuous integration. Hotcrp app is used to manage academic paper review

processes. Overleaf app is used to share and collaborate on papers in latex. Dokuwiki is a wiki website.

Humhub is a social networking application. And finally, Kanboard is a project management application

that uses the Kanban methodology. These web apps were purposely chosen as they support user account

features where users can create and collaborate on in app resources, thus enforcing access control policies

that can be checked for vulnerabilities.

Our resource discovery experiments consisted of running the simple crawler with BFS crawling strat-

egy and evolutionary crawlers with different evolutionary parameters (ex. sequence size ‘s’, population

size ‘p’ and number of iterations per page ‘i’) over all target web apps. We ran the evolutionary crawler

multiple times with different combinations of s, p, i as shown in table. The crawling captured and saved

following data in persistent storage - page URLs, all URLs including AJAX requests, filtered URLs, re-

quests with a non-GET HTTP method. The latter signifies how many different object creator/modifier

requests the crawler discovered. From the results, the most suitable combination across all apps was

picked for further experiments.

The detection experiments used data generated by the crawlers to run the vulnerability detector for

each URL resource. The resources failing authorization as per the triad test were reported and the false

positives were manually identified by human testers. Originally, the margin factor (MF) was set to 0.001

22

Chapter 5. Evaluation 23

Each experiment was run for 24 hours on a different but identical instance of the target webapps

using their open source installation guides. We hosted all docker containers of the webapps on our

research group’s virtual machines running on Ubuntu 18.04 OS.

Further, each experiment was evaluated by four measurements - pageurl count, allurl count, filtered

url count and number of non-GET requests. The pageurl count is the number of webpages that were

visited during the experiment. Allurl count tells us the total number of requests sent by the frontend

to backend including the requests for webpages. We configure testcafe to only log the requests that

accept content type - ‘text/html’, ‘application/json’, ‘text/plain’ from the server, since other requests

for fonts,icons,css do not contain user sensitive data. Concretely, pageurls are requests that only accept

‘text/html’ while allurls are requests that accept all three types of content. We filter all urls using the

public filter module to generate filtered urls. And finally, the non-GET requests are any request with

a method different from GET, for instance POST, PUT, DELETE. We count the non-GET requests as

these are primarily responsible for a change in app state. Thus this is a measure of change in app state.

5.2 Discovery of Request URLs

In this section, we perform multiple experiments with the target app to evaluate our crawlers and their

URL discovering ability

5.2.1 Evolutionary parameter tuning

As mentioned in the setup, we tune the evolutionary parameters - sequence size ‘s’, population size ‘p’,

iteration amount ‘i’ by running the evolutionary crawler multiple times, varying these parameters. s

indicates the initial number of element-interaction genes per sequence that algorithm starts with. This

doesn’t significantly affect the evolution results because the sequence size is not fixed and mutates with

iterations. Next, p indicates how many sequences we execute in one iteration. i indicates the number

of generations spent per page searching for new requests. We run nine evolutionary experiments for

each app, where each experiment has a different combination of s,p,i parameters. To understand the

influence of a single parameter in the evolution, one parameter was tested with three different values

while the other two were kept unchanged. Thus, three parameters result in nine combinations, hence

nine experiments. Table 5.1 to 5.7 show the results of these nine experiments for all our target apps.

From the results, there is no clear winner across all the target apps. This can be attributed to two

factors - app UI design and evolutionary crawler’s non deterministic behavior. For apps like Gitlab

and Hotcrp with many interactive features in their UI, we notice that a higher iteration value gives

better results with higher number of non-GET requests. Similarly for apps with simpler frontends like

Dokuwiki and Humhub, lower input parameters generally give better results. This is because of more

pages being fully iterated over.

We note that our evolutionary crawler is non deterministic due the use of random initialization and

mutation. Therefore, multiple evolutionary runs with the same input parameters may give different

results. We showcase this by running evolutionary crawler with same parameters s=5, p=10, i=25

three times as shown in Figure 5.1. The results, although different each time, have the same order of

magnitude.

Chapter 5. Evaluation 24

Figure 5.1: Illustrating non-deterministic behavior of Evolutionary crawler. Results from three experi-
mental runs with same parameters s = 5, p = 10, i = 25

We also measure the number of pages that were fully exploited, meaning all i evolutionary iterations

were completed on those pages. This allows us to compare exploration with exploitation. Increasing

input parameters s, p amd i allows us to increase time spent interacting per webpage, thus focusing

more on exploitation. This inturn causes fewer webpages exploited since each experiment is run for 24

hours, meaning decreased exploration. In other words, increasing exploitation would take longer time

exploring the same number of webpages. Thus there is a tradeoff between exploration and exploitation.

Furthermore, to compare experiments with different input parameters, we introduce an efficiency

measure that we define as the number of all requests produced per unit interaction with the frontend.

As a reference, the efficiency of the simple crawler is generally close to one, since each interaction with

UI (clicking hyperlinks) generally yeilds a request. The results show that increasing input parameters

typically decreased efficiency. However, this does not mean that lower input parameters are better since

frontends rich in multi step interactions, would require larger values for p and i to successfully find a

multi step interaction sequence that generates an app state changing non-GET request.

From the results, we picked the combination s=5, p=10, i=25 for future experiment as it gave

consistently good results in all apps.

Chapter 5. Evaluation 25

Seq size 2 3 5 5 5 5 5 5 5
Population size 10 10 10 2 10 20 10 10 10
Iterations 25 25 25 25 25 25 10 25 50
Results:
page urls 12 16 31 31 17 16 28 15 16
all urls 19 36 48 53 28 28 44 25 26
filtered (private) urls 13 12 40 28 18 15 31 16 13
not-GET requests 4 5 4 3 5 4 6 5 3
Total UI interactions 6000 12000 38750 7750 21250 40000 14000 18750 40000
Efficiency 0.0032 0.003 0.0012 0.0068 0.0013 0.0007 0.0031 0.0013 0.0007

Table 5.1: EV Crawler parameter tuning for Openstack

Seq size 2 3 5 5 5 5 5 5 5
Population size 10 10 10 2 10 20 10 10 10
Iterations 25 25 25 25 25 25 10 25 50
Results:
page urls 122 139 140 133 113 133 189 123 112
all urls 135 151 164 146 126 145 209 141 145
filtered (private) urls 112 128 146 122 97 120 105 120 120
not-GET requests 0 0 1 0 0 0 0 1 3
Total UI interactions 17000 15000 25000 9000 17500 40000 8000 21250 15000
Efficiency 0.0079 0.0101 0.0066 0.0162 0.0072 0.0036 0.0261 0.0066 0.0097

Table 5.2: EV Crawler parameter tuning for Gitlab

Seq size 2 3 5 5 5 5 5 5 5
Population size 10 10 10 2 10 20 10 10 10
Iterations 25 25 25 25 25 25 10 25 50
Results:
page urls 78 78 64 58 80 64 135 73 110
all urls 103 103 87 82 103 90 160 97 141
filtered (private) urls 24 26 17 13 21 22 46 21 41
not-GET requests 1 3 2 1 2 8 2 3 20
Total UI interactions 16000 17250 35000 8000 40000 57500 42000 37500 95000
Efficiency 0.0064 0.006 0.0025 0.0103 0.0026 0.0016 0.0038 0.0026 0.0015

Table 5.3: EV Crawler parameter tuning for Hotcrp

Seq size 2 3 5 5 5 5 5 5 5
Population size 10 10 10 2 10 20 10 10 10
Iterations 25 25 25 25 25 25 10 25 50
Results:
page urls 8 8 9 9 9 10 7 6 6
all urls 11 11 12 14 12 14 9 8 9
filtered (private) urls 6 6 7 10 8 10 4 3 4
not-GET requests 1 2 3 6 3 6 1 0 1
Total UI interactions 4000 6000 11250 2250 11250 25000 3500 7500 15000
Efficiency 0.0028 0.0018 0.0011 0.0062 0.0011 0.0006 0.0026 0.0011 0.0006

Table 5.4: EV Crawler parameter tuning for Overleaf

Chapter 5. Evaluation 26

Seq size 2 3 5 5 5 5 5 5 5
Population size 10 10 10 2 10 20 10 10 10
Iterations 25 25 25 25 25 25 10 25 50
Results:
page urls 60 79 141 87 81 25 58 93 131
all urls 35 40 63 27 26 15 23 27 48
filtered (private) urls 25 13 31 9 8 6 4 9 18
not-GET requests 6 4 6 5 3 2 2 3 6
Total UI interactions 19500 9750 27500 8250 15000 12500 11000 23750 65000
Efficiency 0.0018 0.0041 0.0023 0.0033 0.0017 0.0012 0.0021 0.0011 0.0007

Table 5.5: EV Crawler parameter tuning for Dokuwiki

Seq size 2 3 5 5 5 5 5 5 5
Population size 10 10 10 2 10 20 10 10 10
Iterations 25 25 25 25 25 25 10 25 50
Results:
page urls 95 81 77 78 70 53 75 71 60
all urls 102 88 84 85 77 63 85 80 66
filtered (private) urls 48 39 39 32 33 23 37 32 19
not-GET requests 24 14 14 21 17 13 20 19 14
Total UI interactions 46500 32250 38750 18000 33750 45000 33000 31250 27500
Efficiency 0.0022 0.0027 0.0022 0.0047 0.0023 0.0014 0.0026 0.0026 0.0024

Table 5.6: EV Crawler parameter tuning for Humhub

Seq size 2 3 5 5 5 5 5 5 5
Population size 10 10 10 2 10 20 10 10 10
Iterations 25 25 25 25 25 25 10 25 50
Results:
page urls 21 26 23 25 28 25 23 29 26
all urls 22 38 29 53 45 35 26 44 34
filtered (private) urls 21 37 28 52 44 34 25 43 33
not-GET requests 4 7 11 30 7 13 4 9 8
Total UI interactions 4500 17250 15000 6250 35000 62500 11500 36250 47500
Efficiency 0.0049 0.0022 0.0019 0.0085 0.0013 0.0006 0.0023 0.0012 0.0007

Table 5.7: EV Crawler parameter tuning for Kanboard

Chapter 5. Evaluation 27

Figure 5.2: Comparing results of simple Crawler (SC), Evolutionary crawler (EC) and combined crawler
(SC+EC) in AuthZee

5.2.2 Simple crawler vs Evolutionary crawler

Since all out experiments are only run for 24 hours, evolutionary crawler’s non-deterministic behavior can

affect its final results. Figure 5.1 demonstrates this behavior. However, AuthZee is designed to be non-

terminating and in practice, it could be run as a background process indefinitely in which case the non

determinism would not have much impact. Therefore, we pick the best results of evolutionary crawling

from the nine experiments previously run during parameter tuning, to compare it’s true potential with

the simple crawler.

It is clear that evolutionary crawling outperforms simple crawling for all target apps except for

Gitlab. This is because Gitlab contains many static help web pages which are quickly discovered by

simple crawler, hence greater results. We note that simple crawler is strong in exploration without

exploitation ability. And evolutionary crawler can exploit webpages to produce app state changing non-

GET requests however due to it’s slower speed, it is weaker in exploration. Thus, we run them together

using Apache Kafka, which allows sharing of new pages discovered between the two kinds of crawlers.

Combining the simple crawler and evolutionary crawler brings both the advantages of the two

crawlers, namely - exploration and exploitation. Simple crawler’s low compute overhead allows fast

exploration of static hyperlinks across webpages and evolutionary crawler’s ability to perform auto-

mated browser interactions on a webpage UI enables exploiting a webpage to generate new app objects

or discover resources hidden behind multi-step interactions. This is achieved by sharing new discovered

URLs between the two crawlers. For instance, when evolutionary crawler generates a new app object,

it’s page URL is sent to simple crawler to quickly crawl for hyperlinks and any new URLs resulting from

that simple crawl are sent to evolutionary crawler’s priority queue to be crawled later. This teamwork

yields higher results as evident with the hotcrp app where running evolutionary crawler individually

yielded 2 not-GET requests while running combined crawler yielded 19 non-GET requests. Note that

both experiments are run with same amount of compute resources like cpu, memory..etc.

Chapter 5. Evaluation 28

Figure 5.3: Illustrating object generation ability. Highest number of POST requests generated by
Evolutionary crawler (EC) and combined crawler (SC+EC) for parameters s=5, p=10, i=25 AuthZee

Figure 5.3 compares the number of POST requests generated during best results of evolutionary

crawling with the result of combined crawling (SC+EV). The result shows that combining the two

crawlers outperforms evolutionary crawling except for Humhub and Dokuwiki. On investigating further,

we see that the combined crawler produces lower POST requests for Humhub because it encounters

many duplicate page requests. They don’t appear as duplicates because they contain different input

parameter and values, however they have the same pathname. For instance,

http://hostname/directory/members?keyword=+HumHub

http://hostname/directory/members?keyword=+Digital+Native&page=1

http://hostname/directory/members?keyword=+French

http://hostname/directory/members?keyword=+Marketing

These URLs are produced when user selects to view different categories of directory members as per

the keywords, however they render the same page. This makes the evolutionary crawler exploit the same

page multiple times and not have time to exploit other POST request producing pages. We can avoid this

by only considering the pathname - /directory/members to determine if the request was seen before.

However, this may exclude objects/pages that are actually referenced by different URL input paramters

with different access restrictions. The combined crawler for Dokuwiki on the other hand did not have

this problem. The lower result can be attributed to the non deterministic behavior of its evolutionary

crawler.

5.2.3 Blind evolutionary crawling

Next, we perform blind evolutionary experiments in an HTML element tag agnostic way. In the evo-

lutionary experiments thus far, the crawler knew all the interactable elements on the webpage before

interacting with them, since we explicitly specified which element tags to look for when on a webpage,

namely - <input>, <button>, <textarea>, <a>, <select>. So, we could hardcode the interaction as

per the element, for instance clicking for <button> and <a> (hyperlinks) or typing for <input> and

<textarea> elements. And the crawler would search for the sequence of these intractable elements that

http://hostname/directory/members?keyword=+HumHub
http://hostname/directory/members?keyword=+Digital+Native&page=1
http://hostname/directory/members?keyword=+French
http://hostname/directory/members?keyword=+Marketing
/directory/members

Chapter 5. Evaluation 29

ope. git. hot. ove. dok. hum. kan.
page urls 6 11 6 1 2 35 1
all urls 18 30 7 3 2 53 1
filtered urls 5 24 2 2 0 33 1
non-GET 1 0 1 0 1 7 0

Table 5.8: Blind Evolutionary Crawling Results

generated a non-GET request. However, on some complex website UIs like in Facebook and Google,

the interactive elements are wrapped in generic container tags without disclosing their basic HTML tags

in the page HTML. For instance Facebook’s Like button elements are wrapped in generic <div> (divi-

sion) tags. To test our evolutionary crawler approach over these types of UI, we make the evolutionary

crawler to only look for generic HTML elements like <div> tags when interacting with pages. This adds

additional complexity since the crawler now also needs to search for the appropriate interaction for an

element. Another challenge is that the crawler no longer knows if the chosen element is even interactive.

Thus, the search space greatly increases. Anticipating this, we increased exploitation by running these

experiments with a higher i=50 (number of evolutionary iterations per page). We set s=5, p=10 the

same as before.

After running this crawler on all target apps for 24hrs, the results are shown in Table 5.8. Although

lower than previous non-agnostic evolutionary experiments, we demonstrate that this evolutionary crawl-

ing approach is able to generate non-GET requests in a HTML tag agnostic way. Gitab did not produce

any non-GET requests because it is relatively bigger than other apps with many interactive elements.

It did however produce 24 filtered urls. Futhermore, Blind crawler could not generate non-GET request

in Kanboard and overleaf. On inspecting their UI we learn that they sparsely use <div> tags to en-

close their elements. Furthermore, they use the <div> elements as broad containers that contain of

multiple interactive elements. By default the crawler performs the interaction (ex. click) on the center

of the element, in this case the <div> container element. If there is no interactive element in that

part of container then the crawler mistakes it as a non-interactive element. However, for webpages with

many interactive elements like Humhub social network app, we still are able generate and discover many

requests.

5.3 Detection by Triad Tests

In this section, we evaluate our triad detection method on our target apps. The requests discovered

during the crawling experiments are sent to triad detection.

5.3.1 Triad : Proof of Concept

Before running any detection experiments, we need to ensure that the triad test successfully differentiates

between a response to authorized request and a response to an unauthorized request. Following is the

proof of concept for triad testing.

The assumption of triad test is that userA is authorized and userB and userC are unauthorized.

We will hold this assumption as our reference. Next, using the admin account of our target apps, we

Chapter 5. Evaluation 30

Accessed Resource (R) ?
Case

#
UserA UserB UserC

Expected Triad
Test Result

1 Y N N Pass
2 Y Y N Fail
3 Y N Y Fail
4 Y Y Y Fail

Table 5.9: Triad Test Scenarios

App URL pathname
Gitlab /userA/testproject
Hotcrp /2020f/settings/reviews

Dokuwiki /requirements
Humhub /s/private/
kanboard /user/2/edit

Table 5.10: URLs of Triad Tests

configure the access controls for a resource R to create 4 test cases described in table 5.9. Case 1 is the

proper configuration of access control where both userB and userC could not access R and thus must

pass the triad test. While the rest of the cases must fail the triad test because in these cases, users B, C

are able to access Resource R which contradicts our assumption that userB and userC aren’t authorized

to access R, thus implying that R is vulnerable to unauthorized access.

Table 5.10 lists the resources that were used for the triad tests. For gitlab, we created a new private

project called ‘testproject’ and controlled its access from userB and userC through admin account. For

Hotcrp, we used the admin page referenced by path - ‘/2020f/settings/review’, where we set users as PC

chair or regular members to control access to the admin resource. Similarly, we used the requirements

page in Dokuwiki to test triad detection. For Humhub, from admin account, we created a private

space called ‘private’ and added/removed users in that space to allow or restrict its access. Finally, in

Kanboard we used userA’s edit profile page and assigned users B,C administrator roles to allow access.

We perform these tests on our target applications and the results are shown in Table 5.11. Note

that Openstack and Overleaf apps did not allow tweaking access controls and therefore we could not

include a triad test result for them. However, similar behavior is expected as triad tests are not app

logic dependant.

We observe that the results for case 3 and 4 in the apps - Dokuwiki, Humhub and Kanboard do not

match with the expected triad test results. Although their similarity ratio difference (simBC - simAB)

is small, it is greater than our chosen MF (0.001). This leads to such cases not being detected or false

negatives. We plot these results in Figure 5.4 to better visualize this case. We must increase the MF to

include these cases.

We infer that case 3 and 4 are brittle because userC no longer receives an unauthorized response.

The triad tests don’t need MF tuning when we have a ground truth (userA’s good response) and a

ground falsity (userC’s ‘not authorized’ response). However, when userC also recieves a good response,

it becomes difficult to accurately differentiate between the ground truth and falsity, or to determine

Chapter 5. Evaluation 31

App case# sim AB sim BC (simBC-simAB) Triad Test Result
Gitlab 1 0.003479366354 1.0 0.9965206336 Pass

2 0.6120573718 0.004917367353 -0.6071400045 Fail
3 0.003328761166 0.002403023805 -0.0009257373606 Fail
4 0.960496144 0.9556748007 -0.004821343288 Fail

hotcrp 1 0.1047441065 0.477678804 0.3729346975 Pass
2 0.998651416 0.1079576434 -0.8906937726 Fail
3 0.1028527683 0.09988066557 -0.002972102763 Fail
4 0.9985515209 0.9984516258 -0.00009989511013 Fail

Dokuwiki 1 0.6947880473 0.992728303 0.2979402557 Pass
2 0.9969765269 0.7016678249 -0.295308702 Fail
3 0.7023627519 0.7068797776 0.004517025712 Pass
4 0.9945249326 0.9919001012 -0.002624831366 Fail

humhub 1 0.4965595131 0.9819308393 0.4853713262 Pass
2 0.9937909119 0.4917125354 -0.5020783765 Fail
3 0.471733793 0.4950326308 0.0232988378 Pass
4 0.9729133651 0.9707634671 -0.002149898061 Fail

kanboard 1 0.389886709 0.9990551494 0.6091684404 Pass
2 0.9606900144 0.3657485767 -0.5949414377 Fail
3 0.389886709 0.3811355593 -0.008751149719 Fail
4 0.9607626985 0.9986527571 0.03789005856 Pass

Table 5.11: Triad Test Results

if userB’s response was more similar to userA’s or userC’s, thus requiring MF tuning. By tuning the

MF, essentially we are performing linear classification in it’s simplest form, between vulnerable and non

vulnerable classes of URLs and the MF acts like a decision boundary as shown in Figure 5.4.

Triad tests infer whether the unauthorized request was successful, by comparing the web page re-

sponses. And majority of content in the web pages consists for the html structure. Therefore, this works

for web apps that have similar response page structure (HTML/JSON) for access requests by users

with same privilege level. However, for web pages that have same page structure for access requests by

different users would result in false positives. For example, a home or account dashboard page URL

accessed by different users will have the same page structure with different user data. Such web pages

are generally the static pages accessible by all users and we mitigate these false positives by filtering

them in Public Filter module.

5.3.2 Minimizing False Positives

We observe the results in table 5.12 and 5.13 to evaluate the impact of the Public Filter module in

mitigating false positives. These tables show the false positives encountered when crawling for horizontal

and vertical privilege escalation or when userA was a regular user and admin user respectively. The

results not only have low false positives but also show the amount of false positives prevented by using

the Public filter. For instance, in table 5.12, gitlab produces 1,510 request URLs of which only 93 are

user specific. Thus, it prevents 1417 potential false positives.

We initially identified two main reasons for false positives. First, the public filter module missed

filtering out some public URLs. This was because in the public filter module, we only used the simple

crawler approach to discover URLs with userB’s session. This allowed some public resources hidden

Chapter 5. Evaluation 32

Figure 5.4: Triad Results Plot

behind multi-step user interactions to be missed and therefore not be filtered out in the public filter

module. We mitigated this by using the combined crawler in the public filter module. Since evolutionary

crawler is non-deterministic, there may still be a public URL that slips through the filter causing a false

positive.

Second, the presence of anti-CSRF tokens in URL’s input parameters prevents them from being

replayed successfully during triad detection. This results in all three users receiving identical error

responses, causing the triad detector to falsely report a vulnerability. We solved this issue by storing the

userA’s legitimate response during the crawling. And, in the detector module, a URL is only replayed for

userB, userC and compared to userA’s response received during crawling. This works when the anticsrf

token is sent through the cookie, since we swap cookies in the request header with the cookies received

after a fresh login of userB, userC. But, if the anticsrf token is sent in some other part of request, for

example - the request body, it will not allow us to successfully test access control as both userB, userC

will always receive failure response since we do not swap the tokens in the request body with their valid

anti-csrf tokens. However, it will not generate a false positive.

Note that if the default access control configuration of the app allows userB and userC to access

userA’s resources, then again we have false positives. For instance, dokuwiki’s default access control

lists allows all users to access all pages [1], even if the users belong to different groups. Therefore, we

see all filtered urls reported as vulnerable. Setting more restrictive access controls avoids this problem.

Thus, selecting right triad of users is important. This does require some human intuition based on slight

understanding of the app logic and so randomly picking three users may not be a good idea.

Another case of false positive is encountered when the HTML content is too large and the user

specific data is sparse or the error message for the unauthorized request in the HTML response is very

small. This can cause the (sim ratioBC - sim ratioAB) difference to be lesser than MF thus reporting

as vulnerability. Theoritically, this shouldn’t be a problem if we have MF = 0 but in practice, we need

to set it to some small positive value to allow for compute errors. The difflib package used to calculate

Chapter 5. Evaluation 33

ope. git. hot. ove. dok. hum. kan.
page urls 7 1444 86 3 89 51 6
all urls 46 1510 109 5 117 67 6
filtered urls 0 93 23 5 11 9 4
false +ves 0 6 0 0 11 2 0

Table 5.12: False positives during simple crawling for horizontal privilege escalation

ope. git. hot. ove. dok. hum. kan.
page urls 7 675 106 3 107 50 11
all urls 47 761 113 5 113 62 11
filtered urls 3 207 61 5 5 14 9
false +ves 0 4 0 0 0 0 0

Table 5.13: False positives during simple crawling for vertical privilege escalation

similarity ratios, supports 16 places of decimal when calculating similarity ratios. So MF in practice

cannot be less than 10−16. Therefore adjusting the MF mitigates these kinds of false positives.

5.3.3 Testing different levels of Authorizations

Running the triad detector with different triads of users can test for different privilege levels of IDOR

vulnerabilities. For instance, to test for horizontal privilege escalation, we pick a triad of users with the

same privilege level - userA, userB, userC = all regular users and to test for vertical privilege escalation

vulnerability, we pick a triad of users with uneven privilege level - userA = Admin and userB,userC =

regular users. This is shown in table 5.12 and 5.13.

When selecting users for triad testing, userA must have the a privilege level higher or equal to the

other two users. The simplecrawler and evolutionary crawler must be run with the first user’s credentials

(userA/Admin) and the other two users (userB,userC) must have the same privilege level and less than

or equal to the first user’s privilege level.

Moreover, this idea can be extended to test for authentication for a resource. If userB and userC

cookies are replaced by empty strings, the triad test will now compare responses received to the au-

thenticated userA with a non authenticated response. We do not explore these since our focus is on

authorization.

5.4 Vulnerability Discovered

A vulnerability was detected in a popular web application. Since, a patch has not been released yet to

fix it, we will not disclose the app name. The vulnerability was found in a AJAX call intended to be

made by an admin user however, it was not access controlled, thereby allowing any registered user to

access data like internal ID, name, username, account state, profile picture of all user accounts in the

app. The vulnerability was reported and confirmed by the developers.

Chapter 6

Limitations

6.1 False Positives

Although we have the filter module to mitigate the false positives problem, it is not foolproof. We depend

on the BFS crawling heuristic to find public or shared URLs. However, as we showed the BFS heuristic

isn’t very good at finding all resources and therefore it is possible to miss some public URLs hidden

behind multi step user interactions. Hence, the missed public URLs are sent to the triad detector and

contribute towards false positives. To improve the filtering we could use the evolutionary heuristics for

the twin crawler however, this still will not guarantee complete elimination of false positives. Following

this thought, there could also be false negatives or missed vulnerabilities if there is a logic error in the

application where a link to a private object was mistakenly made available in a public page or other

users’ account page. In this case the twin crawler would access that mistakenly exposed private object

and it will be considered as a shared resource, thus incorrectly filtering it out from the triad detection.

Our design assumes that the user who created the object is the owner of the object, meaning that

they have the authorised access to view, modify or delete that object. However in some apps, the creator

may not have permission to modify or delete the object after creation. This is not a problem unless

the website user interface (UI) renders the elements to modify/delete that object and upon interacting

(ex. clicking) on it, a generic unauthorized message/page is displayed. This kind of user experience

(UX) design will confuse the triad detector and may generate false positives as the ground truth itself is

unauthorized. We perceive this as an improper UX design of the app. Our system tries to infer developer

intention from the web app’s UI, like a first time human user would. So, if an element to modify or

delete a object is displayed on the screen, then the user would assume to have access to that. However,

for a proper UX or frontend design, the elements in a page that try to perform unauthorized requests

must be disabled or hidden, which does prevent such false positives.

34

Chapter 6. Limitations 35

6.2 Input Validations

For some inputs, there exists client side regex validations like the input value must be a number, email,

or some other regex. This will prevent the evolutionary crawler from generating POST requests or

creating objects on that page even if it found the right sequence of element-interactions. Moreover, other

validations like captchas, no CAPTCHA reCAPTCHA(I’m not a robot check mark), image classification

tasks...etc are also not supported by our design. However, these validations usually exist outside the

user account space when the user is not logged in or when registering a user account. Although one

approach to handle this could be to try out a set of pre-created input values during the evolutionary

crawler. For instance when typing text into some element, we randomly select one of the values in our

input set - sample email - ‘AuthZee@test.com’, numbers - ‘0’, ‘-1’, ‘100’, date - ‘2021/01/01’, random

string that satisfies most password regex validations - ‘aA1!aaaaaa’. Furthermore, there exists research

on automatically registering to create user accounts like the cookie hunter [32] and it would be interesting

to see the results after combining these two approaches.

Chapter 7

Related Work

Authorization bugs have been prevalent for a long time and a number of papers in the past have proposed

techniques to detect these vulnerabilities. Since, in this paper we leverage concepts such as automated

browser crawling and evolutionary algorithms with novelty search, further paragraphs will also review

past papers in the aforementioned areas. We will discuss previous blackbox approaches where source

code is not known, greybox approaches where source code is not known but some other system related

information is leveraged and whitebox (static analysis) approaches where the source code is known.

7.1 Existing black box web vulnerability scanners

We explore different blackbox security scanners as these tools are commonly used by security researchers

to scan web application for security vulnerabilities.

Demesa [29] evaluated three open source blackbox security scanners - w3af, OWASP ZAP and NIKTO

for finding IDORs. w3af is a penetration testing tool for attacking and auditing web applications.

Similarly, NIKTO is a command line vulnerability scanner used to scan webservers. OWASP ZAP short

for Open Web Application Security Project Zed Attack Proxy, is another penetration testing tool that

automatically scans the whole application and shows vulnerability results in an intuitive Graphical User

Interface (GUI). Although these tools are highly efficient in scanning, Demesa shows that they are not

able to find IDOR or any broken authorization related vulnerabilities.

Porat et al. [49] propose an automated authorization enforcement detection (AED) tool that enables

system administrators to detect authorization vulnerabilities on their websites. Their solution is similar

to semi-automated techniques like Burp with Autorize extension, however they also support CSRF-token

enabled websites and preform a deeper analysis than solely comparing HTTP response codes and lengths.

Their approach requires an admin to manually surf through the website and AED intercepts the requests

made as a result of the web surfing. The responses containing cookies is stored for further analysis. Then

the recorded requests are resent with different cookies and the response string is matched with original

response string. An breach is reported if the similarity score is a greater than 95%. However, it cannot

infer if a request was intended to have shared access and therefore will encounter many false positives.

36

Chapter 7. Related Work 37

7.2 Other black box techniques

The cookie hunter paper by Drakonakis et al. [32] describes an automated black-box approach for

detecting authentication and authorization flaws by analysing the session cookies after user login. They

focus on cookie hijacking attacks where cookies not protected with the httpOnly flag can be stolen using

Javascript code through a cross-site scripting (XSS) attack. The paper showcases automatic signup

and login to webapps and then inspect the cookie returned after login to determine if it is flawed or

hijackable. This gives insight on cookie related weaknesses such as if unprotected cookie exposure or JS

cookie stealing is possible. Their custom browser automation tool - XDriver audits web apps without

needing any app specific knowledge. They start by BFS crawling target app link to collect pages with

forms that contain account related keywords like login, signin. Extracting relevant elements from these

pages like forms, they automate account creation process by using a manually curated set of regular

expressions and python Faker package to input information as per the input validation constraints of

the form elements. They perform various checks to determine if the signup was successful. For instance,

checking if the sign up form element is still displayed or if an email is received. Next, they visit the

login link previously collected to auto login. If traditional account generation process fails, they try

Single Sign On (SSO) to sign in using their Facebook and Google credentials. On successful login, the

session cookies received from server are analyzed by observing attributes like secure and httpOnly. For

instance, if none of the cookies have these attributes, they can be stolen leading to session hijacking.

Further cookie analysis is performed to check if excluding those cookie sets from browser’s cookie jar

allows user to stay logged in. With their automated approach, they were able to audit 25K domains.

They discovered that over 10K domains exposed authentication cookies over unencrypted connections

and over 5K domains did not protect authentication cookies. Their study demonstrates that basic cookie

protections are absent or incomplete in many applications

AuthScope by Zuo et al. [56] automatically executes a mobile app to detect vulnerable authorizations.

They perform differential traffic analysis to recognize the protocol fields in the request structure which are

then automatically substituted and checked for correct authorizations in server response. They develop

a targeted dynamic activity explorer to automatically log in the app and explore the app activities in

a prioritized depth first search approach to get the post-authentication messages. This works well for

mobile apps due to the layered structure of the in app activities. They also perform app login with Single

Sign On (SSO) to auto login and explore post-authentication messages. They take two legitimate users,

compare their responses received for the same request and identify the differences as protocol fields that

take user specific inputs. Then these fields are substituted such that the modified value has a small

euclidean distance. After sending the request with substituted protocol fields, if the server responds

with private messages of a different user, the request is labelled as vulnerable. Leveraging SSO, they are

able to test 4,838 mobile apps from Google Play and detected 597 0-day authorization vulnerabilities in

306 apps.

AuthScope performs static view exploration to discover requests and does not handle dynamic object

generation. Therefore, AuthScope only checks unauthorized reads and does not support unauthorized

write attacks. They prune public activities/interfaces accessible prior to login. But they assume that all

post login resources are private and therefore encounter false positives for resources that are intended to

be shared or public.

Chapter 7. Related Work 38

Doupe et al. [31] presented a way to infer the internal state machine of an app by crawling and

observing if a response to a previously made request changed. This state awareness is used to guide a

blackbox web application vulnerability scanner, where the user-input vectors obtained from crawling are

fuzzed for security flaws. However, they do not support AJAX requests, multi-step javascript interactions

to create app objects, and crawling hidden web content. Moreover, maintaining internal state is not

scalable for larger complex applications.

7.3 Grey box

In gray box techniques, some information (other than source code) regarding the application is required.

We review past work that requires app details like OpenAPI specification and Network Traffic Logs.

7.3.1 OpenAPI specifications

Yelp’s Fuzz-lightyear is a framework designed to automate IDOR discovery through stateful fuzzing [42].

It leverages the Swagger or OpenAPI specifications of a web application, first proposed in the RESTler

paper by Atlidakis et al. [24]. Swagger specs are machine readable code that list API endpoints and

their required parameters for successfully making a request to that endpoint. Originally designed for

the purposes of auto generation of documentation of the APIs, Atlidakis et al. show the use of these

specifications to automatically determine producer-consumer relationships between the API endpoints.

They then generate chains of such requests or sequences of requests that allows exploration of a much

deeper state of code, due to its statefulness. The idea is to call these sequences of requests multiple

times while modifying the input parameters, hoping to encounter a server failure message. This process

of running a program multiple times with different inputs is called fuzzing and the key contribution of

RESTler was stateful fuzzing of REST APIs which by themselves are stateless. RESTler was designed

to be a generic bug detecting tool. Therefore, it can only detect the bugs that cause the app server

to respond with a HTTP 500 (Internal Server Error) code and cannot detect if a purposely formed

malicious request succeeded.

However, the fuzz-lightyear project leveraged RESTler’s technique to focus on authorization based

bugs. The fuzz-lightyear calls these sequences with two different user sessions. And attempts to call the

final request of the sequence with another user’s session. The intention is to check if a resource of the

state created by one user can be accessed by another user. To clarify here, the state is created by the

subsequence of requests excluding the final request.

However, fuzz-lightyear does not fully automate the authorization bug finding process. For instance,

a resource that is intended to be publicly accessible by everyone needs to be explicitly provided before

running fuzz-lightyear and for a complex app, this can be a lot of work. Moreover, fuzz-lightyear

also needs additional information regarding the generation of objects in case the server relies on some

other microservice outside the scope of it’s API specifications to create that object. Furthermore, these

approaches require OpenAPI specifications of the app and not all app creators maintain or release such

specifications. And manually creating such specifications for each app is time consuming.

Chapter 7. Related Work 39

7.3.2 Network traffic Logs

The approaches that infer access control policies from the network traffic or access Logs also have been

proposed in the past. Karimi et al. [39] and Marinescu et al. [43] leverage unsupervised machine learning

algorithms to learn the access rules from the server logs or other data manipulation patterns. After

learning new rules, their models detect the activity outside the rules as unauthorized.

Although an automated technique that doesn’t require human intervention after the initial setup, it

needs a high amount of user traffic to be effective. Furthermore, most apps are constantly updating or

adding features. Thus, in practice, after every update, it will produce false positives so there will be a

window of time for which the model can not be applied as it will be in the process of learning the access

rules.

Pellegrino and Balzarotti [48] propose another technique to find logic flaws in web applications. They

also use network traces to model inter-dependencies between requests and generate logical patterns or

sequences. These logical patterns also imply authorizations. Contradicting patterns are then tested to

check for logic and authorization flaws. However, these logic patterns are specific to ecommerce web

apps so their design is not fully application agnostic. Furthermore, a human presence is required to

detect if a logic property was broken.

7.4 Whitebox Static Analysis

Tyagi and Kumar [53] evaluate static web application vulnerability analyses tools - OWASP WAP and

RIPS on detecting intentional vulnerabilities in DVWA - damn vulnerable web app, bWAPP - buggy

web app, which are deliberately insecure web application. Their results show that such tools perform

quite well for automatically detecting vulnerabilities like Cross Site Scripting (XSS) and Remote File

Inclusion (RFI) but cannot detect IDOR. Furthermore, these tools requires access to source code and

can only be used for apps built in PHP language supported by the tools.

Zhu et al. [55] propose a hybrid interactive static analysis technique to mitigate access control vul-

nerabilities by requesting input from developers. Their solution is designed to be deployed during the

development process as part of a code editor or Interactive Development Environment (IDE). Their

approach inputs Abstract Syntax Trees of the web application and a set of security sensitive operations

(SSO). When a SSO is identified, the developer is notified to highlight the code containing the intended

access control logic. Then static analysis techniques are used to detect access control vulnerabilities

based on the information provided by the developer. Since, this technique receives information directly

from the developer, it is able to outperform commercial static analysis tools. However, this approach

frequently involves extra human effort which can prevent it’s adoption in the developer community.

Furthermore, they focus on finding code patterns that may cause unauthorized accesses rather than

unauthorized accesses themselves. Therefore, these static analysis tools generally suffer from high false

positives.

Demesa [29] presents evaluation for two more web application static analysis tools - SonarQube and

Checkmarkx. The results show that these tools cannot automatically find any IDOR vulnerabilities from

source code of web apps.

Chapter 7. Related Work 40

7.5 Evolutionary Algorithms with Novelty Search

In the past, evolutionary or genetic algorithms have been used to solve Travelling Salesman Problems

(TSP) and their many variations [36]. The general idea revolves around finding an optimal order or

sequence of visits that the salesman must make such that the total distance travelled or time taken is

minimized, given a list of cities to visit. We can draw parallels from this problem to the evolutionary

crawling problem. Instead of sequences of city visits, we have sequences of page element interactions and

instead of a single optimization objective like distance travelled, we have a bit more complicated reward

system. This provided the initial intuition that genetic algorithms could be applied to the crawling

problem.

Adding novelty search in our evolutionary crawler was inspired from work by Lehman and Stanley

in their Abandoning Objectives paper [41]. They demonstrate the importance of searching for new

behaviours by showing how novelty search significantly outperforms objective-based search for maze

navigation problems. Although maze navigation isn’t directly applicable to web application navigation,

their evaluation on maze problems helps us understand the behavior of evolutionary algorithms and

their tendency to get stuck in local optimum. For a non convex objective function, solely focusing on

objectives can lead to dead ends that mask themselves as the next logical step with a greater objective

score than previously seen but non of the subsequent steps from that step lead to better objective score,

hence a dead end. Lehman and Stanley show than the search for novelty can circumvent this deception

by evaluating the novelty search approach for a three-dimensional biped robot simulation. The results

demonstrate that the novelty search evolved robot controller walks almost double the distance than

pure objective fitness based controllers for the same search time. Thus, they conclude that search for

novelty can outperform search for objectives in complex problems where formally defining an objective

function is hard. Such problems must be guided by diverse range of information rather than single

explicit objective.

This search for novel behavior has an application in software testing since we would like to test a

system for all kinds of novel inputs as they are more likely to find software bugs in the system. Attwood

et al. [25] throw light on the divergent nature of novelty search and how that can be useful for test data

generation within web security.

They show that in the past EAs have been applied in areas like SQL injection, XML injection, Cross

Site Scripting (XSS), Denial of Service (Dos), CAPTCHA generation and spam email. From their survey,

they conclude that much of past applications of EAs in web security haven’t explored the underlying

EA and thus there exist an untapped potential. They mention the potential of EAs with novelty search,

originally proposed by Lehman and Stanley [41], in Web Security as a way to generate test data within

web security. This is possible because novelty search does not strictly adhere to the objectives, allowing

the algorithm to explore new regions in the search space. This is very useful as it can be used to

automatically generate a diverse test data set. AuthZee’s evolutionary crawler applies this concept to

generate sequences of UI interactions that result in frontend requests to the web server.

Chapter 8

Conclusion

We have presented a novel approach to automatically discover resources and detect authorization vulner-

abilities in a web applications. Our tool, AuthZee leverages an evolutionary algorithm to generate new

objects during crawling and leverages triad testing to detect authorization vulnerabilities. We showed

that evolutionary crawling approach outperforms traditional BFS approach as it is able to perform

multi-step interactions with the frontend, thus reaching more resources. Furthermore, combining the

traditional simple crawling technique with evolutionary crawling technique resulted in even better re-

sults. We also successfully mitigate the high false positive problem that existing automated authorization

vulnerability detection tools face.

AuthZee takes three user account credentials and instructions to auto login to the target web ap-

plication. We show that by selecting user credentials with different privilege levels, we can search for

different types of privilege escalating authorization vulnerabilities.

8.1 Future Work

In our design, the evolutionary crawler only performs user interactions like click, typetext, file upload,

selecting option. This can be extended to all possible interactions that testcafe supports like mouse

hover, pressing specific key or combination of keys, mouse right click, drag..etc however this will increase

the evolution search space and likely take more number of iterations to create user objects. Thus,

increasing total evolution time. Further, AuthZee’s evolutionary crawler was implemented using basic

genetic algorithm strategies. Different specialized strategies for selection and mutation can be tried to

further improve discovery and generation power of the crawler.

Another area to explore is the scalability of AuthZee. Multiple evolutionary crawlers can be run

concurrently to horizontally scale AuthZee. Kafka allows multiple consumers to read from one queue.

Therefore, multiple crawler can simultaneously interact with multiple pages at any given time, thus

increasing crawling throughput. This is possible due to the modular design.

Current design of AuthZee does not support IDOR attacks to bypass business logic of application

as it requires a higher level of business logic knowledge to determine what values the input parameters

must be changed to violate the logic. Future attempts can be made to customize AuthZee to specific

41

Chapter 8. Conclusion 42

app logics to support detection of these kinds of vulnerabilities.

Furthermore, AuthZee’s evolutionary crawler has additional applications other than finding IDORs.

The ability to generate objects and record request-response logs can be used as a seed for website fuzzers

and web vulnerability scanners. Futhermore, tools like Restler can use this seed to fuzz websites that

do not have OpenAPI specifications.

Bibliography

[1] Access control lists (acl)s. URL: https://www.dokuwiki.org/acl.

[2] Ajax introduction. URL: https://www.w3schools.com/js/js ajax intro.asp.

[3] Apache kafka. URL: https://kafka.apache.org/.

[4] Authmatrix - portswigger. URL: https://portswigger.net/bappstore/

30d8ee9f40c041b0bfec67441aad158e.

[5] bitnami/dokuwiki - docker image — docker hub. URL: https://hub.docker.com/r/bitnami/

dokuwiki/.

[6] Burp suite - application security testing software - portswigger. URL: https://portswigger.net/

burp.

[7] Cross-browser end-to-end testing framework — testcafe. URL: https://testcafe.io/.

[8] Devstack — devstack documentation. URL: https://docs.openstack.org/devstack/latest/.

[9] Github - kohler/hotcrp: Hotcrp conference review software. URL: https://github.com/kohler/

hotcrp.

[10] Github - overleaf/overleaf: A web-based collaborative latex editor. URL: https://github.com/

overleaf/overleaf.

[11] gitlab/gitlab-ce - docker image — docker hub. URL: https://hub.docker.com/r/gitlab/gitlab-

ce.

[12] kanboard/kanboard - docker image — docker hub. URL: https://hub.docker.com/r/kanboard/

kanboard.

[13] mriedmann/humhub - docker image — docker hub. URL: https://hub.docker.com/r/mriedmann/

humhub.

[14] Owasp zap. URL: https://www.zaproxy.org/docs/desktop/start/features/ascan/.

[15] Screenshots and videos — advanced guides — guides — docs. URL: https://testcafe.io/

documentation/402840/guides/advanced-guides/screenshots-and-videos#record-videos.

[16] M6: Insecure authorization, 2016. URL: https://owasp.org/www-project-mobile-top-10/

2016-risks/m6-insecure-authorization.

43

https://www.dokuwiki.org/acl
https://www.w3schools.com/js/js_ajax_intro.asp
https://kafka.apache.org/
https://portswigger.net/bappstore/30d8ee9f40c041b0bfec67441aad158e
https://portswigger.net/bappstore/30d8ee9f40c041b0bfec67441aad158e
https://hub.docker.com/r/bitnami/dokuwiki/
https://hub.docker.com/r/bitnami/dokuwiki/
https://portswigger.net/burp
https://portswigger.net/burp
https://testcafe.io/
https://docs.openstack.org/devstack/latest/
https://github.com/kohler/hotcrp
https://github.com/kohler/hotcrp
https://github.com/overleaf/overleaf
https://github.com/overleaf/overleaf
https://hub.docker.com/r/gitlab/gitlab-ce
https://hub.docker.com/r/gitlab/gitlab-ce
https://hub.docker.com/r/kanboard/kanboard
https://hub.docker.com/r/kanboard/kanboard
https://hub.docker.com/r/mriedmann/humhub
https://hub.docker.com/r/mriedmann/humhub
https://www.zaproxy.org/docs/desktop/start/features/ascan/
https://testcafe.io/documentation/402840/guides/advanced-guides/screenshots-and-videos#record-videos
https://testcafe.io/documentation/402840/guides/advanced-guides/screenshots-and-videos#record-videos
https://owasp.org/www-project-mobile-top-10/2016-risks/m6-insecure-authorization
https://owasp.org/www-project-mobile-top-10/2016-risks/m6-insecure-authorization

Bibliography 44

[17] Owasp top ten, 2017. URL: https://owasp.org/www-project-top-ten/.

[18] Github - yelp/fuzz-lightyear, 2019. URL: https://github.com/Yelp/fuzz-lightyear.

[19] Owasp api security project, 2019. URL: https://owasp.org/www-project-api-security/.

[20] Autorize - portswigger, 2020. URL: https://portswigger.net/bappstore/

f9bbac8c4acf4aefa4d7dc92a991af2f.

[21] Choose between traditional web apps and single page apps — microsoft docs, 2020. URL:

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-

between-traditional-web-and-single-page-apps.

[22] Burp scanner - portswigger, 2021. URL: https://portswigger.net/burp/documentation/

scanner.

[23] Web Security Academy. Access control security models. URL: https://portswigger.net/web-

security/access-control/security-models.

[24] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler: Stateful rest api fuzzing. In

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 748–758,

2019. doi:10.1109/ICSE.2019.00083.

[25] Sam Attwood, Wanpeng Li, and Rupak Kharel. Evolutionary algorithms in web security: Ex-

ploring untapped potential. In 2020 12th International Symposium on Communication Sys-

tems, Networks and Digital Signal Processing (CSNDSP), pages 1–6, 2020. doi:10.1109/

CSNDSP49049.2020.9249521.

[26] bugra. Idor when editing users leads to account takeover without user interaction at crowdsignal,

2020. URL: https://hackerone.com/reports/915114.

[27] Raj Chandel. Beginner guide to insecure direct object references (idor), 2017. URL: https://

www.hackingarticles.in/beginner-guide-insecure-direct-object-references/.

[28] Data and Vulnerability Management Analysis. The rise of idor — hackerone, 2021. URL: https:

//www.hackerone.com/data-and-analysis/rise-idor.

[29] Ephrem Getachew Demesa. Implementation of a hands-on attack and defense lab on insecure direct

object references. 2018.

[30] Iryna Deremuk. Web application architecture: A guide through the intricate process of building an

app — litslink blog, 2021. URL: https://litslink.com/blog/web-application-architecture.

[31] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. Enemy of the state: A

state-aware black-box web vulnerability scanner. In 21st USENIX Security Symposium (USENIX

Security 12), pages 523–538, Bellevue, WA, August 2012. USENIX Association. URL: https:

//www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe.

[32] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The cookie hunter: Automated black-box

auditing for web authentication and authorization flaws. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’20, page 1953–1970, New York, NY,

USA, 2020. Association for Computing Machinery. doi:10.1145/3372297.3417869.

https://owasp.org/www-project-top-ten/
https://github.com/Yelp/fuzz-lightyear
https://owasp.org/www-project-api-security/
https://portswigger.net/bappstore/f9bbac8c4acf4aefa4d7dc92a991af2f
https://portswigger.net/bappstore/f9bbac8c4acf4aefa4d7dc92a991af2f
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://portswigger.net/burp/documentation/scanner
https://portswigger.net/burp/documentation/scanner
https://portswigger.net/web-security/access-control/security-models
https://portswigger.net/web-security/access-control/security-models
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/CSNDSP49049.2020.9249521
https://doi.org/10.1109/CSNDSP49049.2020.9249521
https://hackerone.com/reports/915114
https://www.hackingarticles.in/beginner-guide-insecure-direct-object-references/
https://www.hackingarticles.in/beginner-guide-insecure-direct-object-references/
https://www.hackerone.com/data-and-analysis/rise-idor
https://www.hackerone.com/data-and-analysis/rise-idor
https://litslink.com/blog/web-application-architecture
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://doi.org/10.1145/3372297.3417869

Bibliography 45

[33] CDW Experts. 9 flaws of automated web application vulnerability scanners, 2020. URL:

https://expertswhogetit.ca/security/9-limitations-of-automated-web-application-

vulnerability-scanners.

[34] Karan Gandhi. Authentication & authorization in web apps, 2020. URL: https://

blog.jscrambler.com/authentication-authorization-in-web-apps/.

[35] hunt4p1zza. [critical] insufficient access control on registration page of webapps website allows

privilege escalation to administrator, 2019. URL: https://hackerone.com/reports/796379.

[36] K. Ilavarasi and K. Suresh Joseph. Variants of travelling salesman problem: A survey. In Inter-

national Conference on Information Communication and Embedded Systems (ICICES2014), pages

1–7, 2014. doi:10.1109/ICICES.2014.7033850.

[37] inhibitor181. Shopify disclosed on hackerone: Idor [partners.shopify.com] - user..., 2017. URL:

https://hackerone.com/reports/243943.

[38] jon bottarini. Idor via internal api ”users” endpoint, 2017. URL: https://hackerone.com/

reports/349291.

[39] Leila Karimi, Maryam Aldairi, James Joshi, and Mai Abdelhakim. An automatic attribute based

access control policy extraction from access logs. CoRR, abs/2003.07270, 2020. URL: https:

//arxiv.org/abs/2003.07270, arXiv:2003.07270.

[40] Issie Lapowsky. The facebook hack exposes an internet-wide failure, 2018. URL: https:

//www.wired.com/story/facebook-hack-single-sign-on-data-exposed/.

[41] Joel Lehman and Kenneth O. Stanley. Abandoning Objectives: Evolution Through the Search for

Novelty Alone. Evolutionary Computation, 19(2):189–223, 06 2011. doi:10.1162/EVCO a 00025.

[42] A. Loo. Automated idor discovery through stateful swagger fuzzing, 2020. URL:

https://engineeringblog.yelp.com/2020/01/automated-idor-discovery-through-

stateful-swagger-fuzzing.html.

[43] Paul Marinescu, Chad Parry, Marjori Pomarole, Yuan Tian, Patrick Tague, and Ioannis Pa-

pagiannis. Ivd: Automatic learning and enforcement of authorization rules in online social

networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 1094–1109, 2017.

doi:10.1109/SP.2017.33.

[44] mirhat. Ability to add arbitrary images/descriptions/titles to ohter people’s issues via idor on

getrevue.co, 2021. URL: https://hackerone.com/reports/1096560.

[45] Seyedali Mirjalili. Genetic algorithm. In Evolutionary algorithms and neural networks, pages 43–55.

Springer, 2019.

[46] Lily Hay Newman. Google+ exposed data of 52.5 million users and will shut down in april, 2010.

URL: https://www.wired.com/story/google-plus-bug-52-million-users-data-exposed/.

[47] OPTASY. 5 automation testing tools for web applications for 2020 — medium,

2020. URL: https://medium.com/@OPTASY.com/the-5-best-automation-testing-tools-for-

web-applications-that-you-could-use-in-2020-powerful-and-23135826a569.

https://expertswhogetit.ca/security/9-limitations-of-automated-web-application-vulnerability-scanners
https://expertswhogetit.ca/security/9-limitations-of-automated-web-application-vulnerability-scanners
https://blog.jscrambler.com/authentication-authorization-in-web-apps/
https://blog.jscrambler.com/authentication-authorization-in-web-apps/
https://hackerone.com/reports/796379
https://doi.org/10.1109/ICICES.2014.7033850
https://hackerone.com/reports/243943
https://hackerone.com/reports/349291
https://hackerone.com/reports/349291
https://arxiv.org/abs/2003.07270
https://arxiv.org/abs/2003.07270
http://arxiv.org/abs/2003.07270
https://www.wired.com/story/facebook-hack-single-sign-on-data-exposed/
https://www.wired.com/story/facebook-hack-single-sign-on-data-exposed/
https://doi.org/10.1162/EVCO_a_00025
https://engineeringblog.yelp.com/2020/01/automated-idor-discovery-through-stateful-swagger-fuzzing.html
https://engineeringblog.yelp.com/2020/01/automated-idor-discovery-through-stateful-swagger-fuzzing.html
https://doi.org/10.1109/SP.2017.33
https://hackerone.com/reports/1096560
https://www.wired.com/story/google-plus-bug-52-million-users-data-exposed/
https://medium.com/@OPTASY.com/the-5-best-automation-testing-tools-for-web-applications-that-you-could-use-in-2020-powerful-and-23135826a569
https://medium.com/@OPTASY.com/the-5-best-automation-testing-tools-for-web-applications-that-you-could-use-in-2020-powerful-and-23135826a569

Bibliography 46

[48] Giancarlo Pellegrino and Davide Balzarotti. Toward black-box detection of logic flaws in web appli-

cations. In ISOC, editor, NDSS 2014, Network and Distributed System Security Symposium, 23-26

February 2014, San Diego, USA, San Diego, 2014. © ISOC. Personal use of this material is per-

mitted. The definitive version of this paper was published in NDSS 2014, Network and Distributed

System Security Symposium, 23-26 February 2014, San Diego, USA and is available at :.

[49] Ehood Porat, Shmuel Tikochinski, and Ariel Stulman. Authorization enforcement detection. In

Proceedings of the 22nd ACM on Symposium on Access Control Models and Technologies, SACMAT

’17 Abstracts, page 179–182, New York, NY, USA, 2017. Association for Computing Machinery.

doi:10.1145/3078861.3084172.

[50] John W. Ratclif and David E. Metzener. Pattern matching: the gestalt approach,

1988. URL: https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/

184407970?pgno=5.

[51] Andrew N. Sloss and Steven Gustafson. 2019 evolutionary algorithms review. CoRR,

abs/1906.08870, 2019. URL: http://arxiv.org/abs/1906.08870, arXiv:1906.08870.

[52] test. Access control vulnerabilities and privilege escalation — web security academy. URL: https:

//portswigger.net/web-security/access-control.

[53] Shobha Tyagi and Krishan Kumar. Evaluation of static web vulnerability analysis tools. In 2018

Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), pages 1–6,

2018. doi:10.1109/PDGC.2018.8745996.

[54] Yuchen Zhou and David Evans. Why aren’t http-only cookies more widely deployed. Proceedings

of 4th Web, 2, 2010.

[55] Jun Zhu, Bill Chu, Heather Lipford, and Tyler Thomas. Mitigating access control vulnerabilities

through interactive static analysis. In Proceedings of the 20th ACM Symposium on Access Control

Models and Technologies, SACMAT ’15, page 199–209, New York, NY, USA, 2015. Association for

Computing Machinery. doi:10.1145/2752952.2752976.

[56] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. Authscope: Towards automatic discovery of

vulnerable authorizations in online services. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’17, page 799–813, New York, NY, USA, 2017.

Association for Computing Machinery. doi:10.1145/3133956.3134089.

https://doi.org/10.1145/3078861.3084172
https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5
https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5
http://arxiv.org/abs/1906.08870
http://arxiv.org/abs/1906.08870
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://doi.org/10.1109/PDGC.2018.8745996
https://doi.org/10.1145/2752952.2752976
https://doi.org/10.1145/3133956.3134089

	Introduction
	Contributions
	Thesis Structure

	Background
	Access Control and Authorization
	Examples of IDOR vulnerabilities

	Web Applications and Browser Automation
	Evolutionary Algorithms
	Gestalt Pattern Matching

	Design
	Simple Crawler
	Evolutionary Crawler
	Generating New Sequences
	Reward System

	Public Filter
	Vulnerability Detector

	Implementation
	Custom Testcafe Framework
	Apache Kafka
	Bypassing Browser Security
	Additional Requirements

	Evaluation
	Experiment Setup
	Discovery of Request URLs
	Evolutionary parameter tuning
	Simple crawler vs Evolutionary crawler
	Blind evolutionary crawling

	Detection by Triad Tests
	Triad : Proof of Concept
	Minimizing False Positives
	Testing different levels of Authorizations

	Vulnerability Discovered

	Limitations
	False Positives
	Input Validations

	Related Work
	Existing black box web vulnerability scanners
	Other black box techniques
	Grey box
	OpenAPI specifications
	Network traffic Logs

	Whitebox Static Analysis
	Evolutionary Algorithms with Novelty Search

	Conclusion
	Future Work

	Bibliography

