
Evaluating Control-Flow Integrity with Syscall Reachability
Analysis

by

Tony Liao

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Department of Electrical and Computer Engineering
University of Toronto

© Copyright 2022 by Tony Liao

Evaluating Control-Flow Integrity with Syscall Reachability Analysis

Tony Liao
Master of Applied Science

Department of Electrical and Computer Engineering
University of Toronto

2022

Abstract

In order to defend against memory exploits, control-flow integrity (CFI) has been widely researched

as a defence and seen significant industry adoption. While attacks have demonstrated its limitations

in preventing control-flow hijacking, we argue that CFI can still prevent end-to-end exploits by

limiting an attacker’s access to the syscall interface. We design and implement a specialization of

static taint analysis called syscall reachability analysis to over-approximate the set of syscall gadgets

available to the attacker under different CFI policies, which we propose as a quantitative upper

bound on exploitability. Evaluating over a set of representative C/C++ programs, We find that

most programs do not make very many sensitive syscalls and that in most of the remaining cases

examined, the harm can be mitigated through sanitization of syscall arguments.

ii

Acknowledgements

I would like to thank my advisor, Professor David Lie, for helping me navigate through the fog. His

patience, experience, and consistency was the pillar of this project. I’ve learned a great deal from

him over the last two years — not just about security but about questioning assumptions, asking

the right questions, and facing problems with integrity.

I’d also like to thank my lab-mates Wei, John, Eric, and Yuqin for their guidance, thoughtful

discussion, and sometimes obscure interests. Despite starting my degree during a pandemic, we had

some good times together, and I really am going to miss everyone.

I’d like to thank my parents for always being there for me, and never questioning that I really

was busy with school (even if I sometimes wasn’t).

Lastly, I am grateful to the University of Toronto, the Government of Ontario, and Huawei

Technologies for the financial support that enabled this project.

iii

Contents

1 Introduction 1

2 Background and Related Work 4

2.1 Return-Oriented Programming . 4

2.2 Control-Flow Integrity . 5

2.3 Sensitive Syscalls . 6

2.4 Taint Analysis . 6

3 Design 7

3.1 Analysis Objective . 7

3.2 Threat Model . 9

3.3 CFI Model . 10

3.4 Syscall Reachability . 10

3.4.1 Modular Analysis for Shared Libraries . 12

3.5 Sources of Imprecision . 12

4 Implementation 14

4.1 Workflow . 14

4.2 Control-Flow Graph Pruning . 15

5 Evaluation 17

5.1 Experiment Setup . 17

5.2 Summary Statistics . 18

5.2.1 Indirect Call Site Analysis . 21

5.3 Syscall Usage . 24

5.4 Case Studies . 26

5.4.1 NGINX . 26

5.4.2 Wireshark . 28

5.4.3 OpenVPN3 . 29

5.5 Analysis Cost . 30

6 Limitations and Future Work 32

7 Conclusion 33

iv

Bibliography 34

v

List of Tables

5.1 Test program suite . 18

5.2 Summary statistics for binaries . 20

5.3 Summary statistics for client-library analysis . 22

5.4 Distribution of exploitable sinks . 23

5.5 Analysis time and peak memory usage . 31

vi

List of Figures

1.1 Triggering a syscall under CFI . 2

3.1 Steps in an abstracted end-to-end memory exploit 8

vii

List of Listings

3.1 A toy program illustrating attacker capabilities . 9

5.1 Source code for an exploitable exec in nginx . 26

5.2 Source code for a false positive mmap in nginx. 27

5.3 Source code for an unexploitable exec in wireshark 28

5.4 Source code for a false positive write in openvpn3 29

viii

Chapter 1

Introduction

Memory corruption vulnerabilities pose one of the largest threats to software today. After decades

of research in attacks and defenses, these bugs remain common and dangerous [1], leading to remote

execution in the worst case. They arise because weakly typed languages like C and C++ allow access

to memory that is out of bounds or no longer valid, causing undefined behaviour. Although type-

/memory-safe languages exist, C and C++ continue to be used when high performance, efficient

use of memory, access to low-level interfaces, and compatibility with legacy code are desired. While

hardware acceleration promises to bring down the performance overhead of type/memory safety [31],

today it is still prohibitively expensive for demanding applications.

The earliest memory exploits used simple code injection: The attacker places the code they want

to run, typically a short instruction sequence to open a shell (called a shellcode), inside a buffer.

They then trigger the memory vulnerability to overwrite a code pointer (e.g. a return address) with

the address of the shellcode; the shellcode is run when this code pointer is dereferenced (e.g. on a

return). The introduction of non-executable pages (NX) prevented this by requiring that writable

pages not also be executable. This successfully separates code and data, but still allows code reuse

attacks where existing code (particularly libc) is repurposed by the attacker to carry out an exploit.

Modern code reuse attacks use a technique called return-oriented programming (ROP) [23], where

typically short sequences of instructions followed by a return (called ROP gadgets) are chained

together to perform the task of the shellcode. To construct this chain, the attacker overwrites a

contiguous set of return addresses on the stack with the address of each gadget. A variant of ROP

called jump-oriented programming (JOP) [7] uses jump/call instructions to chain together gadgets

instead of returns, allowing it to bypass defences based on checking or protecting return addresses.

In order to prevent ROP/JOP and control-flow hijacking in general, control-flow integrity (CFI)

[2] has been widely researched as a defence. It involves using static analysis to over-approximate

a program’s control-flow graph (CFG), and checking at each indirect control-flow transfer that the

corresponding edge exists in the CFG. For instance, a common CFI policy requires that all indirect

calls target the start of a function, which eliminates JOP gadgets that begin in the middle of a

function. The tightness of this over-approximation is referred to as the precision or granularity

of the CFI policy: The higher the precision, the fewer gadgets there are. The hope is that with

sufficiently precise CFI, there will be so few gadgets as to make exploitation impossible, or at least

infeasibly difficult. CFI has seen significant industry adoption in recent years: It has been integrated

1

CHAPTER 1. INTRODUCTION 2

into LLVM [9], WebAssembly [22], and the Android Linux kernel [10]. A newer trend has been the

use of custom hardware to reduce the performance overhead of CFI enforcement, as in Intel CET

[24] and ARM PA [19].

Despite this interest, the degree of protection offered by CFI is not clear. While fully-precise

CFI for return addresses in the form of a shadow call stack [2] can prevent ROP entirely, JOP-style

exploits are still possible: Attacks circumventing CFI have been demonstrated based on stitching

together function-sized gadgets [12], abusing virtual function tables used for dynamic dispatch [21],

permissive functions like printf and limitations of static analysis [6], and the imprecision of scal-

able pointer analysis [13]. Beyond precision metrics like equivalence class size and AIR [5], the

effectiveness of CFI at preventing an end-to-end exploit is not well understood.

To address this, we turn to the syscall interface: In every remote userspace memory exploit, the

last step is to trigger a syscall to compromise the system in some way (privilege escalation, data

exfiltration, etc.) For code injection, this is done with a syscall instruction (syscall/int 0x80 on

x86 Linux) in the shellcode; for ROP, this is done by jumping to a syscall instruction somewhere

in existing code. However, we observe that CFI can make triggering a syscall significantly harder:

If every indirect call must target the start of a function, an attacker will generally not be able to

choose the syscall number because it will typically be set to a constant in the function (e.g. calling

execve() on x86 will have the syscall number hard-coded to 59). Instead, they will have to find a

syscall gadget to make their syscall of choice. In libc, common syscalls are made available through

wrapper functions (execve(), execl(), open(), fopen(), etc.), which can serve as syscall gadgets.

However, if we add the modest assumption that no indirect call can target a syscall wrapper, this

rule can be enforced by CFI (assuming GOT/PLT protection [15]). An attacker would therefore

have to find a syscall wrapper call site in the binary to act as a syscall gadget. This model is shown

in Figure 1.1.

Data

buf

libc

execve()

...
mov $0x3b, %eax

syscall

Binary

foo()

...

execve(...)

Attacker

✗ (1)

✗ (3)

✗ (2)

✓(4)

✗ (2)

Figure 1.1: Triggering a syscall under CFI. (1) Execution of data pages is blocked by NX; (2) calling
into the middle of a function is blocked by function-granularity CFI; (3) we additionally assume that
libc syscall wrappers are not legal indirect call targets; (4) a syscall gadget must be a function in
the binary that eventually calls into a libc syscall wrapper.

CHAPTER 1. INTRODUCTION 3

Under this model, we propose to use the prevalence of syscall gadgets to measure the exploitability

of CFI-protected programs. Unlike previous efforts to evalulate CFI which examine an attacker’s

ability to string together gadgets in order to perform computation, we examine the effectiveness of

the process sandbox at containing the attacker. By defining exploitability at the syscall interface,

we restrict ourselves to a small and well-defined attack surface. Instead of considering all possible

memory vulnerabilities or all possible ROP gadgets, we only consider a handful of sensitive syscalls

capable of damaging the system (execve, mmap, open, write, and variants). In accordance with the

end-to-end principle, evaluating the last stage in the exploitation pipeline allows us to fold all prior

stages into the threat model: We simply assume the attacker has performed arbitrary computation

in userspace, but has yet to issue a syscall and must follow the CFI policy.

With this attacker model, we use a specialization of static taint analysis to find syscall gadgets

which we call syscall reachability analysis. In this analysis, indirect call targets allowed by the CFI

policy are taint sources and sensitive syscall call sites are taint sinks; we use taint to represent

dataflow that may be controlled by the attacker. If a syscall call site has a tainted argument, we call

that call site exploitable and the corresponding code path a syscall gadget. By considering a variety

of CFI policies, we evaluate the impact that CFI precision has on exploitability, using the number

of exploitable syscalls as a quantitative upper bound.

We implement a prototype of this analysis with the LLVM toolchain, using SVF [28] to create a

whole-program data-flow graph. We then apply the analysis to a suite of representative programs

written in C and C++, evaluating program exploitability, analysis precision, and implementation

scalability. In doing so, we see a clear difference in exploitability between CFI policies, and significant

variation due to program function and structure. In most programs, many syscalls are unexploitable;

for the rest, we argue that their harm can be mitigated through simple input sanitization in most of

the cases examined. The analysis provides rich information about exploitable data-flow paths, and

allows such a defence to be tailored to the program as needed.

In summary, we make the following contributions:

• The notion of exploitability under different CFI policies based on the prevalence of syscall

gadgets;

• a specialization of static taint analysis for finding syscall gadgets under these CFI policies,

which we call syscall reachability analysis;

• a prototype implementation of the analysis using SVF and LLVM, with optimizations for

scalability;

• an evaluation of exploitability, precision, and scalability over a suite of representative programs.

Chapter 2

Background and Related Work

In this chapter, we provide background on an exploit technique called return-oriented programming

(§2.1), and a defence called control-flow integrity which aims to prevent it (§2.2). We then discuss

related work around the idea of a sensitive syscall (§2.3) and give a brief introduction to taint analysis

(§2.4).

2.1 Return-Oriented Programming

Early exploits of memory vulnerabilities worked through direct code injection: The attacker crafts

a short code sequence to open a shell (called a shellcode), places this code into a buffer, and triggers

the memory vulnerability to jump to the shellcode. Modern systems have a feature called non-

executable pages (NX) which marks writable pages as non-executable, preventing the jump into the

buffer. While this eliminates the possibility of code injection, it does not prevent code reuse: The

attacker can still use portions of the existing code to perform the task of the shellcode.

Return-oriented programming (ROP) [23] is a code reuse attack which uses sequences of instruc-

tions that end in a return, called ROP gadgets, to carry out desired operations. For instance, the

x86 sequence [mov $0x0, %rax; ret] (corresponding to return 0) has the effect of setting rax to

0; [add $0x1, %rdx; mov %rdx, %rax; ret] adds 1 to rdx and copies it into rax. Sequences can

also begin on mis-aligned instructions if the instruction set is variable-length. The attacker finds

these sequences in existing code (typically libc), combines them to form a ROP chain, and triggers

this chain by overwriting a contiguous sequence of return addresses on the stack with the address of

each gadget.

Challenges in doing this include (1) finding a sufficient set of useful gadgets, and (2) figuring out

how to combine them to perform the desired exploit (e.g. spawning a shell or writing to a sensitive

file). The former is typically done by searching common libraries like libc using a set of heuristics;

the latter depends on the type of exploit. With enough gadgets, it is possible to perform arbitrary

userspace computation, allowing any exploit by creating a compiler to target this ROP instruction

set. In order to trigger the ROP chain, the attacker also has to find the location of the gadgets

in virtual memory, which is randomized by a widely deployed defence called address space layout

randomization (ASLR); this can by done by leaking the library’s random offset through another

memory vulnerability or sometimes brute-force guessing. The last step in the exploit is to trigger

4

CHAPTER 2. BACKGROUND AND RELATED WORK 5

a syscall by jumping to either a syscall instruction or a function which issues a syscall (e.g. libc

execve()). Today, ROP is mature: Tools exist for automating gadget discovery and ROP chain

construction [20].

A variant of ROP called jump-oriented programming (JOP) [7] uses jumps and calls to string

together gadgets instead of returns. This can be done on x86 using gadgets that end in a pop-jmp

pair, which acts like a return. The benefit of JOP is that it bypasses defences based on protecting

or monitoring return instructions.

2.2 Control-Flow Integrity

Control-flow integrity (CFI) [2] is a software defence which limits an attacker’s ability to hijack

control flow. It uses static analysis to over-approximate a program’s control-flow graph (CFG), and

checks at each code pointer (pointer into the code region) dereference that the corresponding edge

exists in the CFG (direct calls are not checked because page permissions guarantee code integrity).

The set of rules enforced by CFI is called the CFI policy. For example, a simple policy could require

that all calls target the start of a function and that all returns target a call site. This reduces the

set of ROP/JOP gadgets by eliminating the ones that call into the middle of a function or return to

the middle of a basic block. However, this is clearly an over-approximation: At an indirect call site,

in addition to the callee being a valid function, its function signature should match the caller’s; as

a lower bound, there exists some minimal set of legal targets that are possible in benign execution.

The tightness of this over-approximation is referred to as the precision or granularity of the CFI

policy.

CFI divides code pointers into two categories: Forward edges refer to C-style function pointer

dereferences, C++ dynamic dispatch, and indirect jumps; backward edges refer to function returns.

Since return addresses are immutable under benign execution, the backward-edge problem can be

fully solved by isolating them (safe stack [18]) or creating an isolated copy (shadow stack [2]). This

completely prevents ROP by guaranteeing the last-in first-out semantics of the call stack. However,

achieving high precision in forward-edge CFI to prevent JOP-style exploits remains an open problem.

Attacks against CFI have been demonstrated based on stitching together function-sized gadgets [12],

abusing virtual function tables used for dynamic dispatch [21], permissive functions like printf and

limitations of static analysis [6], and the imprecision of scalable pointer analysis [13]. In response

to these attacks, recent CFI defences have proposed context-sensitive or stateful policies to improve

precision beyond what is possible for a purely static policy [16, 17]; we consider these proposals

orthogonal to our work.

While these attacks demonstrate the limitations of CFI in preventing control-flow hijacking, they

often rely on specific code patterns or vulnerabilities to perform an end-to-end attack. For instance,

the exploits in the Control-Flow Bending paper [6] use a legal indirect target that exec’s an arbitrary

string on Apache httpd, and require that Wireshark be able to write to arbitrary files (including

.ssh/authorized keys). On Linux, Counterfeit OOP [21] overwrites a function pointer with the

address of system(), which could be prevented by disallowing indirect calls to syscall wrappers. To

futher examine this, we propose a static analysis to find the syscall gadgets that enable the critical

last step of an exploit. We believe we are the first to evaluate CFI security through the exploitability

of syscalls. Our analysis is similar to Control Jujutsu’s [13] in that both use dataflow analysis to find

CHAPTER 2. BACKGROUND AND RELATED WORK 6

gadgets under an explicit CFI model. They differ in that instead of under-approximating the set of

ACICS gadgets in order to construct an exploit, ours over-approximates the set of syscall gadgets

in order to evaluate exploitability.

2.3 Sensitive Syscalls

The idea of a security-sensitive syscall has been explored by defences which place a reference monitor

around the syscall interface. Such a monitor can be implemented by instrumenting the binary,

modifying the kernel syscall handler, or interposing on all syscalls with a mechanism like eBPF

[4]. ROPecker [8] and Intel-PT-based CFI defences like GRIFFIN [14] check for violations of their

security policies asynchronously, and block on sensitive syscalls until this check has been completed.

The set of sensitive syscalls depends on the attacks under consideration: The typical concern is

privilege escalation through spawning a shell or changing page permissions to allow code injection.

We use a similar set of syscalls in our analysis in order to evaluate exploitability through these

mechanisms.

2.4 Taint Analysis

Taint analysis is a type of data-flow analysis that tracks information flows from sources to sinks.

A variable is considered to be tainted by a source if it is derived from that source or, transitively,

another variable tainted by that source. The meaning of taint depends on the use case: It could

indicate an untrusted value like unsanitized user input, or secret information like a value derived

from a password. Since taint analysis reasons about the provenance of memory objects rather than

their values, it tends to be lightweight compared to more general techniques like symbolic execution.

It has been used in a static context for finding bugs and malicious code, particularly on Android [3];

runtime defenses have also been proposed based on dynamic taint tracking [11, 27].

Chapter 3

Design

In this chapter, we describe challenges in exploiting memory bugs under CFI and state our goal: To

find an upper bound on exploitability based on syscall gadgets, assuming a strong attacker (§3.1).
We then give more formal models of attack (§3.2) and defence (§3.3), and propose a static taint

analysis to find syscall gadgets which we call syscall reachability analysis (§3.4). Lastly, we describe

simplifying assumptions needed to make the analysis work, and possible errors that may result from

them (§3.5).

3.1 Analysis Objective

An end-to-end exploit of a memory vulnerability in a userspace process can generally be divided

into three distinct phases: (1) Triggering the vulnerability to corrupt control-relevant data, (2)

stringing together gadgets to set up syscall arguments, and (3) triggering a syscall to compromise

the system. While many types of memory vulnerabilities exist (buffer overflow, use-after-free, etc.),

we can represent them abstractly with an attacker who has an arbitrary write primitive. Such an

attacker can set writable memory to an arbitrary state at some point in time, but can not directly

change data registers or the program counter. Similarly, the ability to form a gadget chain can be

abstracted with an attacker who can perform Turing-complete computation. By “Turing-complete”

we mean that the attacker can set both writable memory and data registers to an arbitrary state at

some point in time, but must still respect the separation between user and kernel modes (unprivileged

ISA, page permissions). These abstracted phases are shown in Figure 3.1.

While performing step 2 under CFI has been explored in the literature (§2.2), step 3 has received

comparatively little attention. In ROP/JOP (§2.1), step 3 is straightforward: Having already gained

arbitrary computation capabilities, the attacker prepares arguments in the appropriate registers,

including the syscall number, and jumps to a syscall instruction (syscall/int 0x80 on x86 Linux).

However, CFI presents new challenges: Even the most coarse-grained CFI policy requires that

indirect calls target the starts of functions, disallowing a jump to a syscall instruction in the middle

of a function. In the C standard library, syscalls are made available through wrapper functions like

execve() and open(), along with a general-purpose syscall(). While an attacker could instead

jump to one of these wrapper functions, as was done in COOP [21], this can be prevented by more

precise CFI: If syscall wrappers are marked as illegal targets for indirect calls, the only way for an

7

CHAPTER 3. DESIGN 8

Step 1 Step 2 Step 3

Exploit memory vulnerabil-
ity to gain arbitrary write
primitive and break ASLR

Reuse code (“gadgets”) to
perform arbitrary computa-
tion

Control arguments to a sen-
sitive syscall to compromise
the target system

CFI threat model Our threat model

Figure 3.1: Steps in an abstracted end-to-end memory exploit. CFI defences typically assume that an
attacker has already completed step 1 (i.e., found and triggered a memory bug), and seek to prevent
step 2. We instead assume the attacker has already completed step 2 (i.e., performed arbitrary
computation in user mode), and examine the effectiveness of CFI at preventing step 3.

attacker to trigger a syscall is through a wrapper call site in the binary itself. This significantly

reduces the attack surface, as the attacker must now find a gadget which allows them to control

the arguments to a syscall wrapper without violating the CFI policy. For instance, if a program

only calls exec with the first argument hard-coded to "/bin/ls", then the attacker can not use

it to execute any other program. We describe our modelled CFI policies and possible enforcement

mechanisms in §3.3. If no gadget for calling a syscall wrapper exists (e.g. if the program makes

no syscalls deemed sensitive), then the attacker is trapped in the process sandbox despite having

Turing-complete computation ability.

We therefore ask: Over a variety of CFI policies, how hard it is to perform step 3? To answer

this, we consider an artificially strong attacker who has already succeeded in step 2 — that is, one

who has arbitrary control over (writable) memory and may jump to any location allowed by the CFI

policy. We identify sensitive syscall wrappers and find their call sites in the binary. If the attacker

is able to control an argument to one of these call sites, we call that call site exploitable and the

corresponding code path a syscall gadget. The existence of a syscall gadget does not guarantee that

an actual attack can be carried out: Rather, the absence of such a gadget guarantees that an attack

can not cause serious damage, since it represents the critical last step in the exploitation pipeline.

We design our analysis to make conservative assumptions when necessary, with the intention of over-

approximating the set of syscall gadgets to find an upper bound on the exploitability of the program.

In other words, it is primarily intended to inform defences rather than generate attacks, although

it could be useful for either if made sufficiently precise. By sweeping the level of CFI precision over

a suite of programs, we examine factors that lead to exploitability and the effectiveness of CFI at

mitigating it.

In short, our analysis consists of the following components:

1. A model of a strong attacker who can set writable memory and data registers to an arbitrary

state at some point in time and jump to any location allowed by the CFI policy (§3.2);
2. a model of CFI the attacker is subject to, including a fully precise backward edge and varying

policies for the forward edge (§3.3);
3. a static taint analysis for finding data flows from attacker-controlled variables to sensitive

syscall arguments (§3.4).

CHAPTER 3. DESIGN 9

3.2 Threat Model

We adopt a strong threat model in which the attacker has already achieved Turing-complete execu-

tion, and want to determine whether this attacker can control an argument to a sensitive syscall. We

make standard assumptions about process isolation: With only access to the unprivileged ISA and

having yet to issue a sensitive syscall, the attacker can not bypass page permissions or virtual mem-

ory, overwrite code pages, or execute data pages (NX). For calls into shared libraries, the integrity

of the GOT/PLT is guaranteed through relocation read-only [15]. This causes the GOT/PLT to

be populated eagerly at load-time and its pages set to read-only; it would otherwise be writable to

support lazy binding and therefore corruptible by our attacker.

We impose varying CFI policies on the attacker, which are described in §3.3. If a function is the

legal target of an indirect call (from any call site) according to the CFI policy, then the attacker

is allowed to jump to it. Since the attacker has Turing-complete computation ability, they can set

writable memory and data registers to an arbitrary state before jumping; once the attacker jumps,

however, they do not regain control until the function returns.

As an example, consider the code snippet in Listing 3.1 and suppose that foo is a legal indirect

target. The attacker controls globals and function parameters at the start of the function (str1,

str2, and flag), but these values can only flow to certain sensitive syscalls and only if they are not

overwritten before the call is made. We aim to identify the syscall arguments that can be controlled

by such an attacker using static analysis.

1 char *str1;

2

3 // legal indirect target

4 void foo(char *str2 , int flag) {

5 if (flag) {

6 sensitive(str1); // exploitable

7 sensitive("hello"); // not exploitable

8 }

9 else {

10 sensitive(str2); // exploitable

11 str2 = "goodbye";

12 sensitive(str2); // not exploitable

13 }

14 sensitive(str2); // exploitable if flag != 0

15 }

Listing 3.1: A toy program illustrating attacker capabilities. If foo is a legal indirect target according

to the CFI policy, then str1, str2, and flag are considered attacker-controlled by line 4. These

values flow to the sensitive calls on lines 6 and 10. However, if the argument is a constant (line 7)

or locally overwritten (line 12), the attacker can not control it. Lastly, the sensitive call on line 14

is exploitable by the attacker if flag is not 0, and is overwritten otherwise.

The set of sensitive syscalls is configurable and depends on the modes of attack under consider-

ation. In our work, we constrain ourselves to Linux and choose a set based on prior work that can

lead to privilege escalation (§2.3):

• execve and execveat can execute arbitrary programs;

CHAPTER 3. DESIGN 10

• mmap, mremap, remap file pages, and mprotect can change page permissions to overwrite

code or execute data;

• open and openat can open files for editing, while write and variants can write to them;

filesystem access is often as good as a shell (e.g. writing to .ssh/authorized keys [6]).

3.3 CFI Model

We impose a variety of CFI policies on the attacker. For the backward edge, we assume full precision,

which can be provided by a shadow stack — this rules out ROP entirely because return addresses

can not be corrupted without detection. For the forward edge, we model four different policies,

enforced at each indirect call:

• any: Indirect calls must target a function

• addr: Indirect calls must target an address-taken function

• type: Caller and callee type signatures must match

• addr-type: Caller and callee type signatures must match, and callee must be address-taken

The lowest-precision policy, any, ensures that an attacker can not trigger a syscall by jumping directly

to a syscall instruction. addr and type are more precise than any, and addr-type is more precise than

the other three. type and addr-type are called call-site-sensitive because the set of legal targets

depends on the indirect call site. Conversely, any and addr are called call-site-insensitive because

the set of legal targets is the same for every indirect call site. As discussed in §3.1, we additionally

assume that syscall wrappers are not legal indirect call targets. While this could theoretically break

some programs, we believe that indirect calls to syscall wrappers are uncommon and unnecessary;

we also do not encounter any such uses in our evaluation.

Many mechanisms exist for enforcing CFI in both software and hardware; we give one possible

mechanism for forward-edge CFI similar to the one in the original proposal [2] to serve a model. Call-

site-insensitive policies are enforced by inserting a unique id into the binary before every function.

A global read-only bitmap indicates if that function is a legal indirect call target. At each indirect

call, the id is read by loading at a fixed offset from the call target; the call is only made if the the

bitmap reads 1 when when indexed with the id. Call-site-sensitive policies are similar, except they

also require an id for each call site. The bitmap in this case accepts two indicies (caller and callee

ids), and reads 1 if the caller-callee pair is legal.

3.4 Syscall Reachability

In order to find syscall gadgets under our threat model, we use a specialization of static taint analysis

which we call syscall reachability analysis. In this analysis, a tainted variable is one that may be

controlled by the attacker. Per the threat model (§3.2), these variables initially consist of writable

memory and data registers at any legal indirect target allowed by the CFI policy (§3.3). We then

consider any variable derived from an attacker-controlled variable to also be attacker-controlled.

This is an over-approximation since we do not explore the program’s value space. Our definition of

taint allows us to use standard data-flow analyses which assume correct program behaviour to reason

about an attacker who has gained control of memory through undefined behaviour. This assumes

CHAPTER 3. DESIGN 11

that the attacker does not also trigger undefined behaviour in the syscall gadget itself, which we

discuss further in §3.5.
To perform syscall reachability analysis, we start by constructing a whole-program data-flow

graph, where nodes are variables in the program and edges represent def-use relations. For instance,

in Listing 3.1, the argument str2 on line 12 would be a node, and its definition would be "goodbye"

on line 11. Resolving edges for loads and stores in such a graph requires a whole-program points-to

analysis.

We then identify, in the language of taint analysis, source nodes (attacker-controlled values) and

sink nodes (arguments to sensitive syscalls). Source nodes are marked as tainted; all other nodes

are initially untainted. To find flows from sources to sinks, we propagate taint along the data-flow

graph, which is simply a graph reachability problem: If node A is tainted, its taint is propagated to

node B iff there exists a path from A to B in the graph. This problem can be solved with a worklist

algorithm, which is guaranteed to converge because each node is visited at most once (when it is

first tainted).

Put more precisely, the analysis is defined by the following rules:

1. Sources: Indirect call targets allowed by CFI are taint sources. To find these, we find all

indirect call sites (ICSs), find the set of legal targets at each ICS according to the CFI policy,

and take the union of all of them. For each of these source functions, the function parameters

and global variables visible at the start of the function are tainted.

2. Sinks: Sensitive syscall call sites are taint sinks. For each of these call sites, the function

arguments are initially untainted; if taint is propagated to one of them, the call site is considered

to be exploitable by an attacker.

3. Propagation: If a variable is defined by an expression that uses a tainted variable, it is also

tainted.

We do not propagate taint through indirect calls, since the targets of these calls would be taint

sources (and therefore already tainted). In other words, within a syscall gadget, we only consider

data-flow paths through direct control-flow. In addition to simplifying the analysis, this rule allows

us to prune irrelevant parts of the program to improve analysis scalability. We discuss this further

in our implementation (§4.2).
As an example, consider again Listing 3.1: Since foo is an legal indirect call target, it is a source

function. Thus, str1, str2, and flag are tainted; this taint propagates to str1 on line 6 and str2

on line 10, as well as str2 on line 14 since we do not explore the value space of flag. "hello" on

line 7 and str2 on line 12 are untainted at the end of the analysis and declared safe.

If all arguments to a sink call site are untainted under this conservative analysis, we conclude

that it is safe from exploitation. If an argument is tainted, the analysis can provide a data-flow path

from source to sink. This path may be exploitable by an attacker, but it may also be a false positive

for reasons we discuss in §3.5. By assigning IDs to sources and sinks, we can track sinks tainted by

each source and sources tainting each sink, along with corresponding paths. This highlights sensitive

points in the program and provides a set of metrics for evaluating the exploitability of CFI-protected

programs. For call-site-sensitive CFI, we can also find the set of sinks reachable from each ICS: This

is the union of sinks reachable from a source, for each source that is a legal target of that ICS under

the CFI policy. This could be of interest if modelling a more limited attacker who only has access

to certain ICSs, or perhaps for targeted exploits.

CHAPTER 3. DESIGN 12

3.4.1 Modular Analysis for Shared Libraries

The analysis described above is intended for statically linked binaries. If a client program is dy-

namically linked against a library, the two can be analyzed independently, but this misses execution

paths where the client calls into the library. For libc, we address this by creating an explicit list of

wrapper functions that are capable of making each sensitive syscall. This idea can be extended to

libraries to support a modular analysis:

1. Get a list of all function signatures in the library;

2. Analyze the client with the library functions as sinks, keeping track of the tainted functions;

3. Analyze the library with the tainted functions from the previous step as sources.

This has the added benefit of highlighting sensitive points at the well-defined library interface. It

can be extended to an arbitrary DAG of dependencies by analyzing each binary in topological order.

The major assumption is that the attacker begins in the client and calls into the library; the analysis

misses control-flow paths that go the other way (e.g. the library calling a callback function provided

earlier by the client). We note also that this modular analysis is orthogonal to independent analysis

of the client and library: The former considers paths from client to library, while the latter two

consider paths that begin and end in the respective binaries.

3.5 Sources of Imprecision

In order to make static analysis tractable, simplifying assumptions are required. We discuss here

some assumptions made in our analysis and their possible impact on its results. Since our objective

is to over-approximate the set of syscall gadgets under a strong attacker model, we generally make

conservative assumptions, leading to potential false positives:

1) The underlying pointer analysis is conservative. In order to construct a whole-program

data-flow graph, we require an underlying points-to analysis, which is challenging to do precisely

and undecidable in general. Over-approximation in points-to sets can lead to spurious dataflows

where a particular load instruction is claimed to load a tainted variable out of memory, despite it

not actually being possible to load that variable. Improving the precision of points-to analysis is an

active area of research which we consider to be orthogonal to our work.

2) Static taint analysis is conservative. While dynamic taint tracking propagates taint along

the executed control-flow path, static taint analysis must make conclusions that are true of all

possible paths, leading to over-approximation. Without path-sensitivity, it allows infeasible paths,

such as entering a function from one call site and exiting through another.

Despite our effort to keep error one-sided, using taint analysis to represent attacker-controlled

values requires two assumptions which may lead to false negatives:

3) Undefined behaviour in syscall gadgets is ignored. Our use of data-flow analysis assumes

correct program behaviour within the syscall gadget. That is, while the attacker is assumed to have

exploited a memory bug to perform arbitrary computation before calling the syscall gadget, we

CHAPTER 3. DESIGN 13

assume there is no further memory misuse in the syscall gadget itself. This is not guaranteed in

reality, so we may miss an exploitable syscall.

4) Tainted control flow is ignored. As a standard assumption in taint analysis, we do not

consider branch conditions part of the def-use chain. For example, in the statement ch = cond ?

’a’ : ’b’;, if cond is tainted, that taint does not propagate to ch because it is only derived from

’a’ and ’b’. In theory, this means we could miss an attacker who influences a syscall argument

through branch conditions alone, but it is unclear what code patterns would enable this; we leave

this to future work.

Chapter 4

Implementation

To perform syscall reachability analysis, we implemented a prototype tool using the LLVM toolchain

and SVF [28] analysis framework. This chapter describes the tool’s workflow (§4.1) and scalability

optimizations (§4.2).

4.1 Workflow

Our prototype takes as input a whole-program LLVM bitcode file, and internally produces two

bitmaps representing (1) the set of sources (indirect target functions) that can be called at each

indirect call site (ICS) according to the CFI policy, and (2) the set of sinks (sensitive syscall call

sites) that are tainted by each source. As discussed in §3.4, these two can be combined to find

the set of sinks exploitable from each ICS. The prototype has a library and client component: The

library gives direct access to the bitmaps, while the client is a command-line tool which produces a

report on tainted syscall call sites along with summary statistics. The tool operates in three stages:

(1) Finding sources and sinks, (2) propagating taint, and (3) reporting results. These stages are

described in more detail below.

1) Find sources and sinks. Taint sources are legal indirect call targets and taint sinks are

sensitive syscall call sites. We support the CFI policies described in §3.3 for finding sources: The

tool first finds all ICSs, and then applies the desired CFI policy at each ICS to find to find the set of

legal targets (creating bitmap 1). The total set of sources is the union of legal targets over all ICSs.

In order to implement a modular client-library analysis (§3.4.1), the tool also allows a user-specified

list of source function names or signatures to be used instead.

To find sinks, the tool finds call sites of functions that wrap the syscalls listed in §3.2. Each

syscall has a libc wrapper with the same name, and often several variants. We produced this list

of sensitive syscall wrapper names manually, and while we feel it is adequate for a prototype, a

missing function could potentially lead to false negatives in our results. This could be addressed by

analyzing an implementation like glibc to find all functions issuing syscall instructions; we leave this

to future work. The full list is quite long — we list a few of the variants here for reference:

• execve: execv, execvp, execl

• mmap: mmap64

14

CHAPTER 4. IMPLEMENTATION 15

• open: open64, fopen, ofstream::ofstream

• write: fputs, fprintf, ostream::operator<<

Since C++ stream objects are templated, each template instantiation needs to be listed separately:

We currently just support char * and std::basic string<char>.

2) Build SVFG and propagate taint. In order to propagate taint, the tool uses SVF to con-

struct a sparse value-flow graph (SVFG), which is a whole-program data-flow graph. SVF resolves

points-to sets at LLVM loads and stores, and thus requires a whole-program points-to analysis. This

represents a scalability bottleneck in both time and memory [29]. To alleviate this, our prototype

searches the CFG to find pointers relevant to source-sink paths, and applies the points-to analysis

to only these pointers. We call this CFG pruning; it is described in more detail in §4.2.
Once the SVFG is created, the tool finds source and sink nodes. For each source function, it finds

the FormalParm nodes corresponding to function parameters and FormalIN nodes corresponding to

memory objects visible at the start of the function; for each sink call site, it finds the ActualParm

nodes corresponding to function arguments.

Taint is propagated by finding all reachable nodes on the SVFG using a worklist algorithm

(breadth-first search). The tool supports propagating taint either forward (finding all nodes reach-

able from a source) or backward (finding all nodes that can reach a sink). This yields the set of sinks

tainted by each source (bitmap 2). The tool also keeps a depth field and back pointer for each node

during taint propagation to efficiently find the shortest tainting path. In practice, we find that most

programs have far fewer sinks than sources, so backward propagation is usually faster than forward.

3) Report results. After taint propagation is done, The command line tool lists summary statis-

tics, the states of all sinks (tainted or untainted), and source-sink data-flow paths. Since the tool

just summarizes the two bitmaps, its output is easily configurable. By default, it prints the path

from the nearest source node to each tainted sink node.

4.2 Control-Flow Graph Pruning

Since a SVFG resolves the points-to sets of LLVM loads and stores, it requires a points-to analysis.

The most basic choice is an inclusion-based (Andersen’s) analysis, which has worst-case cubic time

complexity (realistically, quadratic [26]), limiting our ability to analyze large programs in practice

[29].

To ameliorate this, our prototype uses CFG pruning to avoid analyzing pointers that do not

affect the correctness of its analysis. The idea is that since the attacker is assumed to control all

writable memory and function parameters at the start of a source function, pointers which are not

defined on any source-sink control-flow path do not need to be analyzed. Since these pointers must

have been allocated before jumping to a source function (if allocated at all), any capability they

grant the attacker is one that the attacker already has through arbitrary control over memory.

To find reachable basic blocks, the tool searches the interprocedural control-flow graph (ICFG):

If propagating taint forward, it starts from all sources and searches forward; if propagating taint

backward, it starts from all sinks and searches backward. Since we assume a shadow stack is present

(§3.3), we do this CFG traversal in a context-sensitive way where a function return must return

CHAPTER 4. IMPLEMENTATION 16

to the caller; without this, a naive search would allow returning to any other call site and over-

approximate the set of reachable basic blocks. Additionally, in our threat model, since we are only

interested in direct control-flow within a syscall gadget (§3.4), we do not need to resolve indirect

call targets in the ICFG. This avoids a chicken-and-egg problem where adding indirect edges to the

ICFG which would require its own points-to analysis.

After finding the set of reachable basic blocks B, the tool also finds the set of functions F

containing all basic blocks in B. It then prunes the set of pointers to be analyzed according to the

following rules:

1. If the pointer is defined in a basic block b (e.g. by an instruction), keep it if b ∈ B and discard

it otherwise;

2. If the pointer is not defined in a basic block but is defined in a function f (e.g. as a function

parameter), keep it if f ∈ F and discard it otherwise;

3. If the pointer is not defined in a basic block or function (e.g. as a global), keep it.

The tool prunes these pointers from SVF’s constraint graph. After running the points-to analysis,

the resulting SVFG contains all pointers in the original program, but the ones that were pruned

have no points-to targets.

We originally also supported a serial CFG pruning mode where the tool would build a SVFG,

propagate taint, and deallocate the SVFG individually for every source or sink, with the expectation

that it might be slower but would use less memory. It actually used more memory, which we speculate

was due to either a memory leak or the kernel page allocator deferring reclamation, and also became

extremely slow compared to the other options as we tested larger programs with an increasing

number of sinks.

Chapter 5

Evaluation

Our experiments are motivated by the following evaluation questions:

EQ1: How often are programs considered exploitable against our strong threat model over varying

CFI policies (§3.2)?
EQ2: What code patterns around sensitive syscalls lead to exploitability, and can this weakness be

mitigated?

EQ3: How realistic are the data-flow paths discovered by the taint analysis? What mistakes does it

make due to imprecision (§3.5)?
EQ4: Does the analysis scale well to large programs?

To address these questions, we ran our analysis tool on a suite of popular programs written in C

and C++. The following sections describe our test setup (§5.1), quantitative (§5.2) and qualitative

(§5.3, §5.4) evaluation of exploitability, and scalability measurements (§5.5).

5.1 Experiment Setup

We ran our analysis on an Intel Xeon Gold 5218 processor with 512GB of memory running Ubuntu

22.04. The programs tested are shown in Table 5.1. We chose these programs based on popularity,

test set diversity, perceived value as an exploit target, difficulty of build configuration, use in prior

work for comparison, and with the constraint that a sigificant portion be written in C or C++.

Each program was compiled with Clang 13.0.1-2ubuntu2, using gllvm [30] as a wrapper to link

together a whole-program bitcode file.

17

CHAPTER 5. EVALUATION 18

Project Version Language SLOC Program Description

Firefox 102.0.1 C, C++, * 9.26M

firefox Web browser

updater Firefox updater

crashreporter Firefox crash GUI

Apache
2.4.53

C
309k httpd Web server

1.7.0 64.1k libapr-1.so Apache library

NGINX 1.20.2 C 141k nginx Web server

DBMail 3.2.6 C 65.0k
dbmail-imapd Mail server

libdbmail.so DBMail library

PostgreSQL 14.3 C 879k psql Relational database

LevelDB 1.23 C++ 20.9k leveldbutil Key-value store

Wireshark 3.6.5 C, C++ 2.92M

wireshark Packet analyzer

tshark Wireshark CLI

libwireshark.so Wireshark library

libwiretap.so Wireshark logging library

OpenVPN3* v17 beta C++ 310k
openvpn3 VPN client GUI

openvpn3-admin OpenVPN3 config tool

Xpdf 4.04 C++ 128k xpdf PDF viewer

Table 5.1: Test program suite, indicating project size, version, and associated binaries. Sizes in
SLOC were measured using SLOCCount [25], and only include C and C++. Notes: (1) The Firefox
codebase contains several other languages, including JavaScript, Python, and Rust; (2) OpenVPN3
here is the openvpn3-linux client GUI, which links against the openvpn3 library.

5.2 Summary Statistics

In order to assess the exploitability of common programs under various levels of CFI protection

(EQ1), we ran our analysis tool on the test suite. As described in section §4.1, the CFI policy

determines the set of functions treated as taint sources.

Summary statistics from the test run are shown in Table 5.2. For each CFI policy, we count the

number of sources tainting a sink, and sinks tainted by a source. Each sink is a call site of a sensitive

syscall (§3.4), which may be used to cause damage to the system. We group sinks by the capability

the syscall grants the attacker:

• exec for running arbitrary programs, including execve and execveat;

• mmap for modifying page permissions, including mmap, mremap, remap file pages, and mprotect;

• open for opening a file, including open and openat;

• write for writing to a file through a file descriptor, including write, pwrite, and writev;

• syscall for the libc syscall, which allows a syscall to be called by number.

All analyses completed within a few minutes, except for libwireshark.so on open syscalls,

which we stopped after 2 hours. Details on time and memory use are given in §5.5.

CHAPTER 5. EVALUATION 19

Program CFI
Sinks (tainted/total) Sources

(tainting/total)exec mmap open write syscall

firefox

any 0/0 3/4 7/12 6/47 20/230 651/1,405

addr 0/0 0/4 1/12 1/47 16/230 103/260

type 0/0 0/4 4/12 1/47 6/230 64/162

addr-type 0/0 0/4 1/12 1/47 6/230 43/90

updater

any 1/1 0/0 24/28 0/0 0/0 26/342

addr 0/1 0/0 4/28 0/0 0/0 5/55

type 0/1 0/0 1/28 0/0 0/0 2/7

addr-type 0/1 0/0 1/28 0/0 0/0 1/3

crashreporter

any 1/3 0/0 3/18 0/44 0/0 264/720

addr 1/3 0/0 2/18 0/44 0/0 30/102

type 1/3 0/0 2/18 0/44 0/0 27/64

addr-type 1/3 0/0 2/18 0/44 0/0 12/29

httpd

any 0/0 0/0 1/1 0/2 0/1 1/2,068

addr 0/0 0/0 1/1 0/2 0/1 1/1,865

type 0/0 0/0 1/1 0/2 0/1 1/576

addr-type 0/0 0/0 1/1 0/2 0/1 1/548

libapr-1.so

any 4/5 2/3 5/6 15/15 0/0 318/902

addr 0/5 0/3 1/6 5/15 0/0 32/101

type 0/5 0/3 4/6 5/15 0/0 34/142

addr-type 0/5 0/3 1/6 5/15 0/0 27/87

nginx

any 1/1 2/2 20/22 18/22 0/1 904/1,359

addr 1/1 1/2 18/22 16/22 0/1 573/759

type 1/1 1/2 18/22 14/22 0/1 374/522

addr-type 1/1 1/2 18/22 13/22 0/1 325/446

dbmail-imapd

any 0/0 0/0 0/0 117/117 0/0 29/402

addr 0/0 0/0 0/0 117/117 0/0 29/92

type 0/0 0/0 0/0 0/117 0/0 0/58

addr-type 0/0 0/0 0/0 0/117 0/0 0/46

libdbmail.so

any 0/0 1/1 8/9 2/3 0/0 376/1,048

addr 0/0 1/1 4/9 1/3 0/0 33/63

type 0/0 1/1 2/9 1/3 0/0 81/172

addr-type 0/0 1/1 0/9 1/3 0/0 6/15

psql

any 1/3 0/0 12/17 2/3 0/0 324/837

addr 1/3 0/0 11/17 2/3 0/0 42/237

type 1/3 0/0 11/17 0/3 0/0 56/281

addr-type 1/3 0/0 11/17 0/3 0/0 29/223

leveldbutil

any 0/0 1/1 0/9 2/7 0/0 34/1,325

addr 0/0 1/1 0/9 1/7 0/0 9/200

type 0/0 0/1 0/9 1/7 0/0 1/97

addr-type 0/0 0/1 0/9 1/7 0/0 1/70

CHAPTER 5. EVALUATION 20

Program CFI
Sinks (tainted/total) Sources

(tainting/total)exec mmap open write syscall

wireshark

any 1/2 0/0 14/33 5/5 0/0 1,349/13,961

addr 0/2 0/0 9/33 1/5 0/0 521/5,561

type 0/2 0/0 5/33 4/5 0/0 502/3,191

addr-type 0/2 0/0 3/33 1/5 0/0 218/1,858

tshark

any 1/2 0/0 0/5 4/4 0/0 5/1,063

addr 0/2 0/0 0/5 0/4 0/0 0/254

type 0/2 0/0 0/5 0/4 0/0 0/180

addr-type 0/2 0/0 0/5 0/4 0/0 0/99

libwireshark.so

any 0/0 0/0 – 1/1 0/0 *1/79,351

addr 0/0 0/0 – 1/1 0/0 *1/70,869

type 0/0 0/0 – 1/1 0/0 *1/72,140

addr-type 0/0 0/0 – 1/1 0/0 *1/70,546

libwiretap.so

any 0/0 0/0 5/6 1/1 0/0 89/1,111

addr 0/0 0/0 2/6 1/1 0/0 63/451

type 0/0 0/0 0/6 1/1 0/0 55/486

addr-type 0/0 0/0 0/6 1/1 0/0 55/421

openvpn3

any 0/0 0/0 1/1 207/1,210 0/0 5,383/13,770

addr 0/0 0/0 0/1 121/1,210 0/0 509/1,655

type 0/0 0/0 0/1 94/1,210 0/0 653/1,434

addr-type 0/0 0/0 0/1 94/1,210 0/0 315/701

openvpn3-admin

any 0/0 0/0 2/2 53/311 0/0 447/1,928

addr 0/0 0/0 1/2 28/311 0/0 24/212

type 0/0 0/0 1/2 28/311 0/0 28/117

addr-type 0/0 0/0 1/2 28/311 0/0 15/80

xpdf

any 1/1 0/0 23/23 0/0 0/0 1,974/5,674

addr 0/1 0/0 19/23 0/0 0/0 523/1,889

type 1/1 0/0 18/23 0/0 0/0 580/1,601

addr-type 0/1 0/0 18/23 0/0 0/0 401/1,229

Table 5.2: Summary statistics for binaries. Program indicates the program name, CFI indicates the
CFI policy used to find taint sources, Sinks indicates the number of tainted (reached by a source) and
total sink call sites, and Sources indicates the number of tainting (reaching a sink) and total source
functions. Four CFI policies are tested: any (all functions are sources), addr (address-taken functions
are sources), type (caller-callee type signature matching), and addr-type (intersection of addr and
type). Sinks are grouped by capability: exec indicates program launching; mmap indicates page
permission modification; open and write indicate filesystem access and modification, respectively;
syscall indicates libc syscall. For libwireshark.so, the analysis on open syscalls timed out; the
number of tainting sources is measured with respect to the other four types of syscalls.

Overall, we find that most programs make relatively few sensitive syscalls, even in large code-

bases. There are a few outliers (e.g. syscall in firefox and write in dbmail-imapd, openvpn3, and

openvpn3-admin), which we explore later in more detail (§5.3). Many sinks are untainted even when

CHAPTER 5. EVALUATION 21

the CFI policy is set to any: The simplest way this can happen is when all the arguments to a syscall

are constants (e.g. opening a file with a fixed name, or writing a fixed message to stdout). We also

see a clear decrease in exploitability as the precision of CFI is increased: More precise CFI means

fewer legal targets, i.e., fewer source functions. With fewer source functions, fewer sink call sites are

tainted by those sources. We see this drop in total sources and tainted sinks across all programs

when comparing the addr-type policy to the any policy. With the addr-type policy, for our tested set

of sensitive syscalls, two programs in our test suite would be considered unexploitable because they

have no tainted sinks at all (dbmail-imapd and tshark). Furthermore, the less precise addr policy

is often comparable in tainted sinks to addr-type (e.g. firefox, tshark) despite being significantly

cheaper to enforce.

Across programs, there is signficant variation in both the types of sinks that are present and the

fraction of sinks that are tainted. Some of this can be explained by function: xpdf is a read-only

pdf viewer, so it does not write to the filesystem at all and therefore has no write sinks. In other

cases, however, the connection between the type of program and set of sensitive syscalls used is less

clear.

The actual number of sinks is sensitive to compiler optimization and code structure: If the

function a sink is in gets inlined, each caller of that function now has a sink. This inflates the

number of sinks but is actually good for analysis precision, since it essentially gives us context-

sensitivity. Also, since this experiment only considered individual binaries, syscalls outside of the

binary were not analyzed. For instance, while httpd has relatively few sinks, much of its functionality

is factored into libapr.so. Furthermore, The analysis of libapr.so does not consider an attacker

who compromises the client and calls into the library. To address this, we repeated the experiment

for shared libraries, using a client program to find reachable entry points as described in §3.4.1.
Results from this run are shown in Table 5.3.

In analyzing libraries through clients, we find that there are fewer sources and tainted sinks than

when the library is analyzed on its own with the any policy. This is expected, as only the functions in

the library reachable by the client are considered sources, instead of all of them. Comparing against

other CFI policies, the results vary: httpd/libapr-1.so has more sources and tainted sinks over

all modes than libapr-1.so in modes other than any; an opposite trend exists when comparing

tshark/libwiretap.so to libwiretap.so. As discussed in §3.4.1, these analyses are orthogonal:

Analyzing the library finds syscall gadgets contained entirely in the library, while analyzing the

library through a client finds syscall gadgets that begin in the client and end in the library.

We do not see much variation in sources and tainted sinks in the library across CFI precision

levels in the client, other than when comparing any against the other policies. We speculate that

this is related to how libraries are used: Perhaps if a client uses a library function once, it is likely

to use it multiple times, leading to most library functions that the client does use becoming sources

in this analysis; on the other hand, library functions that are never used by the client are excluded.

5.2.1 Indirect Call Site Analysis

While we consider a sink (syscall call site) to be exploitable if it is tainted by any source (indirect

target function), not every source can be called at every indirect call site if the CFI policy is call-

site-sensitive. As discussed in §3.4, we can find the set of exploitable sinks for each ICS by (1)

finding the set of source functions that can be called at that ICS according to the CFI policy, and

CHAPTER 5. EVALUATION 22

Program

(client/library)
CFI

Sinks (tainted/total) Sources

(tainting/total)exec mmap open write syscall

httpd/

libapr-1.so

any 4/5 1/3 5/6 11/15 0/0 126/233

addr 4/5 1/3 5/6 9/15 0/0 124/226

type 4/5 1/3 5/6 9/15 0/0 110/198

addr-type 4/5 1/3 5/6 9/15 0/0 110/198

dbmail-imapd/

libdbmail.so

any 0/0 1/1 1/9 2/3 0/0 94/158

addr 0/0 1/1 0/9 2/3 0/0 92/148

type 0/0 1/1 0/9 2/3 0/0 41/60

addr-type 0/0 1/1 0/9 2/3 0/0 38/57

tshark/

libwireshark.so

any 0/0 0/0 – 0/1 0/0 *0/237

addr 0/0 0/0 – 0/1 0/0 *0/176

type 0/0 0/0 – 0/1 0/0 *0/119

addr-type 0/0 0/0 – 0/1 0/0 *0/100

tshark/

libwiretap.so

any 0/0 0/0 4/6 1/1 0/0 4/98

addr 0/0 0/0 1/6 0/1 0/0 1/75

type 0/0 0/0 1/6 0/1 0/0 1/55

addr-type 0/0 0/0 1/6 0/1 0/0 1/50

Table 5.3: Summary statistics for client-library analysis (§3.4.1). Headings are as in Table 5.2, with
a few caveats: (1) CFI refers to the CFI policy used to analyze the client, (2) Sinks refers to sinks
in the library, and (3) Sources refers to functions in the library that can be called by an attacker
through the client. As before, libwireshark.so timed out on open syscalls.

(2) taking the union of the sinks tainted by each of those sources. This adds a new dimension to

exploitability: Since a real attacker may not be able to access every indirect call site, a sink could be

more exploitable if it can be exploited from more ICSs. Similarly, an ICS could be more dangerous

if more sinks can be exploited from it.

We measured this distribution of tainted sinks over ICSs on the test suite by finding the median

and maximum number of sinks exploitable from each ICS (using the two call-site-sensitive CFI

policies). The results for each sink type are shown in Table 5.4. These numbers are bounded

above by the total number of tainted sinks from Table 5.2, which can be thought of as the union of

exploitable sinks over all ICSs.

For all programs and all sinks other than open on wireshark, max is close to union. That is,

there is at least one ICS which can be used to exploit almost any sink that can be exploited at all

(from any ICS). On the other hand, med is often zero, meaning that more than half of ICSs can

not be used to exploit any sink. This is true even when max is not zero – that is, the distribution

of tainted sinks over ICSs has a long tail. There are a few exceptions to this pattern, particularly

nginx and psql. In these programs, if a sink can be exploited, then it can be exploited from almost

any ICS. The number of tainted sinks for these programs is also close to the total number of sinks,

suggesting that the sinks may simply be reachable from a large portion of the program.

CHAPTER 5. EVALUATION 23

Program CFI
Sinks (med/max/union/total)

exec mmap open write syscall

firefox
type 0/0/0/0 0/0/0/4 0/3/4/12 0/1/1/47 0/6/6/230

addr-type 0/0/0/0 0/0/0/4 0/1/1/12 0/1/1/47 0/6/6/230

updater
type 0/0/0/1 0/0/0/0 1/1/1/28 0/0/0/0 0/0/0/0

addr-type 0/0/0/1 0/0/0/0 1/1/1/28 0/0/0/0 0/0/0/0

crashreporter
type 1/1/1/3 0/0/0/0 2/2/2/18 0/0/0/44 0/0/0/0

addr-type 0/1/1/3 0/0/0/0 0/2/2/18 0/0/0/44 0/0/0/0

httpd
type 0/0/0/0 0/0/0/0 0/1/1/1 0/0/0/2 0/0/0/1

addr-type 0/0/0/0 0/0/0/0 0/1/1/1 0/0/0/2 0/0/0/1

libapr-1.so
type 0/0/0/5 0/0/0/3 0/4/4/6 0/5/5/15 0/0/0/0

addr-type 0/0/0/5 0/0/0/3 0/1/1/6 0/5/5/15 0/0/0/0

nginx
type 0/1/1/1 1/1/1/2 16/18/18/22 11/12/14/22 0/0/0/1

addr-type 0/1/1/1 1/1/1/2 16/18/18/22 11/12/13/22 0/0/0/1

dbmail-imapd
type 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/117 0/0/0/0

addr-type 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/117 0/0/0/0

libdbmail.so
type 0/0/0/0 1/1/1/1 0/1/2/9 0/1/1/3 0/0/0/0

addr-type 0/0/0/0 0/1/1/1 0/0/0/9 0/1/1/3 0/0/0/0

psql
type 1/1/1/3 0/0/0/0 10/11/11/17 0/0/0/3 0/0/0/0

addr-type 1/1/1/3 0/0/0/0 10/11/11/17 0/0/0/3 0/0/0/0

leveldbutil
type 0/0/0/0 0/0/0/1 0/0/0/9 0/1/1/7 0/0/0/0

addr-type 0/0/0/0 0/0/0/1 0/0/0/9 0/1/1/7 0/0/0/0

wireshark
type 0/0/0/2 0/0/0/0 0/1/5/33 0/3/4/5 0/0/0/0

addr-type 0/0/0/2 0/0/0/0 0/1/3/33 0/1/1/5 0/0/0/0

tshark
type 0/0/0/2 0/0/0/0 0/0/0/5 0/0/0/4 0/0/0/0

addr-type 0/0/0/2 0/0/0/0 0/0/0/5 0/0/0/4 0/0/0/0

libwireshark.so
type 0/0/0/0 0/0/0/0 0/0/0/1 0/1/1/1 0/0/0/0

addr-type 0/0/0/0 0/0/0/0 0/0/0/1 0/1/1/1 0/0/0/0

libwiretap.so
type 0/0/0/0 0/0/0/0 0/0/0/6 0/1/1/1 0/0/0/0

addr-type 0/0/0/0 0/0/0/0 0/0/0/6 0/1/1/1 0/0/0/0

openvpn3
type 0/0/0/0 0/0/0/0 0/0/0/1 0/76/94/1,210 0/0/0/0

addr-type 0/0/0/0 0/0/0/0 0/0/0/1 0/76/94/1,210 0/0/0/0

openvpn3-admin
type 0/0/0/0 0/0/0/0 0/1/1/2 0/25/28/311 0/0/0/0

addr-type 0/0/0/0 0/0/0/0 0/1/1/2 0/25/28/311 0/0/0/0

xpdf
type 0/1/1/1 0/0/0/0 0/18/18/23 0/0/0/0 0/0/0/0

addr-type 0/0/0/1 0/0/0/0 0/18/18/23 0/0/0/0 0/0/0/0

Table 5.4: Distribution of exploitable sinks. Sinks indicates the median and maximum number of
sinks exploitable from each ICS (med/max), total exploitable sinks (union), and total sinks (total).
The latter two are repeated from Table 5.2 for reference.

CHAPTER 5. EVALUATION 24

5.3 Syscall Usage

To better understand how sensitive syscalls are used and the patterns that lead to a syscall being

tainted (EQ2), we looked through our analysis tool’s output on the test suite and compared it against

the corresponding source code. Some selected examples are given as case studies in §5.4. In this

section, we summarize syscall uses by type, explore outliers, and discuss potential mitigations.

exec usage varies from program to program, and some do not use it at all. One use is to run

auxiliary programs: updater is an update tool for Firefox which restarts firefox after updating

it. crashreporter is a GUI that runs after firefox has crashed, and it uses exec to start a

crash dump analyzer program. The tainted sink in crashreporter is a false positive likely due to

points-to imprecision: The program takes the name of the dump analyzer and modifies the string

to find the full path; the analysis claims a tainted variable in another file can be loaded during

this process, which does not seem possible based on our manual inspection. wireshark and tshark

support dumping packet traces to disk, and do this by starting a separate packet capture program.

nginx supports live updates: The path to its executable is stored as a global (writable!) string.

To update the software, the user switches out the binary on disk, and sends the nginx process a

signal which causes it to exec itself. It supports this with an address-taken wrapper around exec

(ngx execute proc), so its exec sink is tainted and exploitable. xpdf’s use seems to be dead code:

There is an executeCommand function which wraps around system, but does not have any callers

according to grep. psql is interesting: as a command-line interface to PostgreSQL, it runs arbitrary

shell commands from the user. Intuitively, it would not be surprising for an attacker with arbitrary

control over memory to be able to exploit such a program. However, our results are inconclusive:

The prototype analysis only reports one tainted path, which is invalid: The corresponding control-

flow path has more returns than calls. A possible future direction for this work would be validating

tainting data-flow paths based on control flow. As a library, libapr-1.so provides general process

creation functions for parallelism. It has a similar exec wrapper to nginx (apr proc create), which

is tainted across all CFI policies in the client-library analysis. The one untainted exec sink is actually

due to a SVF bug where the SVFG is missing edges because memcpy is not handled correctly, giving

us a false negative.

For programs where the set of exec targets is small and fixed, a sensible defense is input sanitiza-

tion: The program to be exec’d can be compared against a list of legal ones, and rejected if is not in

the list. For instance, if updater only ever exec’s firefox in benign execution, an attacker who tries

to exploit it by running /bin/sh could be stopped by checking that the program argument to exec

is, in fact, firefox. This can be done either through compiler instrumentation or by interposing

on all syscalls with a reference monitor [4]. For libraries with “exec a program” functions where the

set of possible targets is not known to the library, one solution is to treat the library as a black box

and sanitize arguments passed to the library in the client. Again, this requires that the set of legal

programs started by the client be known in advance.

mmap, while capable of changing page permissions, is overwhelmingly used for memory allocation.

The address field is usually null (asking the kernel to allocate a new buffer somewhere), and the

protection field is specified as a constant in every case we examined (e.g. PROT READ | PROT WRITE).

When an argument is tainted, it is usually the length field; the pointer is tainted in a few cases. A

CHAPTER 5. EVALUATION 25

tainted pointer to mmap could be dangerous if the protection field allows writing or execution (even

if this is a constant), since an attacker could modify just the pointer to cause mmap to make data

executable or code writable.

By filtering out benign memory allocation, we can eliminate mmap sinks from most programs.

For the rest, as before, simple input sanitization can be effective: The vast majority of programs

have no need to mark pages as executable, so this protection flag can simply be disabled for them.

Since the size of the binary is known in advance, attempts to make the code region writable can also

be blocked by checking if the mmap pointer is in that range.

open is used for filesystem access. The protection fields are typically constants like with mmap,

but the file paths are usually variable. Many of the tested programs include logging features and

can dump to a configurable file location. Due to the large variety of filesystem use patterns, it

is difficult to draw any general conclusions about what causes an open syscall to be tainted. The

output from the tool is also difficult to parse for open, and we suspect many of the tainted paths

to be invalid; however, the path provided by the tool is just one of many possible ones and it is

infeasible to manually read them all.

Regardless, damage to the filesystem can be mitigated by providing more fine-grained access

control. Processes created by a user do not need to be able to access every file that that user

can: Sensitive data like cryptographic keys and lists of trusted users can be made isolated and only

accessible by certain programs, reducing the attack surface.

write is used for writing to a file handle. While we are interested in call sites an attacker could

use to modify a sensitive file, our output is polluted by writes to stdout and stderr. This is less

of an issue in C, since writing to stdout is more commonly done with printf or puts. However,

using cout in C++ calls std::ostream::operator<<, which is the same function used to write to

any std::ofstream. Further, openvpn3 and openvpn3-admin often take std::ostream objects as

parameters to virtual functions (which are address-taken and therefore taint sources) and then write

through them, causing the write sink to be tainted. An attacker could potentially exploit any of

these call sites, although they would first have to open the desired file. dbmail-imapd opens a pipe

to itself and writes a constant character to it to send an asynchronous notification. These writes are

exploitable under the any and addr CFI policies because the file descriptor for the self pipe is loaded

out of a non-constant global array, which is controlled by our attacker; under the other policies,

there exists no control-flow path to trigger this write.

Compared to open syscalls, where a program is likely to have a fixed set of files it either would

ever need or would never need to access, it is harder to define an access control policy for file

descriptors. However, since a file must be opened before it can be written to, write syscalls arguably

do not matter if the protection on open is adequate.

syscall is used to issue any syscall, typically one that does not have a dedicated libc wrapper. In

every use of syscall in the test suite, the syscall number argument is a constant. Breaking down the

230 uses in firefox, we find:

• 206 inlined uses of gettid, 0 tainted;

• 11 uses of mmap in the memory allocator to bypass code that overrides libc mmap, 2 tainted;

CHAPTER 5. EVALUATION 26

• 7 uses of munmap for the same reason, 3 tainted;

• 3 uses of getrandom, 0 tainted;

• 3 uses of tgkill, 1 tainted.

The other two untainted uses are another gettid in httpd and a capset with constant arguments

in nginx.

By identifying cases where the syscall number is constant, we can analyze the call site as we

would any other call site of that syscall (e.g. syscall(SYS mmap) as mmap()). While a program

could allow the syscall number to be a variable, we feel there is no need to allow this, and it was

not a problem for any program we tested. This can be enforced during the software development

process and caught by a simple linter rule.

Overall, there are not very many syscall gadgets in most programs, and our manual analysis

suggests that the harm caused by the ones that remain can be largely mitigated through lightweight

input sanitization. What our analysis provides is a quantitative measure of exploitability (number of

tainted sinks, for sensitive syscalls of interest) with a corresponding qualitative explanation (tainted

source-sink path). It allows the defence to be tailored to the application, as input sanitization is

only necessary for the syscall call sites that are considered exploitable. By modelling different levels

of CFI precision, it allows the benefit of CFI to be assessed in the context of an end-to-end exploit,

and on a program-by-program basis.

5.4 Case Studies

We now give a few illustrative code examples from the test suite and discuss the accuracy of the

source-sink paths reported by our analysis tool (EQ3). In all cases, the CFI policy is addr-type.

5.4.1 NGINX

1) Exploitable exec in nginx. Listing 5.1 shows relevant source code for an exploitable exec in

nginx. ngx execute proc is a legal indirect target, so the parameter data and anything it points

to are tainted; arguments to execve are loaded out of it. Our tool correctly identifies this case: The

tainted data-flow path is highlighted in yellow.

1 // os/unix/ngx_process.c:269

2 // legal indirect target; data is tainted

3 static void

4 ngx_execute_proc(ngx_cycle_t *cycle , void *data)

5 {

6 ngx_exec_ctx_t *ctx = *data;

7

8 // all args are tainted

9 if (execve(ctx->path, ctx->argv, ctx->envp) == -1) {

10 ngx_log_error(NGX_LOG_ALERT , cycle ->log , ngx_errno ,

11 "execve ()␣failed␣while␣executing␣%s␣\"%s\"",

12 ctx ->name , ctx ->path);

13 }

CHAPTER 5. EVALUATION 27

14

15 exit (1);

16 }

Listing 5.1: Source code for an exploitable exec in nginx. data’s points-to set is tainted (line 4); it

is copied to ctx (line 6) and loaded into execve (line 9).

2) False positive mmap in nginx. Listing 5.2 shows relevant source code for an mmap in nginx

which the tool reports as tainted but is not actually exploitable. The tainted path is highlighted

in yellow. ngx event module init is a legal indirect target, so cycle and anything it points to are

tainted. This taints shm.log, and then shm.size is passed as the length parameter to mmap. There

is no actual data-flow path here, but the points-to analysis can not distinguish between shm.log and

shm.size because it is not field-sensitive. Thus, it claims that shm.size is tainted by cycle. Also,

even if an attacker could control shm.size, it would only determine the size of the mmap allocation;

no permissions for existing pages would change.

1 // event/ngx_event.c:466

2 // legal indirect target; cycle is tainted

3 static ngx_int_t

4 ngx_event_module_init(ngx_cycle_t *cycle)

5 {

6 // ...

7 ngx_shm_t shm;

8 // ...

9 // size is a constant

10 shm.size = size;

11 // ...

12 // w/o field -sensitivity , shm is tainted

13 shm.log = cycle->log;

14

15 if (ngx_shm_alloc (&shm) != NGX_OK) {

16 return NGX_ERROR;

17 }

18 // ...

19 }

20

21 // os/unix/ngx_shmem.c:14

22 // shm’s points -to set is tainted

23 ngx_int_t

24 ngx_shm_alloc(ngx_shm_t *shm)

25 {

26 // shm ->size is tainted

27 shm ->addr = (u_char *) mmap(NULL , shm->size,

28 PROT_READ|PROT_WRITE ,

29 MAP_ANON|MAP_SHARED , -1, 0);

30

31 if (shm ->addr == MAP_FAILED) {

CHAPTER 5. EVALUATION 28

32 ngx_log_error(NGX_LOG_ALERT , shm ->log , ngx_errno ,

33 "mmap(MAP_ANON|MAP_SHARED ,␣%uz)␣failed", shm ->size);

34 return NGX_ERROR;

35 }

36

37 return NGX_OK;

38 }

Listing 5.2: Source code for a false positive mmap in nginx. The analysis can not distinguish between

shm.log and shm.size because it is not field-sensitive, so it claims that shm.size is tainted by cycle

on line 13. This taint is propagated to the length argument of mmap.

5.4.2 Wireshark

3) Unexploitable exec in wireshark. Listing 5.3 shows relevant source code for an unexploitable

exec in wireshark. The tool correctly identifies this; it produces no data-flow path because no such

path exists. The program name (dumpcap) is appended to the relevant directory path and passed

to exec; no data-flow from an indirect call target is possible.

1 // capture/capture_sync.c:205

2 /* a new capture run: start a new dumpcap task and hand over parameters

through command line */

3 gboolean

4 sync_pipe_start(capture_options *capture_opts , GPtrArray *capture_comments ,

5 capture_session *cap_session , info_data_t* cap_data ,

6 void (* update_cb)(void))

7 {

8 // ...

9 char **argv;

10 // ...

11 // argv [0] = "<...>/ dumpcap"

12 argv = init_pipe_args (&argc);

13 // ...

14 if ((cap_session ->fork_child = fork()) == 0) {

15 // ...

16 // args to exec are clean

17 execv(argv[0], argv);

18 // ...

19 }

20 // ...

21 }

22

23 // capture/capture_sync.c:170

24 /* Initialize an argument list and add dumpcap to it. */

25 static char **

26 init_pipe_args(int *argc) {

27 char **argv;

28 // ...

CHAPTER 5. EVALUATION 29

29 // target program (dumpcap) is hard -coded

30 exename = g_strdup_printf("%s/dumpcap", progfile_dir);

31 // ...

32 /* Make that the first argument in the argument list (argv [0]). */

33 argv = sync_pipe_add_arg(argv , argc , exename);

34 // ...

35 return argv;

36 }

Listing 5.3: Source code for an unexploitable exec in wireshark. The arguments passed to exec

(argv on line 17) are built by calling init pipe args (line 12), which appends "/dumpcap" to a

directory path (line 30) and assigns the result to argv[0] (line 33).

5.4.3 OpenVPN3

4) False positive write in openvpn3. Listing 5.4 shows relevant source code for a write in

openvpn3 which is correctly tainted but ultimately benign. The tainted data-flow path is high-

lighted in yellow. The source function is openvpn::OpenSSLContext::Config::new factory: It is

a legal indirect target because it is a virtual function and therefore address-taken (and also shares

a type signature with at least one ICS). All parameters of the source function are tainted, includ-

ing the implicit this, which gets passed to the openvpn::OpenSSLContext constructor to become

config arg. Eventually, tls cipher list is loaded out of it and written to a std::stringstream.

This is the tainted write operation; the written value is the tainted argument. Even though this

code does not write to the filesystem, it writes to a string through std::ostream::operator<<. As

discussed in §5.3, we have to consider all call sites of this function a write sink because it is possible

to write to a file through it.

1 // openvpn3 -core/openvpn/openssl/ssl/sslctx.hpp :101

2 namespace openvpn {

3

4 // Represents an SSL configuration that can be used

5 // to instantiate actual SSL sessions.

6 class OpenSSLContext : public SSLFactoryAPI

7 {

8 // ...

9 class Config : public SSLConfigAPI

10 {

11 // ...

12 // legal indirect target; this is tainted

13 SSLFactoryAPI ::Ptr new_factory () override

14 {

15 return SSLFactoryAPI ::Ptr(new OpenSSLContext(this));

16 }

17 // ...

18 }

19 // ...

20 // config_arg is tainted , and taints config

CHAPTER 5. EVALUATION 30

21 OpenSSLContext(Config* config arg)

22 : config(config arg)

23 {

24 // ... eventually ...

25 translated_cipherlist = translate_cipher_list(config-

>tls cipher list);

26

27 // openvpn3 -core/openvpn/openssl/ssl/sslctx.hpp :1070

28 // cipherlist is tainted

29 static std:: string translate_cipher_list(std:: string cipherlist)

30 {

31 std:: stringstream cipher list ss(cipherlist);

32 std:: string ciphersuite;

33

34 std:: stringstream result;

35

36 // ...

37 while(std:: getline(cipher list ss, ciphersuite, ’:’))

38 {

39 // ...

40 // tainted value is written to a stringstream

41 result << ciphersuite;

42 // ...

43 }

44 // ...

45 }

Listing 5.4: Source code for a false positive write in openvpn3. The this pointer is tainted

in openvpn::OpenSSLContext::Config::new factory (line 13), which is propagated through

config arg (line 21) into translated cipherlist (line 25). This value is then written to a

std::stringstream (line 41), which is a write sink.

5.5 Analysis Cost

To evaluate the scalability of our analysis and the effectiveness of the CFG pruning technique

described in §4.2 (EQ4), we measured resource consumption over the test suite. Table 5.5 shows the

time and peak memory used to analyze each program, with and without pruning, as measured by

/usr/bin/time. Taint propagation and CFG pruning were performed in backward mode, with the

CFI policy set to addr-type. While we ran our experiments on a machine with 512GB of memory

(§5.1), time became the bottleneck once workloads began to use more than 30GB.

By applying CFG pruning, we see order-of-magnitude reductions in time and memory use in

some programs (firefox, nginx, xpdf) and modest reductions in others (updater, dbmail-imapd,

libdbmail.so). Despite reducing the memory use in libwireshark.so, pruning does not allow the

analysis to complete within a reasonable length of time (2 hours). The time reduction seems to be

more significant for larger programs, which could be explained by the points-to analysis taking up

a larger portion of the total run time due to its quadratic scaling. Since CFG pruning filters the

CHAPTER 5. EVALUATION 31

Program
Size

(MB)

Pruning On Pruning Off

Time (s) Mem (GB) Time (s) Mem (GB)

firefox 10.71 7.94 0.91 366.57 1.89

updater 0.83 0.50 0.10 0.53 0.12

crashreporter 4.24 6.08 0.62 11.27 0.94

httpd 3.12 2.42 0.36 3.55 0.51

libapr-1.so 1.32 0.85 0.16 2.40 0.29

nginx 6.46 10.07 0.88 186.92 4.28

dbmail-imapd 0.52 0.32 0.08 0.39 0.11

libdbmail.so 1.72 1.82 0.30 2.10 0.35

psql 1.20 3.83 0.48 4.48 0.54

leveldbutil 0.44 0.59 0.12 1.21 0.19

wireshark 75.64 65.25 6.67 288.15 15.05

tshark 1.92 1.00 0.26 1.22 0.31

libwireshark.so 334.70 – *37.17 – *50.69

libwiretap.so 4.14 2.82 0.41 4.59 0.59

openvpn3 5.54 11.25 1.44 – *3.27

openvpn3-admin 0.90 1.77 0.27 3.42 0.42

xpdf 4.34 46.99 3.62 1,123.68 21.49

Table 5.5: Analysis time and peak memory usage over the test suite, with and without pruning. Size
indicates the size of the bitcode file. Time and Mem indicate the time and memory usage reported
by /usr/bin/time. There were 3 failed runs: libwireshark.so timed out after 2 hours with and
with pruning, and SVF threw an error during SVFG construction on openvpn3 when run without
pruning. For these failed runs, we report the peak memory usage up to the point when the analysis
failed or was killed.

set of pointers to be analyzed, it mainly reduces points-to analysis time and therefore has a greater

effect when this time is a signficant fraction of the total.

With backward pruning, the set of pointers to be analyzed is determined by the set of basic

blocks that can reach a sink through direct control flow. While we expect the number of analyzed

pointers to increase with the number of sinks, there are too many confounding factors for us to relate

it directly to total analysis time. We leave further exploration of this relationship to future work.

Chapter 6

Limitations and Future Work

Moving forward with syscall reachability analysis, we see several challenges and opportunities.

Improving analysis precision. The set of tainted sinks produced by our analysis represents

an upper bound on the exploitability of the program. While it identifies sinks that are actually

exploitable (§5.4.1), it also produces false positives (§5.4.1, §5.4.3) for a variety of reasons (§3.5).
Some of these false positives can be eliminated by using a more precise pointer analysis (e.g. the one

on nginx could be eliminated with a field-sensitive analysis), which we consider to be orthogonal to

our work. Others require changes to taint propagation: Ensuring that the height of the call stack

along the tainted path is never negative could eliminate some false paths with illegal control-flow.

False negatives are also a concern, but harder to evaluate. A potential source of error is that our

list of libc syscall wrappers was created manually and may be incomplete. This could be addressed

in the future by analyzing all functions containing a syscall instruction in an implementation like

glibc.

Application to exploit generation. The source-sink paths output by our analysis tool represent

data-flow that may be exploitable by an attacker. While we make conservative assumptions (leading

mainly to false positives) with the intention of informing possible defences, it could nonetheless be

applied to exploit generation to find syscall gadgets that are actually viable. A validation mechanism

could be used to reduce the false positive rate: For instance, symbolic execution along the source-sink

path could determine the attacker’s ability to set a syscall argument to a particular value.

Targeted defences. Our evaluation (§5.3) suggests that lightweight input sanitization can miti-

gate the harm caused by an attacker in most of the cases examined. In addition to this, the analysis

allows the defence to be tailored to the program: Code around tainted source-sink paths could

be restructured, or additional domain-specific checks could be added. CFI precision could also be

reduced in insensitive areas: The defence could use call-site-insensitive CFI when the ICS has no

targets (sources) that taint a sink; call-site-sensitive CFI could be used for the other ICSs. Under

our threat model, this would reduce performance overhead without compromising security.

32

Chapter 7

Conclusion

Control-flow integrity (CFI) has been the subject of intense research and seen significant industry

adoption as a defence against control-flow hijacking. While attacks have demonstrated its limitations

in fully preventing control-flow hijacking, we argue that CFI can still make end-to-end exploits

difficult by reducing an attacker’s ability to compromise the system through a syscall gadget. In order

to evaluate the exploitability of programs under a variety of CFI policies, we design and implement a

specialization of static taint analysis called syscall reachability analysis to over-approximate the set

of syscall gadgets, which we propose as a quantitative upper bound on exploitability. To do this, we

assume a strong attacker who has already performed arbitrary computation in userspace but must

follow the CFI policy, and find sensitive syscall call sites whose arguments are reachable by dataflow

from attacker-controlled values.

We evaluate our analysis over a suite of representative C/C++ programs. We find that most

programs do not make very many sensitive syscalls and that in most of the remaining cases examined,

the harm can be mitigated through sanitization of syscall arguments. While more precise CFI

policies allow fewer syscall gadgets, they do not eliminate them completely. Our analysis allows

exploitability to be measured on a program-by-program basis, allowing CFI and other defences to

be tailored for higher security or lower overhead as needed. Potential directions for future work

include improving the precision of our analysis, reducing the overhead of CFI enforcement without

increasing exploitability, and applying the analysis to exploit generation.

33

Bibliography

[1] 2021 CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.mitre.org/top25/

archive/2021/2021_cwe_top25.html.

[2] Mart́ın Abadi et al. “Control-Flow Integrity”. In: Proceedings of the 12th ACM Conference

on Computer and Communications Security. CCS ’05. Alexandria, VA, USA: Association for

Computing Machinery, 2005, 340–353. isbn: 1595932267. doi: 10.1145/1102120.1102165.

[3] Steven Arzt et al. “FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-

Aware Taint Analysis for Android Apps”. In: Proceedings of the 35th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. PLDI ’14. Edinburgh, United

Kingdom: Association for Computing Machinery, 2014, 259–269. isbn: 9781450327848. doi:

10.1145/2594291.2594299.

[4] BPF: the universal in-kernel virtual machine. https://lwn.net/Articles/599755/.

[5] Nathan Burow et al. “Control-Flow Integrity: Precision, Security, and Performance”. In: ACM

Comput. Surv. 50.1 (2017). issn: 0360-0300. doi: 10.1145/3054924.

[6] Nicholas Carlini et al. “Control-Flow Bending: On the Effectiveness of Control-Flow Integrity”.

In: 24th USENIX Security Symposium (USENIX Security 15). Washington, D.C.: USENIX

Association, Aug. 2015, pp. 161–176. isbn: 978-1-939133-11-3. url: https://www.usenix.

org/conference/usenixsecurity15/technical-sessions/presentation/carlini.

[7] Stephen Checkoway et al. “Return-Oriented Programming without Returns”. In: Proceedings

of the 17th ACM Conference on Computer and Communications Security. CCS ’10. Chicago,

Illinois, USA: Association for Computing Machinery, 2010, 559–572. isbn: 9781450302456.

doi: 10.1145/1866307.1866370.

[8] Yueqiang Cheng et al. “ROPecker: A Generic and Practical Approach For Defending Against

ROP Attacks”. In: Proceedings 2014 Network and Distributed System Security Symposium.

Network and Distributed System Security Symposium. San Diego, CA: Internet Society, 2014.

isbn: 978-1-891562-35-8. doi: 10.14722/ndss.2014.23156. url: https://www.ndss-

symposium.org/ndss2014/programme/ropecker- generic- and- practical- approach-

defending-against-rop-attacks/.

[9] Control Flow Integrity. https://clang.llvm.org/docs/ControlFlowIntegrity.html.

[10] Control-flow integrity for the kernel. https://lwn.net/Articles/810077/.

34

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/2594291.2594299
https://lwn.net/Articles/599755/
https://doi.org/10.1145/3054924
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.14722/ndss.2014.23156
https://www.ndss-symposium.org/ndss2014/programme/ropecker-generic-and-practical-approach-defending-against-rop-attacks/
https://www.ndss-symposium.org/ndss2014/programme/ropecker-generic-and-practical-approach-defending-against-rop-attacks/
https://www.ndss-symposium.org/ndss2014/programme/ropecker-generic-and-practical-approach-defending-against-rop-attacks/
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://lwn.net/Articles/810077/

BIBLIOGRAPHY 35

[11] Michael Dalton, Hari Kannan, and Christos Kozyrakis. “Raksha: A Flexible Information Flow

Architecture for Software Security”. In: Proceedings of the 34th Annual International Sympo-

sium on Computer Architecture. ISCA ’07. San Diego, California, USA: Association for Com-

puting Machinery, 2007, 482–493. isbn: 9781595937063. doi: 10.1145/1250662.1250722.

[12] Lucas Davi et al. “Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-

Flow Integrity Protection”. In: 23rd USENIX Security Symposium (USENIX Security 14).

San Diego, CA: USENIX Association, Aug. 2014, pp. 401–416. isbn: 978-1-931971-15-7. url:

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/

davi.

[13] Isaac Evans et al. “Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow In-

tegrity”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-

nications Security. CCS ’15. Denver, Colorado, USA: Association for Computing Machinery,

2015, 901–913. isbn: 9781450338325. doi: 10.1145/2810103.2813646.

[14] Xinyang Ge, Weidong Cui, and Trent Jaeger. “GRIFFIN: Guarding Control Flows Using Intel

Processor Trace”. In: Proceedings of the 22nd ACM International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS). ACM, 2017.

url: https://www.microsoft.com/en-us/research/publication/griffin-guarding-

control-flows-using-intel-processor-trace/.

[15] Hardening ELF binaries using Relocation Read-Only (RELRO). https://www.redhat.com/

en/blog/hardening-elf-binaries-using-relocation-read-only-relro.

[16] Hong Hu et al. “Enforcing Unique Code Target Property for Control-Flow Integrity”. In: Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.

CCS ’18. Toronto, Canada: Association for Computing Machinery, 2018, 1470–1486. isbn:

9781450356930. doi: 10.1145/3243734.3243797.

[17] Mustakimur Rahman Khandaker et al. “Origin-sensitive Control Flow Integrity”. In: 28th

USENIX Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX Associa-

tion, Aug. 2019, pp. 195–211. isbn: 978-1-939133-06-9. url: https://www.usenix.org/

conference/usenixsecurity19/presentation/khandaker.

[18] Volodymyr Kuznetsov et al. “Code-Pointer Integrity”. In: 11th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI 14). Broomfield, CO: USENIX Associ-

ation, Oct. 2014, pp. 147–163. isbn: 978-1-931971-16-4. url: https://www.usenix.org/

conference/osdi14/technical-sessions/presentation/kuznetsov.

[19] Pointer Authentication on ARMv8.3A. https://www.qualcomm.com/media/documents/

files/whitepaper-pointer-authentication-on-armv8-3.pdf.

[20] ROPgadget - Gadgets finder and auto-roper. http://www.shell- storm.org/project/

ROPgadget/.

[21] Felix Schuster et al. “Counterfeit Object-oriented Programming: On the Difficulty of Prevent-

ing Code Reuse Attacks in C++ Applications”. In: 2015 IEEE Symposium on Security and

Privacy. 2015, pp. 745–762. doi: 10.1109/SP.2015.51.

[22] Security. https://webassembly.org/docs/security/.

https://doi.org/10.1145/1250662.1250722
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://doi.org/10.1145/2810103.2813646
https://www.microsoft.com/en-us/research/publication/griffin-guarding-control-flows-using-intel-processor-trace/
https://www.microsoft.com/en-us/research/publication/griffin-guarding-control-flows-using-intel-processor-trace/
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://doi.org/10.1145/3243734.3243797
https://www.usenix.org/conference/usenixsecurity19/presentation/khandaker
https://www.usenix.org/conference/usenixsecurity19/presentation/khandaker
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
http://www.shell-storm.org/project/ROPgadget/
http://www.shell-storm.org/project/ROPgadget/
https://doi.org/10.1109/SP.2015.51
https://webassembly.org/docs/security/

BIBLIOGRAPHY 36

[23] Hovav Shacham. “The Geometry of Innocent Flesh on the Bone: Return-into-Libc without

Function Calls (on the X86)”. In: Proceedings of the 14th ACM Conference on Computer and

Communications Security. CCS ’07. Alexandria, Virginia, USA: Association for Computing

Machinery, 2007, 552–561. isbn: 9781595937032. doi: 10.1145/1315245.1315313.

[24] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. “Security Analysis of Processor Instruc-

tion Set Architecture for Enforcing Control-Flow Integrity”. In: Proceedings of the 8th Inter-

national Workshop on Hardware and Architectural Support for Security and Privacy. HASP

’19. Phoenix, AZ, USA: Association for Computing Machinery, 2019. isbn: 9781450372268.

doi: 10.1145/3337167.3337175.

[25] SLOCCount. https://dwheeler.com/sloccount/.

[26] Manu Sridharan and Stephen J. Fink. “The Complexity of Andersen’s Analysis in Practice”.

In: Static Analysis. Ed. by Jens Palsberg and Zhendong Su. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 205–221. isbn: 978-3-642-03237-0.

[27] G. Edward Suh et al. “Secure Program Execution via Dynamic Information Flow Tracking”.

In: Proceedings of the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS XI. Boston, MA, USA: Association for Computing

Machinery, 2004, 85–96. isbn: 1581138040. doi: 10.1145/1024393.1024404.

[28] Yulei Sui and Jingling Xue. “SVF: Interprocedural Static Value-Flow Analysis in LLVM”.

In: Proceedings of the 25th International Conference on Compiler Construction. CC 2016.

Barcelona, Spain: Association for Computing Machinery, 2016, 265–266. isbn: 9781450342414.

doi: 10.1145/2892208.2892235.

[29] Yulei Sui and Jingling Xue. “Value-Flow-Based Demand-Driven Pointer Analysis for C and

C++”. In: IEEE Transactions on Software Engineering 46.8 (2020), pp. 812–835. doi: 10.

1109/TSE.2018.2869336.

[30] Whole Program LLVM: wllvm ported to go. https://github.com/SRI-CSL/gllvm.

[31] Jonathan Woodruff et al. “The CHERI Capability Model: Revisiting RISC in an Age of Risk”.

In: Proceeding of the 41st Annual International Symposium on Computer Architecuture. ISCA

’14. Minneapolis, Minnesota, USA: IEEE Press, 2014, 457–468. isbn: 9781479943944.

https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/3337167.3337175
https://dwheeler.com/sloccount/
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1109/TSE.2018.2869336
https://doi.org/10.1109/TSE.2018.2869336
https://github.com/SRI-CSL/gllvm

	Introduction
	Background and Related Work
	Return-Oriented Programming
	Control-Flow Integrity
	Sensitive Syscalls
	Taint Analysis

	Design
	Analysis Objective
	Threat Model
	CFI Model
	Syscall Reachability
	Modular Analysis for Shared Libraries

	Sources of Imprecision

	Implementation
	Workflow
	Control-Flow Graph Pruning

	Evaluation
	Experiment Setup
	Summary Statistics
	Indirect Call Site Analysis

	Syscall Usage
	Case Studies
	NGINX
	Wireshark
	OpenVPN3

	Analysis Cost

	Limitations and Future Work
	Conclusion
	Bibliography

