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Abstract—Web servers service client requests, some of which
might cause the web server to perform security-sensitive opera-
tions (e.g. money transfer, voting). An attacker may thus forge
or maliciously manipulate such requests by compromising a
web client. Unfortunately, a web server has no way of knowing
whether the client from which it receives a request has been
compromised or not—current “best practice” defenses such as
user authentication or network encryption cannot aid a server
as they all assume web client integrity.

To address this shortcoming, we propose vWitness, which “wit-
nesses” the interactions of a user with a web page and certifies
whether they match a specification provided by the web server,
enabling the web server to know that the web request is user-
intended. The main challenge that vWitness overcomes is that
even benign clients introduce unpredictable variations in the way
they render web pages. vWitness differentiates between these
benign variations and malicious manipulation using computer
vision, allowing it to certify to the web server that 1) the web page
user interface is properly displayed 2) observed user interactions
are used to construct the web request. Our vWitness prototype
achieves compatibility with modern web pages, is resilient to
adversarial example attacks and is accurate and performant—
vWitness achieves 99.97% accuracy and adds 197ms of overhead
to the entire interaction session in the average case.

I. INTRODUCTION

Web applications are increasingly used to implement
security-sensitive services such as financial transactions, ac-
cess to social services and e-health. These services are sensi-
tive because they allow a user to make important and in some
cases, irrevocable actions that may affect the user’s financial
well-being, freedom and safety. The security of these services
rests on the assumption that requests leaving user clients are
intended by the human user. This assumption depends on two
factors: first, that we can correctly authenticate the principal
making the request and second, that the integrity of the user-
page interaction is maintained.

While web authentication has been well-studied (e.g. pass-
words and other methods [1]–[4]), securing user-page interac-
tion is an umbrella definition that covers three goals [5], [6]:
the proper page rendering, the proper processing of user inputs
and the proper construction of outgoing requests. Violating
any one of the goals allows an attacker to send out user-
unintended requests. The following are examples of user-page
interaction attacks: clickjacking [7] shows a deceptive user
interface (UI) to trick a victim user into performing unintended
actions, click fraud forges user inputs on web elements (e.g.

clicks) for monetary benefits and cross-site request forgery [8]
crafts user-unintended requests to remote servers.

Existing defenses for user-page interaction assume an un-
privileged/remote attacker and rely on client-side enforce-
ment such as browser-based flags (e.g. x frame options [9]
for page overlaying) and policies (e.g. cross-origin resource
sharing [10], content security policy [11], sub-resource in-
tegrity [12] for unauthorized code execution). These defenses
can be bypassed by client-side malware [13], [14]. For exam-
ple, Scranos [15], a web-targeting client-side rootkit, attacks
remote servers by forging user interactions, chaining into so-
phisticated attacks (e.g. installing malicious browser plugins,
stealing credentials and cookies, and spamming messages).
Further, leveraging its privilege, it can disable in-browser se-
curity mechanisms and install additional payloads to enrich
its capabilities. What is special about Scranos is that 1) its
forged requests are indistinguishable from user-intended ones
as observed by the server and 2) it is privileged and can bypass
unprivileged defenses (e.g. browser-based).

Before Scranos, the research community attempted to deal
with a hypothetical privileged adversary. Solutions such as
NAB [16], can ensure that all requests are generated by I/O
from a human user, but they cannot semantically distinguish
whether the human-generated I/O causally resulted in the re-
quest. Alternatively, other works implement high-assurance,
small trusted computing base (TCB) clients that are resistant to
subversion, but suffer from limited functionality: Vbutton [5],
Fidelius [17] and ProtectiON [6] pack web page rendering (i.e.
renderer), input processing (i.e. device drivers) and request
construction (i.e. JavaScript engine) into trusted execution en-
vironments (TEE, e.g. ARM TrustZone, Intel SGX). But to
keep the TCB small, the functionality support is extremely lim-
ited. For instance, Fidelius only supports rendering textboxes
and handling keyboard inputs (i.e. no mouse support). These
limitations can be exploited by UI attacks [18] (due to the
coexistence of trusted and untrusted UI elements) and limit
the compatibility of such TEE-based defenses (i.e. almost no
modern web page is textbox-only).

In this paper, we propose an approach that works for fully-
functional commodity web browsers by certifying to a remote
server that the interactions between a user and a web page
match some server-supplied specifications under an OS-level
privilege malware. Instead of trying to secure the entire soft-
ware stack that the user interacts with, our proposal, which we



call vWitness (short for “virtual witness”. We take inspiration
from how the signing of some legal documents must be “wit-
nessed” by another party to be considered valid.) is a trusted
component that passively observes the UI interactions the user
has with the web page through screenshots. The screenshots,
in our design, are samples of the display frame buffer taken
from a lower-level and thus, are invisible to the client software
stack (e.g. OS and browser) making it immune to tampering.

With the screenshots, vWitness leverages computer vision,
to 1) ensure the web interface was correctly displayed to the
user, 2) observe user-page interactions and ensure the final out-
going request is properly constructed based on correct seman-
tics. To achieve both goals, vWitness needs server-provided
specifications (called VSPEC) as web page appearances and
request construction are both server-specific. As part of this
work, we provide automatic VSPEC construction scripts.

Requests satisfying both goals above achieve interaction
integrity and are considered to be user-intended (when paired
with authentication, but not in the scope of this work). vWit-
ness uses a cryptographic signature to convey whether a re-
quest satisfies interaction integrity to remote servers.

vWitness’s novel use of computer vision is to differentiate
between benign rendering variations and malicious display
manipulations on the screenshots. A key challenge is that it is
impossible for a web server to know, a priori, at the pixel level,
exactly how a web page will be rendered on a user’s device
even in the absence of an attacker. This is due to the client-side
variation in the rendering stack which consists of browsers,
drivers, operating systems (OS, e.g. available fonts), and con-
figuration settings (e.g. ClearType [19]). Such variations cause
enough differences even enabling fingerprinting [20]. vWit-
ness’s vision-based validator can tolerate rendering variations
while still being more accurate than previous works using
pixel-by-pixel comparison [5] and image hash [21]. Computer
vision is vulnerable to adversarial machine learning attacks,
for which we devise and evaluate a set of vWitness-specific
mitigation (as opposed to general defenses) that increases the
robustness by 5.14 ×. While validation-based (i.e. signatures)
and isolation-based (i.e. TEE) secure systems each have their
pros and cons, vWitness’s limitations are those imposed by
the use of computer vision, which we must be able to see to
interpret it (e.g. vWitness can not verify file uploads) and can
become computationally expensive to verify content-rich UI
elements (e.g. complex animations or videos). While we leave
these as future work, we believe they do not prevent vWitness
from working with most security-sensitive pages.

vWitness’s approach has unique performance traits: 1) vWit-
ness runs in the background and is not on the critical path
of the user-page interaction: it introduces minimal overhead
at interaction time. 2) vWitness’s validation is concurrent to
the user interaction, and thus, depending on the length of the
session and the speed of validation, a delay is added to the final
request when user-page interaction has ended. 3) vWitness’s
validation can be incremental and benefits from caching and
a GPU.

vWitness certifies interaction integrity and conveys the re-

sult to the server using a single bit of information (i.e. whether
interaction integrity satisfies or not). It does not reveal unnec-
essary details to the server as all processing of screenshots
remains local on the user client and screenshots are erased
after a session finishes.
Contributions.

• We propose the idea of achieving interaction integrity
through passive observation. We trained computer vision-
based validators that can distinguish benign rendering
variation and malicious UI tampering. We implemented
a client-side prototype, called vWitness, in Xen’s dom0,
which is able to certify requests’ interaction integrity
to remote servers. We constructed server-side scripts to
automate VSPEC construction.

• We propose four vWitness-specific defenses against ad-
versarial attacks that increase the robustness of vWitness’s
text model by a factor of 5.14 over a reference on five
attacks from CleverHans [22] and AutoAttack [23].

• We evaluate vWitness’s compatibility, performance and
accuracy on two datasets: Clickbench [24] and Jotform
real-life web pages. The results show that vWitness is
compatible with 10× more pages than previous proposals,
has an accuracy of 99.97% when validating pages and
interactions, and provides performance (197/230ms delay
for GPU/CPU setups) better than TEE-based works.

vWitness source code is available to the public 1.

II. SECURITY MODEL

With current web technologies, remote servers cannot deter-
mine if a request is intended by human users or if the request
has been tampered with or forged by malware on the user
client. Accepting malware-constructed/tampered requests can
harm the service as well as the user (e.g. unintended Youtube
subscription [15] and cryptocurrency loss [25]).
Threat Model. We assume the adversary controls malware
with OS-level privileges on the user client. The malware can
tamper with any guest OS components or user software such
as the browser, but not a hypervisor that vWitness relies on
for its integrity. Thus, firmware- and hypervisor-level malware
is considered out-of-scope. This threat model is in line with
previous works [5], [6], [17] as well as the assumption on
hypervisor integrity [26].

vWitness considers phishing attacks to be out of scope as
our defense requires server integrity and cooperation. In addi-
tion, vWitness does not address the authentication problem as
it is orthogonal to interaction integrity, and vWitness considers
attacks on user confidentiality to be out of scope (e.g. stealing
sensitive inputs). We do not consider availability or denial
of (vWitness) service attacks as blocking vWitness does not
prevent users from using the unprotected page, which will
eventually lead to rejected requests due to missing vWitness
certification. Finally, we assume an honest user who enters
the inputs they intend into the web page (i.e. they don’t try to
later equivocate about their earlier actions).

1https://github.com/dlgroupuoft/vWitness-DSN23
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Attack Vectors Description and Example Example Attack Other Defenses
Request forgery Malware forges requests without user input Fake subscription, spamming, unaware pay-

ments
Captcha

Request
tampering

Malware intercepts and tampers with user
requests

Cryptocurrency transfer redirection [25] Third party detection [27], trusted re-
quest construction [6], [17]

User interface
(UI) tampering

Malware manipulates UI to confuse or de-
ceive user (i.e. clickjacking [7])

Facebook like hijacking [28], Tweet-
bomb [29], Scarno [15]

Server-side confirmation [30], [31],
anomaly detection [32]

Table I: Attack vectors.

 Display 

 Interaction 
 Submission 

Request
forgery

Request tampering

Server

UI tampering

ClientUser

Figure 1: Steps of user-page interaction and the attack vectors.

Strike Mandate Vote 

Confirm Cancel

NoYes

Strike Mandate Vote 

Canel

YesNo

CanelConfirm

Cancel Strike Vote

Confirm Cancel

NoYes

Original page Attack 1 Attack 2

Figure 2: UI tampering leads to unintended user actions and
requests. In both attacks, only the displayed text are altered
by malware.

Attack Vectors. The attacker’s goal is to submit a request
to the web server and convince the web server that it came
from a legitimate user. To achieve this, there are three attack
vectors detailed in Table I summarizing what an attacker can
do. Some prior proposals [6], [17] use TEEs to protect the user
client, thus relying on a small trusted computing base (TCB)
to provide assurance. The small TCB only enables incomplete
UI support making them vulnerable to tampering of the un-
protected UI sections [18]. We show example UI tampering
attacks with minimized number of tampering in Figure 2.
Security Guarantees. vWitness’s objective is to secure re-
quests from a legitimate user to a web server despite a client
that has been compromised by malware. It does so by certi-
fying to web servers requests satisfying interaction integrity
which means that a request 1) came from a real user and 2)
was free of tampering by malicious software on the client.
vWitness’s security guarantees only hold if both the user and
web server are benign, and it provides no benefits if a legit-
imate user interacts with a malicious web server (i.e. due to
phishing for example), or the user themselves is malicious.
vWitness secures web requests between legitimate users and
web servers in 3 phases of user-page interactions:
1) Display: vWitness compares the web page that is displayed

to the user against a server-provided specification called a
VSPEC. For now, we only consider visual content of the
web page and do not consider other media such as audio.

2) Interaction: Based on the user’s interpretation of the web
page, she provides information to the web page. This can
include entering data into fields of the page, as well as inter-

acting with other common HTML elements such as drop-
down menus, checkboxes, radio buttons, etc. vWitness in-
fers which inputs the user is providing by tracking standard
point of focus (POF) cues, such as a text cursor, and uses
this to construct an independent record of the user’s inputs.

3) Submission: After the user is done entering the informa-
tion, she submits the contents to construct the request to
the web server. vWitness then validates that the request is
consistent with the user inputs via a validation function in
the VSPEC. If the function succeeds, the VSPEC is included
in the request and both are signed by vWitness certifying
the request. The web server can verify that signature, which
identifies the VSPEC and guarantees that both the display
and interaction match the requirements of the VSPEC.

We summarize the phases of user-page interaction and the
attack vectors in Fig 1.
Assumptions. We assume that user request content is con-
structed from user inputs on a web from and that the user is
trustworthy who always provide intended inputs to the web
page. We assume the user interacts with the web form in a
conventional manner. Specifically, vWitness depends on the
web form employing standard POF cues and that the user pays
attention to the values as they enter them into the web page
(more on this in Section III-C2). vWitness does not prescribe
an order or manner of data entry, permitting the user to enter
content and then subsequently delete, modify or copy it. vWit-
ness also requires the appearance of a web page to be pre-
dictable, making excessively unpredictable (i.e. 3rd party ads)
or excessively dynamic (i.e. videos) elements unsupported.

III. VWITNESS DESIGN

In this section, we discuss how the web server and the client
should be set up to use vWitness, and describe the workflow of
a typical vWitness interaction session, followed by a detailed
explanation of the VSPEC and the interaction validation.

A. Initial Setup

We discuss the client and web server setup for vWitness.
Client Device. We assume a compromise-free initial setup
phase of client devices. During this phase, the user (or a
deployment specialist) will 1) Install vWitness’s hypervisor,
which protects vWitness’s core logic in the dom0. We use
Xen’s terminology where dom0 refers to the secure virtual ma-
chine and domU refers to the guest OS. from malware (includ-
ing kernel-level malware) in the guest OS (domU). 2) Install a
public and private key pair (Kpub and Kpri) and a certificate
for Kpub, Cpub, certified by a well-known CA. Kpri will be
used by vWitness to sign requests and Kpub by web servers to
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(a) Color-coded expected appearance.

"text": [(49,30,8,14, 'H'), (57,30,8,14,'O'),
(65,30,10,14,'M'), (75,30,8,14,'E'), ... ]  
"image": [(26, 27, 16, 16), (1176, 27, 123, 20), ...]  
"input": [(192, 73, 429, 40, "search"), ...] 

(b) Elements manifest, element type is color-coded.

Figure 3: VSPEC of Yahoo email web client. The expected
appearance is cropped to remove personal information.

validate the requests. 3) Seal Kpri to the correct vWitness’s ex-
ecution state covering all software components that vWitness
depends on. Successful unsealing of this key (Kpri) thereafter
indicates that the correct vWitness software stack (i.e vWitness
code and hypervisor) is running, and prevents the exposure of
Kpri to any principal other than vWitness. In general, sealing
requires a measured boot facility and secure element, both
of which are commonly available and have been studied in
previous work [33]–[36]. vWitness assumes the presence of
hardware support for sealing. 4) Install an untrusted browser
extension in domU to facilitate communication between the
browser and the trusted vWitness component.
Web Servers. The server needs to perform a set of one-time
modifications to use vWitness: 1) Construct a VSPEC for each
page requiring vWitness protection. The VSPEC describes a
web page’s appearance and which elements are used by a user
to enter request parameters. In addition, at runtime, unique
values, such as a session ID, can be added to a VSPEC before
transmission to the client to protect against replay. We will
describe VSPEC content in detail as they are used. 2) Modify
the web page to remove incompatible UI elements if any. We
discuss such incompatibilities in §III-D.

B. Workflow

With the client and server set up, we describe vWitness’s
workflow with references to Fig 4.

5a. Certificate 
and request 
verification

Server

 1. VSpec

 Web page
 source 

vWitness

 2. Periodic 
 screenshots 

 3. Input hints 

 4. Request
 submission 

 3a. Interaction 
Interpretation (§3.2.2)

 4a. Request
Validation (§3.2.3) 5. Certified

 request, client 
 certificate 

 2a. Display
Validation (§3.2.1)

OS
Browser /
extension

Figure 4: vWitness overview (§III). Green/red indicates
trusted/untrusted entities.

Client-side. When a user requests a vWitness-enabled web
page, the server replies with the VSPEC together with the page
source files. The untrusted browser extension forwards the
VSPEC to vWitness running on the client (step 1). After vWit-
ness receives the VSPEC, it begins screenshotting by securely
accessing the display buffer (step 2). On every screenshot,
vWitness validates the appearance of the rendered page by
comparing to what is expected in the VSPEC (step 2a) and,
if the user has entered inputs, vWitness interprets the user-
entered input values through input hinting (step 3, we dis-
cussed this below). If a user-entered value is to be submitted in
the web request according to the VSPEC, vWitness records that
value (step 3a). These two steps repeat until the user submits
the page.

When the user submits, the web page logic constructs the
web request and uses the browser extension to submit this to
vWitness’s secure component for certification (step 4). vWit-
ness first validates the content of the request using a server-
supplied validation function in the VSPEC by executing this
function with the inputs it has observed during the user-
page interaction (step 4a). If the validation function succeeds,
vWitness creates a signature using Kpri over 1) the request
content 2) the VSPEC (which contains a session id for fresh-
ness) using the sealed signing key. Signed requests are certified
by vWitness to be constructed with interaction integrity and
are returned to the web browser extension, together with the
certificate, Cpub, who forwards them to the web server (step 5).
Server-side. The web server, upon receiving the certified re-
quest and Cpub, takes the following steps: 1) verifies that Cpub

is signed by a legitimate CA, 2) verifies the signature on the
request using Kpub in Cpub, thus ensuring the integrity of
the request content and the included VSPEC, 3) verifies that
the included VSPEC is the VSPEC it expects, ensuring that the
web page interactions are correct. Note that the VSPEC should
include a session ID (i.e. a nonce) for freshness. These three
properties allow the server to gain confidence in the interaction
integrity of the received request (step 5a).

Note that what is eventually sent out in the request remains
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unchanged, except the addition of this signature and the cor-
responding certificate (Cpub), hence preserving privacy. While
vWitness has access to the user’s UI, and can see intermediate
values that the user has entered, as well as other applications
on the user’s screen, no information about these is leaked to the
remote web server. vWitness’s secure component is intended
to be open-sourced and can be scrutinized by the human user.

C. Validating Web Page Interactions

vWitness continuously monitors the Display during the user-
page interaction session so that the UI displayed to the user
is ensured to be correct throughout the session. In our Xen-
based prototype, this is achieved by randomly sampling the
domU’s virtual frame buffer. The sampling is random so that
an attacker cannot predict when vWitness samples, preventing
time-of-check to time-of-use (TOCTOU) attack [37]. vWitness
samples with a random delay ranging from 0 to 500ms be-
tween every two samples, meaning that on average, vWitness
samples four times a second. To have a reasonable probability
of guessing the sampling times, an attacker would have to
change the display much more frequently than 500ms, but
previous research has shown that humans may not perceive
images that are shown for less than 500ms [38]. We discuss
how user-page interactions are validated in the following.

1) Display: The page appearance must be untampered.
vWitness does so through a three-step validation: first, vWit-
ness determines the currently visible portion of the page (view
port); second, vWitness finds all the UI elements within the
view port—they need to be validated; finally, vWitness uses
computer vision to validate that each element has been ren-
dered correctly. vWitness can be configured to validate that
all regions without UI elements match a solid background
color specified in the VSPEC. Non-solid color backgrounds are
currently not supported.

To determine the UI elements visible in the browser view
port, the VSPEC includes the web page’s expected appearance
(Fig 3), which is a “long” screenshot of the page rendered
at the client’s window width and at the maximum height to
accommodate all elements of the page. The client’s width is
passed to the web server by the untrusted browser extension,
whose security implication is discussed in §V. vWitness de-
termines the current view port by matching the sampled frame
buffer against the expected appearance and finding the offset
from the top of the expected appearance with the best match.

To figure out the expected UI elements displayed in the
view port, VSPEC contains an elements manifest describing all
expected UI elements using type, position and a ground truth.
While we detail type and ground truth below, the relevant
field for this step is the element position, which is a tuple of
(x, y, width, height) illustrating the bounding rectangle of the
element. All elements whose bounding rectangle overlaps with
the view port are to be validated in the next step.

Finally, vWitness validates the observed screenshot against
the expected elements. To do this, vWitness could naively
perform a pixel-by-pixel comparison of the observed element
with that in the VSPEC, but this would result in many false

alarms due to benign rendering variations caused by differ-
ences in the rendering stack among client devices, which can
include different browsers, OSes, device drivers, GPUs, and
configuration settings [20], [39]. Instead of trying to explicitly
identify and handle all differences that could be generated by
all such combinations, vWitness trains convolutional neural
network (CNN) models to classify whether the differences
between the observed and expected appearances are benign
rendering variations. While machine learning is used in se-
curity (e.g. anomaly detection [32] and program vulnerability
detection [40]), it is prone to adversarial examples against
which we evaluate our approach in §V-B.

To enable validation, for each expected element, the ele-
ments manifest contains its type (text or image) and the ground
truth. The ground truth is type-dependent and is how the
element should be rendered. For text, it is the actual character;
for images, it is the region of the Expected appearance.

vWitness uses two separate CNN models for text and images
as they have different requirements. For instance, tampering
with a few pixels may change the meaning of text (e.g. “i”
vs “l”), but semantically identical images may be different
pixel-wise (e.g., due to image compression). The models take
two inputs: the ground truth from the VSPEC and the observed
element at the same position on the screenshot. The models
output a boolean prediction indicating whether the observed
element matches the expected one. Both models use CNNs for
feature extraction and dense layers to compare to the expected
rendering.
Dynamic Web Elements. One challenging aspect of validat-
ing web elements is that they can be dynamic. vWitness cate-
gorizes dynamism into three types: scrollable (e.g. slide shows
and scrollable list box), dynamically-appearing (e.g. context
menu) and dynamically-scaled (e.g. resizeable elements) and
develops unique validation methods for each type by tweaking
the existing validation method (for static text and images).
For brevity, we only discuss the scrollable elements. The key
insight that enables dynamic element validation is to use a sep-
arate VSPEC, called nested VSPEC, for each dynamic element.
This nested VSPEC is different from the page’s and defines the
dynamic element’s appearance and how it can be interacted.

Scrollable elements refer to the UI elements that can scroll
independently from the page (e.g. slide show and scrollable
listbox). To support its validation, 1) in the page’s elements
manifest, scrollable elements have two new types to distin-
guish horizontal and vertical scroll and 2) the expected appear-
ance is all the possible appearances of the scrollable element
merged together. The actual validation of scrollable elements
is identical to the page’s with a change to the view port de-
termination step: view port can either be horizontal or vertical
depending on the type in the elements manifest.

2) Interaction: vWitness must capture user input semantics
to validate outgoing requests. While this can be done through
intercepting hardware IO inputs and secured device drivers
as in previous works [6], [17], we realize that user input is
displayed to the user and thus already in the screenshot that
vWitness takes for Display validation. This enables a novel
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approach where vWitness extracts user input semantics from
the screenshots without the need for secure device drivers.

We need to make a reflective validation assumption, which
states that while entering input, human users are generally
attentive to whether the inputs are reflected correctly on the
display [41]. For instance, after the user types “100” on the
keyboard, she will confirm that the value “100” is displayed in
the intended field, and if not, she will adjust the entered data
until it does. Therefore, regardless of how the user inputs the
value, if the user sees it on the display, it is the correct value.

To extract user inputs, a naive approach is to use Optical
Character Recognition (OCR) on every input element, but we
rejected it as it is computationally expensive and prone to
adversarial example attacks [42]. Instead, vWitness relies on
the untrusted browser extension to hint the position and values
of user inputs and reuses the CNN-based text validator from
the Display phase to ensure the hinted values are correctly
displayed. Visual input elements, such as checkboxes and ra-
dio boxes, are also encoded as text inputs as their states can
be mapped to a well-defined appearance. To ensure that the
browser extension is honest, the elements manifest includes all
inputs elements and their positions (in the form of bounding
rectangle), vWitness ensures that the observed input elements
must fall in the bounding rectangle of expected input elements.

However, extracting inputs from the UI poses two
challenges—a subverted client could: 1) forge inputs even if a
user is not present or 2) tamper with input elements the user
is not paying attention to.

User Presence. Since hardware I/O observed by the hy-
pervisor cannot be forged by application/OS code, vWitness
assumes user presence if there exist hardware I/O events.
Note that vWitness does not interpret the I/O events but only
checks their occurrence from a hardware device, e.g. a key-
board/mouse, enforcing that the timing of these events corre-
sponds to the timing of inputs observed on the UI.

User Attention. We observe that modern browsers use visual
indicators (e.g. focus outline, caret) to indicate which element
is currently in-focus, which we refer to as the point of focus
(POF) and consider the focused element to be where the user’s
attention is. Assuming users naturally perform reflective val-
idation at the POF, vWitness only accepts input changes (i.e.
insertions, deletions) with POF. vWitness relies on pixel infor-
mation to locate POFs, and our prototype currently supports
three common POFs: focus outline for elements, input cursors
(i.e. caret and vertical line) and multi-character highlight. Be-
cause POFs are rendered by the untrusted client, an attacker
may tamper with them. For example, an attacker could forge
multiple POFs, perhaps with one more noticeable than others,
confusing vWitness about which POF is actually in use (e.g.
the user thinks she is interacting with field A, but vWitness
is validating inputs from field B). vWitness deals with this
by validating the visual consistency of POFs to ensure only
one set of POFs is present at any time (further discussed in
§IV-A). Note that tampering with out-of-viewport inputs fields
(e.g. due to user scrolling) will be ignored by vWitness.

3) Submission: The construction of outgoing requests is
server-specific, vWitness validates requests by executing a
server-supplied validation function in the VSPEC. The valida-
tion function takes interpreted inputs and the page request and
produces a boolean indicating whether the request validation
succeeds. This choice enables flexibility. In the simplest case,
the validation function assembles inputs as a JSON object (e.g.
for POST requests) and compares that in the page-constructed
request as shown in Figure 3. However, it can implement arbi-
trary validation logic such as repeating the original construc-
tion logic in the web page or validating a set of constraints.
This choice is again server-specific. The validation function
can validate values in the request that are not interpreted by
vWitness such as session IDs to distinguish multiple sessions
and nonces for replay prevention; they need to be included into
the VSPEC by the server. Finally, the VSPEC used for validation
should be included in the signed request.

D. Limitations

vWitness relies on VSPECs for validation. This means third
party elements (e.g. ads iframes) whose content is generated
on-the-fly (e.g. from ads providers) are not supported. Also,
vWitness can only certify interactions visible on the UI. Invisi-
ble interactions (i.e. file uploads) will not be seen by vWitness
and thus cannot be validated unless a checksum is shown on
the page. While vWitness can handle some dynamic behavior,
the use of nested VSPEC makes it computationally too costly
to validate excessive dynamicsms (e.g. videos). Finally, web
pages must use a POF styles (e.g. text highlight color) recog-
nized by vWitness and use input fields with POFs. Input fields
without POF (e.g. button inputs) are not supported. It is possi-
ble for the server to customize POF style and include those in
the VSPEC for vWitness’s use, we leave this as a future work.
Since vWitness is only intended for security-sensitive pages,
we believe that these limitations will not affect its adoptability.

IV. IMPLEMENTATION

A. Client-side vWitness

On the client side, vWitness exposes three new JavaScript
APIs to support requests validation: 1) acquire_VSPECs.
The extension acquires the client window width through
Chrome.windows, forwards it to the web server who returns
the VSPEC tailored to the client width. The reported width is
a virtual pixel value accounting for local settings such as user
zooming and OS’s default font size. 2) vWitness_begin
begins a vWitness-session where the extension full-screens
the page using requestFullscreen, and forwards the
VSPECs to vWitness’s secure component. 3) vWitness_end
ends a vWitness-session. The extension exits full screen using
exitFullscreen, and submits a page-constructed request
body for validation.
CNN Models. vWitness implements two models separately for
text and images with model details in Table II. Our models
are available in both Keras H5 format and Tensorflow Lite
and we focus on the English language, but are not limited to
it. We detail the training data collection process. For the text
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Model Inputs Output # Parameters # Training Data
Text 1. a locally rendered text character (32x32)

and 2. the expected character as a string
352,097 556,512

Graphics 1. a (sub-)region of a locally rendered graph-
ics (32x32) and 2. the expected appearance

Whether the local rendering is
a benign rendering variation
of the expected
character/appearance

1,761,089 620,217

Table II: Validation model details.

model, we we collect images of a single character rendered
in legitimate rendering environments. We render 94 characters
(10 numbers, 52 upper and lower English alphabet characters
and 32 symbols) using 231 unique fonts, three styles (Italic,
Bold and normal), three renderers (Gecko of Firefox, Blink of
Chrome and Webkit of Safari) on two platforms (Windows and
MacOS). This yields a core dataset of 8184 pairs of training
points (as not all fonts support all characters). We expand
the core dataset by 1) enlarging and shifting the characters
2) changing the color intensity and 3) randomly bit-flipping a
subset of the pixels yielding a dataset of 278,256 images of
legitimate one-character rendering. The purpose of expanding
the core datasets is to 1) increase the total number of training
data, 2) force the model to learn about the stroke shapes
instead of memorizing the position of the characters and 3)
augment training data such that random bit-flipped pixels do
not affect the prediction [43]. To create a balanced dataset, we
introduce data points with a false label by assigning another
character to every image. This yields a perfectly balanced
training set of 556,512 training data. We optionally trained
text models with collapsed expected text (i.e. ‘s’ and ‘S’) to
increase the text models’ accuracy [44]. The training data for
the image model is similarly constructed, with the core dataset
from a subset of CIFAR-10 [45] and Google’s Material icon
dataset [46]. We additionally added false data points with text
in the images to ensure that unexpected text in the images will
be detected. The total number of training data for the image
model is 620,217.
POF Consistency Checks. vWitness current only supports
the following input fields: text boxes vWitness extracts POFs
through pixel information using OpenCV and enforces the
following consistency rules: 1) Number of instances. For each
POF, vWitness ensures that the number of POF instances on
the context frame to be less than or equal to one. 2) Same-field
Logic: the focus outline, selection highlight and caret must
reside in the same field and 3) Mutual Exclusivity: caret and
the selection highlight must not be present at the same time.
Performance Considerations. 1) Differential Detection: due
to the frequent screenshots, unchanged UI elements do not
need to be re-validated. Thus, vWitness finds the difference
between two consecutive screenshots and only validates that
region. 2) Caching: There are three caches: text, image, and
frame. For each, the key is a cryptographic digest of the cor-
responding display region and the value is the corresponding
validation result.

B. Server-side Scripts
vWitness implements the following server-side scripts.

Addressing Incompatibilities. The script handles the limita-
tions in §III-D. First, we consider all iframes with a src

that points to an external domain as loading nondeterministic
content such as ads. Our script removes all such iframes.
Second, our script tries to make user inputs visible where
possible, and warns for inputs that might be not visible. The
script adds a maxlength field to all textual inputs fields (e.g.
type=text, textarea). Third, the script searches for POF
definitions in all CSS. We warn the developer if the following
keywords are present: “outline”, “caret” and “.focus”. Finally,
the script searches for unsupported HTML elements and warns
the developer: files inputs (type=file), drag&drop inputs
(ondrop attribute) and videos ( video tag).
Generating VSPECs. The script automatically constructs
VSPECs by 1) render the web page and 2) annotates HTML
elements with the corresponding type for validation using a
pre-defined HTML tag-to-validation type mapping. The result
of the annotation (Figure 3) is visually presented to the devel-
oper who can manually make adjustments.

V. SECURITY ANALYSIS

A. vWitness’ Security

Server-vWitness Communication. vWitness protects against
an adversary who attempt to manipulate communication be-
tween the web server and vWitness as follows: 1) Tampering
with web requests: each certified request from vWitness is
signed with Kpriv , which is protected from exposure using
cryptographic sealing. 2) Tampering with the VSPEC: each
certified request from vWitness contains the VSPEC that was
used to validate the user’s interaction with the web page and
the user-inputs in the request. The web server should ensure
that the VSPEC in the request matches the one that it sent with
the web page, which prevents an adversary from modifying
or replacing the VSPEC before vWitness uses it to validate
the user’s interaction with the web page. 3) Replaying an
interaction: the VSPEC contains a non-repeating session ID to
ensure freshness. This prevents an adversary from replaying a
previously signed request. Similarly, replacing a VSPEC with
an old one before vWitness performs validation will be de-
tected by the web server as the VSPEC included in the request
will contain a stale session ID.
Display. An attacker cannot show different UIs to vWitness
and the user because vWitness directly samples from the frame
buffer via using Xen’s high privilege. The attacker cannot
launch TOCTOU attack: showing the proper display just when
vWitness samples the buffer but shows a tampered UI at other
times (when the user perceives) because vWitness samples at
random intervals with a mean of 250ms in every 500ms inter-
val, which is the threshold shown by previous research [38].

An attacker cannot tamper with or remove text/images
because vWitness verifies the locally-rendered text/images
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against the ground truth in the VSPEC using the text/image
verifier. An attacker cannot inject additional text in images
because the image model is specifically trained to reject differ-
ences between VSPEC images and observed images that contain
text. vWitness always verifies all UI elements in the viewport,
so everything the user can see is checked by vWitness. As
mentioned earlier, our prototype vWitness samples frequently
enough that an attacker wishing to evade sampling would have
to switch the display too frequently for a typical human to
perceive the page.

Interaction. First, any out-of-viewport input update is ignored
by vWitness (not included in the request) because vWitness
cannot “see” it. We first assume an honest browser extension
(which hints the input update to vWitness correctly), dishonest
browser extensions are discussed thereafter. An attacker can
forge or tamper with any user inputs, but it will be caught by
either the user or vWitness depending on whether the input
update has POF. The user will notice input manipulation at
the POF because POFs are designed to be seen by a human
user, and users already use them for input entry, and thus will
try to fix the inputs on the UI if they do not appear as the
user expects them to. For input updates without POF, vWitness
will see them as a violation of POF consistency check and
ignore the input update. Whenever vWitness ignores a hinted
input update, the input it tracks and the input values tracked
by the page will be different and when the submission func-
tion executes, it will detect the difference as reflected on the
constructed request.

Submission. An attacker may submit the form before the user
finishes [6]. While vWitness cannot prevent this, it enforces
that the UI must change after the user interaction ends (i.e.
with a call to vWitness_end). This way, a malicious client
cannot silently submit the form without the user noticing it.
A tampered request submitted to vWitness will be detected
by the VSPEC’s submission function, while a tampered VSPEC
will be detected by the web server as vWitness will include it
in the request.

Dishonest Browser Extension. vWitness does not trust any
information from the extension: all information is either in-
cluded in the signature to the server (to be verified by the
server, e.g. VSPEC) or verified against the information in the
VSPEC (e.g. hints). To ensure the hints are correct, vWitness
ensures input fields not hinted, do not receive any inputs. We
then analyze possible attacks on this interface.

The acquire_VSPECs call relies on the client window
width. An incorrect window width by the browser extension
leads to an incompatible VSPEC being retrieved and will fail
the viewport detection due to mismatch between the observed
width and the VSPEC’s width. An attacker making early calls
to vWitness_begin gains no benefit, as it triggers frame
buffer sampling and may fail the display validation depending
on what is shown. The attacker may delay this call until user
interaction has begun, and leverage this time difference to
show misleading information. While vWitness cannot verify
the UI before vWitness_begin, it implements the follow-

ing measures to ensure a clean start of any vWitness-session to
detect delayed vWitness_begin calls. 1) Clean viewport:
the viewport must be at (0, 0)) and 2) Clean input entry: all
input fields are empty. Delaying vWitness_end calls does
not benefit the attacker as the Display validation continues.
Early calls to prematurely end a vWitness-session will be
noticed by the user due to the UI change (e.g., “submitted”)
enforced by vWitness, who can take corrective actions, e.g.,
contacting the server.
Limitations. vWitness relies on the secrecy of the private
key (Kpri). If this secrecy is compromised, an adversary can
forge vWitness signatures and certify requests. Mitigating such
exposure requires a process for revoking and re-issuing com-
promised keys. In addition, vWitness is vulnerable to relaying
attacks, meaning a compromised OS can relay an authenti-
cated web session to a malicious user using a correct vWit-
ness instance. This attack is outside of our current vWitness
threat model, as vWitness assumes both the user interacting
with vWitness and web server are benign. vWitness can be
extended to handle relaying attacks if user identities are bound
to specific vWitness instances, which might be accomplished
with an enrollment procedure similar to that of multi-factor
authentication hardware tokens.

B. Adversarial Attacks on CNN Models

An attacker can use adversarial examples [47], [48] to try
and fool vWitness’s CNN-based verifiers. We evaluate vWit-
ness’s robustness against such attacks by comparing vWitness
with two reference models: a MNIST classifier [49] for text
and a CIFAR-10 classifier [50] for images. We believe generic
adversarial example defenses (e.g. adversarial training [51]–
[53], gradient masking [54], detection [55]) are complemen-
tary to the vWitness-specific defenses we present here. How-
ever, one such defense, input transformation [56], is incom-
patible with vWitness because it alters the inputs, potentially
changing the meaning of a web element. Note that as our
model takes unit inputs (i.e. a single character for text, a 32-
by-32 sub-region for image), the accuracy numbers in Table III
illustrate the worst-case accuracy, as a successful attack will
likely need to alter more than one unit input, which exponen-
tially reduces the probability of a successful attack.
Attack Setup. We measure the models’ accuracy (as a way
to measure robustness) under the following attacks: fast gra-
dient method (FGM) [47], basic iterative method (BIM) [57],
momentum (MOM) [58], CW [59] with L2 distance (CW2),
AutoPGD with cross entropy loss (APGD) [23] and Fast Adap-
tive Boundary (FAB) [60]. We use Cleverhans v4.0 [22] for
the first four and AutoAttack [23] for the rest. All attacks are
targeted attacks fooling the model into producing the opposite
label. We launch attacks in three epsilon values (i.e. maximum
allowed perturbations) measured using two distances (the three
sub rows of each model in Table III). These epsilon values are
picked to cover the range of successful attacks [59] to best
determine the models’ robustness. We tune hyper-parameters
to give the highest attack success rate. We use the average
accuracy of all attacks to measure a model’s robustness. We
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L inf L2# Models Clean FGM BIM MOM FAB APGD FGM BIM MOM FAB APGD CW2
Avg
attacks

t1 Reference
model 93.33

5.00 0.83 0.83 45.00 0.00 37.50 0.83 1.67 64.17 0.00
6.67 13.39

(base)1.67 0.83 0.83 43.33 0.00 12.50 0.83 0.83 69.17 0.00
0.00 0.83 0.83 43.33 0.00 7.50 0.83 0.83 68.33 0.00

90.00 45.83 0.83 60.83 0.83 88.33 54.17 16.67 47.50 20.83
90.00 46.67 0.83 50.00 0.00 81.67 45.00 0.00 39.17 0.00t2 Base text

model 98.33
92.5 34.17 2.50 49.17 0.00 99.17 50.00 5.00 34.17 0.00

7.50 37.17
(2.82x)

t3 Avg one
font 99.36

84.87 52.42 4.62 64.29 2.83 91.29 69.00 31.42 86.92 24.63
12.62 44.60

(3.38x)90.37 51.88 3.71 56.50 0.00 90.38 59.92 4.96 83.29 1.37
91.62 56.04 12.58 50.21 0.00 91.71 59.46 2.33 81.96 0.42
87.92 56.83 6.25 63.42 1.33 93.58 75.50 40.00 91.42 33.42
89.17 49.33 5.58 53.92 0.00 91.42 63.84 7.50 87.42 2.00t4 Avg sans

serif 99.50
89.17 55.00 14.17 46.58 0.00 92.33 61.92 3.50 85.67 0.50

16.33 47.05
(3.51x)

t5 Avg serif 99.22
81.83 48.00 3.00 65.17 4.33 89.00 62.50 22.83 82.42 15.83

8.92 43.88
(3.28x)91.58 54.42 1.83 59.08 0.00 89.33 56.00 2.42 79.17 0.75

94.08 57.08 11.00 53.83 0.00 91.08 57.00 1.17 78.25 0.33
99.59 99.59 26.66 100 10.00 99.59 100 76.25 100 65.41
98.75 98.75 13.75 100 0.41 99.17 100 28.34 99.16 6.25t6

High
threshold
(0.99)

99.47
100 89.58 12.50 98.75 0.41 100 100 10.84 99.16 1.67

100 68.86
(5.14x)

Text models above, image models below
11.67 8.33 8.33 0.00 0.00 22.50 9.17 8.33 0.00 0.00

9.17 6.67 7.50 0.00 0.00 22.50 9.17 8.33 0.00 0.00g1 Reference
model 88.33

6.67 3.33 6.67 0.00 0.00 18.33 9.17 8.33 0.00 0.00
7.50 6.98

(base)

g2
Image
model -
CIFAR-
10

98.13
96.67 78.33 77.50 96.67 35.83 93.33 90.83 94.17 97.50 81.67

12.50 75.91
(10.88x)98.33 78.33 61.67 95.83 13.33 90.83 81.67 90.00 96.67 53.33

100 81.67 59.17 91.67 3.33 95.83 82.50 86.67 96.67 40.83
93.33 98.33 90.83 97.50 49.17 99.17 99.17 99.17 100 85.83
90.00 93.33 79.17 96.67 25.00 95.83 98.33 98.33 99.17 71.67g3

Image
model -
Icon

99.96
94.17 89.17 77.50 94.17 5.83 96.67 98.33 95.00 99.17 54.17

28.33 83.63
(11.98x)

Table III: The model accuracy (%) of the text and image models under adversarial examples. The three sub rows in every model
correspond to Epsilon=0.1254, 0.2509, 0.5019 for Linf and Epsilon=1, 2, 3 for L2. The accuracy numbers are for unit inputs.

round all generated attacks to the nearest pixel value between
0 and 255 to make them valid images.

Base Robustness. We tabulate the accuracy of the base vWit-
ness models (t2, g2 and g3) and the reference models (t1
and g1) in Table III. We find that vWitness’s base text and
image models are more robust by a factor of 2.82 and 11.98
respectively. We believe vWitness’s high base robustness is
due to the following 1) vWitness’s models perform a simpler
task: While the reference models perform multi-label classi-
fication, vWitness performs binary classification between the
Display and the ground truth from VSPECs. 2) The ground
truth in VSPECs further reduces the attack surface as only one
targeted attack is applicable. The attack must cause the model
to misclassify, from a false prediction into a true prediction
(e.g. the attacker wants to change the word “yes” into “no”
on display, but still have it classified as a “yes” so it matches
the VSPEC). The opposite attack (from true into false) is not
applicable to vWitness. Since the image models are already
10.88 and 11.98 times more robust, in the rest of the section,
we focus on defenses specific to vWitness’s text models.

Specialized single font models can be adopted if web servers
are willing to use a pre-selected font for all text on the page.
This restricts the input space, allowing a smaller adversarial
space, which in turn, increases the model robustness. Note that
this is different from input transformation [56]. We trained 20

Attacks MOM APGD
Epsilon 1 2 3 1 2 3
Original

Target p - t { e A
Attacks

Table IV: Successful adversarial examples generated for vWit-
ness’s t6 model in Table III using L2 norm.

text verifier models, each specialized to a single font and report
the robustness in Table III t3. Single font increases the model
robustness by a factor of 3.38. In this experiment, since we aim
to explore the robustness change due to input space change,
we did not change the model capacity (i.e. reducing layers or
the number of training parameters)—so there is potential for
further robustness due to distillation [61].
Font Characteristics. We further examine whether a font’s
characteristics have an impact on a model’s robustness. We
evaluated fonts with varying characteristics such as font
weight, width and type [62], [63]. The only significant factor
we found is serif or sans serif. We trained 10 serif and 10 sans-
serif single-font models and report the average accuracy in
rows t4 and t5 of Table III. The robustness increases by a factor
of 3.51 and 3.28 for sans serif and serif font types respectively.
High Detection Threshold increases the model robustness by
a factor of 5.14. A high detection threshold forces the at-
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Description Lines of Code
vWitness 1,128

WolfCrypt 2,801
OpenCV 177,396

Tensorflow Lite 14,580
Xen 555,160

Chromium 25,163,547
Firefox 20,928,358

Table V: The TCB size of vWitness prototype’s main compo-
nents.

Avg Invocations Total InvocationsDataset # datapoints T G T G
Clickbench 39 NA 880 NA 34320
Jotform 100 464.14 17.27 46414 1727

Table VI: Complexity of the evaluation datasets. T/G refers to
the text/graphics model.

tacker to produce more convincing attack examples but may
reduce the model accuracy (as the model needs to produce
more convincing predictions). We trained three single-font
sans serif models with three thresholds: 0.75, 0.9 and 0.99.
We show the result of the 0.99 threshold in Table III t6. The
threshold at which certain amount of adversarial perturbation
becomes user-noticeable is highly subjective. However, prior
work shows that adversarial examples cannot fool a time-
unlimited human [64]. What is more, we believe perturbations
added to typeset text are more noticeable than perturbations
added to hand-written text. We put a random subset of success-
ful adversarial examples in Fig IV. FGM, BIM and MOM do
not minimize perturbation, so their perturbation seems more
“randomly” spread out and, thus, is (in our opinion) easily
perceivable and has limited effectiveness. In practice, an at-
tacker will likely need to change multiple characters to alter
the meaning of the text, making an adversarial example attack
even less likely to succeed against vWitness.

C. Trusted Computing Base (TCB) Size

The core logic of vWitness itself was implemented in
just over 1K lines of code (LOC), making it small and au-
ditable, but it depends on several external components, such
as OpenCV for processing raw images from the frame buffer,
Tensorflow for computer vision and CNN models, and Xen
& QEMU for isolation. We show vWitness’s LOC breakdown
in Table V. For comparison, we also list the code sizes of
the Chromium and Firefox browsers. Note that our vWitness
prototype was designed for ease of implementation as opposed
to TCB minimization, and thus uses commercially off-the-
shelf components, which make up the vast majority of its TCB.
Many of these components can be substituted with smaller-
TCB alternatives (e.g. XMHF [33], debloated libraries [65]).
We leave this as future work. vWitness, at its current stage,
already has a much smaller TCB than fully-functional com-
modity browsers.

VI. EVALUATION

We run empirically evaluation on a machine with an Intel i7-
7700 and 16GB RAM with two setups: CPU-only and with a

Dataset TP/TN FP/FN Accuracy
Clickbench 39 1 97.5%

Jotforms 100 0 100%

Table VII: Accuracy of vWitness’s output validator (a single
display frame).

GPU. The CPU is always configured as 7 logical cores for the
domU and 1 logical core for the dom0 (where vWitness runs)
and 1 GB of RAM to best mimic a production setup. The GPU
setup uses a Nvidia 1060 GPU. The GPU is not a requirement
for vWitness’s deployment, but part of a typical workstation
and it accelerates vWitness’s vision-based validators. We use
the text model trained with collapsed labels.

A. Accuracy

vWitness’s accuracy is evaluated on one dataset of attacks
and one dataset of benign pages to measure the rate of true
positives and true negatives.
Clickbench. [24] is a corpus of 1080 × 1920 screenshots of
simulated clickjacking attacks on Android (Clickjacking falls
under our attack model). We acknowledge that while Click-
bench being originally targeted at Android UIs is not ideal for
evaluating vWitness, which is designed for web UIs, it is the
only available dataset we are aware of that contains malicious
UI tampering. We cannot construct VSPECs on Clickbench’s
screenshots (no HTML), thus, we create a pseudo-VSPEC clas-
sifying the whole screenshot as a single image invoking vWit-
ness’s image model only. As not all samples are applicable
to our evaluation due to different definitions of attacks, we
have 40 pairs of Android UIs. The true positive (TP) and
false negative (FN, i.e. malicious tampering not detected by
vWitness) rates are reported in Table VII. There was a single
false negative on an attack tampering with text in an image. We
invoked the text model and it was able to flag the tampering.
This suggests that our image model alone can handle most
Clickjacking attacks.
Jotforms. We evaluate vWitness’s ability to handle benign
rendering variations with a set of forms derived from the Jot-
forms (jotform.com). We chose Jotforms as they provide rep-
resentative samples of many common forms, which are used
on over 10 million websites. We randomly select 100 forms
and render each form on several different rendering stacks. We
execute the vWitness’s scripts to construct the VSPECs in one
rendering stack and we render the same pages in other (and
different) rendering stacks, which we provide to vWitness as
captured frame buffers. We tabulate the result in Table VII that
shows high accuracy of vWitness’s vision-based validators.

B. Request Delay

Since vWitness’s validation is concurrent to the user ses-
sion, a delay (L) is added to the final request, for which we
aim to empirically evaluate in this section. This delay can be
modelled as L = T (init)+

∑
T (framei)+ T (request)−

T (session) where T (init) is the time to initialize vWitness
(e.g. transmitting VSPEC), T (framei) is the time to validate
the ith display frame and T (request) is the time to validate
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Setup Dataset Mean Max Min Stdev
Clickbench 3.29 3.63 1.68 0.65CPU Jotforms 1.17 6.83 0.34 0.85
Clickbench 0.73 1.67 0.44 0.18GPU Jotforms 0.88 6.75 0.33 0.33

Table VIII: vWitness’s performance numbers, in seconds (s),
of first display frame (T (frame0)). CPU setup uses a single
logical core.

Figure 5: First display frame validation time (in ms) of Jot-
forms.

request (i.e. executing the validation function and signing) and
Tsession is the length of user’s session. We further distinguish
the time to validate first display frame T (frame0) from sub-
sequent frames T (framei) for i > 0 due to caching.
First Display Frame. T (frame0) is dependent on the number
of model invocations—more complex pages have a higher
number of model invocations and thus a larger T (frame0).
We first report the statistics on model invocations in Table VI.
We report T (frame0) in Table VIII. GPU speedup is more
significant for Clickbench than Jotforms because the former
1) invokes only the graphics model and 2) have many more
invocations than the latter as we treat the whole UI as a single
image. To know the exact relationship between T (frame0)
and text and graphic model invocations (xt and xg respec-
tively), we plot evaluation numbers of Jotforms in Figure 5 and
fit two regression lines whose coefficients enable the prediction
of T (frame0) of arbitrary complex page. As the figure shows,
it is more expensive to invoke the graphic model as it takes
two graphics as input and has to do two feature extractions.
Subsequent Display Frames. T (framei) is page-dependent,
and due to caching, it is also interaction-dependent. To sim-
ulate interactions, we recorded our own interactions of fill-
ing out a form, a typical use case for vWitness. We report
T (framei) in the middle four columns in Table IX together
with measured T (init)+ T (frame0) and T (request).

Since T (framei) is much less than 1 second, this means
that, with a long enough Tsession, there will be a session time

Figure 6: Request delay (s) vs session time (s).

Subsequent framesSetup Init+First
frame Mean Max Min Stdev

Validation
function

CPU 0.760 0.194 0.434 0.088 0.067 0.036
GPU 1.778 0.161 0.315 0.070 0.055 0.036

Table IX: End-to-end performance numbers, in seconds (s).

threshold threshi where vWitness has finished validating all
framei for i < threshi. We refer such threshi as cutoff
session length, and session that lasts longer than this time
should only incur a delay of T (request). For session length
longer than cutoff session length, the request delay L will be
T (framelast) + T (request), which is 0.194+0.036=0.230
seconds for the CPU setup and 0.161+0.036=0.197 seconds
for the GPU setup in Table IX, 197ms and 230ms are roughly
9% of the average load time of a web page of 2.2s at the time
of this paper [66]. To determine the cutoff session length, we
plot request delay (L) as a function of varying Tsession in
Figure 6. The cutoff session lengths are 2.6 and 4.6 seconds
for the CPU and GPU setup respectively.

C. Compatibility

We measure vWitness’s ability to support common web
forms by constructing a dataset of representative web forms.
We had initially sought to build this dataset by crawling the
Internet for forms, but found that this did not produce a
high-quality dataset because: 1) security-sensitive forms that
vWitness is meant to protect are often only accessible with
authenticated user sessions that our crawler could not ac-
cess and 2) publicly accessible forms (with form tags), in
our experience, tend to be dominated by simplistic “contact
us” forms that lack variety and complexity. We thus instead
crawled all 2476 forms from JotForm and all 109 templates
from WPForms(wpforms.com) for Word Press totaling 2585
forms. We did not remove any page from the dataset.

We compare vWitness’s compatibility with proposed
limited-functionality high-assurance web clients [6], [17].
These proposals implement web clients that render a subset of
HTML elements, but do so with very small TCB. We find that
the smaller TCB is costly: none of them can support any of the
pages from our dataset of representative forms, indicating that
real web forms still contain many complex web elements that
previous work does not account for. To enable comparison, we
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System # of Compatible Pages
Fidelius [17] 20 (0.77%)
ProtectiON [6] 196 (7.58%)
vWitness 2,255 (87.23%)

Table X: vWitness’s compatibility compared to limited-
functionality, high-assurance works.

relax our requirements and count the number of forms where
at least 90% of the elements are supported, to be “compatible”.
As shown in Table X previous work can support no more than
8% of real web forms while vWitness can support almost all
forms, with this 90%-support compatibility threshold.

VII. RELATED WORKS

Clickjacking tricks a user into performing unintended ac-
tions through deceptive user interface [7], [18], [24]. There
are current defenses through in-browser enforcement such as
framebusting [67] which can be disabled or bypassed (i.e.
directly writing to frame buffer) by privileged malware such as
Scranos. vWitness defends against clickjacking by validating
the UI presented to the user.
Request Forgery. Botnets forge communications with the
service without users’ awareness. While there exist defenses
attempting to identify such traffic [68] from the service
side, well-adopted client-side defenses, such as Captcha [69],
fail to bind requests (i.e. bot-generated) to human users,
hence Captcha farms. vWitness binds outgoing requests to
a vWitness-session described in a VSPEC, which guarantees
association with real human user interaction, preventing bot-
generated traffic.
Cross-site Request Forgery (CSRF) [8] forges requests to the
service by hijacking the user’s authenticated session. Service-
side defenses require requests to provide proof of user session
abstracted by tokens [70] or first-party-only cookies (Same-
Site) [71]. These defenses achieve security through obscurity
— a strong client-side malware can access and present these
session abstractions to the service bypassing the defense. An
adversary hijacking a vWitness session can forge requests in
the background, but only user-intended requests will receive
certification due to display validation and user presence.
Malicious Scripts in Page Context can do harm such as steal-
ing cookies, forging requests, and tampering with requests [6].
vWitness does not prevent malicious script execution on the
client side, it ensures that malicious requests will not receive
certification, as they lack a display and user presence.
Certifying Requests. A common solution adopted by the
industry is confirmation through an out-of-band channel. For
instance, web services send notification emails to the user
after critical actions [30], [31], the response (or its absence)
to which is treated as user confirmation. Confirmations have
the following drawbacks 1) reactive measure. Confirmation is
sent after the service has executed the critical action, meaning
that attacks cannot be prevented in the first place; 2) lack of
trust. The out-of-band channel may not always be secure and
3) an extra burden on the user side. As a result, the application
of out-of-band confirmation is limited.

Client-side trusted execution defenses enabling secure dis-
play [72], secure I/O [73] and secure JavaScript execution [74],
[75] are the fundamentals to secure interaction integrity. Be-
low, we will describe academic works in the area. 1) Heuris-
tic-based. Earlier works [16], [76] leverage the time since
the last hardware I/O as a heuristic to certify requests, as
hardware I/O can only be generated from the physical human
user. Requests without recent hardware I/O are said to be
non-user-generated. These works neither verify what is shown
to the user nor link hardware I/O to request semantics—an
attacker can evade detection by only forging requests when
there are I/O activities. 2) Linking on-screen inputs to requests.
Gyrus [41] uses a secure VM to acquire the on-screen user
inputs (e.g. email content on the screen) to match with outgo-
ing requests (e.g. email content in the request). Despite that a
Gyrus user may see a completely tampered page, Gyrus uses
per-field security indicators to indicate whether the on-screen
input values have changed since the last time the user has
viewed it, which imposes a high cognitive load on users.
3) Secure user-page interaction. VButton [5], Fidelius [17] and
ProtectiON [6] realize that the display/interaction/submission
must all be secured to protect requests. These TEE-based
works implement a minimal renderer/device drivers/JS en-
gine inside a secure container (e.g. SGX, TrustZone). These
works face a dilemma between functionality support and a
low-trusted computing base (TCB). By favoring a smaller
TCB, they are extremely limited in terms of UI elements/input
devices/JS features support in the secure area of the page. As
a side effect, these works have to allow the coexistence of
secured and unsecured UI elements, and thus, are open to UI
redressing attacks [18] tampering with all the unsecured web
elements. 4) Secure confirmation is similar to out-of-band con-
firmation except the confirmation is shown on the same client
securely through a secure execution environment such as ARM
TrustZone [5], Intel TXT [77]. These confirmation dialogues
display at a fixed time (i.e. after the transaction, before the
request is sent). An attacker can exploit this timing by showing
a deceptive context before and after the secure dialogue to lure
the user into falsely confirming the transaction [78]. vWitness
enforces display integrity throughout a vWitness session.

VIII. CONCLUSION

We shift away from directly implementing trusted web
clients in hardware-supported TEEs, which can lead to limited
functionality and incomplete UI protection, to only relying on
passively “witnessing” user interactions with the web page,
and validating them against a VSPEC. We have tested this
approach using the vWitness prototype, which employs CNN-
based validators to process raw screenshots of the browser
view and certifies the outgoing requests if the validation suc-
ceeds based on the provided VSPEC. Our evaluation shows
that vWitness is effective in detecting UI tampering, offers
significantly better compatibility in terms of supporting real-
life web pages, and only introduces negligible latency. Despite
the additional effort involved, with the automated VSPEC gen-
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eration, we believe vWitness will provide an appealing option
to security-critical websites.
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