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Abstract—Optimizing compilers are as ubiquitous as they are
crucial to software development. However, bugs in compilers are
not uncommon. Among the most serious are bugs in compiler
optimizations, which can cause unexpected behavior in compiled
binaries. Existing approaches for detecting such bugs have
focused on end-to-end compiler fuzzing, which limits their ability
for targeted exploration of a compiler’s optimizations.

This paper proposes FLUX (Finding bugs with LLVM IR
based Unit test cross(X)overs), a fuzzer that is designed to
generate test cases that stress compiler optimizations. Previous
compiler fuzzers are overly constrained by having to construct
well-formed inputs. FLUX sidesteps this constraint by using
human-written unit test suites as a starting point, and then
selecting random combinations of them to generate new tests. We
hypothesize that tests generated this way will be able to explore
new execution paths through compiler optimizations and find new
bugs. Our evaluation of FLUX on LLVM indicates that it is able
to increase path coverage over the baseline LLVM unit test suite
and explores more edge coverage than previous work. Further, we
demonstrate FLUX’s ability to generate miscompiled and crash-
producing IR on LLVM’s optimizations. After a month of fuzzing,
FLUX found 28 unique bugs in LLVM’s active development
branch. We have reported 11 of these bugs which led to 6 of
them being patched by LLVM developers. 22 of these are crashes
that are triggered by well-formed input programs, and 6 of these
are miscompilation bugs that silently produced incorrect code.

Index Terms—compiler testing, fuzzing, miscompilation, com-
piler defect, crossover

I. INTRODUCTION

Compilers are an indispensable component of any modern
development pipeline. Popular optimizing compilers like GCC
and LLVM have grown to contain tens of millions of lines of
code [1]. As with any code base that is highly complex, bugs
in compilers are difficult to avoid. However, compilers are
often blindly trusted by end users and are expected to preserve
source program semantics. Unfortunately, these assumptions
are not always correct, despite the best efforts of compiler
developers.

Compiler bugs can range from inconvenient compile time
crashes to potentially dangerous miscompilations that can
cause unexpected behaviour in the resultant binary. LLVM
for instance reports hundreds of bugs each month [2], [3].
Undetected bugs in LLVM have real-world consequences. For
instance, the LLVM infrastructure has been integrated into
consumer-facing technologies, such as the Android NDK and
PS4 SDK [4]. Beyond quality of service degradation and the

occasional unexpected behaviour, bugs in LLVM can also be
exploitable [5]. Hence, ensuring that a compiler like LLVM
remains free of crashes and miscompilations is a difficult but
crucial goal.

To find compiler bugs, previous work has employed fuzzing
to automatically generate bug-triggering test cases. Unlike
general-purpose software fuzzers [6]–[8], compiler fuzzers
must respect the syntactic and semantic constraints of the
source language. Any fuzzer that does not respect these
conventions will quickly become stuck in the compiler’s lexer,
parser, and type checker.

Popular compiler fuzzers have tried a variety of methods to
generate valid tests. Some generate tests cases with the aid of
a grammar [9], [10], heuristics [11], [12], deep learning [13],
[14], and by mutating existing tests to form new valid in-
puts [15]–[18].

Although successful in finding bugs, previous work is not
able to fully explore the entire space of input programs to
their target compilers [10]. This means that after sufficient
time, compiler fuzzers saturate their entire output space, which
is a biased subset of potential inputs. This bias leads to
under-explored components, such as the compiler’s middle-
end optimizations. Due to a focus on end-to-end fuzzing,
existing work has relied on heuristics and intuition to stress op-
timizations. For instance, YARPGen [10], restricts portions of
its generation scheme to only use arithmetic, logical, and bit-
wise operations. Their intuition is that dense clusters of these
operations will better trigger certain peephole optimizations.
Unfortunately, heuristics like this may also suffer from bias or
are narrow in scope, only focusing on specific optimizations.
As opposed to source-level fuzzing, we suggest IR-level test
generation as an effective way to target optimizations.

Instead of generating test cases from the bottom up, our
work makes a key observation: compilers like LLVM contain
a large suite of high-quality unit tests that are known to stress
most components of the compiler. Further, in the case of
LLVM, each optimization in the middle-end has a correspond-
ing set of unit tests that boast a high code coverage [19]. This
work aims to leverage these feature-rich unit tests in order to
generate new test cases.

However, despite the high line-coverage that the unit tests
provide, new optimization bugs continue to be found. In
fact, previous studies have shown that coverage metrics like



line coverage are weakly correlated with actual bugs [20].
Hence, a single execution pass through each code segment
is insufficient, we must also explore the same code in varying
orders and with varying numbers of iterations. In essence, we
believe that increasing path coverage through the compiler will
lead to more found bugs.

We conjecture that generating test cases by combining these
high-coverage unit tests will allow us to stress execution paths
through the compiler optimizer that previous work could not.
We denote these test case combination techniques as unit test
crossovers. Though the space of crossover mutations is, in
theory, infinite, we begin by proposing two simple crossover
mutations. The first is a function-level mutation that composes
unit tests in a manner that is akin to inlining. The second
is a module-level mutation that we denote as a sequencing
crossover.

We implement FLUX on top of libFuzzer [8]. FLUX targets
LLVM and generates LLVM IR test cases to stress LLVM’s
middle-end optimizations. To evaluate the effectiveness of
FLUX’s crossovers, we measure FLUX’s ability to find new
paths and new edges through LLVM’s optimizer. We estimate
path coverage with libFuzzer’s logarithmic edge count buck-
eting. Our evaluation of FLUX yields promising results. We
show that FLUX’s crossover mutations are able to find more
new path coverage through LLVM’s optimizer than CSmith,
an industry-standard compiler fuzzer [9] and more new edge
coverage than YARPGen [10], a state-of-the-art fuzzer.

Furthermore, FLUX is able to find a significant number
of compiler bugs. To detect miscompilations, we rely on
Alive2 [21] as a bug oracle and we instrument LLVM with
AddressSanitizer to detect memory errors. Over the course of a
month, FLUX triggers 28 unique bugs in LLVM optimizations,
22 of which are various types of crashes in the optimization
code and 6 are miscompilation bugs. 6 of our reported bugs
have already been acknowledged and patched by LLVM
developers.

To summarize, this paper makes the following contributions:

• We propose crossovers, which combine high line-
coverage test cases in order to generate new path coverage
in LLVM.

• Two novel crossover mutations, the inlining and the
sequncing mutations, which are capable of exploring new
paths through existing unit test code.

• A prototype implementation of FLUX, a fuzzer that
implements the inlining and sequencing mutations on top
of libFuzzer.

• An evaluation of FLUX’s ability to explore new path cov-
erage and find new bugs in LLVM’s optimization passes.
In total, we discover 28 bugs during our evaluation.

We begin in Section II with background on LLVM and its
unit test suite, which FLUX uses as inputs. Next, we detail
FLUX’s design in Section III, and implementation details in
Section IV. We evaluate FLUX’s ability to increase edge
and path coverage, as well ability to find LLVM bugs in
Section V and discuss generalisability and threats to validity

in Section VI. Finally we conclude in Section VII and provide
details on anonymous data availability in Section VIII.

II. BACKGROUND

A. LLVM

Much of LLVM’s appeal lies in the modularity of its
components, which is facilitated by LLVM’s intermediate
representation (IR). The middle-end optimization pipeline opt
optimizes the input IR through a series of transformation
passes. Although “lower level” than source code, LLVM IR
still contains a significant amount of semantic information that
facilitates the many optimizations in the middle-end.

TABLE I
TRANSFORMATION UNIT TEST SUIT COVERAGE

Component Total LoC Missed LoC Coverage (%)
InstCombine 28820 3264 89.61
IPO 35731 20140 43.63
Scalar 53534 30692 42.67
Utils 39420 16688 57.67
Vectorize 25804 6272 75.69
Total 183309 76786 58.11

The LLVM unit tests consist of a large collection of LLVM
IR files that each test a singular or a set of compiler features
for correctness. For targeting compiler optimizations, there are
around 8000 test files labeled as “Transformation” tests which
contain over 60000 LLVM IR functions. To give a sense of
the thoroughness of the unit test suite, Table I summarizes the
line coverage achieved by passing the unit test suite through
opt at the -O3 optimization level with x86_64 as the target
architecture. The table lists the main optimization directories
in LLVM. Note that many optimizations rely on target archi-
tecture information, which results in missed coverage in our
opt run. Further, many transformations, such as a number
of interprocedural optimizations and scalar optimizations, are
not enabled on the default optimization levels. Despite this,
the unit tests still obtain 58.11% line coverage with a single
opt configuration. Most impressively, the unit tests are able
to achieve near 90% on LLVM’s InstCombine source code.

Despite the high unit test coverage, previous work has
found that, across all compiler components, optimizations
rank among the top ten buggiest components in LLVM and
GCC1 [3]. These statistics are not just historical artifacts.
Recently, researchers have had success in finding optimization
bugs by simply selecting appropriate optimization orders and
settings to differentially test LLVM [22], [23]. Moreover,
even with 90% coverage from the unit test suite, other work
has found InstCombine to be the buggiest optimization in
LLVM [2]. Even with its shortcomings code coverage remains
a popular guidance metric among compiler fuzzers [24].

1The paper defines LLVM and GCC as having 96 and 52 components
respectively
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B. Related Compiler Fuzzers
We discuss related generation-based fuzzers (II-B1) which

create test programs from scratch, and mutation-based fuzzers
(II-B2) which mutate existing test cases to form new test
programs. We note that the fuzzers described in this section
generate source languages and most also target the LLVM
compiler.

1) Generative Compiler Fuzzers: Likely the most widely
used compiler fuzzer, Csmith [9] generates C programs via
random sampling from a pre-defined grammar. The grammar,
a subset of C, ensures that generated programs are able to
pass through the compiler’s frontend. Each Csmith program
prints a checksum of the program’s randomly generated non-
pointer global variables. This checksum allows Csmith to be
used for differential testing [25] across different compilers.
Csmith inspired numerous follow-up works that either build
upon [24] or utilize it [22], [23]. For instance, one testing
approach called swarm testing [26] utilizes Csmith by omitting
grammar features during test generation in order to “swarm”
a smaller subset of the compiler.

Despite its success, Csmith has exhausted its output space
in recent years. As a result, YARPGen a C/C++ generator
was released [10]. YARPGen notes that existing compiler
fuzzers suffer from distributional bias and will eventually lose
effectiveness. To solve this, YARPGen develops generation
policies that skew the random sampling distribution. For
instance, one policy might favour arithmetic expressions to
target sub-expression elimination optimizations. In a similar
vein, other fuzzers have focused solely on generating programs
that target arithmetic optimizations [11], [12]. These targeting
strategies are heuristic-based and rely largely on the intuition
of their authors.

Finally, we briefly mention compiler fuzzers that leverage
neural networks to perform program generation. Previous
approaches have utilized recurrent neural networks to auto-
matically generate C [14] and OpenCL programs [13].

2) Mutation-based Compiler Fuzzers: We first discuss mu-
tational fuzzers that use semantics preserving mutation [24] to
modify an existing test to generate different but behaviourally
equivalent programs. Because of their semantic equivalence,
these programs enable differential testing on a single compiler.
Orion [15] generates semantically equivalent programs by
randomly pruning non-executed parts of a seed program.
Athena, additionally inserts code into unexecuted regions [16].
Beyond mutating dead code, Hermes, introduced semantics
preserving mutation in live code [17]. They accomplish this
by inserting random code that is side-effect free into paths
that the program actually executes. Similar to the generative
approaches described earlier, these fuzzers focus on end-to-end
testing and hence value semantic validity more than targeting
optimizations.

As for mutations that do not preserve program semantics,
skeletal program enumeration (SPE) [18] mutates program
skeletons. A program’s skeleton is defined as a program that
has each of its variable definitions and uses represented as
placeholders. SPE then enumerates every possible assignment

of program variables into these placeholders. The authors then
propose a way to minimize the set of enumerated programs to
avoid generating functions that are equivalent. SPE does not
prevent undefined behavior in its output and relies on manual
inspection to detect miscompilations, yet finds a vast number
of bugs. Another mutation-based fuzzer, LangFuzz [27], mu-
tates a seed program by replacing non-terminals with random
grammar walks and terminal code fragments. These code
fragments are extracted from programs known to have caused
invalid behaviour in the past. In contrast to the rest of the
fuzzers in this section, which generate C or C++, LangFuzz
targets the JavaScript interpreter.

C. Translation Validation

Orthogonal to compiler fuzzing, translation validation ap-
proaches compiler bug-finding from a formal verification
angle. One previous work, Alive2 [21], [28], verifies opti-
mizations by mapping the correctness of the transformation
to an equivalent set of SMT queries. Due to its compatibility
with LLVM IR, Alive2 is able to directly verify optimizations
in LLVM’s opt pipeline. Importantly, Alive2 is also able to
handle code that contains undefined behaviour.

Many of the fuzzers we discussed in II-B that rely on
differential testing are careful to avoid introducing undefined
behaviour into their generated tests. Compiler optimizations
have free rein to make arbitrary transformations on the code
if it contains undefined behaviour [29]–[31]. This means that
we cannot expect the output of a program containing undefined
behaviour to be consistent, which is a necessary assumption
when performing differential tests.

III. FLUX’S DESIGN

FLUX’s high-level goal is to detect compiler bugs and
miscompilations in LLVM’s middle-end optimizations. To
motivate the design decisions we made in working towards this
goal, we note the following about previous compiler fuzzers:

Most previous work (II-B) spends considerable effort re-
specting source program semantics and ensuring their gen-
erated tests remain undefined behaviour free. Although these
design choices have proved successful for end-to-end compiler
testing, it limits a fuzzer’s ability to specifically target middle-
end optimizations. We identify two limitations of existing
approaches:
• L1: The output space of existing compiler fuzzers is

typically a skewed subset of the target compiler’s input
space. This arises from the difficulty in incorporating
all grammar elements into an automatic test generator,
while also generating well-formed test cases to pass the
frontend checks of the compiler. For instance, generating
tests for a specific source language will not allow a
complete exploration of LLVM IR features; LLVM IR is
a general representation that numerous source languages
can compile to. Further, the source code is at the mercy
of the compiler frontend’s lowering process.

• L2: Compiler fuzzers that do target optimizations, rely
on heuristics and intuition to trigger optimization code.
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This is not ideal for scaling and automating the testing
of the hundreds of optimizations that LLVM uses. The
prerequisite code structures for many optimizations are
very specific and frequently changing, making existing
intuition-based guidance insufficient.

To address these limitations, we design FLUX’s mutations
to leverage LLVM’s high code coverage unit tests to generate
programs that are able to explore new paths through the com-
piler’s optimizations. First, as the unit tests are implemented
in LLVM IR, we conveniently avoid the compiler’s frontend
and since we observe a direct mapping from unit test to
LLVM optimization, we need not rely on randomness and
heuristics to target optimizations (L1). Moreover, operating
at the LLVM IR level allows for source-language agnostic
testing of LLVM’s optimizations. Second, LLVM unit tests
are fairly complete (II-A) and contain a wealth of LLVM
developer knowledge. Beyond coverage, these tests contain
insights into edge cases and programs that previously triggered
errors. New tests that are able to replicate and extend the unit
test’s coverage will be able to stress a larger range of compiler
optimizations than existing fuzzers (L2). Instead, we need to
ensure that the mutated unit tests retain enough of their original
structure such that they still stress the same optimization code,
but explore new paths through the same coverage. We classify
FLUX as a non-semantics preserving mutation-based fuzzer,
akin to skeletal program enumeration [18] and LangFuzz [27]
albeit the nature of our FLUX’s mutations is quite different.

A. Crossover Design Goals

To generate new test cases that inherit the optimization-
hitting properties of LLVM’s unit tests, we consider ways to
combine unit tests with a crossover mutation. We envision
our crossover as a method of building input programs that
use feature-rich unit tests as building blocks. Our intuition is
that combining tests across disparate code structures and target
optimizations will yield interesting exploration. Further, many
unit tests contain IR that previously triggered bugs. A suitable
crossover mutation will ideally implant these previously prob-
lematic tests into unexplored contexts. To realize these goals,
we note two things when designing our crossover mutation.

1) Structure preservation: The unit tests are foundational
components that encode developer knowledge on what pre-
requisite code structure is needed to trigger and stress op-
timizations. Hence, the crossover should try to preserve the
structures of its inputs, when generating new tests. This means
we should avoid any mutation that alters the test code in
an unprincipled way, lest we lose the targeting benefits of
using the high-coverage unit tests. A crossover mutation that
arbitrarily clobbers unit test code will struggle to explore new
paths through the same optimizations.

2) New path exploration: The crossover should explore
new paths through the coverage already achieved by the unit
tests. A crossover mutation that is overly conservative in
preserving the coverage of its inputs may not explore any new
paths. For instance, consider a crossover that takes as input
two LLVM IR functions and simply returns a module that

contains the two functions. Undoubtedly, the input coverages
are preserved since we have not modified any code structure.
However, the extra exploration that this provides is minimal.

We propose two crossovers that strike a balance between
structure preservation and new path exploration. One which
mutates inputs at the function level (III-B) and one that
operates at the module level (III-C).

B. Inlining Mutation

This mutation combines two LLVM IR functions and gener-
ates a new function that combines the code of its inputs. This
crossover is congruent with the inline expansion optimization,
which replaces a function call site with the body of the called
function. Our inlining mutation combines two test cases by
selecting a function from each test and inlining the entire body
of one function into the other. The difference between our
crossover and the inline expansion optimization is that, instead
of inlining an existing function call, we randomly select an
insertion location in one input function to insert a call site to
the other input function, before completely inlining the call
site.

Fig. 1. Inlining mutation on two ASTs. The star denotes the insertion location.

We denote the LLVM IR function that acts as the destination
of the inlined code, the destination function and denote the
function whose body we are inserting (i.e. the called function)
as the source function.

To reduce the chance that dead code elimination trivially
deletes our inserted code, we link the dataflow of the des-
tination function with the source function’s body—a form
of dataflow stitching. We accomplish this by finding type-
compatible variables in the destination function to pass into
the source function’s arguments. We then transplant the return
value of the call site into an operand of the destination function
instruction that immediately follows our inserted call site. We
denote this destination operand as the insertion location. From
an AST interpretation of the IR, this crossover is akin to the
replacement of a non-terminal in the destination function with
the entire source function AST, as shown in Figure 1).

Algorithm 1 describes the inlining process in detail. Line 2
collects all potential insertion locations in the destination func-
tion. Collecting these insertion locations involves traversing all
instructions in the destination function and iterating over each
operand of each instruction. Every operand that matches the
return type of the source function is a viable insertion location.
Next, we iterate over each candidate insertion location to
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Algorithm 1: Function inlining mutation

1 Function InlineMutation(D, S):
Input: destFunc: D, srcFunc: S
Output: Crossover Result

2 Loc← getAllInsertionLocations(D);
3 for ℓ ∈ Loc do
4 C ← getAllArgCandidates(D, ℓ);
5 if S.ArgTypes ⊆ C.ArgTypes then
6 SInArgs ← {};
7 for a ∈ S.Args do
8 α←selectRandArg(C, a.type);
9 SInArgs.add(α);

10 β ← D.insertCallAt(S,SInArgs,ℓ);
11 ℓ.setOperand(β);
12 β.inlineFunction();
13 return D;

determine its feasibility. A feasible insertion location must
allow a sufficient number of type-compatible variables to
use as arguments to the source function. Hence, we collect
all potential argument candidates on line 4. To abide by
dominance constraints, we can only consider variables that
are defined in blocks that dominate the insertion location. We
achieve this with a reverse iteration through all predecessor
basic blocks in the dominator tree, storing every variable in
each of these predecessor blocks as a candidate. On line 5, we
check if we have enough typed values that the source function
arguments require.

Now that the algorithm has established that the insertion
location is valid, on line 8, it randomly selects arguments to
use. The algorithm then inserts a call instruction to the source
function, links the return value dataflow, and finally inlines the
entire source function. If the algorithm exhausts every insertion
location without finding enough candidate arguments, then the
mutation fails. In practice, to minimize the number of failures,
we run Algorithm 1 on every combination of function pairs
that are contained in each unit test file.

We consider the inline mutation a good compromise be-
tween structure preservation and new code exploration. The
crossover maintains the original code of both the source and
destination functions by inlining an entire function body. Fur-
ther, it introduces new dataflow dependencies at the boundaries
of the source function’s entry and exit block, as well as a new
control flow structure.

C. Sequencing Mutation

Next, we introduce a crossover mutation that operates at the
module level by introducing dependencies between functions.
To inject dependencies while preserving the original test cov-
erage, we propose a crossover mutation that generates a new
function that calls the component units tests in sequence. We
denote this crossover as a sequencing mutation. As opposed
to the inlining mutation which takes two functions as input,

and returns a function, our sequencing mutation instead returns
an LLVM IR module. This module, at minimum, will contain
the two input functions, and a third function that serves as the
caller for the other two functions.

Simply calling the component functions in sequence may
be optimized away by dead code elimination. To reduce
the chance of this, we inject interprocedural dataflow into
the caller function. To do so, we consider three sequencing
strategies in the caller function that inject dataflow:

1) Return Value Chaining Strategy: We pass the return
value of the first function call into one of the arguments of
the second function call. The caller function then returns the
second function call’s value. The prerequisite for this mutation
is that the return value type of one function matches one of
the argument types of the other function.

2) Pointer Argument Strategy: We pass the same pointer
value (i.e. an LLVM IR alloca instruction) to both functions.
The input functions are eligible for this strategy if a pointer
argument of the same type exists in the parameters of both
functions.

3) Binary Operation Strategy: If both input functions have
return values that are compatible with a certain binary oper-
ation(s), we insert dataflow by randomly generating one of
these operations, and sending both values into the operation
as operands. We take the result of the binary operation as the
return value of the caller function. For instance, a binary add
instruction could be generated if both functions return an i32
integer.

For each of the above sequencing strategies, we patch
any unfilled arguments with randomly generated constants. In
cases that do not satisfy the requirements for any of the above
three crossovers, we default to a caller function that does not
contain any dataflow between the two input functions.

D. Fuzzer Structure

To utilize the inlining and sequencing mutations, we inte-
grate our two crossovers with a fuzzing engine. Figure 2 gives
a high-level overview of FLUX’s structure and main fuzzing
loop. The FLUX fuzzer first initializes the fuzzing corpus to
contain all LLVM transformation unit tests.

The workflow of each fuzzer iteration in the main loop is
denoted by each of the numbered arrows. First, two unit test
modules are selected from the fuzzing corpus. These unit tests,
which we denote as the “M1” and “M2” in the figure, are
passed into FLUX’s crossovers. The engine then randomly
selects one of the inline or sequencing mutations to generate a
crossover result which is then fed to a coverage-instrumented
LLVM optimization pipeline. If any optimizations crash or
trigger a memory error, then we exit the fuzzing loop and
generate a crash report. Otherwise, step 3 returns control to
the fuzzer engine’s behavior monitor. If the coverage bitmaps
indicate that the crossover result triggered new coverage, then
the test case is saved to the corpus in step 4. Finally, test
cases in the fuzzing corpus are also fed to Alive2 to detect
miscompilations.
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Fig. 2. Overview of the FLUX fuzzer. The orange components are contributions of this paper. The numbered edges denote the main fuzzing loop.

IV. IMPLEMENTATION

To implement the structure described in Section III-D, we
build our FLUX mutations on top of libFuzzer’s engine [8].
libFuzzer is a coverage-guided fuzzer that is linked with
the program or library under test (i.e. opt). We implement
FLUX’s crossovers on LLVM’s main active development
branch, which at the time of writing this paper, is on LLVM
16.0. To evaluate our crossovers, we extend an existing naive
IR fuzzer in LLVM called llvm-opt-fuzzer. We disable
all of the existing fuzzer’s mutations and drop in the imple-
mentation of our crossover, which is comprised of around 2000
lines of C++ code.

To detect memory errors, we instrument LLVM’s optimiza-
tion pipeline with AddressSanitizer [32]. Further, we compile
LLVM in debug mode to find crashes that are caused by
assertion failures and LLVM errors during our fuzzing runs.
The rest of this section describes implementation-specific
challenges and considerations we faced when developing our
FLUX prototype.

A. LLVM IR Constraints

It should be noted that the crossover algorithms that we
introduced in Section III, do not produce correct code for
all possible LLVM IR inputs. LLVM’s well-formedness con-
straints were challenging to conform to and contain many
esoteric requirements. Luckily, LLVM provides an internal
verifier that checks the well-formedness of any input LLVM
IR. We rely on the verifier to filter out any invalid IR that
is generated by our mutations so that we do not pollute
the crossover corpus with invalid IR. For the vast majority
of cases, our crossover produces correct code. However, for
efficiency reasons, we did make small tweaks to our algorithm
to handle edge cases. For example, we tweaked our algorithm
to exclude certain intrinsic instructions from being used as
insertion locations.

B. Alive2 Considerations

We use Alive2’s standalone validation tool, alive-tv2 to
verify our generated LLVM IR files. Unfortunately, as previ-
ously mentioned in Section II-C, Alive2 does not support any
interprocedural optimizations. Hence, the transformations that
alive-tv can verify are limited to intraprocedural passes.
Specifically, alive-tv verifies an optimization pipeline that
is similar to opt’s -O2 optimization level, but without inter-
procedural optimizations. This means that FLUX as a whole,
cannot automatically detect miscompilations in interprocedural
optimizations. However, it can still catch crashes and LLVM
errors in these passes.

Another Alive2 constraint that we consider in our imple-
mentation is its memory and complexity limits. Since Alive2
relies on an SMT solver, it limits the size and complexity of
its input programs. For instance, Alive2 will throw an out-of-
memory error after consuming 500 MB of data. Hence, any
test case that fails to meet Alive2’s resource restrictions will
cause wasted cycles. To amend this, we use a Python script
that orders each file in the crossover corpus by increasing file
size. The script then continually feeds the smallest tests to
alive-tv for verification. Further, due to the time overhead
of the SMT solver, we also choose to run the script in a
separate thread that continually monitors the fuzzing corpus
(Figure 2)

A final implementation consideration concerning Alive2 is
its unsupported instructions. Alive2 does not support every
one of LLVM’s vast set of language features. For instance,
any IR that contains a pointer-to-integer cast will immediately
be rejected by Alive2. When performing fuzzing runs with our
concurrent Alive2 script, we want to minimize the amount of
unsupported behaviour in tests generated by FLUX. Hence, in
these runs, we choose to reduce the LLVM unit test suite that is
loaded into FLUX to only contain functions that are supported
by Alive2. Note that FLUX is able to run without Alive2 with

2https://github.com/AliveToolkit/alive2
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the entire unit test suite, and indeed we will demonstrate that
we are still able to detect compiler crashes without it.

V. EVALUATION

To validate FLUX’s design (III) choices, we ask the follow-
ing research questions:
RQ1 Are FLUX’s inlining and sequencing mutations able to

find new path coverage through LLVM’s optimizations?
How does FLUX compare to existing fuzzers? (V-B)

RQ2 Is FLUX able to find new crashes in LLVM’s optimiza-
tions? If so, what do these crashes look like? (V-C)

RQ3 Is FLUX’s Alive2 integration able to find new miscom-
pilation bugs in LLVM’s optimizations? (V-D)

A. Fuzzing Setup

For our path coverage evaluation, we perform our experi-
ments on a 40-core Intel Xeon Gold 6336Y machine with 64
GB of memory running Ubuntu 20.04. For our longer bug-
finding fuzzing campaigns, we use a machine with an Intel
Core i7-12700K processor with 32 GB of memory, running
Ubuntu 22.04. We target the active development branch of the
LLVM repository, which corresponds to release 16.0. In order
to collect path coverage information for LLVM’s optimiza-
tions, we instrument opt with SanitizerCoverage [33]. For
each fuzzing run, we set the target architecture to x86_64 to
allow for cost estimation optimizations to run (e.g. function
inlining considers architecture-specific costs).

B. Path Coverage Statistics

To answer evaluation question, RQ1. We first conduct a
path coverage experiment to verify whether our inlining and
sequencing mutations are able to explore new paths through
the optimization code.

Due to the exponential nature of storing every permu-
tation of paths, true path coverage is difficult to measure
efficiently. As a result, most fuzzers implement a proxy for
path coverage—to be precise, industry-standard fuzzers, like
AFL++ [34], [35], simulate path coverage by maintaining
coarse branch-taken hit counts. SanitizerCoverage, takes a
similar approach using inline-8bit-counters, which
is a byte map that records the hit counts of each unique
(branch_src, branch_dst) pair in the instrumented
code. SanitizerCoverage performs logarithmic bucketing on
its edge counts, which places ranges of hit counts in one
of eight buckets. Hence, to estimate path coverage, we use
SanitizerCoverage’s edge counters to instrument opt, and we
remove all other instrumentation.

We stress that this path coverage estimate is an underapprox-
imation of actual path coverage. It is not able to differentiate
between executions that traverse the same set of edges, the
same number of times, but in a different order. However,
executions that discover a new number of traversals through
the same code will be captured to an extent. For instance, the
edge counters we use will be able to capture new iterations of
a loop’s execution if the number of iterations lands in a new
bucket.

We conduct a path coverage ablation study by targeting the
-O3 optimization pipeline3 with each of FLUX’s crossover
components on the entire LLVM unit test suite and compare
the results with Csmith and YARPGen. Since YARPGen can
generate both C and C++, we test both languages separately
to account for any distributional differences between C and
C++. We prepare the unit test suite by collecting around 50,000
LLVM IR functions as seed inputs. We separately compare the
results of fuzzing runs that use both the inlining and crossover
mutations and runs that use one or the other. We run each of
FLUX’s configurations, CSmith, YARPGen-c, and YARPGen-
cpp until 10,000 new test cases are generated. We compile the
C and C++ test cases generated by CSmith and Yarpgen into
LLVM-IR to test opt. We disable all optimizations with the
-O0 flag for this lowering. Table II shows our results after
averaging over five separate runs.

TABLE II
PATH COVERAGE INCREASE OVER THE BASELINE UNIT TEST CORPUS.

* DENOTES P < 10−8 WHEN COMPARED WITH CSMITH

Fuzzer Path Cov. New % IncreaseFeatures Features
Inline + Sequence 1235204.8* 63183.8 +5.39
Inline 1230825.8* 58804.8 +5.02
Sequence 1231369.6* 59348.6 +5.06
Csmith [9] 1198194.8 26173.8 +2.23
YARPGen-c [10] 1245884.8* 73863.8 +6.30
YARPGen-cpp [10] 1238450.0* 66429.0 +5.67
Baseline 1172021.0

Table II lists the number of path coverage “features” that
are achieved by the baseline seed corpus combined with the
resultant corpus of each mutation scheme. To expand on the
meaning of “feature”, libFuzzer flattens each element of its
coverage maps into a single integer when comparing test case
coverages. This flattening process involves generating a unique
feature ID for each of its byte map values. Since edge counts
are logarithmically bucketed, if the execution count of an edge
maps to a bucket value that has not been previously explored,
a new feature ID will be generated from this coverage data.
Whenever a new feature ID is encountered, libFuzzer stores it
in a set of all unique features. Every fuzzer iteration compares
the feature IDs of the newly generated test program with all
previously found unique feature IDs. Hence, the “Path Cov.
Features” that we report in the second and third columns of
Table II are the counts of all unique feature IDs of the fuzzing
corpus.

Compared to the baseline, all fuzzers were able to improve
upon the path coverage of the entire unit test suite. Further,
each of FLUX’s and YARPGen’s configurations showed statis-
tically significant improvement over CSmith. Focusing just on
FLUX’s inlining and sequencing mutations, we observe a com-
plementary effect from using both mutations in conjunction,
compared to separately. This indicates that the two mutations
explore distinct paths through LLVM’s optimizations.

3We choose -O3 as it is the most aggressive standard optimization pipeline,
containing the most transformation passes.
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However, among all fuzzing runs, we find that YARPGen-c
and YARPGen-cpp achieve the highest gain in path coverage.
We note that our path coverage proxy may unfairly weight
generators that explore the same edges a large number of
times. YARPGen’s generation policies randomly and deliber-
ately skew the distributions of its generation parameters such
that certain optimizations are targeted more frequently. For
instance, one of YARPGen’s policies targets arithmetic peep-
hole optimizations by randomly selecting regions of code to
only contain arithmetic instructions. This targeted generation
can lead to an increased frequency of executing the same
optimizations multiple times in the same test case. These
repetitive sub-paths through the optimizer are captured as new
coverage by our logarithmic edge count metric, which may
explain why YARPGen performs so well in this experiment
when compared to CSmith and FLUX, which are less well-
tuned to target specific optimizations.

Given that FLUX focuses on finding interesting ways to
combine existing unit tests and largely preserves the existing
structure of its component tests, a test generated by FLUX is
less likely to execute the same optimization code with a new
number of hits unless by chance FLUX selects two identical
unit tests to perform its crossover. Despite this, even though
YARPGen outperforms FLUX in path coverage measurements,
FLUX’s inlining + sequencing is able to remain competitive.

We note that although YARPGen is able to find more
paths, these new paths may not be interesting. For example,
consider a code snippet that triggers a peephole optimization.
If we generate a test case that contains multiple copies of this
snippet, the peephole optimization will run multiple times, but
may not result in any interesting bug-finding exploration.

Because of the difficulty in determining whether repetitive
executions of the same sub-paths are actually interesting,
we perform a second experiment that measures unique edge
coverage. To show that our crossovers succeed in discovering
interesting paths, we measure the unique edges discovered by
our fuzzer-generated tests over that of the baseline unit test
suite. We pass the same 10,000 test case corpora into a build
of opt that is instrumented for edge coverage. Our results are
listed in Table III

TABLE III
EDGE COVERAGE INCREASE OVER THE BASELINE UNIT TEST CORPUS.

* DENOTES P < 10−8 WHEN COMPARED WITH CSMITH AND YARPGEN

Fuzzer Total Edges New Edges % increase
Inline + Sequence 211479.4* 3175.4 +1.52
Inline 211757.8* 3453.8 +1.66
Sequence 211262.2* 2958.2 +1.42
Csmith [9] 209453.8 1149.8 +0.55
YARPGen-c [10] 209452.4 1148.4 +0.55
YARPGen-cpp [10] 209363.8 1059.8 +0.51
Baseline 208304.0

In contrast to the path coverage results, all of FLUX’s
crossover configurations show significant improvement in find-
ing new edges over the baseline unit tests, Csmith and YARP-
Gen. The disparity between YARPGen’s high path coverage

improvement and low edge coverage improvement indicates
that YARPGen’s path coverage gains are a result of repetitive
executions of the same edges. This is not to diminish the
efficacy of YARPGen’s approach, as repeated execution of
the same edges may also lead to bug-findings. However, it
does show that FLUX is able to find edges that CSmith and
YARPGen were not able to find.

Interestingly, these results also indicate that the inline muta-
tion is more adept at exploring new edges than the combination
of inline and sequence. This may mean that the rate at which
inline explores new edges is greater than that of the sequence
crossover. This could be explained by the larger amount of
intra-procedural optimization code on the -O3 pipeline, of
which the inline crossover is more suited to explore.

We note that the raw % increase is not particularly infor-
mative as there is optimization code that is not enabled under
-O3 and in general, there is no way to simultaneously enable
all optimizers in LLVM. Rather, we note that FLUX is able
to increase the additional path coverage of Csmith over the
Baseline by more than 2× and the additional edge coverage of
CSmith and YARPGen by 3×, demonstrating the effectiveness
of our approach.

It should be noted that, to generate 10,000 tests, Csmith’s
runs took around 5.3 hours and YARPGen’s runs only took
5 minutes, while FLUX’s mutations ranged from 16 to 33
hours. This is largely due to implementation artifacts. For
instance, crashes or found bugs cause fuzzer re-initialization,
which requires the entire 50K test suite coverage to be re-
loaded. Further, since the inlining mutation fails if the two
input tests are not type-compatible, many libFuzzer iterations
were skipped because the randomly selected inputs were
incompatible. We leave the development of a more efficient
prototype to future work.

We further acknowledge that the coverage comparisons to
CSmith and YARPGen do not paint a complete picture, as we
do not evaluate the efficacy of FLUX’s bug detection versus
CSmith and YARPGen’s differential testing approach. Further,
we mention that our approach to evaluating YARPGen doesn’t
take into account its fast generation speed. However, we note
that our edge coverage findings in Table III closely match the
results reported by YARPGen authors [10].

C. LLVM Crashes

To evaluate our second research question, RQ2, we run
FLUX for a month on LLVM’s optimizations. We mainly
target opt’s -O3 optimization pipeline. We use the entire unit
test suite as a seed corpus for our fuzzing runs. In total, we
find 22 unique crashes, 19 of which are in the -O3 pipeline.

We classify the LLVM crashes bugs into one of three
categories:
• Assertion Failures and Unreachables4. Assertion failures

and unreachables in LLVM immediately crash the com-
piler. We perform our fuzzing runs on a release build of
opt, with assertions enabled.

4Unreachables in LLVM denote points in the code that should not be
executed and are similar to Assertion Failures.
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TABLE IV
CRASHES FOUND IN THE -O3 OPTIMIZATION PIPELINE

Optimization File Crash Type
Aggressive- AggressiveInstCombine/ LLVM Error
InstCombine AggressiveInstCombine.cpp

CoroEarly
Support/Casting.h Assertion
IR/Constants.cpp Assertion
Coroutines/CoroEarly.cpp LLVM Error

CoroSplit Coroutines/CoroFrame.cpp Assertion
Coroutines/CoroSplit.cpp Memory Error

InstCombine
ADT/APInt.h Assertion
InstCombine/ Unreachable
InstructionCombining.cpp

IPSCCP
IR/Value.cpp Assertion
Utils/SCCPSolver.cpp Assertion
IR/Constants.cpp Assertion

Inliner CodeGen/BasicTTIImpl.h Assertion
Analysis/ConstantFolding.cpp Unreachable

AlignmentFrom- Support/Alignment.h Assertion
Assumptions

GVN Scalar/GVN.cpp LLVM Error
Memory Error

LICM Scalar/LICM.cpp LLVM Error
SimpleLoop- Scalar/ Assertion
Unswitch SimpleLoopUnswitch.cpp
SROA Scalar/SROA.cpp LLVM Error

Total Crashes 19

• LLVM Error. LLVM errors are thrown when valid IR is
passed into the optimizer but an intermediate optimization
pass transforms it into an invalid state.

• Memory Error. Crashes caused by use-after-free, out-of-
bounds memory accesses, and null pointer dereferences.

Table IV lists the crashes we found with the optimization
and file that triggered the crash and the crash type. We note
that we are able to find a crashing input test in a wide range
LLVM’s optimization components, despite only targeting the
general -O3 optimization pipeline. This result contributes
some evidence towards the generality of FLUX’s approach.
One of the LLVM crashes has been confirmed and patched so
far.

TABLE V
CRASHES FOUND WITH ONLY THE -INSTCOMBINE FLAG

File Crash Type
IR/Instructions.cpp Assertion
InstCombine/InstCombineLoadStoreAlloca.cpp LLVM Error
InstCombine/InstCombineMulDivRem.cpp LLVM Error

To test FLUX under a different optimization configuration,
we perform a narrowed fuzzing campaign that only targets
LLVM’s instruction combine optimizations. Further, we pre-
pare a seed corpus comprised entirely of LLVM unit tests
that target the instcombine pass. Recall that the unit tests
that serve as a starting point for FLUX already achieve 90%
line coverage, yet FLUX can still discover new bugs using
those tests. We run FLUX with these configurations for 2 days
and are able to find 3 unique crashes (Table V). This result

provides encouraging feedback for FLUX’s ability to find bugs
in contexts other than the -O3 pipeline.

1 define i64 @f(ptr %arg, i8 %b) {
2 %g1 = getelementptr i8, ptr %arg, i64 1
3 %ld0 = load i8, ptr %arg, align 1
4 %ld1 = load i8, ptr %g1, align 1
5 %z0 = zext i8 %ld0 to i64
6 %z1 = zext i8 %ld1 to i64
7 %z6 = zext i8 %b to i64
8 %s0 = shl i64 %z0, %z6
9 %s1 = shl i64 %z1, 8

10 %o7 = or i64 %s0, %s1
11 ret i64 %o7
12 }
13 =>
14 define i64 @f(ptr %arg, i8 %b) {
15 %ld0 = load i16, ptr %arg, align 1
16 %1 = zext i16 %ld0 to i64
17 %2 = shl i64 %1, %z6
18 %z6 = zext i8 %b to i64
19 ret i64 %2
20 }

Fig. 3. An LLVM Error caused by the AggressiveInstCombine pass

AggressiveInstCombine LLVM error case study: To il-
lustrate what an LLVM error found by FLUX looks like, we
examine a crash in the aggressive instruction combine pass
that has been verified and patched by LLVM developers. The
bug-triggering test case is provided in figure 3. The bug was
discovered when fuzzing the -O3 pipeline.

The above bug-triggering code on lines 1 to 12 was orig-
inally much larger when it was found by FLUX however,
it has been reduced by LLVM developers after this bug
was confirmed and fixed. The program was generated by
FLUX with a number of crossovers on unit tests that target
the SLPVectorizer transformation5. Lines 14 to 20 show the
optimized code after being passed through the aggressive
instruction combine pass.

Notice that there are 2 sequences of load, zero extension
(zext), and shift left (shl) in the pre-optimized code. Be-
cause pointers %arg and %g1 point to consecutive addresses,
these two sequences of instructions can be widened to a
single sequence of width i16. The aggressive instruction
combine pass detects this and performs multiple instruction
fold optimizations on the two load sequences in the test
program.

However, due to the data dependencies injected by FLUX’s
crossovers, the intertwined results of each load sequence
causes the optimization to perform an error-producing trans-
form. Notice that in the unoptimized code, a third zext
instruction on line 7 is used as an operand in the shl
instruction on line 8. The widened sequence of instructions
in the optimized code on lines 15-18 neglects the order of
this dependency. This results in the use of %z6 on line 17,
before the variable has been defined on line 18! Hence, after
the optimization completes, the LLVM IR verifier detects this
use-before-definition error and crashes.

5SLPVectorizer/X86/bad-reduction.ll
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This demonstrates that FLUX’s mutations are able to take
unit tests that target one optimization and use them to explore
new paths in other passes of the optimizer.

D. Miscompilation Bugs

To evaluate RQ3, we investigate whether FLUX is able to
generate input programs that are miscompiled and detectable
with Alive2. At the time of writing this paper, we were able
to debug and verify 6 miscompilation bugs. We have reported
these 6 miscompilations to LLVM developers, of which 5 have
already been patched. We present two case studies to illustrate.

1 define i32 @bar(i32 %ih) {
2 %0:
3 %sd = sdiv i32 %h, 2
4 %t = icmp sgt i32 %sd, 1
5 %sd.i = sdiv i32 %sd, 2
6 %t.i = icmp sgt i32 %sd.i, 1
7 %r.i = select i1 %t.i, i32 %sd.i, i32 1
8 %r = select i1 %t, i32 %sd, i32 %r.i
9 ret i32 %r

10 }
11 =>
12 define i32 @bar(i32 %h) {
13 %0:
14 %sd1 = udiv i32 %h, 2
15 %t = icmp sgt i32 %h, 3
16 %sd.i = sdiv i32 %h, 4
17 %r.i = smax i32 %sd.i, 1
18 %r = select i1 %t, i32 %sd1, i32 %r.i
19 ret i32 %r
20 }

Fig. 4. A miscompilation caused by the CorrelatedValuePropagation pass

CVP miscompilation case study: Figure 4 lists the error
causing input on lines 1 to 10 and the misoptimized output
on 12 to 20. The input test was generated by inlining a
function in an InstCombine unit test into itself6. The input
unit tests check a simple peephole replacement however, our
inlining mutation exposes an optimization opportunity for the
CorrelatedValuePropagation (CVP) pass. CVP determines it is
safe to replace sdiv with udiv on line 3.

Unfortunately, this optimization produces incorrect code7.
Note that udiv, unsigned division, fills the most significant
bits of its result with zeros which does not match the func-
tionality of sdiv, the signed division instruction.

Consider passing an undefined value in the inputs of both
the pre and post-optimized functions. An undefined value of
type T can take any value in the set of defined values for
T and can differ across executions. Consider a case where
%sd = 0x00000000 and %sd1 = 0x40000000 (i.e. a
large negative number). This leads to different icmp values
on lines 4 and 15 respectively in each function, hence one
%t is assigned 0 and the other a value of 1. Consequently,
the select instructions on lines 7 and 18, having been
fed different booleans, will return different values. The pre-
optimized code returns the value of %r.i which traces its
provenance to the constant 1, whereas the optimized code

6InstCombine/preserve-sminmax.ll
7https://github.com/llvm/llvm-project/issues/62200

returns the value of %sd1 which is derived from the input
argument %h.

1 define <2 x i32> @f(<2 x i1> %x, <2 x i32> %y) {
2 %0:
3 %sext.i1 = sext <2 x i1> %x to <2 x i32>
4 %r.i2 = xor <2 x i32> { 42, 4294967289 }, %sext.i1
5 %r.i = xor <2 x i32> { 42, 4294967289 }, %r.i2
6 %r = urem <2 x i32> %y, %r.i
7 ret <2 x i32> %r
8 }
9 =>

10 define <2 x i32> @f(<2 x i1> %x, <2 x i32> %y) {
11 %0:
12 %1 = icmp eq <2 x i32> %y, { 4294967295, 4294967295 ←↩

}
13 %r = select <2 x i1> %1, <2 x i32> { 0, 0 }, <2 x ←↩

i32> %y
14 ret <2 x i32> %r
15 }

Fig. 5. A miscompilation caused by the InstCombine pass

InstCombine miscompilation case study: Figure 5 lists
another miscompilation bug that was caught with a FLUX-
generated test case. Lines 1 to 8 list the pre-optimized input
program and lines 10 to 15 show the optimized output. The
test case was generated with functions that were extracted from
an InstSimplify unit test8 and an InstCombine unit test9. The
two unit tests check for peephole replacements on vectors of
booleans. Both tests check a replacement involving extended
vectors (sext), as the dividend of an unsigned remainder
instruction (urem) and as an operand in an exclusive or op-
eration (xor), for InstSimplify and InstCombine respectively.

The combination of the two test cases triggers optimiza-
tions in the InstCombine pass that replaces the sequence of
sext, xor, and urem instructions with an icmp instruction
followed by a select. This replacement does not produce
the same behavior under all possible inputs10.

Consider passing input vectors of %x = < 1, 1 > and
%y = < poison, undef > into the two functions. A
poison value is a way to represent undefined behavior (UB)
in LLVM IR. Poison values propagate through instructions
and raises UB if the poison reaches a side-effect producing
instruction.

Notice that the optimized function has two uses of the
input argument %y. Recall that an undefined value can resolve
to different values during runtime. We will demonstrate that
passing in an undefined value as an element of %y can cause
divergent results during runtime. If we trace the flow of these
two arguments through the pre-optimized code, we observe
that the sext instruction results in %sext.i1 = < -1,
-1 > and consequently %r.i = < -1, -1 > due to the
cancelling of the two xor instructions. Next, assuming that the
undef value resolves to -1 (i.e. 4294967295 unsigned). The
return value of this function will be %r = < poison, 0
>. However, if we trace the same input through the optimized

8InstSimplify/rem.ll
9InstCombine/binop-cast.ll
10https://github.com/llvm/llvm-project/issues/62401
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code, and assume that undef resolves to any value that is not
-1 on this first invocation, we see that %l = < poison, 0
>. If the second use of undef on line 13 resolves to -1, then
we have a return value of %r = < poison, -1 >. Hence
the two functions can produce different outputs.

VI. DISCUSSION

A. Generalisability

We acknowledge that much of FLUX’s design relies in-
timately on LLVM specifics. The current FLUX prototype
can only test the LLVM compiler. Despite this, we believe
that using a high-coverage unit test suite with our sequencing
and inlining mutations can be effective in other contexts.
For instance, this may also work with GCC’s intermediate
representations. We leave this exploration to future work.

B. Threats to validity

There are several threats to the validity of this study. First is
our choice of proxy measurement for path coverage. Although
edge counts and edge coverage are commonly used, it is
difficult to assess how their use as an approximation for
path coverage affects our conclusions. We believe ultimately,
the increases in these values rather than just code coverage,
contribute to FLUX’s ability to find new bugs. A final note is
that not all of the bugs found by FLUX have been confirmed
and fixed by LLVM developers yet. However, we are currently
working towards this.

VII. CONCLUSION

This paper contributes a targeted bug-finding method that
explores LLVM’s middle-end optimizations. Our approach
posits that exploring new path coverage through the compiler’s
optimization code will lead to the discovery of new bugs.
However, generating code that is able to trigger optimization
paths is a challenge, one that previous work has mitigated with
heuristics. FLUX makes the observation that compilers such
as LLVM contain suites of unit tests that are already capable
of stressing most compiler optimization components.

To leverage these high-coverage unit tests, we contribute
two novel crossovers, the sequencing and inlining mutations.
We demonstrate the efficacy of FLUX by conducting fuzzing
runs on LLVM’s middle-end optimization pipeline. We find
that both of FLUX’s crossovers explore more new path cover-
age than existing work. Further, when used in extended fuzzing
runs, FLUX is able to find 22 crashes in LLVM. The variety in
the types and compiler optimizations of these crashes support
the general applicability of FLUX’s fuzzing approach. Finally,
FLUX is also able to find 6 compiler miscompilations by using
existing translation validation tools to validate our generated
tests.

VIII. DATA AVAILABILITY

We have made the code for our FLUX prototype available
at https://github.com/ericliuu/flux. Our repository does not
include the input unit tests used in our experiments. Those are
taken directly from the LLVM repository at https://github.com/

llvm/llvm-project/tree/main/llvm/test/Transforms, at commit
0303eafcb34647f7d5a4015aad266b5766f5dc5e. Because we
have only tested on the x86 backend, we exclude any unit
tests that target other architectures. Further, we trivially filter
out incompatible unit tests by running each test through opt
with the -O3 optimization level and excluding test cases that
crash. We store each unit test in a flat directory that is passed
in as seed input into libFuzzer. In total, this results in nearly
50,000 LLVM IR functions in our corpus.
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