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Abstract

Hardware security extensions are engineered to enhance software security for various purposes such

as memory protection, program execution environment isolation, among others. Nevertheless, due

to constrained hardware resources and the intricate nature of security goals pertaining to diverse

software applications, the practical utilization of these hardware features by software developers,

may diverge from those original envisioned by the hardware designers.

We examine the repurposed uses of hardware features within the field of operating system se-

curity, presenting three case studies. The first involves a light-weight memory protection system

designed to guard against return-oriented programming attacks, repurposing the intended use of

a memory protection hardware extension. The second case presents a suite of secure OSes aimed

at bolstering application security on mobile platforms, broadening the scope of the original target

audience of a mobile hardware security feature. Lastly, we discuss an attack method that augments

other side-channel attacks enabling them to elude detection and mitigation by manipulating proces-

sor thermal control functionality. The adapted uses of these hardware features can lead to a variety

of potential consequences. While some outcomes, such as improved efficiency or innovative defense

mechanisms, may be beneficial, others could inadvertently introduce security vulnerabilities.

Through an exhaustive analysis of these three case studies, we gleaned the following insights: (1)

A flexible approach to the utilization of hardware security extensions for different security purposes

can yield partial security, resulting in lower and more acceptable overhead. (2) To accommodate

new application security requirements, the design of the operating system can be adapted to cater

to a broader range of users. (3) Hardware features that initially seem irrelevant could effectively

counter the assumptions made by software defence that rely on hardware security extensions.

This thesis underscores the importance of hardware-software collaboration for achieving optimal

operating system security. Through the scrutiny of three specific examples of repurposed hardware

feature utilization, the study illuminates both the potential benefits and risks inherent to these

interactions. Consequently, it advocates for a more holistic and cooperative approach to navigate

the challenges and intricacies of current secure computing systems.
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Chapter 1

Introduction

Operating system (OS) security constitutes a pivotal facet of modern computing systems, hinging

on the flawless integration of hardware and software components. Numerous hardware extensions,

developed over time, cater to a spectrum of purposes including parallel execution, virtualization and

safeguarding sensitive data. The complex hardware security extensions are designed by hardware

manufacturers to meet specific security requirements. However, in the pursuit of achieving a balance

between optimal performance and robust security, software developers may repurpose these features,

employing them in manners unforeseen by the original hardware designers.

The repurposed utilization of hardware features is not uncommon in software systems, and such

uses may often lead to security risks. One of the representative illustrations of this is branch

prediction, a feature that empowers the processor to anticipate the outcome of a conditional branch

and execute the correct instruction before the actual branch is taken. This feature, designed and

implemented by CPU manufacturers to enhance processing efficiency, can unexpectedly be leveraged

to leak crucial information like in Spectre attack [96] – a risk unforeseen by hardware designers.

Both offensive and defensive strategies frequently diverge from the original intended use of hardware

extensions, culminating in outcomes that can be advantageous or deleterious. These unconventional

applications of hardware features necessitate a comprehensive understanding of the implications of

employing hardware in non-traditional manners and the potential repercussions on system security.

In this thesis, we introduce three sets of mechanisms as exemplars, illuminating the repurposed

use of hardware features in the realm of operating system security. We delve into memory protection

hardware features such as Intel’s Memory Protection Extension (MPX), designed to prevent pro-

gram’s out-of-bound accesses, and Intel’s Secure Guard Extension (SGX), which provides a secure

execution environment for user-level software applications. We assess how these hardware features

have been repurposed for operating system security. We further discuss hardware extensions for

Trusted Execution Environments (TEEs) on mobile platforms, elaborating on their role in augment-

ing the security of sensitive operations under the device manufacturers’ purview and how they could

be extended more freely to third-party mobile applications, or more scalable virtual hardware secu-

rity features. Finally, we explore the adaptations of processor settings for security analysis purposes,

uncovering the feasibility of aiding side-channel attacks by adjusting these settings in manners that

deviate from their initial design.

Through the proposed mechanisms, we identify disparities between the security-focused hard-

1



1.1. MEMORY PROTECTION EXTENSION FOR DEFENDING ROP ATTACKS 2

ware extensions designed by manufacturers and the actual requirements and applications of these

features by software developers. Given the relative complexity of security hardware extensions —

considering their newly introduced instructions and methods of applying them — these are usually

narrowed down to one or a few fundamental use cases. Consequently, software developers may need

to devise novel approaches to fit their specific requirements by changing the default methods of sys-

tem software using these hardware extensions. Conversely, in certain scenarios, these changes may

result in undesired consequences, necessitating alterations in software defense strategies or hardware

designs. In each of the three examples within this thesis, we strive to contribute to a more profound

understanding of the dynamic interplay between hardware and software in the context of operat-

ing system security. By elucidating the manners in which hardware features are repurposed, we

aspire to guide future research and development efforts, as well as inform policy and best practice

recommendations. Ultimately, our aim is to foster a more vigilant and informed approach to lever-

aging hardware features in software development, thereby promoting a secure, resilient, and open

computing environment for all.

We have learned lessons during our pursuit of the above goals: (a) fully protecting an operating

system for security can be a complex and expensive task, even with hardware assistance, however,

with a slight deviation from the original use case, partial security can be achieved with reasonable

cost; (b) the target audience of a hardware security extension might be initially small, but as the

range of users expands, operating system support for such adaptations might be necessary to meet

new security requirements; and (c) operating system security needs for careful consideration of

hardware features that may appear irrelevant but can actually negate the assumptions made by

software defence with hardware security extensions.

We will briefly introduce the three cases we studied in this thesis, offering insightful revelations

into the challenges and opportunities pertinent to the employment of hardware security extensions

for both software defence and attacks. Collectively, these cases underline the intricacies and hurdles

associated with deploying hardware security extensions for operating system security. On the whole,

these cases not only accentuate the intricacies and challenges inherent in using hardware security

extensions for bolstering software defense, but they also illuminate the potential advantages that

careful planning and collaboration between hardware and software designers can bring.

1.1 Memory Protection Extension for Defending ROP At-

tacks

Memory corruption attacks have plagued computer systems for decades, and despite the long history

and numerous proposed defenses, these attacks continue to pose a significant threat. One of the

most popular attacks is the return-oriented programming (ROP) attack, which manipulates the

victim thread’s call stack to execute existing code fragments, called “gadgets,” by chaining their

return addresses. By overwriting the return addresses on the stack, the attacker can control the

execution flow and perform malicious actions without injecting new code, bypassing traditional

security defence. A secure and low-overhead defense against the ROP attacks remains an elusive

goal for the security community. Existing solutions often involve trade-offs between inadequate

protection of critical data, relying on information hiding, or resorting to incomplete and coarse-

grain checking that can be bypassed by more sophisticated and well-orchestrated attacks.



1.2. SCALABLE APPLICATIONS IN TRUSTED EXECUTION ENVIRONMENT 3

In this work, we introduce a novel approach called Light-Weight Memory Protection (LMP) that

leverages Intel’s MPX hardware extension, originally designed for bounds checking in memory, to

provide comprehensive and efficient ROP defence without depending on information hiding.

Hardware-supported memory checks offer several advantages over software-based memory check-

ing, including improved efficiency. However, we discovered that hardware extensions like Intel MPX

must be carefully applied to fully harness the performance gains offered by such specialized hard-

ware. In particular, not all operations supported by Intel MPX exhibit low overhead. Thus, our

LMP design focuses on minimizing the utilization of high-overhead instructions and components of

MPX while still effectively safeguarding critical memory regions from unauthorized modifications.

In order to address the limitations of existing solutions and provide a more robust defense against

ROP attacks, we have developed a prototype that showcases the capabilities of LMP.

By repurposing Intel MPX hardware extensions, our innovative approach enables fast and com-

plete ROP protection without the need for information hiding. Our prototype demonstrates the

ability to defeat ROP attacks while maintaining an average runtime overhead of only 3.9%.

1.2 Scalable Applications in Trusted Execution Environment

The rapid proliferation of mobile devices and their increasing integration into various aspects of our

daily lives have amplified concerns surrounding mobile security. To address these concerns, hardware-

assisted features such as ARM TrustZone have been employed to place mobile applications within

a TEE to be isolated from the outside software environment. The TEE ensures that sensitive data

and operations are protected from potential threats originating from untrusted parts of the system,

including malicious software applications and corrupted operating systems that cannot be trusted.

However, third-party applications are generally restricted from entering the TEE and benefiting

from TrustZone’s security features without first being vetted by the device manufacturers. One

reason for this restriction is that current TEE operating systems are not designed to load untrusted

applications and properly isolate them to support multiple mutually distrusting applications.

We propose a novel mechanism implemented as a TEE OS called Pearl-TEE, for functionality-

specific isolation in TEE OS design, aiming to enhance the flexibility of TrustZone by allowing

third-party applications to use the security features in TrustZone, while each application does not

have to trust each other. We demonstrate the practical application of our OS design principles using

mobile payment services as an example, showing how these principles can help democratize access

to TrustZone for third-party applications.

Furthermore, to solve the problem of limited hardware monotonic counter resources in TEE, we

proposed a new system Mint-TEE that leverages hardware features to enable an arbitrary number

of TEE applications to allocate virtual counters at their discretion. This approach empowers these

applications to defend against rollback attacks even when they only have the resource of a limited

number of hardware monotonic counters.

To validate our proposed software solutions with hardware assistance, we have implemented

two light-weight secure TEE OS prototypes: Pearl-TEE and Mint-TEE. These TEE OSes embody

our design principles and provide robust security features for mobile services. Experimental re-

sults demonstrate that our system is both effective and efficient in delivering secure services while

maintaining a high level of performance.
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1.3 Hardware Features for Cache-based Side-Channel At-

tacks and Defence

Intel SGX was introduced as a hardware extension to provide a trusted execution environment

for applications to run without having to trust the operating system that mediates between the

application and the hardware. This hardware approach aimed to enhance the security of sensitive

operations and data by isolating them from potentially compromised system components. However,

despite its promising potential, the intended design of SGX functions does not entirely eliminate

security threats. Specifically, it fails to protect secure applications running within the SGX enclave

from cache-based side-channel attacks, which can expose sensitive information.

In response to this vulnerability, software developers have devised various defense mechanisms,

including the creation of software high-resolution timers. These timers provide a means of mitigating

side-channel attacks, despite the absence of hardware timers within the SGX enclaves. However, our

work reveals that these software-based defenses are still susceptible to more sophisticated attacks.

We introduce a novel CPU thermal attack in our Aion attacks that repurposes processor features

originally intended for managing CPU temperature. By exploiting these features, our attack alters

the execution speed of the timer thread beyond what the defence can tolerate, undermining the

efficacy of software-based defenses. Additionally, we present a cache eviction attack that targets

timer counters, forcing the system to load them from memory instead of the cache. This further

compromises the integrity of software high-resolution timers and exposes the limitations of current

defenses against side-channel attacks in SGX enclaves.

In our research, we thoroughly evaluate the effectiveness of these Aion attacks and introduce an

analytical model to better understand their implications. Our findings demonstrate that software

timers, in their current form, cannot be sufficiently improved to protect against the threats posed by

our attacks. This underscores the need for a more robust and comprehensive approach to securing

SGX enclaves against cache-based side-channel attacks.

1.4 Contributions

We make the following contributions in this thesis:

• We repurposed the Intel MPX hardware extension to defend against return-oriented program-

ming attacks, by developing a lightweight memory protection system. This system is designed

to safeguard critical memory regions containing return addresses of function call stacks, par-

ticularly the shadow stacks. Our approach efficiently ensures that only legitimate accesses

to the protected region are allowed, effectively preventing attackers from manipulating return

addresses.

• We designed and implemented two TEE OSes for ARM TrustZone to support third-party,

mutual distrusting applications to run securely in TrustZone, and to provide isolation, fresh-

ness and liveness to the TEE applications by creating unlimited number of virtual monotonic

counters on top of the intended limited hardware monotonic counters.

• We proposed two types of generic Aion attacks with the assistance of existing hardware features

to effectively exploit all existing SGX software timers which were assumed to be reliable for
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side-channel defenders. The attack model with existing hardware features shows that one

cannot purely rely on a defence made with software timers and that new hardware may be

necessary.

1.5 Thesis Outline

In this thesis, we begin in Chapter 3 by introducing our proposed solution to ROP attacks by using

the MPX hardware extension. We describe the background of the security threats, explain the design

of our LMP system, which consists of a customized compiler and a runtime library. We evaluate the

performance overhead, code expansion and memory overhead of the LMP system.

In Chapter 4, we review background for on-board hardware and TEE application model before

we propose our TrustZone repurposing TEE OS designs. Implementation details and evaluations

follow to show the feasibility and effectiveness of the two TEE OSes.

Finally in Chapter 5, we show the framework of Aion attacks with the help of hardware features

for manipulating software timers in SGX, allowing side-channel attackers to evade detection. Two

types of attacks can work independently or in combination to make it more effective in practice.

Background information is provided from Chapter 2, and we conclude this thesis in Chapter 6.



Chapter 2

Background

In this background chapter, we provide information about how hardware assistance features are

emerged and used by the software developers for security-related purposes. We show the Intel’s

MPX for memory bound protection, and ARM’s TrustZone for trusted execution environment along

with other ARM on-board hardware. We also present a background on the cache-based side-channel

attacks and defence on Intel’s SGX.

2.1 Intel Memory Protection Extension

The hardware assistance, integrated within Intel’s 6th Generation SkyLake processors [127], is

known as MPX. Intel initially proposed MPX as a set of extensions to the x86-64 instruction set

architecture, with the primary objective of monitoring pointer references at runtime, thereby miti-

gating illicit memory access incidents. The conception and development of MPX are rooted in the

previously released Pointer Checker feature [53], implemented in the Intel compiler for debugging

purposes. This feature generates a pair of bounds concomitantly with the creation of a pointer,

and the compiler subsequently produces code to scrutinize these bounds when the pointer is uti-

lized. While Pointer Checker relies solely on software, MPX facilitates hardware acceleration for

bounds checks, which would have otherwise been conducted through software. Consequently, MPX

encompasses both software and hardware components.

The hardware component of MPX incorporates several new registers and instructions into the

instruction set architecture:

• 4 bound registers: BND0 – BND3. Each register is 128-bit, comprising a 64-bit lower bound and

a 64-bit upper bound.

• 2 configuration registers: BNDCFGU designated for user mode, and IA32 BNDCFGS for supervisor

mode.

• 1 status register: BNDSTATUS, which retains error codes upon exception occurrences.

6
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• Bound management instructions: BNDLDX and BNDSTX facilitate the loading of BND registers

from a memory-based table containing object-specific address bounds. BNDMK and BNDMOV

enable programmers to manually manage the BND registers.

• Bound check instructions: BNDCU and BNDCL ascertain that a pointer adheres to the upper and

lower bound constraints specified by a particular BND register.

Regarding the software aspect, it necessitates support from system software components:

• MPX-enabled Compiler: The compiler is used for identifying when and where to generate and

verify bounds by incorporating the relevant instructions. Bound values are also computed by

the compiler through data flow and pointer analysis. Considering the potentially vast array

of objects in memory, the size and bounds of all objects are retained in memory. Prior to a

pointer accessing an object, the compiler loads one of the BND registers with the corresponding

upper and lower bounds, subsequently utilizing the BNDCU and BNDCL instructions to verify

these bounds. As of now, Intel has incorporated MPX support into the GCC main branch

since version 5.0, catering exclusively to C/C++ and x86 targets.

• MPX Runtime: The MPX runtime library is linked to the program at compile-time. Executing

at the user level, the runtime assists in configuring MPX hardware features, receiving and

reporting errors, and managing the bound directory and bound tables stored in memory.

• Operating System: The operating system, in conjunction with the compiler, is required to

accommodate the new instructions specific to MPX. In the event of a bound check instruction

failure, the processor generates an exception due to a bound violation, necessitating the OS to

handle the exception and signal the application accordingly.

We now present an example demonstrating how MPX components can be employed to perform

bound-checking within a small program. Consider a program that declares and manipulates data

across five arrays:

int A[10], B[20], C[30], D[40], E[50];

Whenever a pointer pointing to one of these arrays is dereferenced, the MPX compiler must

insert bound-checks to ensure that the pointer is situated within the bounds of the respective array.

To accomplish this, the MPX compiler must first identify the intended target array for the pointer,

subsequently loading the array’s upper and lower bounds into a BND register. The appropriate BNDCU

and BNDCL checks are then inserted prior to the pointer dereference, verifying the pointer’s position

relative to the upper and lower bounds of the array.

For instance, as depicted in Figure 2.1, if array A is stored at addresses 0x7ffffba0ac70 –

0x7ffffba0ac94, the MPX compiler must first load the upper and lower bound addresses

0x7ffffba0ac70 and 0x7ffffba0ac94 into one of the bound registers (e.g., BND0). This process is

executed using the BNDLDX instruction, which transfers bound information from the bound directory

in memory to the corresponding register. Subsequently, the MPX compiler instruments bound

checking instructions to compare the pointer dereference with bound values stored in BND0. Should

the dereference fall outside the specified bounds, a #BR exception will be generated by the hardware

and intercepted by the exception handler within the MPX runtime.
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; Load address from the

;     bound table to register
BNDLDX  BND0, [RAX+RBX]

...

 

; Compare address with

;     with bound register

BNDCU  RAX, BND0

BNDCL   RAX, BND0
...

C Code

Binary

MPX Compiler

Exception Handler

Bound Table 0

...

Bound Table 1

Bound Table N

MPX Runtime

Bound 0

Bound 1

...

Bound 0

Bound 1

...

Bound 0

Bound 1

...

0x7ffffba0ac94 0x7ffffba0ac70

BND0

Figure 2.1: An example for illustrating how MPX works to protect pointer bounds.

For a pointer referencing an array to undergo bound-checking, the bounds for that array must

be loaded into a BND register. Given that arrays A, B, C, D, and E are all situated in distinct memory

regions, the MPX compiler is required to load the appropriate array bounds into a BND register

every time a pointer dereferences a location within a different array. As there are only four BND

registers available and five arrays to consider, it is impossible for the compiler to maintain the

bounds for all arrays in a BND register at all times. This scenario results in numerous BNDLDX and

BNDSTX instructions being generated by the compiler to load and spill bounds information to and

from memory.

The bound checking instructions (BNDCU and BNDCL) have a relatively low execution cost. How-

ever, the BNDSTX and BNDLDX instructions require access to the two-layer structured bound tables

stored in main memory, rendering them considerably slower in comparison to the bound checking

instructions. In order to measure this cost, we conducted an experiment comparing BNDCU with

BNDSTX/BNDLDX instructions. We randomly generated 1000 memory addresses and used an address

lower than all of them to perform 1000 BNDCU instructions, ensuring no bound violations occurred.

Subsequently, we employed BNDSTX to store the first 500 instructions into bound tables and proceeded

to load them all back one by one into a BND0 bound register. The results of this experiment revealed

that the bound checking instruction BNDCU exhibited an execution time nearly equivalent to a NOP

instruction (1000 instructions in 0.45ms), while the bound store+load instructions BNDSTX/BNDLDX

incurred a cost nearly 1000× greater than NOP (1000 instructions in 432ms).

In real-world applications, the number of objects within the bound table can grow substantially.

However, since the number of BND registers remains fixed at four within the hardware architecture,
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this results in heavy reliance on BNDSTX and BNDLDX instructions, leading to considerable overhead.

To demonstrate this in practice, we utilized a recent MPX-enabled version of GCC (version 6.1) to

compile the SPEC 2006 benchmarks and discovered that this imposed a 2× to 4× runtime overhead.

Consequently, these findings indicate that minimizing the number of BNDSTX and BNDLDX instructions

is essential for maintaining low overhead. This optimization is one of the primary reasons LMP is

capable of providing low overhead.

2.2 ARM Trusted Execution Environment and Mobile Se-

cure Payment

ARM TrustZone is designed to be an open architecture for developing software in a trusted execution

environment [125]. An ARM SoC with TrustZone partitions software and hardware resources, such

as memory and access to peripherals into a secure and normal world, with the secure world isolated

from the normal world with hardware protections. In the secure world, a small secure TEE OS

provides basic security services, which enables secure applications to run in a TEE. Software running

in the TEE can communicate with a normal-world OS, such as Android, and software in the normal-

world using TrustZone drivers [59]. The GlobalPlatform API [56] is a common standard for such

communication to take place.

The benefit of this division between a general-purpose normal-world OS and a small, TEE OS

in the secure-world is that applications running in the TEE have a smaller trusted computing

base (TCB), isolated from the large and complex normal-world OS. The rationale of the small and

isolated environment of TCB is for easier analysis and verification, reduction of attack surfaces and

minimizing risks of vulnerabilities. To maintain these benefits, the TEE OS must be high-assurance,

meaning that it has passed a higher standard of code auditing and testing during its development.

To reach this higher standard, TEE OSes must be smaller, simpler and contain fewer features

than general-purpose OSes. In the current ecosystem, only trusted, signed applications can run code

on the TEE OSes. As a result, one of the areas where current TEE OSes reduce functionality in

favor of simplicity is in the isolation they provide between TEE applications. This design choice

leads to the current situation, where all mobile payment service applications that run in the TEE are

either made by the phone manufacturer (e.g., Samsung Pay on Samsung phones [149] and Huawei

Pay on Huawei Phones [34]), or by entities that are part of an industry alliance with the phone

manufacturers (e.g., Internet Finance Authentication Alliance [79]). As a result, the security offered

by TrustZone exclusively benefits some parties, while remaining out of reach for others. The excluded

parties contain some very significant providers, such as PayPal, Alibaba and Tencent, who process

billions of dollars in payments annually. These services and their many customers are not able to

benefit from TrustZone’s higher security assurance.

To the best of our knowledge, among all current commercial closed TEE OSs and open-sourced

TEE OS (e.g., Google’s Trusty TEE [60] and Linaro’s OP-TEE [105]), there is no mechanism that

can support third-party payment services to be installed, properly guarantee their integrity, and

isolate the TEE applications so they do not affect other TEE applications. If they need to be

designed to support third-party payment systems, mechanisms like secure attestations and runtime

memory isolation shall be required. Our research addresses the domain of payment systems, but

allows for isolation of untrusted applications in the TEE for specific payment functions.
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2.3 Other ARM On-Board Hardware Related to Security

Based on the commonly available hardware and development of mobile device, we introduce the

following hardware on board, which we will mention them in as part of the system we describe in

the thesis:

• Secure Element. To attest the integrity of software running on a device to a remote party, a

trusted hardware device in the form of a Trusted Platform Module (TPM) or a Secure Element

(SE) is required. Both of these are security-hardened processing elements capable of securely

storing signing keys and performing cryptographic operations with those keys. Since the keys

are never exposed to software running on the application processor, signatures made by these

keys can be trusted even if the remote party does not trust the integrity of the normal-world

OS.

• Touch Device. This module can directly generate a signal when a real user touches it. The

signal, later transmitted directly via TEE OS, proves to the remote payment server that the

payment is intended by a real person. A trusted path from the touch device to the TEE

software is required to ensure that a malicious normal-world OS cannot simulate a touch

without the cooperation of the user.

• Trusted Display. The TEE software needs a way to securely communicate with the user to

display payment details so that the user can confirm them. Without this channel, malicious

software in the normal-world could display one set of payment details (such as amount or

payee) and submit a different set to the TEE software. We note that our implementation of

the payment flow, described later in this chapter, does not need security indicators as in other

work [164, 103], but instead relies on the user verifying that the payment details displayed are

consistent with their intentions.

2.4 Intel SGX, TSX and Cache Structures

In this section, we describe hardware background required by understanding cache-based side-

channel attacks and defence in main chapters of this thesis. Intel SGX [84, 31] provides a trusted

execution environment which is targeted by some of the attackers, and a few proposed research

projects use Intel Transactional Synchronization Extensions (TSX) [83] for their defensive mecha-

nisms, which we will also introduce later. Then, we will give an overview of the cache structures in

Intel processors as the cache is a commonly used structure that many side-channel attacks exploit.

2.4.1 Intel SGX

Intel SGX is an instruction set extension introduced in 2015 to the Intel architecture. SGX of-

fers facilities designed for security and system properties, including: Confidentiality, where memory

content is encrypted by the CPU and inaccessible to unauthorized parties; Isolation, enabling the

CPU to support iso lated execution of SGX applications separate from non-SGX applications; In-

tegrity, allowing the memory content to be verified for integrity through SGX hardware features;

and Verifiability, providing a remote infrastructure for attestation that confirms the platform of the
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executed secure application is genuine. SGX establishes a TEE for user-level applications to se-

curely operate within a protected environment called an enclave. Security properties are ensured by

placing application code and data into Processor Reserved Memory (PRM), which is isolated from

the main memory and encrypted transparently by the Memory Encryption Engine (MEE). Secure

applications in enclaves can be interrupted by other applications outside the enclave, resulting in an

Asynchronous Enclave Exit (AEX) event.

The trust model of SGX allows enclave applications to operate without trusting the underlying

OS or hypervisor. However, this also imposes restrictions on the applications, such as prohibiting

syscalls to the underlying OS and disallowing certain instructions inside an SGX enclave such as

hardware clock counter RDTSCP instructions and performance monitor unit instructions.

2.4.2 Intel TSX

Intel TSX [83] is an instruction set extension that provides hardware transactional memory support.

TSX ensures that when a sequence of instructions is executed, either the execution is completed

without interruption or memory read-write conflict (i.e., concurrent access to the same data where

at least one access is a write) with other threads, or the transaction is aborted, and the execution is

rolled back. The most significant distinction from other transactional memory schemes is that TSX

is implemented by hardware, so it does not depend on any software locks, thereby reducing most of

the overheads.

Originally, TSX was intended to accelerate multi-threaded applications by reducing locking,

rather than enhancing software security. However, recent works have utilized TSX as an auxiliary

method for notifying the secure enclave that is supported by Intel SGX about interruptions by other

threads [156] or for protecting cryptographic keys against memory disclosure attacks [66].

TSX-supported compilers provide new intrinsic functions for software to safeguard critical re-

gions. Enclave protection code leveraging TSX uses the intrinsic function calls to mark the beginning

and end of critical code regions. When the code executes, if there are any other threads attempting

to access the same memory region accessed by the critical code, a transaction abort will occur,

regardless of the threads’ privilege levels, and the memory will roll back to the point of transaction

entrance. The thread under TSX protection will then be informed about the interrupts, and the

enclave protection code can count the number of interrupt occurrences.

2.4.3 Intel Cache Structures

The side-channel attacks and defence issues we are discussing in this thesis are all related to the

cache channels, thus we introduce some common background information about the cache structures

of current Intel processors. Cache is a widely used layer in the memory hierarchy designed to reduce

traffic and improve latency when serving memory requests. Typically situated transparently between

processors and the main memory (i.e., managed by the hardware), cache is organized hierarchically,

with level 1 (L1) cache closest to processors and Last Level Cache (LLC) closest to the main memory.

In modern Intel processors, each CPU core (which can run two logical threads concurrently) has

a split L1 data and L1 instruction cache and a unified L2 cache. Additionally, there is usually a

sliced L3 (last level) cache shared among all CPU cores, where each memory address is mapped

to a specific cache slice through an unpublished mapping function [115], and each cache slice can
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independently serve memory requests.

Within each hierarchical level, cache organizes data in units of cache lines, which are the smallest

units for cache filling and eviction. Cache is typically set-associative, meaning that it is logically

divided into equally sized cache sets, and each memory address is mapped to one of the cache sets.

An N-way (set-)associative cache indicates that each cache set has the capacity for N cache lines. If

the cache is sliced, like the LLC in Intel CPUs, all ways of the same cache set will be in the same

cache slice. When a memory request arrives, the cache uses a middle part of the requested address

(set index) to find the cache set, then compares the higher address bits (address tag) with that of

each cache line in the set to locate the correct line, and finally uses the lower address bits (line offset)

to extract the requested portion of the cache line. Cache replacement (or eviction) policy refers to

the strategy for choosing a cache line to evict when a cache set is already full but a new line needs

to be added. One example is the LRU (least recently used) policy, which always evicts the cache

line that has not been accessed for the longest amount of time.

For efficiency and implementation reasons, hardware-managed multi-level caches often constrain

how the same data may appear in different cache hierarchy levels [69]. Inclusive caches require lower-

level caches to include all data from upper-level caches, while exclusive caches prevent the same data

from being cached in more than one level. Although some recent designs feature exclusive caches,

most Intel CPUs still use an inclusive cache design, where eviction from the LLC guarantees eviction

from upper-level caches.

2.5 Power and Thermal Management of Intel CPU

Modern CPUs have power and thermal management features designed to maintain energy effi-

ciency and protect the processors physically. For example, in Intel CPU thermal management [84],

each package of the CPU contains several digital thermal sensors (DTS) for temperature detection,

and the results can be retrieved from MSR registers or PCI interfaces. For safety concerns, such

as CPUs running too hot, the thermal control circuit (TCC) is responsible for responding when a

certain temperature limit is reached: it may either reduce the CPU frequencies, the voltages on

processors, or force the CPU to go into duty cycling.

The TCC can be activated under circumstances configured by system administrators with priv-

ilege. If the TCC offset is misconfigured, thermal events could be triggered at a low threshold,

meaning CPU performance would be throttled down earlier than necessary. Such an event can

also be triggered by software, trapping the CPU into a mode where processors reduce their power

consumption by using clock modulation.

To the best of our knowledge, there is currently no established attack that utilizes the feature

of TCC activation for malicious purposes. However, we point out that if this feature is maliciously

used, CPU speed can be a target that is easily manipulated without being detected by threads

running on the controlled core. This potential vulnerability will be further discussed in this thesis.



Chapter 3

LMP: Light-Weighted Memory

Protection with Hardware

Assistance

3.1 Motivation of the LMP System

In this section, we first introduce the ROP attack and current mitigation techniques against ROP

attacks as the main motivation of developing a new memory protection mechanism. Then, we briefly

describe what the defence we propose is and what the contributions it makes.

3.1.1 Attack and Defence of ROP

In languages such as C/C++, the programmers are ultimately responsible for enforcing the memory

safety of their programs. However, inevitably, programmers produce code with flaws that violate

memory safety, and some of these flaws result in memory corruption vulnerabilities that allow

attackers to maliciously alter the control flow of programs [145, 120], corrupt critical data [73, 111],

or cause sensitive information leakage [44, 184].

There have been numerous proposed or deployed defenses to mitigate memory corruption vul-

nerabilities [177]. Despite this, memory corruption vulnerabilities continue to be exploitable. For

example, ASLR (Address Space Layout Randomization) [134] randomizes memory locations of code

and data segments, but can be circumvented via vulnerabilities such as address space leakage, timing

side-channels [78] or attacks such as just-in-time code reuse [159]. DEP (Data Execution Preven-

tion) [4] prevents injecting and executing new code in vulnerable programs. However, it cannot

prevent reusing existing code in an application via a return-to-libc or ROP (Return-Oriented Pro-

gramming) attack [145].

To address ROP attacks, Abadi et al. propose Control-Flow Integrity (CFI) [1]. CFI protection

enforces both forward-edge protection (i.e. indirect function calls) and backwards-edge protection

(i.e. function returns) to ensure that a memory corruption vulnerability does not allow an attacker to

13
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corrupt a code pointer and redirect execution along an edge not specified by the original program.

While the target of a forward-edge function call can be resolved to a single or small number of

targets statically, the target of a backwards-edge function return cannot generally be determined

with much precision using only static analysis. As a result, backwards-edge protection generally

requires a runtime component. To determine and enforce backward-edges precisely, shadow stacks

are proposed in the first CFI paper [1] as a separate stack used in conjunction with the regular call

stack, to store return addresses of function calls in a program. WHen a function is called, the return

address is pushed onto both the regular call stack and the shadow stack. When the function returns,

the return address is popped from the shadow stack, and its value is compared to the one on the

regular call stack. If the two addresses mathc, the control flow is deemed legitimate and execution

proceeds as normal, otherwise indicating a possible tampering with the call stack happening, which

makes it more difficult for an attacker to manipulate a program’s control flow. Then, the mechanism

proposed in software-based fault isolation (SFI) [176] is further used to protect the contents of the

shadow stacks from corruption by an attacker. Unfortunately, the runtime overhead of the memory

checking required to properly implement this runtime component can be as high as 2× [33].

To reduce this overhead, various proposals weaken the properties of the backwards-edge protec-

tion in return for better runtime performance. For example, some propose coarse-grain protections,

which do not use a shadow stack to precisely track backwards-edge targets. Since shadow stacks

are not used, there is no need for SFI, which avoids the expensive checks required to implement

memory protection for the shadow stacks. This coarse-grain approach is taken by proposals such as

kBouncer [132], ROPGuard [52], ROPecker [24], which have significantly lower overheads ranging

from 1.59% to 2.60%. These coarse-grain methods are imprecise in that they do not actually vali-

date that the return address on a backwards-edge actually points to the original caller; instead, they

either only check that the return address points to an instruction that follows some call instruction,

or they heuristically check the number of returns to detect gadgets executions. They have all been

shown to be circumventable [38, 58] and ineffective against a knowledgeable attacker.

Information hiding is another way to mitigate the overhead of complete CFI backwards-edge

protection. In this approach, rather than protecting the data in the shadow stacks with memory

access checks, the shadow stacks are placed at a random location in a 64-bit address space. Because

the size of the address space is large, it is assumed infeasible for the attacker to guess the location

of the shadow stacks. One method called code-pointer integrity (CPI) [101] is able to provide CFI

protection with 2.9% overhead (on C applications). However, information hiding techniques can be

broken by memory safety vulnerabilities that leak the location of the shadow stacks [49]. Other work

has also shown that various side-channel attacks can be used to leak information that can be used

to find the hidden shadow stacks [153, 163]. The lesson here is that ultimately information hiding is

not equivalent to memory protection, as they are vulnerable to address information leakage, while

memory protection is not.

3.1.2 Contributions of the LMP System

In this chapter, we propose Light-Weighted Memory Protection (LMP) [74], a new method that

leverages Intel’s Memory Protection Extensions (MPX) to make backwards-edge CFI both secure

and efficient. LMP tackles two essential problems that stand in the way of memory safety in

system software: critical memory region protection in backwards-edge CFI approaches and non-
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trivial overheads in checking memory access violations.

While hardware-supported memory checks are naturally more efficient than software memory

checking, which is also proven in recent work on using customized hardware for CFI enforcement [27,

37], we find that the hardware extensions like Intel MPX have to be applied carefully in order to

truly reap the performance benefits of specialized hardware. In particular, not all of the operations

supported by Intel MPX have low overhead. Therefore, we design LMP to minimize the use of

the high-overhead components of MPX and still enable it to effectively protect shadow stacks from

unauthorized modification.

We build a proof-of-concept prototype implementation of LMP and measure the performance

overhead with SPEC 2006 benchmarks. The LMP system introduces an average overhead of 3.90%,

which is much less than the 2× overhead from the reference implementation of the original CFI [33].

In fact, LMP achieves roughly same overhead as information hiding techniques [101, 36], which have

generally about 3% overhead. LMP is also comparable with recent coarse-grained CFI approaches,

which have overheads between 1.59% (ROPGuard [52]) and 2.60% (kBouncer [132]). However, LMP

provides stronger security guarantees than both information hiding and coarse-grain approaches, as

it is both not vulnerable to either side-channel leakage and enforces a much stricter policy.

We summarize three main contributions the chapter of LMP makes:

1. We propose an alternative use of hardware assisted pointer checker with Intel MPX that is

different from the standard proposed use of MPX.

2. We provide the first stack protection solution that is assisted by the available CPU feature of

Intel MPX.

3. We achieve a low overhead among existing equivalent solutions, while provide stronger protec-

tion than coarse-grain backward-edge CFI approaches.

3.2 Design of the LMP System

3.2.1 Threat Model

We assume a realistic attacker capable of exploiting memory corruption vulnerabilities to modify

content of arbitrary memory addresses. We also assume that the attacker is aware of the address

locations of key data structures, such as pointers, stacks, and metadata, and can arbitrarily target

them using memory corruption vulnerabilities. The attacker’s goal is to corrupt a code pointer to

compromise the control-flow integrity of a program.

Despite this powerful attacker, we do assume some realistic limitations. For instance, the attacker

cannot directly modify CPU registers or alter any memory marked as read-only, such as code pages,

as both actions would enable the attacker to remove or bypass the compiler-inserted instrumentation

used by LMP. Additionally, attackers cannot compromise the target program’s integrity before it

is loaded into memory, meaning that attacks on the program loader and operating system are out

of scope for LMP. LMP aims to mitigate the exploitation of memory corruption vulnerabilities by

remote or unprivileged attackers for the purpose of privilege escalation.

In general, two types of code pointers require protection: function pointers (i.e., forward-edge)

and return addresses (i.e., backward-edge). LMP focuses on defending against attacks on return ad-
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dresses and assumes the use of an existing forward-edge CFI protection scheme to safeguard function

pointers from corruption, and such an implementation of forward CFI can guarantee forward-edge

protection along with LMP. There is a rich body of literature addressing forward-edge protection.

For example, virtual calls in C++ indirect-control transfers through VTables can be hijacked by

attackers [20] to redirect execution to malicious code. Low-overhead protections for such cases have

been developed in previous works, such as VTV [168], VTable Interleaving [13], and VTrust [203].

Our LMP system can work in conjunction with current forward-edge CFI defenses to provide com-

prehensive CFI protection.

3.2.2 LMP Memory Protection with the assistance of MPX

LMP employs two components to protect return addresses: shadow stacks and the protected mem-

ory region allocator. First, standard shadow stacks are used to maintain a second copy of return

addresses. The shadow stack is updated on a function call and checked when functions return. To

successfully corrupt a return address, an attacker would have to corrupt both the program stack at

the function call site and the shadow stack. Therefore, to prevent the attacker from corrupting the

shadow stack, LMP inserts MPX instructions to ensure that only the instructions it adds at function

calls to update the shadow stack can write to the shadow stack.

According to the threat model delineated in Section 4.2.1, only store operations possess the

capacity to modify the memory region of the shadow stack. As the code pages maintain a read-only

status, an attacker is incapable of eliminating bound checks related to store operations. An attacker

may attempt to bypass the bound-checks by directly jumping to a store instruction. However, this

necessitates corrupting a code pointer, which the Control Flow Integrity (CFI) supplied by LMP,

in conjunction with a supplementary forward-edge CFI scheme, effectively prevents. Consequently,

the backward-edge protection offered by LMP depends on the capability to safeguard shadow stacks

against corruption resulting from memory safety vulnerabilities.

To defend the shadow stack, each store instruction within the program is instrumented to ensure

inaccessibility to the memory region of shadow stacks, even if the attacker alters the targeted in-

struction’s effective address. Despite the presence of numerous store instructions, all are subject to

the same bounds, as LMP merely verifies that they do not target the shadow stack. This approach is

efficient, as it circumvents the necessity of employing costly BNDLDX and BNDSTX operations to modify

the bounds that LMP examines. LMP simply establishes the upper and lower bounds of a BND reg-

ister corresponding to the shadow stack’s lower and upper regions, then proceeds to instrument each

store within the program to guarantee it remains outside of that region. However, in the context of

multi-threaded programs, each thread contains a unique shadow stack. A simplistic solution would

involve utilizing a separate BND register to store the upper and lower addresses for each stack, but

this would mandate the use of the high-cost BNDLDX and BNDSTX instructions to load and store the

stack bounds into the BND registers, negatively impacting performance. Alternatively, we note that

all shadow stacks belong to the same protection class, signifying that irrespective of the executing

thread, a store should be incapable of accessing any shadow stack. Consequently, all shadow stacks

can be positioned within a contiguous memory region and protected using a singular BND register.

Thus, another component of LMP encompasses a scheme that allocates standard shadow stacks

within a single contiguous memory region. Similarly, all other auxiliary data structures employed

by LMP are protected from modification by being allocated within the protected region, which is
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Figure 3.1: The illustration of LMP shadow stacks

restricted by MPX instructions.

3.2.3 Using the Shadow Stack

In order to restrict return instructions, LMP records the return address in the shadow stack upon

each function call, where it will be protected from corruption by an attacker. We illustrate the idea

of shadow stack layout of the LMP system in Figure 3.1.

In order to constrain return instructions, LMP records the return address in the shadow stack

upon each function call, effectively safeguarding it from potential corruption by an attacker. The

conceptualization of the shadow stack layout within the LMP system is depicted in Figure 3.1.

A further distinction from alternative shadow stack approaches lies in LMP’s comparison of

function return addresses with those stored in the shadow stack utilizing MPX bound checking

instructions. This method optimizes the overhead associated with compare/branch instructions in

standard shadow stack implementations, the details of which will be discussed later in this section.

As previously noted, shadow stacks reside in a contiguous memory region. Additionally, this

region is statically defined at program initiation, and due to its inaccessibility to any memory

instruction other than shadow stack operations implemented by LMP, the region cannot be employed

to store any data type other than shadow stacks. A primary contrast between our shadow stack

implementation and other shadow stack or safe stack implementations [36] is that LMP is not

supposed to freely place shadow stacks in any location or offset-based region, but must instead place

them to the predefined shadow stack region. Given that each thread must have its own shadow

stack, we must define a mapping function that allows the shadow stack code to find the shadow

stack for any given thread, but also maps each shadow stack into the predefined memory region.
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One potential solution involves designating the predefined region to be as extensive as the area

where regular stacks can be allocated. This approach would be efficient, as each shadow stack could

then be situated at a fixed offset from the thread’s regular stack. However, the pthread interface

allows for stacks to be created anywhere within a process’ virtual address space. Consequently, one

half of the virtual address space would have to be reserved for the predefined region. While this

may be acceptable in the majority of cases for 64-bit code, it can pose challenges if processes require

memory allocation at a specific virtual address space.

Alternatively, a more resource-intensive but adaptable option is to dynamically allocate and map

stack space from the predefined region as threads and their corresponding shadow stacks are created.

Although this may be marginally more costly than the fixed-offset method, it remains practical and

offers a more conservative estimation of the overhead attributed to various LMP implementation

choices. LMP employs a mapping table that records the offset between a thread’s regular stack

and its corresponding shadow stack. Both the function entry and function return instrumentation

utilize the mapping table to locate the appropriate shadow stack for the thread. The predefined

region is subsequently divided into several fixed-sized shadow stacks, with an additional table storing

which shadow stacks are in use and which are available. Upon thread creation, LMP identifies an

unallocated shadow stack and updates the mapping table with the offset between the thread’s

regular stack and its newly assigned shadow stack. When a thread is terminated, the thread is

deallocated and the offset in the table is removed. These allocation and de-allocation procedures

occur exclusively during thread creation and destruction.

LMP integrates instrumentation at function entry, storing the return address into the shadow

stack. As this memory operation is incorporated by LMP, bound-checking is unnecessary. At

function return, LMP inserts instrumentation that locates the corresponding return address in the

shadow stack and compares it against the address targeted by the control flow. In this manner,

the shadow stack verifies that the integrity of the return address remains unaltered upon execution

return. A thread’s regular and shadow stack share an identical layout, which ensures that a return

address on the regular stack has the same offset from the base of the stack as the corresponding

return address’ offset from the shadow stack’s base. Therefore, only the offset between the regular

stack base and the shadow stack base must be stored in the mapping table. This design is different

from RAD [26] which uses a custom stack layout, and because of this, it has to search through the

shadow stack to for match-finding, while LMP does not need to.

An example of the execution sequence following code instrumentation for shadow stack operations

is provided, along with an assembly code snippet in Figure 3.2:

1. On function entry:

(1) prepare shadow stack address in register %rax

(2) copy return address in %rsp to shadow stack

2. Execute function call and body

3. On function return:

(1) copy return address in shadow stack to bound register %bnd0

(2) use bound checking instruction to check return address in %rsp and %bnd0
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PUSH %rsp

CALL _map_table # find shadow stack via mapping table

# return shadow stack address in %rax

 

MOV (%rsp), %rdx

MOV %rdx, (%rax)  # copy ret addr to shadow stack address in %rax

...

(FUNCTION CALL BODY)

...

MOV  (%rsp), %rdx # put function return address in %rdx

BNDMK %bnd0, [(%rax), 0] # put the address in shadow stack in a bnd 

# register %bnd0

BNDCU  %rdx, %bnd0

BNDCL   %rdx, %bnd0 # check return address with the one in shadow 

# stack

...

Figure 3.2: Assembly code example for instrumented function entry/exit.

MPX bound checking instructions BNDCL and BNDCU are employed instead of a series of compare

and jump instructions for equality comparison. The return address in the shadow stack is set as

the upper and lower bound in the bound register (BND0), which is then bound-checked against

the function return address. Utilizing MPX instructions to verify the return address enhances

performance in the same manner as MPX instructions improve memory bound-checks – these MPX

instructions circumvent additional branch and check instructions typically required to verify the

comparison result. Instead, if the check fails, MPX instructions will generate an exception.

3.2.4 Execute a Program with LMP

An illustration of the conceptual design of our LMP system is provided through a simple example

demonstrating the interaction of LMP with a user program, as depicted in Figure 3.3.

The LMP-enabled compiler instruments the application source code during compile-time. At

program initiation, the LMP runtime configures the shadow stack memory region and records its

lower boundary and upper boundary in the bound register BND1. This action serves to protect the

shadow stack from unauthorized modification. As the program runs, return addresses are stored in

the shadow stack when a function call occurs and the return address is pushed onto the standard call

stack. Upon the function’s return, the two addresses stored in the normal stack and shadow stack

are compared. Throughout the program, any memory operation that stores values to a memory

address is instrumented to ensure that the address is not within the range of the shadow stack using

bound checking instructions.

In specific exceptional cases, such as C++ exception handling, the call stack may unwind due to

setjmp/longjmp instructions, resulting in function call and return mismatches. In the LMP method

proposed, as long as the compiler does not alter the original call stack with exception information
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...

MOV (%rsp), %rcx

MOV %rcx, (%rax)

...

 
MOV      (%rcx), %rdx

BNDCU  %rdx, bnd0

BNDCL   %rdx, bnd0

RET

...

C Code

Binary

LMP Compiler

Exception Handler

Ret Address 0

Ret Address 1

...

LMP Runtime

Figure 3.3: A flow chart of how LMP system works.
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(e.g., GCC stores it in an additional side-table), the return addresses in the original call stacks

and shadow stacks correspond to the same offset to the stack top addresses, ensuring that stack

unwinding due to exception handling operations remains unaffected.

Although it has not been implemented, it is posited that LMP can be extended to offer backward-

edge protection for binary-only CFI. With a control-flow graph (CFG) generated through disassembly

analysis of a binary and modifications to pthread library functions, LMP can also be compatible

with binary-only CFI approaches that utilize binary-rewriting to integrate CFI instrumentation.

3.3 Implementation of the LMP System

The LMP comprises two primary components: the LMP-enabled compiler and the LMP run-

time library. The compiler portion entails modifying the register transfer language (RTL) passes

for instrumenting boundary checking, ensuring that no unauthorized writes can occur within the

memory region storing the shadow stacks. The LMP runtime is responsible for managing shadow

stack allocation and the storage of return addresses from function call stacks.

3.3.1 LMP-enabled Compiler

The LMP-enabled compiler implementation is based on GCC 5.2.0, with approximately 600 lines

of code modified or added to the RTL passes. The primary rationale for altering the compiler and

incorporating new RTL passes is to enable code instrumentation at the assembly level. Both shadow

stack operations and code designed to protect the shadow stack memory region from modification

are instrumented by the LMP compiler.

Within the GCC RTL passes, the source code in final.c and insnoutput.c, which handle

assembler code output for functions, is modified. final end function() aids in emitting assembly

code at function exit, and instrumentation for shadow stack operations is added here.

To implement shadow stacks, at each function call stack operation when the function pushes the

return address, the compiler instruments the code to acquire the address and save a copy to the

thread’s shadow stack. The shadow stack location is determined by indexing into the stack region

using the calling thread’s Thread ID, which is obtained via the system call gettid(). Although

it may initially appear that a system call would be excessively costly, such operations are highly

optimized, and measurements indicate that the expense of gettid() on modern Linux kernels is

negligible. At each return instruction, the compiler instruments the code to obtain the Thread ID

and request the return address stored in the shadow stack from the LMP runtime. If the address

in the return instruction does not match the one in the shadow stack, a bound violation message is

sent to the LMP runtime. In the GCC passes, function calls are identified by searching for the RTL

expression code call insn, formatted as follows:

(call (mem : fm addr) nbytes)

where the addr represents the address of the relevant subroutine.

For bound checking of memory operations, the RTL passes of GCC are modified to locate RTL

expressions containing memory operations that store values to the primary memory address. The
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 ...

4007b5:   ADD    $0xc,(%rax)

...

Before

 

   4005e1:  ADD      $0xc,(%rax)

   4005e5:  BNDCU %rax,%bnd1

   4005ea:  BNDCL  %rax,%bnd1   

...

After

Figure 3.4: An example of LMP instrumentation for store instruction.

address is compared with the upper and lower boundary addresses of the shadow stack, which are

stored in the bound register BND1, housing the bounds of the memory region where the shadow

stacks reside. A bound violation will be triggered if the address falls within the memory range of

the shadow stack, indicating that the pointer used as a target by the memory store may have been

compromised by an attacker.

An example of code instrumentation results is presented in Figure. 3.4, where (%rax) is an

access to memory using %rax as a pointer. The figure displays the assembly code before and after

instrumentation. The add instruction writes to the main memory, while the instrumented assembly

code, BNDCU and BNDCL, verifies whether the memory address to be modified falls within the protected

shadow stack region, the checks can also be inserted before memory operations.

3.3.2 LMP Runtime

The LMP runtime is implemented using approximately 700 lines of C source code. As a proof-

of-concept prototype design, a virtual memory region of 2GB is allocated for the shadow stacks.

This memory size is chosen based on our test environment’s maximum of 62,057 threads (from

/proc/sys/kernel/threads-max), allocating 32KB to the shadow stack for each potential thread.

This allocation is deemed sufficient, as the benchmarks employed never exceed 8KB per thread in

the call stack. In our implementation, both the maximum number of threads and the space allocated

for each shadow stack are adjustable. Since the shadow stacks are allocated within the 64-bit virtual

address space, they occupy only a small fraction of it. Moreover, as most shadow stacks may never

be written to, they consume merely virtual address space, and the operating system is not required

to allocate physical memory to support them.

Alternatively, dynamic allocation of shadow stacks in memory could have been employed, allowing

the shadow stack region to be dynamically extended and reduced in size to accommodate growth

and reduction in shadow stack usage. While this approach might add some overhead in exchange for

better virtual address space utilization, it is not deemed necessary given that virtual address space

is generally not a limiting factor on 64-bit architectures.

When the instrumented program requires the LMP runtime to store a function return address

in the shadow stack, the runtime calculates the offset between the base of the call stack and

the address storing the return address, as well as a Thread ID to process them in the function

LMP push ss(return addr, offset, threadID). The runtime then locates the shadow stack des-
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ignated for that thread and stores the function return address in the shadow stack. When the

program function returns and the address must be compared with the one stored in the shadow

stack, the offset between the base of the call stack and the address storing the function return ad-

dress is calculated, utilizing return addr=LMP pop ss(offset, threadID). Subsequently, the LMP

runtime retrieves the return address stored in the shadow stack.

3.4 Evaluation of the LMP System

In this section we evaluate the effectiveness and different aspects of overheads of our LMP system.

We run our experiments on an Intel i5-6600K with 4 cores @3.5GHz in 64-bit mode with 8G RAM.

The benchmarks are run on Fedora 22 with Linux kernel 4.1.7.

3.4.1 Measurement of Performance Overhead

The overheads of the LMP system are assessed using the CINT 2006 benchmarks. All results

represent the average of five runs obtained from the non-reportable mode of the SPEC benchmark.

These results are compared with the baseline performance without the implementation of LMP. As

demonstrated in Figure. 3.5, the average performance overhead of LMP compared to the baseline

is 3.90%. The h264ref benchmark exhibits the highest overhead at 12.55%, primarily due to its

significantly greater number of function calls and RET instructions compared to other benchmarks.

Excluding the h264ref benchmark, the average overhead is reduced to 2.12%.

The relatively low overhead after instrumentations on memory operations is benefitted mainly by

MPX’s low-cost bound checking instructions. As mentioned in Chapter 2.1 with our measurement,

the bound checking instructions like BNDCU and BNDCL cost nearly as low as a NOP instruction when

the bound is stored in a bound register like BND0. Also, the instruction execution related to bound

checking is possibly boosted in CPU instruction parallelism as other studies show [127], noting that

even NOPs are not free either. Therefore we brought low overhead with LMP by not relying on the

slow bound load and store instructions, but only using fast bound checking instructions provided by

MPX.

To identify the primary sources of overhead introduced by the LMP system, the overhead is fur-

ther divided into three components: context settings, bound-checking, and shadow stack operations.

Context settings encompass runtime library initialization, ThreadID retrieval via system calls, and

other related processes. Bound-checking accounts for the time consumed by MPX bound instruc-

tions, while shadow stack operations consist of all processes associated with the shadow stacks.

Each component’s contribution to the overall overhead is measured by removing the other two

components and assessing the overhead with only one component added to each benchmark. Across

all CINT 2006 benchmark results, the average overhead of context settings is 0.1%, bound-checking

is 0.52%, and shadow stack operations is 3.27%. As illustrated in Figure 3.6, context setting and

bound-checking contribute negligible overhead. Shadow stack operations are the main contributor,

accounting for an average of 84% of the total overhead. The performance penalty of memory protec-

tion constitutes only 15% of the overall overhead, with the remaining 1% attributable to infrequent

setup and stack allocation/de-allocation operations. These results are consistent with other heav-

ily optimized shadow stack implementations [36] that report performance overheads between 2%
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Figure 3.5: LMP overhead by comparison of execution time between baseline and LMP.
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Figure 3.7: Code Expansion of LMP.

and 10% for the same benchmark set. Consequently, it is reasonable to consider this overhead as

representative of the costs of LMP on current processors.

3.4.2 Code Expansion Evaluation

The LMP-enabled GCC generates assembly code to instrument the target program during the RTL

passes, resulting in an increase in code size. A direct comparison of the binary sizes for each

benchmark is performed to calculate the percentage of code expansion introduced by LMP.

As depicted in Figure. 3.7, the assembly-level code expands by an average of 39.27% across the

nine benchmarks executed. There is some variability in the code expansion percentages among the

benchmarks, with the majority of the expansion resulting from bound-checking instructions. When

a benchmark features more function calls/returns and memory store instructions, additional bound-

checking instructions are instrumented. It should be noted that the prototype includes extra code

originally for the purpose of debugging the program, which could be removed to further reduce code

expansion of LMP.

3.4.3 Memory Overhead Comparison

The memory overhead introduced to the benchmarks is, on average, 19.3 MB per program, and the

average percentage of the maximum resident memory overhead is 9.73%. The memory overhead

mainly originates from the LMP system’s runtime library, which manages the shadow stacks. As

discussed in Sec. 3.3, the memory allocation in this research prototype implementation is not opti-

mized, and it is believed that there is still potential for further improvement on performance. By
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incorporating dynamic allocation of the mapping table as needed, instead of preemptively allocating

it for the maximum number of threads, the memory overhead could be significantly reduced.

3.5 Related Work

This section reviews the literature on defense technologies designed to protect programs from con-

trol flow hijacking attacks, including proposed hardware-assisted methods, and discussion on new

hardware security extensions.

Hardware-assisted control-flow integrity protections have emerged across different platforms.

Camouflage [40] and PAL [201] apply ARMv8.3 pointer authentication extension for protections

on Linux kernel with fine-grained CFI approaches. CEST [200] and CFI CaRE [126] use ARM

TrustZone-M to ensure CFI on embedded systems for both user and kernel programs. New hard-

ware extensions have been proposed for RSIC-V architecture and ISA in order to enforce CFI, for

example, Escouteloup [48] discuss adding ISA support for enforcing CFI by using frame pointer

marked as confidential in registers. FIXER [39] proposes using a co-processor for protecting the

program control flows. While this chapter focuses on using Intel hardware extensions, there have

been other works adopting different extensions such as GRIFFIN [54] and PT-CFI [65] use Intel

Processor Trace extension to enforce or verify program control flows.

Traditional attack methods, such as stack-smashing and code injection [138], can be defended

against using data execution prevention (DEP) [4]. Hardware support for DEP is present in virtually

all x86 processors as a non-execute bit (NX bit, also referred to as XD/XN bit depending on the

processor architecture), preventing code in the data segment from being executed. In response to

these protections, attackers have developed more sophisticated methods that do not rely on injecting

new code and instead exploit existing code in the program. Early examples include the return-into-

libc attack [170], which redirects program execution flow through Libc functions. Similarly, return-

oriented programming (ROP) attacks [145] execute arbitrary computations by utilizing a chain of

existing code after altering the return address in the function call stack. ROP attacks have been

demonstrated to be Turing-complete.

Randomization is practical in hiding information about the memory layout of a program from

attackers. Address Space Layout Randomization (ASLR) [134] has been proposed to defend against

ROP attacks by mapping program processes and dynamic libraries into random virtual address space

every time. Address Space Layout Permutation (ASLP) further re-orders sub-routines at the code

segments on the basis of the randomization provided by ASLR [93]. However, the implementations

of ASLR were soon found to be ineffective against de-randomization attacks [154], requiring only

a few hundred additional seconds to compromise the target program. ASLP is also vulnerable to

de-randomization attacks [110].

Control Flow Integrity [1] is introduced to guarantee that indirect control-flow transfers point to

legitimate locations. To ensure that the return addresses in function call stacks are not tampered

with, shadow stacks to store copies of return addresses are suggested. However, the performance

overhead of original CFI is reported as high as 2× if the exact policy is enforced, so there are variants

of coarse-grained CFI proposed with changes to the original policy. kBouncer [132] utilizes the Last

Branch Record (LBR) x86 register that stores recent branches executed by the CPU. It validates

whether the return address points to an instruction following a call instruction, effectively serving
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as a heuristic mitigation of ROP attacks. Employing the same LBR register and a similar policy

as kBouncer, ROPecker [24] incorporates additional static analysis to speculate on a program’s

future execution in order to defend against ROP gadgets. However, this approach can also be by-

passed [38]. ROPGuard [52] checks if the stack pointer points to a memory address outside of the

stack, preventing ROP attackers from executing payloads on the heap. Nevertheless, adversaries can

still modify the stack pointer before the target function is called. The aforementioned defenses are

also vulnerable to attacks that leverage hooks and hide malicious code within non-control data [175] if

the critical memory region is not protected at runtime. O-CFI [121] explores a randomization method

to conceal the program’s control-flow graph and applies MPX in bound-checking for guarding branch

instructions. However, it is still a coarse-grained CFI method and provides only probabilistic security

guarantees, as it does not fully protect function return addresses. Our LMP approach adheres to

the original CFI policy for backward-edge protection, i.e., checking every function return address

and ensuring the return address points to the function caller.

Forward-edge CFI protection is not the main focus of this chapter, thus we only briefly discuss

it here as it is related to backward-edge CFI. The paper proposing VTV [168] reports that more

than 90% of indirect calls are virtual calls. Their method focuses on protecting VTables from being

hijacked, validating at runtime that the target VTables are part of a legitimate set before a virtual

method call is made. The performance of VTV depends on the size of the legitimate VTable set, so

the complexity of the C++ class hierarchy affects the overhead. Building on this idea, VTrust [203]

and VTable Interleaving [13] improve the performance of VTV without requiring global class hier-

archy and prevent VTable hijacking attacks. Our LMP system does not provide protection with

forward-edge CFI. However, the LMP can be easily combined with the aforementioned approaches

by applying patches to the LMP-enabled compiler, thus enabling full-CFI protection.

There are CFI variants proposed with different security targets. The techniques of original CFI

have been used for the purpose of enforcing software-based fault isolation (SFI) [202]. XFI [47]

also employs CFI policies with the help of debugging information in Windows PDB files to defend

against ROP attacks. Data-flow Integrity (DFI) [19] follows CFI approach to prevent non-control

data attacks. Hypersafe [183] is similar to fine-grained CFI protection. It has a target table for

indirect branches and aims at protecting control-flow integrity of hypervisor.

Code-Pointer Integrity (CPI) [101] explores a security mechanism that divides process memory

into two parts: safe memory region and regular memory region. Through static analysis, memory

objects that have pointers including code and data pointers are put into a safe memory region for

protection against illegal tampering. However, flaws of CPI approach have been pointed out [49]

because its safe memory region is not well-protected. The essential idea of LMP is also guarding the

memory region where shadow stacks located. We use new hardware feature of fast memory boundary

checking to ensure the allocated shadow stack region is protected effectively and efficiently.

Other hardware-based CFI approaches have been proposed, such as HCFI [27] and HAFIX [37]

which have their systems implemented on customized FPGA boards or SPARC embedded systems.

Hardware-based memory safety defenses have also been proposed such as In-Fat Pointer [195] that

achieve spatial memory safety at subobject granularity. In contrast, LMP is the first system with

hardware-assisted memory protection compatible with commercially available CPUs and other hard-

ware. Other repurposing usage of Intel MPX have also emerged such as for secure storage [29] and

side-channel protection [99].
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Control-Flow Enforcement Technology (CET) [81] was announced in 2016. CET introduces a

new exception class (#CP) with interrupt vector 21 and a new ENDBRANCH ISA instruction to help

mark legal targets for an indirect branch or jump. It also uses hardware protections to limit access

to the shadow stack, allowing only function call and return instructions to modify the shadow stack

and prohibiting regular memory stores from doing so. Works like CETIS [193] also repurposes the

use of Intel CET from shadow stack protection to intra-process memory isolation. Our LMP system

could not be feasible after Intel’s MPX official deprecation in 2019, leaving Intel CET the closest

solution for protecting the shadow stack with hardware assistance. However, as recently emerging

new attacks pose challenges to Intel CET’s protection with CFI, for example, the Untangle attack [11]

and the WarpAttack [194], the hardware-assisted security on memory protection still has a long way

to go.

3.6 Summary and Discussions

Memory protection serves as a cornerstone for all defense techniques against memory corruption

attacks. Without adequately safeguarding the shadow stack, CFI approaches cannot effectively

thwart ROP attackers and have generally been proven insecure. Our study proposes a lightweight

memory protection system designed to prevent unauthorized access to critical memory regions that

store return addresses of function call stacks, specifically the shadow stacks. By utilizing the Intel

MPX hardware features, our approach achieves low overhead in ensuring only legitimate accesses to

the protected region are permitted, thus preventing attackers from tampering with return addresses.

As future work, we plan to extend LMP protection to forward-edge control flow and explore the

potential for applying LMP without the constraint of recompiling the program. For instance, we

may employ binary rewriting to implement shadow stack functions for enhanced protection.

The lesson we learned from this chapter reveal that by making well-considered adjustments to

the original use cases put forth by the architects of hardware security extensions, it becomes feasible

to attain a satisfactory level of security while significantly reducing system overhead. The example

of LMP serves as an illustration of this principle, demonstrating that although achieving compre-

hensive security protections may be challenging and resource-intensive, there are viable alternative

approaches that can offer a satisfactory level of protection at a significantly lower cost. Security

hardware can be deprecated, removed from support, and discontinued eventually, as the case study

of Intel MPX shows in this chapter, however, the example of repurposing of Intel MPX provides

a pathway towards pragmatic solutions that convert existing tools with heavy overheads to a new

light-weight approach.



Chapter 4

Repurposing ARM TrustZone for

Third-Party Applications and

Roll-Back Protection

ARM TrustZone technology has emerged as a hardware-based security solution, aimed at protecting

devices from various security threats, including tampering and unauthorized access by malicious

applications or operating systems. This technology enables device manufacturers to provide secure

execution environments for sensitive applications and data through the isolation of code execution

from the underlying commodity operating system. Despite its numerous advantages, the use of

TrustZone has been largely restricted to device manufacturers, limiting the ability of third-party

application developers to leverage its security features. In this chapter, we propose a novel approach

to make TrustZone more accessible and open to third-party developers, allowing them to benefit

from its security capabilities.

To achieve this objective, we have designed and developed two prototype TrustZone operating

systems, Pearl-TEE [76] and Mint-TEE [75], that demonstrate the feasibility of using TrustZone

technology for secure third-party application development and for developing security mechanisms to

defend against rollback attacks. These prototype OSes showcase how the technology can be adapted

to accommodate a variety of security properties, addressing the needs of different applications and

use cases. Our research provides a comprehensive analysis of the design and implementation of these

prototype systems, detailing the challenges faced during development and the solutions employed to

overcome them.

4.1 Motivation of Repurposing ARM TrustZone

4.1.1 Current ARM TrustZone Use

ARM TrustZone is a powerful mechanism for reducing the attack surface of security-sensitive ap-

plications on the ARM platform. TrustZone implements a hardware-based TEE, which reduces

the attack surface of an application by enabling it to execute code that is isolated and protected

from other, lower-assurance code on the system, such as the general-purpose operating system and

29
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applications. Instead, TrustZone applications execute in an isolated environment with their own

TEE OSes. This isolation provides strong confidentiality and integrity guarantees for applications

executing in the TEE and the data processed by the TEE applications. TrustZone is currently being

used in smartphone operating systems such as Android to protect a small handful of applications

that implement services such as mobile payment and DRM.

The existence of such a useful security mechanism might beg the question: Why is TrustZone

not used by security-sensitive applications in general? Indeed, neither iOS nor Android exposes a

public API that enables application code to access TrustZone. While strategic business exclusivity

may be one reason for this omission, a concrete technical reason is that small size and simplicity are

required to maintain the high-assurance level of the TEE OS. Because of this, current TEE OSes

are unable to isolate TEE applications (i.e., applications running in TrustZone) from each other.

Instead, every application that runs in the TEE must trust every other application, and so the only

way to ensure the trustworthiness of all TEE applications is to limit which applications can run in

the TEE. As a result, only a small number of TEE applications that are signed and pre-installed by

the smartphone vendor are allowed to benefit from TrustZone.

However, in recent years, there have increasingly been efforts to make TrustZone and other

processor-assisted TEEs to be more open, to both developers and end users. For example, Apple

allows password manager software to use the Secure Element on iOS devices [5], Trustonic released

an open TrustZone operating system framework called Kinibi [171] and Google is working on an

open-source TEE OS called Trusty [60], which aims to have an interface that will allow 3rd party

applications to execute code in TrustZone.

Supporting a larger number and variety of TEE applications (TEE apps) creates conflicting

design goals —on one hand it is desirable to allow as many applications as possible to benefit from

TrustZone enabling them to run application components in the TEE, but on the other hand, creating

an OS for the TEE that can handle many, mutually distrustful applications, will also increase the

complexity of the TEE OS and thus decrease assurance. In the worst case, if the TEE OS must

support every application a commodity OS does, then it will likely be similar in size and complexity

(as well as assurance) to a commodity OS, and thus any benefit of the TEE will be lost. In this

work, we have investigated the common uses of TEE apps and come up with a TEE application

model as a guidance of what TEE OS is supposed to support.

4.1.2 TEE Application Model and Examples

Before describing our abstract TEE application model, we begin by describing several common

classes of applications that currently use, or may benefit from, the security provided by TrustZone.

Payment Applications Malware targeting mobile payment applications has become more preva-

lent [167, 165, 169]; thus, some phone manufacturers now use TrustZone to isolate their payment

applications from malware and vulnerabilities in the general-purpose OS. To do this, mobile appli-

cations need to authenticate the user and transmit and receive confidential payment information.

Furthermore, they execute within the TEE to ensure that their operations are protected from mal-

ware in the general-purpose OS. Given that they must sign operations as well as verify the authen-

ticity of responses sent to them, they must store long-term cryptographic keys securely. Examples

of payment applications that use TrustZone include HuaweiPay [34] and SamsungPay [149]; on the

other hand, PayPal [135] and AliPay [3] are examples of applications that don’t.
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Digital Right Management Digital Right Management (DRM) systems intend to control the

use, copy and distribution of copyrighted software and data. Unlike payment applications, DRM

systems do not take user input from the trusted touch screen, but only require a secure path to

output video content. DRM applications also need to authenticate users to ensure that they are

authorized to view content, or to use a particular piece of software. They also need to communicate

with remote servers to verify the content that the user is authorized to access. Finally, DRM systems

must protect and use keys to decrypt content so that it becomes available for the user to view or

use. For example, XBox and PlayStation encrypt game-related data so that they cannot be copied

across multiple devices [50]. Widevine, a DRM application commonly deployed on smartphones,

uses TrustZone to protect its secrets and secure its execution [188].

Authentication Authentication applications are used to provide the second factor in two-factor

authentication in the form of a pseudorandom sequence of secrets that are generated by the device.

The pseudorandom sequence is seeded by a secret and the server and device are synchronized so

that the server knows what indexes in the sequence it might receive. As a result, such an application

must be able to store secrets and operate on them in a way that is protected from tampering or

observation. When initializing the application, the remote server typically needs to authenticate

the user so it can synchronize its index with that of the particular user. Many software two-factor

authentication applications, such as Google Authenticator and Microsoft Authenticator, exist, but

as far as we know, none currently use TrustZone to protect their execution.

Integrity Monitoring Integrity monitoring applications continuously monitor normal-world appli-

cations and the general-purpose OS to ensure that their execution patterns imply that the software

has not been compromised. To ensure integrity, some integrity monitoring applications, such as

Samsung Knox [90] may run in TrustZone. While the operation of Samsung Knox is not public,

we surmise that they execute in TrustZone to protect their integrity against a possibly compro-

mised general-purpose OS, and also possibly to protect cryptographic secrets with which they may

securely communicate the state of their device to a remote server for mobile device management

(MDM) functionality.

Secure Chat Application Many mobile chat applications provide secure end-to-end chat with

message encryption, e.g., Telegram and Xabber. Chat applications share similar properties with

payment applications: they communicate with an external server via messages, require secure key

storage for encryption keys, and need to run in isolation from one another. Furthermore, to ensure

that users see correct messages, they require a secure channel to the screen. Finally, secure chat

applications need to verify user identity to the remote server and/or end-user. Currently, we are not

aware of any secure chat applications that can use TrustZone.

Despite the security benefits of using TrustZone, many applications cannot benefit from Trust-

Zone because they cannot run on existing TEE OSes. Both current open-source [105, 60, 158] and

closed-source [147] TEE OSes do not isolate TEE applications from each other, nor do they isolate

themselves from the TEE applications, meaning that all TEE applications installed on a user device

must mutually trust each other. Due to this limitation, device manufacturers simply disallow instal-

lation of any new TEE applications, and only run those TEE applications that come pre-installed on

the device. Recent academic work has proposed the use of a trusted language runtime for multiple

applications in the TEE [150]; however, the trusted runtime does not provide a level of isolation

that would prevent a malicious application from compromising another co-resident application. This
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Table 4.1: Traits of each class of TEE applications

Application
class

Key
storage

Integrity
/confidentiality

Secure comm
with server

Secure comm
with user

Identity
provision

Payment ✓ ✓ ✓ ✓ ✓
DRM ✓ ✓ ✓ ✓ ✓
Authentication ✓ ✓ ✓ ✓ ✓
Integrity Monitor ✓ ✓ ✓
Secure Chat ✓ ✓ ✓ ✓ ✓

trust requirement severely limits the accessibility and availability of TrustZone to applications, as a

single party must be trusted by all applications in the TEE to curate and vet all the code in the TEE.

Moreover, all TEE applications must come installed on the phone and be updated simultaneously

with a firmware update. Installing individual TEE applications on the fly is still not possible in the

trusted language runtime the way it is, for example, possible for normal Android applications.

With this TEE application model, we can then propose our new TEE OSes that better serve the

need of TEE apps and users with security guarantees.

4.1.3 Our Approach and Contributions

One approach to provide rich functionality in a TEE OS without the accompanying code bloat is

to borrow functionality from the commodity OS in a way that does not compromise the security

of TEE apps running in the TEE OS. This idea of using functionality in an untrusted commodity

OS has been proposed in other work [8, 118, 23, 72, 9, 210]. For example, TEE apps can outsource

file storage to the commodity OS. Protecting the confidentiality and integrity of data stored in the

commodity OS can be accomplished with standard encryption and digital signatures. However,

these mechanisms do not protect against a malicious commodity OS rolling back such files to an

older state. Such an attack could have serious consequences—the file rolled back could cause an

application to use expired certificates or stale credentials, which may put the TEE App’s security

at risk.

The generally accepted solution to prevent rollback attacks is to use either a hardware or a

network-based monotonic counter to verify the freshness of the data stored in the commodity OS.

However, each of these approaches has drawbacks. A network-based counter requires an online-

challenge response to prevent the network messages themselves from being replayed, which may

cause counter increments to incur latencies of several hundred milliseconds if made across a wide

area network [114]. In addition, network counters require the TEE to trust the remote network

counter. On the other hand, hardware counters are local and do not suffer from network latency,

but suffer from limited durability—both the number of hardware counters and the number of times

they can be incremented are limited and cannot be reset. For example, one of the current typical

ARM SoCs has two hardware counters called “High Endurance Monotonic Counters” [117], each of

which can be incremented 2, 097, 151 times. Intel SGX [85] can support up to 256 monotonic counters

which are implemented within Intel ME, and which will wear out after about 1 million writes [114].

Evidently, current implementations of hardware counters do not scale well to an increasing number

of TEE Apps.

To solve the above issues, we propose two systems, to support untrusted applications in TrustZone
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and to assist scalable rollback protection for TrustZone applications, respectively:

1. Pearl-TEE, which shows that for TEE applications, the requirement of mutual trust among

TEE applications can be eliminated with less than a 3% increase to the trusted computing base

(TCB) size of the TEE OS. To do this, we first define an abstract TEE application model, which

encompasses the types of applications that can benefit from TrustZone’s security guarantees.

We then implement a Pearl-TEE prototype TEE OS on top of an existing TEE OS to estimate

the amount of extra code that needs to be added to support the abstract TEE application

model. Finally, we demonstrate that our prototype is realistic by porting three mobile payment

applications and one secure chat application to run in TrustZone.

2. Mint-TEE, which addresses the limitations of hardware counters by utilizing resources in the

commodity OS to allow an arbitrary number of TEE Apps to create as many virtual counters as

they need with latencies comparable to that of hardware monotonic counters. Mint-TEE also

alleviates the memory pressure created from having to support a potentially large number of

TEE Apps by using commodity OS memory as swap, while still protecting the confidentiality,

integrity and freshness of swapped out TEE App state. Mint-TEE implements aggregation

mechanisms that allow multiple virtual counter increments to be aggregated into a single

hardware counter increment, thus reducing wear on the hardware counters, as well as allowing

multiple hardware counters to be aggregated together to support an arbitrary number of virtual

counters.

A challenge we faced with designing the TEE OSes is that many TEE applications, such as mobile

payments or DRM, need to securely establish an identity for the user using the application. However,

they cannot trust services in the general-purpose OS (such as Google Play Services) to assert the

identity of the user via protocols such as OAuth. On the other hand, since TEE applications

themselves are no longer trusted, having the user provide their username and password credentials

to each TEE application that is installed exposes the user to the possibility of phishing attacks

by fake TEE applications. To address this challenge, we design a novel TEE identity attestation

mechanism, which leverages our TEE OSes’ existing ability to attest the integrity of code, to also

attest the identity of the user. To ensure that the identity of the user that the TEE OSes attest is

genuine, we restrict this identity to only be changed when the device is in a pristine factory state,

such as during device initialization. TEE identity attestation is the first proposal we are aware of to

incorporate user authentication, as well as code attestation into a TEE OS. We make the following

contributions in this chapter:

• We propose an abstract TEE application model and show how common TEE applications map

onto that model

• We show our implementation of Pearl-TEE, a prototype TEE OS that satisfies the requirements

of our abstract TEE application model.

• We elaborate how Mint-TEE provides isolation, freshness and liveness to TEE Apps and at

the same time, borrows resources from the commodity OS to provide scalability for TEE

Apps. Mint-TEE implements two forms of aggregation: increment aggregation that reduces

hardware counters wear, and counter aggregation that allows multiple hardware counters to

be virtualized together.
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• We evaluate the increase to the TCB of modifying an existing TEE OS to implement Pearl-

TEE and Mint-TEE, and find that they only increases the TCB by less than 3%. We evaluate

both prototypes’ performance and practicality by porting four existing applications and find

that they impose less than 10% performance overhead.

4.2 Pearl-TEE: Democratizing TrustZone using Functionality-

Specific Isolation

4.2.1 Threat Model

We first describe the threat model used in our design of Pearl-TEE. First, we assume that the user

mobile devices have ARM TrustZone support or other equivalent hardware support for TEE, and

listed on-board hardware. We also assume that the entire normal-world OS (e.g., Android and all

applications on top of it) can be potentially compromised. The capabilities of the attackers include

intercepting network communications, installing malicious applications, and gaining root permission

on the normal-world OS. Furthermore, we assume the attackers can use malicious applications to

impersonate benign TEE applications for phishing users’ account information, such as passwords.

In the secure-world, we assume untrusted applications can be loaded to TEE, and they can only

run in the unprivileged level EL0. Finally, we make standard Dolev-Yao assumptions about the

attacker’s ability to attack cryptographic algorithms used in Pearl-TEE — namely that an attacker

cannot recover plaintexts from ciphertexts without the key, and that the attacker cannot recover

encryption keys from an arbitrary number of ciphertext/plaintext pairs.

In our threat model, we assume that the attackers do not have physical control of the device,

and are thus unable to perform invasive attacks that modify the bootloader, perform cold-boot

attacks, or use side-channels such as the last-level cache side-channel to implement their attacks.

We assume that the touch sensor is able to authenticate the user via their fingerprint, or that, if it

only registers touches, the user uses some strong authentication method to lock their phone. In this

way, if their phone is stolen, an attacker cannot use the phone to access TEE applications using the

user’s identity. We also assume that devices do not come with malware installed and that the factory

software that runs at device initialization (or after a reset) is trustworthy. Finally, we assume the

presence of secure-boot so that certain persistent secrets are made available only to a trusted TEE

OS binary.

Under the above assumptions, our TEE OS can ensure that a malicious party would not be able

to: 1) steal and use the user’s account to impersonate the user by another TEE application on the

same or different device, 2) tamper with the operations of other TEE applications, such as changing

the destination of a transaction, 3) affect or tamper with the operations of the TEE OS, for example,

steal or change the master key of the TEE OS, and 4) if the malicious party is a TEE application

it would not be able to affect normal operations of the normal-world OS.

We note that because TEE applications need to be initiated from the normal-world OS, and we

assume that the normal-world OS may be compromised by an attacker, Pearl-TEE cannot guarantee

the availability of TEE applications as a compromised normal-world OS can always refuse to run

the TEE application to completion.
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Figure 4.1: System overview of Pearl-TEE with multiple TEE-enabled applications.

4.2.2 Design Requirements

We survey current mobile payment applications to understand their security requirements in a

single-tenant environment, where it is assumed that there is no malicious software on the system

that could compromise the payment application. We then add requirements that arise in a multi-

tenant environment where a payment application may run alongside malicious software intent on

compromising the payment application.

Requirements for a Single-Tenant Payment Application

To consider a general case that only one payment application exists in the TrustZone that dedicates to

serving one mobile payment service provider and assisting the user to complete payment transactions,

we introduce this single-tenant abstract payment service model, which can be described as follows:

A payment server is run by the payment provider and takes requests from the user payment

application. The user uses the payment application to send payment messages to the server that

specify a) the identity of the payer, b) the payment amount and c) the identity of the payee. We

envision an attacker who may also run applications on the phone that has some or all of the following

goals:

1. The attacker may try to tamper with the payment message to change the identity of the

payee/payer or payment amount.

2. The attacker may try to impersonate the user and use the application to send a payment the

user does not intend.
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To defeat these attacks, a single-tenant payment must provide the following guarantees:

• S-1: The payment application must execute in a protected environment and have secure

storage for a secret signing key with which it can sign payment messages. Such a signing key

fulfills two purposes. First, it is only available to legitimate payment applications, so it proves

the integrity of the payment application that sent the payment message to the server. Second,

each user has a unique signing key, so it also authenticates the user who used the payment

application to send the message. A secure execution environment is required to prevent an

attacker from tampering with the payment message while it is being constructed or tampering

with the execution of the payment application. We use the term payment message to denote

any request from the user that must be secured before sending to the payment server, which

could be a command to transfer funds to another party, but could also be commands to confirm

payments, cancel payments or view balances. While some payment applications rely on the

integrity of the general-purpose OS on the device to provide a protected execution environment

and secure storage, an attacker that is able to circumvent these could tamper with the payment

application’s execution or steal cryptographic keys. More secure payment applications (e.g.

Samsung Pay) can execute within a TrustZone TEE. Current TEE OSs such as OP-TEE[105],

TLK[123] and SierraTEE [158] use a chain of trust rooted in a secure boot process to assert the

integrity and identity of both the TEE and code running within it to the remote server. In this

way, the payment server can detect if the payment application or its execution environment

has been tampered with or not. Furthermore, TEEs provide secure storage or a means of

deriving a private key that cannot be accessed by code outside of the TEE.

• S-2: The payment application must verify that a payment request came from the user before

issuing a payment message to the server, even if the payment application has not been tampered

with. To do this, the payment application must authenticate a payment request from the user.

First, the payment application needs a trusted path to the user so that it can display payment

details, such as the payment amount and payee. Then, to ensure that the user approves of the

payment request, the payment application waits for the user to confirm the request. This can

be accomplished by having the user provide a credential, such as a password or a fingerprint to

prove that the user is present and initiated the payment request. In addition, a trusted path

between the user interface and the payment application in TEE must exist to ensure that user

credentials are not stolen and replayed by a malicious application on the phone.

• S-3: The payment applications must be isolated from the TEE OS. Since TEE applications

are not trusted, the TEE OS and payment applications should not run at the same exception

level, so as to ensure that a malicious payment application could not tamper with the TEE

OS or access sensitive data. Specifically, TEE OS runs at EL1 (exception level 1) while the

payment applications run at EL0 (exception level 0). This enables the TEE OS to use hardware

mechanisms such as the MMU to protect its code and execution state from tampering by a

malicious payment application.

S-1 to S-3 can be satisfied by current TEE OSs. However, as will be shown next, current TEE

OSs cannot meet the additional isolation requirements for multi-tenant operations.
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Requirements for Multi-Tenant Model for Payment Applications

The previous scenario assumed either only a single payment application in the TEE or that all

payment applications in the TEE mutually trusted each other. In the event of a multi-tenant

payment application system, where the payment applications in the TEE do not trust each other,

further requirements must be met by the TEE OS to ensure the security of payment applications.

• M-1: Storage isolation for signing keys to prevent unauthorized access to keys by malicious

applications. To defend against attackers that try to impersonate a payment application, the

TEE OS must ensure that keys used to sign payment messages are only accessible by the

payment application that owns the key. As a consequence, this also requires a way for the

TEE OS to establish the identity of a payment application so it can derive the key or set of

keys that should be made available to that application.

• M-2: Isolation and integrity of the payment application code and execution. The code and

execution state of a payment application must be protected by the TEE OS from tampering

by other TEE applications. In addition, the TEE OS must guarantee transactional atomicity

so that any payment operation must either complete or fail in a well-defined way that is

understood consistently by both the user and the payment provider. Finally, the TEE OS

must be able to prove the integrity of the application to the payment server.

• M-3: Fairness between payment applications controlled by the TEE OS to prevent denial of

service attacks. While high performance and low latency is not a requirement, we do not want

a single payment application to prevent other payment applications on the device from being

used.

We point out that availability is not a guarantee that Pearl-TEE can provide, and UI/Phishing

attacks are not types of threats we consider here. Because of the limited and simple nature of the

code that is executed in TrustZone, all applications must necessarily have a component that runs

in the normal world. This component can be subverted by a compromised OS, which can always

prevent the user from making payment transactions by refusing to communicate with Pearl-TEE. As

a result, the availability of payment transactions is explicitly not guaranteed, as this would require

moving all the functionalities of payment applications into TrustZone, thus significantly increasing

the TCB. Pearl-TEE is designed to satisfy these TEE OS requirements without increasing the TCB

size too much. We describe the philosophy behind the FSI design and how it is applied to achieve

this goal next.

4.2.3 Pearl-TEE Design

The additional requirements M-1 to M-3 all involve logical and/or resource isolation. However,

we note that payment applications do not require the generic, high-performance isolation that com-

modity OSs provide. As a result, we use FSI mechanisms, which use simpler mechanisms than those

used by commodity OSs, but still provide the necessary level of isolation to implement Pearl-TEE.

FSI design revolves around three principles. First, identify the specific requirements that the

application needs in contrast to generic requirements that commodity systems provide. Second,

design mechanisms that only provide the required functionality, making trade-offs in complexity for
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unrequired functionality. Finally, leverage existing functionality in the untrusted normal-world OS

or underlying hardware when it is safe to do so to avoid bloating the TCB of the TEE.

We describe how we can apply these FSI design principles to meet requirements M-1 to M-3:

M-1: Key storage encryption. Commodity OSs use a file system (FS) to provide applications

with secure storage. An FS assumes that files may be written and read arbitrarily frequently, and

may store a wide range of data sizes. The need to manage changing data further introduces the

requirement of commodity FS to be fail-safe and preserve data in the event of a power failure,

hardware fault, or software fault. In contrast, payment applications typically only need to store

small keys, which are only written once, and are never shared. Because they do not change, there

is little need for reliability as well, as the persistence of the underlying storage medium is sufficient.

Thus, the complexity of a full FS is unnecessary for Pearl-TEE.

Pearl-TEE avoids this complexity by only providing a small amount of write-once and read-only

storage for a payment application to store keys. Since the value of the keys does not change, Pearl-

TEE does not need to guarantee freshness. Any tampering of the storage by an adversary will result

in invalid keys, which will result in invalid signatures on payment messages. Thus, Pearl-TEE only

needs to guarantee the confidentiality of the keys. This is achieved by encrypting all application keys

with an application-specific storage key that only Pearl-TEE has access to. Pearl-TEE leverages

the persistence provided by the normal-world FS and storing the encrypted keys in the normal-

world FS. To ensure that a payment application only obtains the keys that belong to it, Pearl-TEE

identifies a payment application by the hash of its binary and associates this with its keys. If a

payment application’s binary is changed or updated, the payment application must write new keys

to Pearl-TEE’s storage using the Initial Software Setup (ISS) procedure described in Section 4.2.4.

In addition, with application-specific keys, the security of the encrypted keys still relies on Pearl-

TEE’s ability to maintain the secrecy of the storage encryption keys, except there are now more

keys to protect instead of one. As a result, using different storage encryption keys for each payment

application only increases complexity without any apparent benefit. Finally, with an application-

specific storage key, the number of keys to protect scales with the number of applications, while

having a single storage key makes the number of keys application-independent. This design enables

Pearl-TEE to provide a functionality-specific replacement for the complexity of a commodity OS

FS, which may contain over 36K lines of code (ext4), with a simple decryption operation.

M-2: Batch execution. Commodity OSs use fairly complex interrupt-driven CPU multiplexing

and scheduling to share execution resources among applications while isolating application execution

state. A great deal of complexity associated with this is the result of having to ensure that all

necessary parts of the application state are saved so that the application state can be resumed

after being interrupted. However, we expect that payment applications will rarely run concurrently

as users are likely to only make one payment at a time. In addition, we do not expect payment

applications to run for long as they only need to construct a payment message and hand it to Pearl-

TEE for further delivery to the server. As a result, Pearl-TEE uses batch execution for payment

applications and assumes that they can be terminated without the need to resume them if they run

for too long. This removes the need for the code to save and restore application execution state, as

well as the need to implement a scheduler.

M-3: Fairness timeouts. To use batch execution means that Pearl-TEE cannot use interrupt-

driven multiplexing to share execution time on the CPU. However, given that payment applications
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are not performance-critical, and should complete a transaction within a bounded time, Pearl-TEE

implements a simple timeout, after which it will terminate a payment application, to ensure fairness.

To measure the amount of time an application has executed, Pearl-TEE leverages the hardware

timers available in the CPU.

4.2.4 System Overview and Operation

Pearl-TEE only protects and executes the trusted components of the payment application (we call

it TEE component hereinafter) that is meant to execute inside the TEE. Payment applications may

implement untrusted, application-specific functionality outside of the TEE component in a normal-

world application component (we call it normal-world component hereinafter). We differentiate

between these components as shown in Figure 4.2. An untrusted normal-world component interacts

with the application requesting the payment, prompts the user to input payment details and sends

these details to a TEE component. The TEE component verifies the user’s credentials, confirms

the payment details with the user, retrieves a user-specific signing key from Pearl-TEE and signs

the payment details to make a payment message. This payment message is then sent back to the

normal-world OS for transmission to the payment server via a kernel module in the normal-world

OS. The normal-world component may be compromised by an adversary without a compromise

of the payment process since all payment details are confirmed and acceptance is verified via the

user providing credentials before the payment message is signed. The normal-world components are

purely for ease of use.

Operation of payment applications using Pearl-TEE proceeds in three major phases: Device

Trusted Boot (DTB), which happens every time the device boots; Initial Software Setup (ISS),

which occurs the first time a payment application is installed; Device Payment Flow (DPF), which

happens each time the user makes a payment; and TEE Component Update (TCU), which occurs

every time the application needs to update the TEE component binary. We describe each of these

in more detail.

Device Trusted Boot

Even for single-tenant payment systems, the device must be able to attest to the payment server

that the payment application is running in TEE. To do this, existing TEE payment applications,

such as Samsung Pay, employ a trusted boot sequence. In such a sequence, the TPM (or secure

element) computes a hash of the first software element to boot, which is normally the bootloader.

In the case of a TPM, the hash is stored in a Platform Configuration Register (PCR) on the TPM.

The bootloader then computes a hash of the next binary to load and combines this hash (a process

called “extending”) with the current hash in the PCR. Each subsequent binary computes a hash of

the next binary to load and extends the hash stored in the PCR until the boot process is complete.

To attest the identity of the software that is running on the system and the sequence that it was

loaded in, the software may request the TPM to produce a “quote” of the value in the PCR, which

is simply a signature over the contents of the PCR. As a result, one can see that since the TPM is

trusted and performs the first hash measurement, and each component adds the hash of the next

one, any untrusted or malicious software component loaded during boot will necessarily have its

hash included in the PCR by the previous component, and thus a remote party will be aware of it.
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Figure 4.2: Mobile payment framework system design overview.

Since Pearl-TEE must maintain all guarantees of single-tenant systems, as well as provide guar-

antees required for secure multi-tenant systems, Pearl-TEE also employs trusted boot in the same

way so that it may attest to a remote party that payment application TEE components are running

in a trusted environment. In addition, since all trusted components must run before untrusted com-

ponents in the trusted boot sequence, Pearl-TEE is loaded by the bootloader, which subsequently

loads the normal-world OS. Finally, Pearl-TEE has a secret key SK PT for encrypting data that needs

to be stored persistently inside the normal-world OS. To store this key persistently across reboots,

Pearl-TEE uses the TPM’s sealing functionality, which makes the key only accessible to Pearl-TEE

when booted in the correct sequence.

Initial Software Setup

The first time a user uses a payment application she needs to perform Initial Software Setup (ISS). We

assume each payment application has corresponding payment server and that both application and

server are provided by a payment provider. Signed payment messages that result from well-formed

and user-authenticated payment request from the normal-world component to the TEE component

are then sent by the normal-world OS to the payment server, which then accepts and records the

payment and transfers funds.

ISS binds a device with an instance of a payment application to a particular user and transmits
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this binding securely to the payment server for use in future payment transactions. This process

begins the first time a payment application is executed on a device. First, the payment application

requests user authentication by providing their account credentials, which include a secret password.

Since the user is providing authentication credentials to a normal-world application, this phase

requires that the normal-world is not compromised and that the user is using an authentic normal-

world application. Next, the normal-world component will transfer execution to the TEE component

in Pearl-TEE via the kernel module. This call specifies the location of the TEE component binary

for Pearl-TEE to execute, as well as a certificate retrieved from the payment server so that the

TEE component can establish a secure channel with the payment server. Upon execution, the TEE

component verifies the authenticity of the payment server certificate. This can be done in a variety

of standard ways—for example, it could verify that the certificate was signed by an appropriate CA

or it could use a pinned certificate. The TEE component then generates a key pair {SK TC,PK TC},

retrieves the user’s username and credentials via the trusted path and provides both to the Pearl-

TEE.

Pearl-TEE generates an application-specific key SK CI that combines its secret key SK PT and

hash #H of the payment application TEE component. Using an application-specific key that depends

on the hash of the TEE component saves Pearl-TEE from having to explicitly associate encrypted

application key-pairs with the identity (hash) of each application TEE component. If a faulty

or tampered TEE component presents an encrypted key pair it does not own to Pearl-TEE for

decryption, the key pair will simply not decrypt correctly and the faulty component learns nothing

about the true TEE components SK TC.

The TEE component then starts to register its public key, PK TC with the payment server by

generating an uncertified ISS message, ISS msg = {username, enc(credentials), PK TC}, which binds

the public key of the TEE component to the user using the application. The TEE component then

requests that Pearl-TEE certify it by creating an attestation that includes a measurement of the

Pearl-TEE environment and the hash of the uncertified ISS message and TEE component binary.

The final certified ISS message contains the uncertified ISS message and an attestation: {ISS msg,

#H, Attest(Pearl-TEE, Hash(#H | ISS msg))}.

The certified ISS message must be transmitted to the payment server over a secure channel as it

contains sensitive user credentials. Pearl-TEE establishes an SSL connection via the normal-world

kernel module with the payment server, uses the server certificate to verify it is communicating with

an authentic payment server and transmits the certified ISS message. The message certifies to the

server that:

1. the ISS message originated from an instance of Pearl-TEE running in a correct TrustZone

TEE,

2. the ISS message originated from a TEE component with binary hash #H and,

3. the TEE component wants to associate the public key PK TC with the user username. The

server decrypts the user credentials and verifies that they match that of the user associated

with username. If they match, the server knows that a valid user initiated the ISS message as

well. At this point, the server sends back confirmation that it has accepted the PK TC of the

TEE component.
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From this point onward, the payment server uses verification of challenges with PK TC in lieu

of authenticating the user again. This is secure because the ISS process ensures that the matching

signing key SK TC is only available to a particular instance of a TEE component running in TEE

and bound to a particular user. In addition, the PK TC uniquely identifies each instance of the TEE

component and allows for easy revocation of any instance. The TEE component must store its

SK TC so that it may use them on subsequent payment transactions. To do this, it submits them

to Pearl-TEE, which encrypts them with the application-specific key SK CI and gives the encrypted

values to the TEE component, which stores them on the normal-world FS along with PK TC. On

subsequent payment transactions, the TEE application can retrieve the encrypted values and request

Pearl-TEE to decrypt them. The values will only decrypt correctly if they are submitted by the

correct TEE component because the hash of the TEE component forms part of the key that was

used to encrypt the values.

The ISS phase only happens at payment application user setup for the first time and when the

payment application needs an update, which we will discuss as part of the TEE Component Update

(TCU) phase later in this section.

Device Payment Flow

All payment transaction are abstracted into a payment message, that is sent from the TEE compo-

nent to the payment server. A payment transaction is any function that requires secure communica-

tion between the device and the payment server and can include transferring funds, depositing new

funds, confirming previous payments or changing account settings. To perform a payment transac-

tion, Pearl-TEE and the payment application perform the Device Payment Flow (DPF). Figure 4.3

shows the four major steps in the DPF. Note that all network messages from the secure world to

the payment server are sent via the kernel module in the normal-world OS as in Figure 4.2, which

we omit here for convenience. In order, the four steps are:

Collect transaction details. User initiates the payment transaction 1 and submits user transac-

tion details, which specifies both the type of transaction and parameters specific to that transaction.

For example, for a simple payment transaction, the user might specify a payee, an amount and an

account to pay from, while for requesting proof of payment to prove to a third party that payment

was made, the transaction details might include a transaction number, a date and a payee. Af-

ter collecting this information from the user, the normal-world component establishes a connection

with the payment server and the latter responds with a one-time session token m 2 , which the

normal-world component delivers to Pearl-TEE 3 . m acts as a nonce to protect payment transac-

tions against replay. The normal-world component then submits the transaction details, m, TEE

component binary, the application’s PK TC and the encrypted SK TC to Pearl-TEE.

User confirmation. Pearl-TEE computes the hash #H 4 of the TEE binary and uses this to

compute the SK CI for the TEE component. It then decrypts the encrypted SK TC with the computed

SK CI and then transfers execution to the TEE component providing the PK TC, the decrypted SK TC,

transaction details and m 5 . The TEE component then needs to confirm the transaction details with

the user. The TEE component may perform some application-specific formatting on the transaction

details and uses the trusted display to display them to the user along with a request that the user

touch the touch device if they agree with the displayed details 6 . If the user does not agree with the

transaction, she will hit another button (i.e. the power button). We note that while the confirmation
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channel (i.e. the touch device) needs to be trusted so that a malicious application cannot forge a

confirmation from the user, the abort channel need not be. Payment transactions already depend

on an untrusted normal-world application to start them anyways, so giving a malicious application

to abort the transaction does not weaken the security guarantees of Pearl-TEE. The user will still

be informed by Pearl-TEE that the transaction has been aborted.

We also note that we do not need a trusted indicator that the display is being used by the

TEE component as in other systems that rely on trusted indicators [164, 103]. This is because the

TEE component will always display the transaction details and request user confirmation. While

a malicious normal-world or TEE component could try to spoof this display, it cannot prevent the

TEE component from displaying its confirmation request or the transaction will not be completed.

Thus, so long as the user does not confirm any transaction they do not wish to execute, a malicious

application can display arbitrary information but not be able to cause the legitimate TEE component

to perform a transaction the user does not approve. Once the user approves by activating the touch

device, which has a trusted path to the TEE 7 , a signal is sent to Pearl-TEE.

Certify payment message. With user confirmation received, the TEE component then prepares

to certify the transaction details and create a payment message to transmit to the payment server.

The TEE component constructs a payment service-specific payment message for the requested trans-

action, including the nonce m to guarantee freshness, and signs the entire transaction with its SK TC

and then returns the signed payment message to the normal-world component via Pearl-TEE ker-

nel 9 . Note that unlike in ISS, the TEE component need not create an SSL channel even if the

contents of the payment message contain sensitive information. Instead it depends on the normal-

world component to transmit the details to the payment server via SSL 10 . This is because, if

malicious, the normal world component will have learned all the payment details already anyways,

as the only piece of information the normal-world doesn’t have is the SK TC, which is only used to

sign the payment message but never transmitted out of the TEE component. One might be tempted

to move the entire entry of the payment details by the user into the TEE component, but in practice,

this does not work as often some of the payment details are specified by third party applications also

running in the normal-world. For example, the user may use a third-party application that triggers

a Paypal payment specifying the payee and amount when the user wishes to pay for some item from

the third-party.

Payment transaction confirmation. The payment server receives the signed payment message

and verifies its authenticity using the PK TC in the message and by checking that m has only been

used once to prevent replay. Note that the PK TC uniquely identifies the user and device making

the payment transaction as setup during the ISS phase. If the PK TC is not a valid PK TC set

with a successful ISS operation, or the signature or nonce do not verify correctly, the payment

server returns an error. Otherwise, the payment server confirms success 11 and the transaction is

completed. The normal-world component displays the confirmation to the user. One might wonder

why the confirmation is not sent to the TEE component to display to the user so that a malicious

normal-world component can’t forge a confirmation message and make the user think the payment

transaction completed when in fact it didn’t. Unfortunately, to make it impossible to forge the

confirmation a secure indicator would need to be used to indicate to the user that the confirmation

was in fact coming from the TEE component, and the literature has not conclusively shown that

users can be relied upon to pay attention to security indicators [45]. Rather than add complexity
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to both the device and TEE component, we feel that a simple solution might be to have the user

check that important transactions are completed by checking with the payment service out of band

at a later time (i.e. checking the payment server’s website from their laptop). Alternatively, if

the payment server supports payment confirmations, the user may request a payment confirmation

that sends a specific payment server-generated confirmation number that can only be decrypted and

displayed by the TEE component, making it hard for a malicious normal-world application to forge

the confirmation.

To maintain a small TCB, Pearl-TEE does not have the ability to save TEE component state

and restart them if they are interrupted. If the interrupt is vectored to the normal-world OS, the

hardware transparently saves the state of the TEE into TrustZone storage allowing Pearl-TEE and

the TEE component to be restarted after the normal-world OS is done handling the interrupt.

However, if the interrupt is vectored to Pearl-TEE, the OS will destroy TEE component state in

the process of handling the interrupt. In practice, this is not a problem since interrupts vectored to

Pearl-TEE can only be generated by either the TEE component itself or devices connected to the

TEE such as the touch device. Since Pearl-TEE only executes a single TEE component at a time,

there can be no other TEE component that could generate an interrupt. To prevent a transaction

being interrupted by a second errant touch, Pearl-TEE disables interrupts by the touch device and

power button after user confirmation is received.

Finally, Pearl-TEE has to deal with malicious TEE components that never terminate and thus

prevent any other TEE component from running. Before a touch is registered, a user can always

terminate a TEE component by aborting the transaction, which sends an interrupt directly to Pearl-

TEE. However, after the touch is registered, Pearl-TEE disables interrupts from external devices to

the TEE. Thus, Pearl-TEE imposes a time limit ∆T after which it will forcibly terminate the TEE

component after a touch on the touch device is registered.

TEE Component Update

We assume that the payment server may want to occasionally update the software in the TEE

component to provide new functionality or address software defects. Because the hash #H will

change on such an update, this makes the SK TC created during ISS inaccessible to the updated TEE

component. To make the SK TC available to the updated TEE component, the old TEE component

can perform TEE Component Update (TCU). First, the old TEE component verifies the authenticity

of the new TEE component. Pearl-TEE requires that the payment server sign the updated TEE

component, which the old TEE component can verify using the same method it used to verify the

server certificate during ISS. Once it verifies that the updated TEE component originated from the

payment server, the old TEE component makes a call to Pearl-TEE to rekey the SK TC, passing

the encrypted SK TC along with the hash #H of the new TEE component. Pearl-TEE decrypts the

encrypted SK TC using the SK CI for the current TEE component and then re-encrypts it with the

new SK CI of the updated TEE component, generated with the passed in #H and Pearl-TEE’s SK PT.

This new re-encrypted SK TC can then be used by the updated TEE component.

The updated component should send a signed message to the server informing it of the update

so the payment server can associate the new #H with the PK TC. This way, the payment server always

knows what version of the TEE component is associated with each PK TC. This allows the payment
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Figure 4.3: Interactions in the phase of Device Payment Flow

server to force an update of the TEE component when vulnerabilities are discovered.

On its own, this process is vulnerable to a rollback attack, where an adversary could force a victim

to use an old, possibly vulnerable, version of the TEE component. There are two complementary

ways to mitigate this. The first is that the certificate for each TEE component includes both the

#H of the component and a version nuqmber and TEE components will only perform TCU if the

updated component has a newer version number than the current component. The second is that

the TEE component always informs the server of a TCU event, at which time the server can reject

the update and disable transactions from that PK TC until an update message to an appropriate #H

is received. We note the latter method can let the payment server know that the TEE component

has been updated so it will opt to ignore requests from an out-of-date one, moreover, it is useful in

that it allows the payment server to notify a user if they are using an out-of-date TEE component

and force an update as mentioned above. These two methods can be used individually or together

as a defense-in-depth measure.

4.2.5 Security Analysis

We analyze the security properties of Pearl-TEE and discuss how the various mechanisms discussed

enable Pearl-TEE to withstand various attacks.

Resilience against malicious normal-world OS. For simplicity, Pearl-TEE requires that TEE

components use the normal-world OS for storage of persistent information, such as the payment

message signing key SK TC. However, this key is encrypted with a key known only to Pearl-TEE so a

malicious normal-world OS cannot recover the plain text. The normal-world can corrupt the cipher

text of the key, which will render the TEE component unable to sign any future payment messages.
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However, this only impacts the availability of service, which Pearl-TEE cannot guarantee. Once

created, SK TC key does not change for the lifetime of the TEE component it is associated with. As

a result, it is immune to replay attacks.

A normal-world OS can forge a payment request and submit it without the user’s knowledge.

However, the user confirmation phase of the DPF allows the TEE component to ensure that the

user is aware of and approves the payment transaction before it signs it.

Because Pearl-TEE also depends on the normal-world OS to send network messages, the normal-

world OS can interrupt DPF and ISS at any point. This can affect the availability of the payment

application, and can also make it ambiguous whether a payment transaction completed or not.

However, the ability to interrupt transactions does not give the normal-world OS the ability to

forge transactions, and the user can always confirm whether a transaction completed or not through

out-of-band means not involving the device. As a result, the ability to interrupt transactions does

not impact any of the four guarantees described previously that Pearl-TEE provides.

Resilience against malicious TEE component. A malicious TEE component can try to imper-

sonate another TEE component. However, this is impossible since Pearl-TEE uses the hash #H of

the TEE component binary to identify it. Since the key, SK CI, used to encrypt a TEE component’s

SK TC depends on #H, a malicious TEE component cannot gain access to another TEE component’s

SK TC. While a TEE component can trick a user into believing it is another TEE component, this

does not help in that it still cannot forge a payment. We do not require the user to input any

passwords during DPF so a malicious TEE component cannot phish any user credentials. The only

time user credentials are used is during ISS, which only happens the first time a payment application

is used. This presents a malicious TEE component an opportunity to steal the user’s credentials

if it is able to successfully impersonate both the normal-world component and TEE component of

another payment application. Unfortunately, this is unavoidable and equivalent to the user installing

a trojaned binary on their device. Thus, the user must be vigilant and ensure that they are using

an authentic payment binary the first time they interact with that payment service.

Pearl-TEE currently does not require a trusted path for the user to enter their password and pass

it to a TEE component. Even if such a trusted path existed, it would not remove the requirement

that the TEE OS is uncompromised and the payment application is authentic during ISS. This

is because a trusted path for user credentials is useless if the TEE component at the other end

of the path is maliciously claiming to be another TEE component. The only way to ensure that

user credentials are not phished is to ensure that the user is interacting with an authentic payment

application and that the normal-world OS has not tampered with it.

Finally, a malicious TEE component could perform a fake TCU and request Pearl-TEE to re-

encrypt another TEE component’s encrypted SK TC. However, the malicious TEE component can’t

use it’s own #H binary as that binary and #H must be signed by the payment server. Thus, it

has to use a legitimate #H and the SK TC will be encrypted with that key, but if the malicious

TEE component tries to decrypt it, our TEE OS will use the #H of the malicious component and

invalidates the malicious attempt.

Attack surface reduction. By outsourcing all networking and persistent storage functionality to

the normal-world OS, Pearl-TEE maintains a small TCB. By using batch scheduling, Pearl-TEE

avoids having to save and restore interrupted TEE component state. In addition, Pearl-TEE does

not have to maintain any descriptors that keep track of multiple execution states or a scheduling
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algorithm to arbitrate among them. This also simplifies the APIs that Pearl-TEE must maintain,

allowing it to have a smaller attack surface.

4.3 Mint-TEE: Supporting Scalable Rollback Protection for

TrustZone Applications

4.3.1 Design Objectives

In addition to our goals of liveness, freshness and scalability, we designed Mint-TEE with the goal of

protecting TEE Apps from each other, and from a potentially malicious commodity OS. Additionally,

Mint-TEE also isolates the commodity OS from potentially malicious TEE Apps by limiting a TEE

App’s access to the commodity OS’s memory pages and allowing the commodity OS to interrupt

TEE Apps to service interrupts. As a result, Mint-TEE has the following design goals:

• Isolation: Mint-TEE should isolate TEE Apps from each other, as well as from the commodity

OS. Mint-TEE should also ensure that TEE Apps cannot access memory of the commodity

OS.

• Liveness: We use liveness to denote the ability of TEE Apps and the commodity OS to

eventually gain control of the processor in a timely manner when they need it. In particular,

TEE Apps should not be able to starve the commodity OS or each other. However, since the

execution of a TEE App is always initiated by an application component in the commodity

OS, Mint-TEE cannot prevent a malicious commodity OS from disallowing a TEE App from

running. Finally, TEE Apps should be able to recover their state in the event of an unexpected

power failure or commodity OS crash.

• Freshness: TEE Apps should be able to ensure that data stored in the commodity OS is fresh

and has not been rolled back by the commodity OS to a stale state. We elaborate further on

the motivations for storing data in the commodity OS below.

• Scalability: The services and security guarantees provided by Mint-TEE should be scalable to

an increasing number of TEE Apps executing in TrustZone.

TrustZone provides Mint-TEE access to two kinds of resources: secure memory and peripherals,

which are accessible only to Mint-TEE, and shared resources, which are accessible to both Mint-

TEE and the commodity OS. In general, board designers will provide only limited secure resources,

as they are wasted if unused by the Mint-TEE. For example, TrustZone typically only provides

access to a small amount of memory and persistent storage (10’s to 100’s of MBs) [46]. Because

Mint-TEE is designed to run an arbitrary number of third-party TEE Apps, we expect these secure

resources to come under pressure.

Mint-TEE alleviates this pressure by borrowing the resources of the commodity OS. However,

as mentioned in in previous section, this exposes TEE Apps to rollback attacks by a malicious

commodity OS. To address this, Mint-TEE allows TEE Apps to create an arbitrary number of

virtual counters to protect the freshness of state stored in the commodity OS, and a TEE App State

Counter for each TEE App, to protect its execution state when stored in the commodity OS.
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4.3.2 System Overview

We base our design of Mint-TEE on Pearl-TEE [76], an open-source TEE OS, based on OP-

TEE [105], that is designed to isolate TEE Apps from each other and the commodity OS. Pearl-TEE

provides several features which serve as a good starting point for Mint-TEE. Pearl-TEE uses priv-

ilege levels to isolate itself and TEE Apps from each other. Specifically, Pearl-TEE runs at secure

exception level 1 (SEL1) and standard TEE Apps run at secure exception level 0 (SEL0). With

hardware MMU support, this prevents Mint-TEE from being tampered with by malicious TEE

Apps. Pearl-TEE does not allow TEE Apps to be co-resident in memory and only one TEE App

may execute at a time, thus isolating TEE Apps from each other. Like Pearl-TEE, Mint-TEE re-

quires all TEE Apps to be signed using keys certified by a known certificate authority and checks

the binary hash of a TEE App when it is loaded into memory. This mechanism is similar to other

TEE OSes that support arbitrary TEE Apps [171].

To enable communication between TEE Apps and the commodity OS, Mint-TEE adds a request

queue and a response queue to Pearl-TEE, as well as a shared memory region between Mint-TEE

and the commodity OS for passing large data values. Requests can be made by both TEE Apps

to the commodity OS and commodity OS application components, as well as by Mint-TEE itself

to the commodity OS. To use the queue, requests are placed onto the request queue, which may

include references to locations in the shared memory region. Mint-TEE, then transfers control to the

commodity OS by issuing a non-secure interrupt by sending an IRQ. The interrupt is handled by the

secure monitor, which saves the TEE OS context, restores the commodity OS context and indicates

an IRQ is to be delivered with the state vector VBAR. The commodity OS receives the requests and

either fulfills them itself, or forwards them to the appropriate commodity OS application. Responses

are placed onto the response queue and can be parsed and consumed by Mint-TEE or the appropriate

TEE App the next time the commodity OS invokes Mint-TEE. The details of the procedure of how

TEEs and commodity OSes communicate can be found in the ARM GICv3 document [6]. Requests

and responses need not be matched. As an example, TEE Apps are first invoked by commodity OS

applications by enqueuing an appropriate message onto the response queue.

By enabling this communication, Mint-TEE provides a convenient way for TEE Apps to access

commodity OS resources. For example, a TEE App can request its commodity OS application

component to save some encrypted data to a file. Similarly, if one TEE App is interrupted and

another TEE App needs to execute, Mint-TEE provides a limited form of concurrency that Pearl-

TEE does not support by saving the encrypted and signed state of the interrupted TEE App to

the shared memory region, and then using the secure memory to execute the new TEE App. This

effectively allows Mint-TEE to use the memory resources of the commodity OS as swap space for

TEE Apps.

Both of these use cases are vulnerable to rollback attacks, where a malicious commodity OS can

restore a stale file or suspended memory state of a TEE App. However, persistent TEE App data

stored to a file and suspended TEE App state have different freshness requirements, which motivates

the design of two different virtual counter systems: one for persistent storage and one for TEE App

state.
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4.3.3 Virtual Counters for persistent storage

Mint-TEE exports a virtual counter interface to TEE Apps that provides the following functions:

• Create: Creates a new virtual counter and returns a unique ID for the counter.

• Read/Increment: TEE Apps can read or increment a counter by specifying its ID.

• Destroy: TEE Apps can de-allocate a counter rendering it inaccessible in the future.

While we expect TEE Apps to use virtual counters to protect persistent data stored in files in

the commodity OS from rollback, these virtual counters can be used the same way any hardware

monotonic counter is used. For example, they can also be used to keep track of the number of

times certain events have occurred, such as invocations of the TEE App or of certain TEE App

functionality.

Mint-TEE and the commodity OS cooperatively implement virtual monotonic counters for TEE

Apps using an interface which describes the separation of responsibilities and trust relationship be-

tween Mint-TEE and the commodity OS. Since only the commodity OS has access to persistent

storage, it implements a Store VCs function that can be invoked by Mint-TEE using the request

queue described in Section 4.3.2 to store its virtual counters to persistent storage. Mint-TEE im-

plements the Seal VCs function, which creates and stores a token that protects the freshness of all

virtual counters by linking them to a single hardware counter increment. Therefore, while Mint-

TEE guarantees freshness of virtual counters, the storage requirements are completely satisfied by

the resources of the commodity OS instead of Mint-TEE.

Mint-TEE uses a hash tree mapped into a region of memory that is shared between the commodity

OS and Mint-TEE. Each leaf node in the hash tree represents a virtual counter, and the hash tree

is ordered so that each virtual counter can have a unique index within the hash tree. The structure

of the hash tree can be seen in Figure. 4.4. TEE Apps can make arbitrary read and increment

operations on the virtual counters by invoking the corresponding Mint-TEE APIs. These cause

Mint-TEE to read or increment the appropriate nodes in the hash tree. Reads on virtual counters in

the hash tree are accompanied by a full hash checking of all nodes between the virtual counter and

the root of the hash tree. The root of the hash tree is protected from rollback by a signature that

includes a counter value that should match the state of a hardware monotonic counter MCp. As

part of Mint-TEE’s increment aggregation, virtual counter increments occur on the hash tree and

are not persisted by the commodity OS until Mint-TEE deems it necessary, as we describe below.

When Mint-TEE does need to persist the virtual counters, it calls the Seal VCs to persist them to

disk and protect the committed virtual counters from being rolled back.

The Seal VCs computes a MAC of the current value of the hash tree root and the value of MCp

incremented by one and stores this along with the hash tree in the shared memory region. Mint-TEE

then invokes the Store VCs in the commodity OS, which stores the current contents of the shared

memory (sealed hash tree root, hash tree, counter values, and the VCM) to persistent storage. If

successful, the commodity OS sets a flag in the shared memory region. On its next invocation,

Mint-TEE verifies the state of this flag and, if successful, increments MCp to match the counter

value that was sealed to the root of the hash tree.

Because TEE Apps are mutually distrustful, Mint-TEE implements access control so that each

virtual counter can only be read or incremented by the TEE App that created it. Currently, Mint-
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Figure 4.4: Illustration of the Mint-TEE hash tree used for storing virtual counters, as it appears in
shared memory. It relies on a single hardware counter MCp.



4.3. MINT-TEE: SUPPORTING SCALABLE ROLLBACK PROTECTION FOR TRUSTZONE APPLICATIONS51

TEE does not permit virtual counters to be shared across multiple TEE Apps, though this could be

implemented in the future. The access control list for each counter is stored in a Virtual Counter

Map (VCM). The VCM records, for each virtual counter, a mapping between its index and a tuple

consisting of the identity of the TEE App (by its code hash) and the counter ID assigned to it when

it was created. A counter index that does not appear in the VCM is currently unused (it has neither

been allocated or is a virtual counter that has been destroyed). The VCM is stored in the same

shared memory region as the hash tree and the first leaf in the hash tree is used to store a hash of

the VCM to protect it from tampering or replay.

The VCM is updated whenever a virtual counter is created or destroyed. It is also updated

under two other circumstances. First, the hash tree is initialized to contain some number of leaves

(currently 256), but if the number of created virtual counters exceeds that number, the hash tree

can be increased in depth to increase the number of leaves. In such an operation, the index of a

virtual counter need not change as the new virtual counters are simply assigned indices higher than

the index of the largest virtual counter before the depth increase. However, if subsequently, enough

counters are destroyed so that it is possible to reduce the depth of the tree, Mint-TEE may choose

to remove leaves from the tree. In this case, nodes are garbage-collected and the mapping between

index and the {TEEApp, ID} may change. Second, if the code of a TEE App is updated but needs

to retain access to to the old code’s virtual counters, Mint-TEE may update the TEE App ID for

all of the App’s virtual counters. Currently, Mint-TEE permits this if the code of the old TEE App

and updated TEE app are signed by the same key. We expect updates to the VCM to be infrequent.

Counter increment aggregation: Hardware monotonic counters have a small, finite capacity that

once exceeded, renders them useless. As a result, Mint-TEE’s virtual counter design also attempts

to reduce the number of Store VCs and Seal VCs operations, so that the number of increment

operations on the hardware counter, MCp, is also reduced. To do this, Mint-TEE uses a technique

called counter increment aggregation, which opportunistically aggregates several virtual counter

increments into a single MCp increment when Seal VCs is invoked.

There are two opportunities for counter aggregation: (1) One TEE App performs consecutive

increments to one or more virtual counters, which we call intra-app counter increment aggregation,

and (2) several TEE Apps increment their virtual counters, which we refer to as inter-app counter

increment aggregation. If these increments are all done without control being transferred to the

commodity OS between them, then a single increment of MCp would be sufficient to protect all the

virtual counters from rollback. This enables several virtual counter increments to be reduced to a

single increment of the hardware counter.

Figure 4.5 shows how Mint-TEE executes Store VCs whenever it is about to transfer control to

the commodity OS, which can happen when a TEE App terminates and there are no other TEE

Apps waiting to run (as in the figure), or when Mint-TEE receives an interrupt that must be serviced

by an interrupt handler in the commodity OS. In both cases, Mint-TEE aggregates virtual counter

increment requests after every write to persistent storage. Only after a switch to the commodity OS

is initiated, Mint-TEE persists the virtual counter increments by calling Seal VCs(), which invokes

Store VCs in the commodity OS to persist the virtual counters, and then increases the hardware

counter MCp upon a successful return from the commodity OS. In figure 4.5, the applications write

to storage directly, by asking Mint-TEE to forward their request. Mint-TEE aggregates the counter

increments of TEE App 1 and TEE App 2 and only stores and seals the incremented counter values
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Figure 4.5: Steps taken by Mint-TEE when two file writes by different TEE Apps are performed.

once both applications finish executing.

Hardware counter aggregation: The above virtual counter design can be extended to use mul-

tiple hardware counters in a straightforward way. If there are K hardware counters

MCP [0],MCP [1]...MCP [K], Mint-TEE establishes an ordering of the counters, and then increments

one until saturation before moving onto the next one in increasing order (i.e. starting with counter

0, then 1 and so forth). Mint-TEE also adds to the sealed hash tree root an index i, which indicates

which MCP [i] is currently being used. In this way, Mint-TEE aggregates multiple hardware coun-

ters into a single hardware counter and allows multiple virtual counters to share the single hardware

counter resource.

Recovery from system failures: Because the signing of the hash tree root is not atomic with

the increment of the hardware monotonic counter, a system failure due to loss of power or an OS

crash may cause the hash tree and signed root to be written to disk without the hardware counter

being incremented. In writing the hash tree root to disk before incrementing the hardware monotonic

counter, Mint-TEE guarantees that the system can recover after the failure by having the commodity

OS keep a copy of the previous state of the hash tree and restoring back to this state if Mint-TEE

finds the hardware counter is one behind the current state of the hash tree.

The price of this recoverability is that it also allows a malicious commodity OS to rollback one

set of updates by mimicking a power failure—an attack that Mint-TEE cannot distinguish from
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a real power failure. Furthermore, the commodity OS can use this ability to mount a dictionary

attack [162], where it provides different inputs each time the victim state gets rolled back, thus

learning the output of a TEE App for an arbitrary number of inputs, where the TEE App may have

wanted to limit the number of responses it gives to the commodity OS using the virtual counter.

A typical example of such an attack might be on a TEE App that wants to limit the number of

authentication attempts. Normally the TEE App might increment a virtual counter after each

attempt and lock the account after some number of attempts. However, by rolling back the state

just before each increment of the corresponding hardware counter, a malicious commodity OS can

also rollback the virtual counter and gain the ability to make an unlimited number of authentication

attempts.

Vulnerability to such dictionary attacks is a well-known limitation of hardware counters, which

can be addressed by incrementing the hardware counter before processing inputs, making operations

deterministic so that they can only produce the same result if replayed by the commodity OS [133],

or incrementing the hardware counter twice [162]. Unfortunately, all of these solutions have their

drawbacks. Incrementing the hardware counter first means that recovery may be impossible after a

power failure as the hash tree corresponding to the hardware counter may not have been committed

to disk yet and thus permanently lost. Incrementing the counter twice means that the hardware

counters will wear out twice as fast.

To solve this conundrum, we observe that not all applications are vulnerable to dictionary attacks.

In particular, a dictionary attack is of no consequence if the adversary gains nothing by observing

different possible states of the application. For example, unlike the case of being able to repeatedly

make authentication attempts, a user may be annoyed if a malicious commodity OS repeatedly

rolls back her secure chat logs, but is probably not hurt so long as the confidentiality of those logs

is protected. Similarly, the ability to mount a dictionary attack on the Mint-TEE hash tree is in

general of limited value to an adversary. Rather, the adversary wants to mount a dictionary attack

on a specific TEE App that uses virtual counters to limit sensitive operations such as authentication

attempts. Thus, we enable TEE Apps to protect against rollback by allowing them to use the double

increment defense proposed by Ariadne [162] if they require protection from dictionary attacks. If

control is transferred to the commodity OS in between the double virtual counter increment, then

both increments will be translated to hardware counter increments. However, if there is no interrupt

between the two increments, then the commodity OS would not be able to rollback the state and both

of the virtual counter increments would be aggregated into the next hardware counter increment,

thus reducing the number of hardware counter increments.

4.3.4 TEE App State Counters

As discussed earlier, Mint-TEE saves the state of suspended TEE Apps into a shared memory region

backed by commodity OS memory. Even though Mint-TEE encrypts and signs the state, a malicious

commodity OS can reset a TEE App back to an earlier state by rolling back the suspended state to

an earlier state. Coupled with the ability of the commodity OS to schedule interrupts that would

return control back to it (i.e. a commodity OS has the capability of issuing an FIQ or IRQ interrupt

arbitrarily), this allows a malicious commodity OS to cause an executing TEE App to be suspended,

and then start another TEE App to cause the executing TEE App to have its state suspended to

memory, allowing the commodity OS to then replace the suspended state with a previous one. This
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could allow a malicious commodity OS to rollback critical states or operations of TEE Apps, such

as view counts in a DRM application, or transactions in a mobile payment application. Moreover,

if the malicious commodity OS could rollback the runtime state of an arbitrary TEE App, it could

possibly hijack the TEE App and force it to repeat certain operations to mount a DDoS attack on

some other victim.

To prevent a malicious commodity OS from rolling back the state of suspended TEE Apps,

Mint-TEE implements a TEE App state counter (TASC) to protect app states. The requirements of

the TEE App state counter are quite different from that of virtual counters for TEE App persistent

storage. First, the TASC does not need to be live after a power failure or commodity OS crash as

the memory state of applications is assumed to be invalid across reboots. Second, the TASC need

not be explicitly read or incremented by TEE Apps themselves, as the suspending and restoring

of interrupted TEE App states should be transparent to TEE Apps. Mint-TEE only allows one

instance of each TEE App to exist at any given time. As a result, Mint-TEE needs to support at

most one TASC per TEE App.

Similar to virtual counters for persistent state, Mint-TEE must be able to handle an arbitrary

number of TASCs as there could be an arbitrary number of TEE Apps installed. Mint-TEE imple-

ments TASCs using a hash tree implementation similar to that of the persistent virtual counters,

where each leaf in the tree corresponds to a TASC for a particular TEE App. Similarly, Mint-TEE

uses a VCM, also protected by the hash tree to map each leaf in the hash tree to a TASC. As in the

persistent state case, an increment of a leaf counter causes updates all the way to the root of the

hash tree and any leaf read causes verifications all the way to the root of the hash tree.

However, the implementation of the TASC hash tree also differs significantly from the hash tree to

implement persistent virtual counters. Because the hash tree need not be recoverable across reboots,

the root of the tree can be saved in TrustZone secure memory, which is protected from tampering by

the commodity OS but as with commodity OS memory, also does not survive a reboot. This means

that all TASCs will be reset to zero on each reboot. On its own, this would prevent rollback of states

within a single boot, but would allow a malicious commodity OS to save a state from one boot, and

then rollback to it on another boot. To prevent this, we make each TASC unique to each boot by

using a single hardware monotonic counter. Thus, in reality, each TASC is really a concatenation of

leaf values of the TASC hash tree and the value of the TASC hardware monotonic counter, which is

incremented by Mint-TEE on each boot.

Mint-TEE uses TASCs to protect suspended TEE App state from rollback by signing each

suspended state along with the current TASC value, thus sealing it as the most current state, and

invalidating all other TEE App states, including those from previous reboots, that will have been

sealed to other TASC values. As a result, a malicious commodity OS will not be able to have Mint-

TEE restore any suspended TEE App state except the most recent one. In addition, Mint-TEE

need not guarantee any ability to recover from a power failure or commodity OS crash since we do

not expect the suspended execution state of TEE Apps to be preserved across such events (similar

to commodity OS application semantics).

The design of TASCs is critical to enabling concurrency for TEE Apps, yet has low resource

requirements in terms of hardware monotonic counters. Only a single such counter is needed. In

addition, only a single increment per boot is needed, meaning that the counter is likely to last for

many years, even with fairly frequent reboots, which would be sufficient for most devices we envision
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Mint-TEE to run on, such as smartphones.

4.4 Implementations

Both of the Pearl-TEE and Mint-TEE prototype run on a LeMaker HiKey development board, which

has a HiSilicon Kirin 620 SoC with an 8-core ARM Cortex-A53 CPU at 1.2GHz and 2GB RAM.

We use Android AOSP 7.1 for the normal-world OS. We describe the details of the Pearl-TEE and

Mint-TEE prototypes and how the example TEE applications are implemented in this section.

4.4.1 Pearl-TEE Prototype and Integration with Payment Services

Our implementation of Pearl-TEE is based on OP-TEE 2.0 [105], an open-source TEE that im-

plements the GlobalPlatform TEE Internal API Specification v1.0. For cryptographic functions,

we use the functions in the ARM Trusted Firmware v1.2 [7] library. TLS termination for network

communications is implemented using the OpenSSL library v1.1.1 [129]. As required by security

requirement S-3, Pearl-TEE kernel executes at exception level EL1, while TEE components run at

EL0, allowing Pearl-TEE to protect itself from a malicious TEE component.

The GlobalPlatform APIs already provide a way for normal-world components to load and exe-

cute TEE components and invoke API functions in TEE components. As a result, our Pearl-TEE

prototype needs only to implement the following APIs:

ISS Setup: Used during ISS. Once the TEE component has generated it’s keypair SK TC,PK TC,

it passes them along with the user credentials to Pearl-TEE using this API call. Pearl-TEE then

produces a certified ISS message with an attestation and also computes SK CI for the TEE component

and encrypts SK TC with it.

Decrypt Key: Used during DPF and TCU when the TEE component requests Pearl-TEE to decrypt

its SK TC.

Display: Used by the TEE component to display transaction details to the user during the trans-

action confirmation stage of DPF.

Touch: Used by the TEE component to verify user intent during transaction confirmation.

NKM Syscall: Used by the TEE component to make system calls to the normal-world OS. It uses

this API to send and receive network messages and to save encrypted keys to the normal-world file

system.

To fully implement NKM Syscall, Pearl-TEE proxies system calls to the normal-world OS in a way

similar to Proxos [118]. However, while Proxos does it across a hypervisor, Pearl-TEE proxies system

calls between the secure and normal-worlds of the ARM architecture. The Normal-World Kernel

Module (NKM) receives NKM Syscall requests from Pearl-TEE and sends them up to the Normal-

World User Module (NUM), which executes them on behalf of the TEE component. The NUM

runs as a dedicated, unprivileged user in the normal-world OS so that malicious TEE components

cannot use it to escalate privileges in the normal-world OS. This design simplifies Pearl-TEE as it

can proxy most complex functionality to the normal-world OS, while at the same time providing

intuitive APIs for sending and receiving network message and storing persistent data, to the TEE

component.
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The Hikey board we use to prototype Pearl-TEE does not have a TPM or a touch device. Therefor

we emulate these using software modules in Pearl-TEE. We emulate a TPM using a method similar

to fTPM [143] with functionality based on a specification for ARM TPM modules [157]. We emulate

a touch device similar to that in [164], which emulates a touch signal to Pearl-TEE.

To demonstrate Pearl-TEE, we integrate our prototype with the PayPal, Alipay and BrainTree

mobile payment services. We select these three payment services because they are in common use,

processing a total of over 1 trillion dollars in payments annually, and do not have implementations

of payment applications that use TrustZone.

Pearl-TEE signs all messages with SK TC, which must be set up with the payment server during

ISS. Since we do not have control over the payment servers of these three payment providers, we

implement a proxy server in front of their servers that will handle Pearl-TEE specific messages and

uses the SDK’s of the respective payment services to translate the Pearl-TEE messages into the

current native payment messages of each provider. Because the proxy server sees the native SDK

API calls to the payment server, it must be trusted. If Pearl-TEE is eventually deployed, any of

these payment providers could support Pearl-TEE by simply running our proxy server themselves in

front of their legacy payment servers. Our proxy server implementation is written in a combination

of Python and Javascript.

To make payments to each of the services, we also need to write TEE components and normal-

world components for each service. While each payment service offers several different types of

payment transactions, our TEE components only support a basic payment transaction, as this is

a common transaction that all services provide, making it easy for comparison in our evaluation.

Even though payment transactions are all fairly similar at a high-level, application-level differences

resulted in differences in the different TEE components for each payment service. For example, for

AliPay, the TEE component needs to fill in the payment amount, transaction number, payment

subject (a title of the transaction) and a notification URL to which the payment server should send

the payment confirmation message. In comparison, for PayPal, the TEE component needs to fill in

the type of transaction, account number of the user, payment amount and expiration time of the

payment.

For future work, we intend to implement other types of transactions and other payment services.

We explain two interesting examples of such transactions:

Displaying balance confirmation: In the Wechat Wallet service [166], after a payment transac-

tion, the payment server confirms the payment together with a value b indicating the current balance

amount of a user wallet. In this case, the value b should ideally be encrypted by the TEE compo-

nent’s public key PK TC so that only the corresponding TEE component can decrypt it. However,

the DPF process currently does not have a confirmation phase. Thus, we plan to implement this by

having the normal-world component initiate a second “dummy” DPF that passes the encrypted b to

the TEE component, which can then display the confirmation to the user. When the user touches

the touch device to continue execution, the second DPF terminates without sending any messages.

The sole purpose of the second DPF is to display the confirmation balance b to the user.

Proof of payment: Payment applications (e.g., AliPay) may request the payment server to provide

a proof of payment, in a hashed string p which is signed by the payment server, so that the user

can later use it to prove to a third-party merchant that a payment/deposit is made. To request the

proof, the normal-world component must collect details such as the payee, date and amount of the
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transaction and send these to the payment server.

4.4.2 Mint-TEE Prototype and System APIs

Our implementation of Mint-TEE is based on source code from Pearl-TEE [76] and it is compatible

with GlobalPlatform TEE Internal API Specification v1.0. We upgrade the base system to OP-TEE

v3.0 and port the changes made by Pearl-TEE. For cryptographic functions, we use the functions

in the ARM Trusted Firmware v1.2 [7] library. The data structure of the hash tree that we use is

implemented based on the Merkle tree library from the IAIK Secure Block Device Library [71]. TLS

termination for network communications is implemented using OpenSSL library v1.1.1 [129].

The Mint-TEE prototype provides APIs based on the framework guided by the GlobalPlatform

APIs. Mint-TEE does, however, contain extra functionality unique to Mint-TEE. The APIs pertain-

ing to TEE App storage are summarized in Table 4.2. To safeguard TEE apps’ persistent storage

from rollback attacks, Mint-TEE provides an interface for TEE Apps to create, read, increment,

and destroy virtual counters. The implementation of these interfaces follows the design outlined in

section 4.3.3. Additionally, when Mint-TEE swaps TEE App in-memory state to ephemeral storage,

it encrypts the state and increments a TASC. Similarly, the implementation follows from section

4.3.4.

To accommodate the growing number of persistent storage and accommodate multiple TEE Apps

in TrustZone, Mint-TEE must support a dynamic number of virtual counters. Mint-TEE expands

the hash tree once all existing counters become used up. To do so, Mint-TEE creates a new root

node that points to the old root node as its left child and a new empty hash tree as its right child.

This operation doubles the capacity of the hash tree, since the new empty hash tree on the right

has the same size as the old hash tree on the left. The virtual counter map (VCM) is updated to

account for the newly created virtual counters. The new root node is sealed by the Mint-TEE, while

the old root node simply becomes yet another intermediate node of the hash tree. If the number of

virtual counters in use shrinks dramatically, the hash tree is reduced in a similar manner, to save

space.

The HiKey 960 development board we use for the Mint-TEE prototype does not have any hard-

ware Secure Element (SE), monotonic counters or a touch screen. We therefore emulate these using

software modules in Mint-TEE. We emulate an SE according to existing documents [112] that an-

alyzes SE, and we emulate a touch screen device similar to that in TrustOTP [164] by emulating

touch signals. For monotonic counter emulation, we take reference specifications from Microchip

ATECC508A [117] and combine them with the SE module.

4.4.3 TEE Applications

We have ported two types of TEE Apps used in Pearl-TEE [76] to demonstrate the scalability of

Mint-TEE’s rollback protection: a payment app and a chat app, since both rely on persistent states.

We believe these are representative TEE applications as users would likely be concerned about the

security of their mobile payment transactions or the security of their chat messages. All apps contain

both a commodity OS component and a TEE App that work together by communicating over the

Mint-TEE message queue. For the protection of the persistent storage, we have modified them to

use the APIs for accessing persistent virtual counters with the help of Mint-TEE. We briefly describe
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Table 4.2: List of APIs Implemented for Secure Storage

API Name Caller Description
Create VC() App Create a new virtual counter and updates the record in VCM.
Read VC() App Read the current value from a virtual counter that belongs to the

requesting TEE App.
Increment VC() App Increment the current value of a virtual counter that belongs

to the requesting TEE App.
Destroy VC() App/OS Destroy a virtual counter when it is no longer used,

e.g., owner TEE App is uninstalled.
Store VCs() OS Store virtual counters to persistent storage.
Seal VCs() OS Increment MCp and bind with hash of the hash tree root.
Tree Expand() OS Add one more level to the depths of the current hash tree and

update VCM.
Tree Reduce() OS Reduce one level of the depths of the current hash tree and

update VCM.
TA Save() OS Save a suspended TEE App state with encryption and bind with

a TASC.
TA Restore() OS Restore a suspended TEE App state after checking its freshness

and integrity.

how the new application flows work with Mint-TEE.

TEE Payment Applications

Our implementation of the payment applications is also partially based on the work of the Pearl-

TEE. In the base version, though not described in details on the application workflow, they achieve

protection of confidentiality and integrity when communicating with commodity OS and the remote

payment servers. The ported versions of the TEE payment Apps, compared to the previous versions,

guarantee persistent storage freshness and liveness protection by making use of Mint-TEE virtual

counters. In addition, Mint-TEE can provide a scalable number of virtual counters to different TEE

Apps for satisfying their needs for storing multiple persistent files, meaning that the number of

payment apps can continue increasing on a user’s device. The scalability also applies to the number

of TEE Apps the full system can support, as discussed earlier, suspended TEE App states are also

under the protection of Mint-TEE.

To demonstrate a complete and understandable workflow of the TEE Apps, we describe the

full payment framework, including the work done in the previous version and the new parts we

added. The basic functionality of communication and guarantee of confidentiality and integrity was

included in the original TEE Apps from Pearl-TEE, while the persistent storage protection with

virtual counters usage are our newly added features to the original TEE Apps.

We use the SDKs of PayPal, AliPay and BrainTree mobile payment services to develop the

payment TEE Apps in our prototype Mint-TEE system. To prove the authenticity of payment

requests, our TEE applications send an attestation that includes the hash of the binary and payment

request, proving that the request content was generated by a legitimate TEE App. Before accepting

the payment request, the payment server should verify the attestation. Because the mobile payment

servers are controlled by the payment service provider, and out of our control, we use a proxy server

in between the mobile device and payment server to verify and forward the payment requests. Given

that the proxy server sees the native SDK API calls to the payment server, it must be trusted. The
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proxy server implementation is written in a combination of Python and Javascript, depending on the

example SDKs provided for the specific payment application. Each application consist of a portion

implemented to run on the commodity OS (commodity OS application) and a portion in the TEE

OS (TEE App). While each payment service offers several different types of payment transactions,

our TEE application currently only supports a basic payment transaction, as this is a common

transaction that all services provide.

Our mobile payment TEE Apps require persistent storage to store two types of files: (1) The

transaction record, which is updated by logging transaction details such as the payee and payment

account after each payment transaction, and (2) The key file, which stores the private key used by

the TEE App to authenticate itself to a remote server. The key is a long-term secret that is only

rotated periodically, but we can adjust its life span for the purposes of evaluation evaluation. Both

of the above two files are private assets of the TEE App. They are only allowed to be accessed by

the payment TEE App or Mint-TEE. To maintain confidentiality and integrity, these files need to

be properly encrypted and signed to store in the persistent storage managed by the commodity OS.

The number of files that each payment app stores varies with the payment provider. Even though

payment transactions are similar at a higher level, application-level differences result in variations

of TEE Apps requirements. For example, for AliPay, the TEE App needs to fill in the payment

amount, transaction number, payment subject (a title of the transaction) and a notification URL

to which the payment server should send the payment confirmation message. In comparison, for

PayPal, the TEE App needs to fill in the type of transaction, account number of the user, payment

amount and expiration time of the payment. We illustrate the full payment system framework in

Figure 4.6 with numbered steps of a payment transaction.

1 User initiates the payment and submits all transaction details. In this step, we assume that the

user can rely on secure input and display.

2 The payment TEE App asks Mint-TEE for an attestation with which it can authenticate its

payment request to the remote payment server. Then the TEE App passes a hash of the payment

request that includes payment amount, payee and any other payment service-specific values. Note

that the payment request itself contains a nonce issued by the remote server to protect the transaction

from replay attacks. Since the hash of the request is included in the identity attestation, the

attestation itself is also unique per transaction and cannot be replayed.

3 Mint-TEE takes the hash of the TEE App, User-ID and the hash of the payment request provided

by the TEE App and generates an identity attestation. This attestation is returned back to the

TEE App, which first asks Mint-TEE to store a transaction record on its persistent storage, then

sends it to the proxy server via the commodity OS. TEE App and the proxy server communicate

after establishing a TLS connection. Because messages are signed and encrypted, the commodity

OS does not need to be trusted, and can be thought of as an untrusted network hop.

Besides the network communication, the commodity OS is also delegated with the request from

the payment TEE App to write the transaction request record to the persistent storage file, which

is also protected by Mint-TEE with freshness and liveness guarantees. To securely keep transaction

records on an external disk for persistent storage, the TEE payment app would call Mint-TEE to

write to a file for it. Mint-TEE receives the request and forwards the encrypted file with virtual

counter value binding to the commodity OS, which returns to Mint-TEE for virtual counter value

increment after the job is done.
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Figure 4.6: System Overview of a TEE application framework in Mint-TEE.

During this process, system crashes may happen either before or after the commodity OS flushes

the file to disk, and the states need to be recovered to continue the payment transaction. In the

former case, the payment app would need to start over again on this transaction because no real

transaction is made and persistent file has not been changed. For the latter case where the crash

happens between the flush of the persistent file and Mint-TEE could increment the virtual counter,

after the system reboots, the transaction record file needs to be reverted to the previous version

with the help of the file system journal. The transaction will also need to be restarted because the

payment message has not yet been sent to the server.

4 The proxy payment server receives the signed identity proof of the user, the application and the

payment message. It then verifies them and, upon success, forwards a request to the corresponding

payment server.

For future work, we intend to implement other types of transactions and payment services. We

explain two interesting examples of such transactions:

Displaying balance confirmation: In the WeChat wallet service [166], after a payment transac-

tion, the payment server confirms the payment together with a value b indicating the current balance

amount of a user wallet. This message can be sent back to the TEE application over the already

established TLS connection or a newly established one if the old one has been terminated due to a

timeout. The proxy payment service will need to be extended to renegotiate TLS connections for

the balance confirmation message.

Proof of payment: A payment application (e.g., AliPay) may request the payment server to

provide a proof of payment, in a hashed string p which is signed by the payment server, so that the

user can later use it to prove to a third-party merchant that a payment/deposit is made. To request

the proof, the commodity OS application must collect details such as the payee, date and amount

of the transaction and send these to the payment server as a different type of payment request.

The payment server can then respond with the proof, which is passed to the TEE application in

a way similar to the balance confirmation. However, instead of displaying it to the user, the TEE

application will pass the proof to the commodity OS application that requires the proof of payment.
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TEE Secure Chat Application

We base our implementation of the secure chat application TEE-Chat on the work of Pearl-TEE

authors as well. In addition to the original Pearl-TEE version, we add persistent storage protection

to TEE-Chat, motivated by existing malware like FinFisher [137] that is used by oppressive regimes

to record conversations of political dissidents by infecting and rooting their phones. Our port of TEE-

Chat on Mint-TEE uses the Off-The-Record messaging protocol (OTR). The basic framework of the

TEE-Chat application is similar to the payment application we described earlier, the main differences

are: (1) the chat application needs a symmetric key for encrypting and decrypting messages to be

compatible with OTR [131, 12], (2) the chat application needs to interact with the user and ensure

confidentiality of its output to the user as well as user’s input to the application, and (3) instead

of an application server, the end user’s TEE application verifies the identity attestation and then

displays the attested User ID to the user.

The newly added persistent storage requirement for TEE-Chat is on two types of files: (1) The

chat logs, which are multiple files containing messages with one contact for each log file, and (2) a

symmetric key for message encryption and decryption. Similar to the cases of payment TEE Apps,

the chat log files and the key need to be protected and stored in the commodity OS file system. For

both types of files, Mint-TEE needs to work with TEE-Chat to use virtual counters for protecting

persistent storage.

The TEE-Chat implementation is originally based on Xabber for Android [191], which is an

open-source XMPP client that supports the OTR protocol. In our chat application, we modify the

OTR part of the original Xabber application and move all encryption tasks to the TEE application

to ensure message confidentiality. In addition, in the secure chat application, users input and read

their chat messages via a secure touch screen which is directly controlled by Mint-TEE.

We briefly describe the life-cycle of the secure chat system. While the complete OTR-XMPP

protocol with authentication contains more steps, for readability, we elide the details and extract the

essential steps for a user to start sending a secure message. We also discuss the possible situation

that may happen in the middle of the TEE-Chat process that could affect the persistent storage

protection provided by Mint-TEE:

1 Mint-TEE attests user and application identity, using the same method as in Sec. 4.4.3 steps

1 – 3 , to the remote end-user. In the Message of the identity attestation, the user follows the

key exchange procedure according to the OTR protocol and establishes a shared key KSH with the

remote chat user.

2 The user inputs the chat message via a secure touch screen, and the TEE application uses KSH

to encrypt the message, and calls Mint-TEE to store the encrypted message to its persistent storage.

The TEE-Chat app will create a virtual counter for the new chat log file and Mint-TEE will update

the VCM for mapping the record between the TEE-Chat app and the virtual counter. After it is

done, TEE-Chat will hand the message to the commodity OS application for passing to the chat

server. Similar to the case of TEE payment application, if a system crash happens between when

the file is written to the persistent storage and when the virtual counter is incremented, the chat

log file will need to be restored to the latest version after the system resumes.

3 The commodity OS application follows the same procedure as the original Xabber application to

generate the encrypted Message/CPIM object (the contents of the chat message). It then places the
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object into the XML-CDATA section used in the XMPP protocol and sends the data out to the remote

chat user.

4 Upon receiving the encrypted message, the remote end-user application decrypts the message

with the shared KSH, appends it to the chat log by asking the commodity OS to store the file in the

same way, and then composes a response.

In an ideal case of a distributed file storage system, two clients at both sides of a secure chat

with end-to-end encryption should have identical copies of chat logs in their persistent storage.

However, system crashes may happen at any point during when the messages are being delivered

between the two TEE-Chat clients. As discussed earlier in the cases of TEE payment applications,

the persistently stored chat log files would need to be reverted to an old version if a crash happens

when a chat message is received and written to the persistent storage but the virtual counter has

not been incremented. A secure chat log synchronization protocol similar to the Simba [136] can be

developed for such cases.

4.5 Performance Evaluation

We evaluate the performance of Pearl-TEE and Mint-TEE with our TEE applications. In the

evaluations, each TEE application type is compared with a corresponding Baseline application.

The Baseline applications are executed on the same system, except outside TrustZone and without

the support of Pearl-TEE. We also measure the impact of running a single TEE application using

TrustZone versus having multiple different TEE application tenants.

4.5.1 Evaluation of Pearl-TEE

Time Interval
Baseline Applications TEE Applications

PP BT AP Average LP% PP BT AP Average LP%

Local Response 43 45 43 43.7

8.4%

121 125 121 122.3

18.5%
Proxy Process 136 141 145 140.7 203 206 225 211.3
Payment Process 305 310 334 316.3 305 311 328 314.7
Transaction 495 502 533 510.0 644 658 683 661.7

Table 4.3: Time cost comparisons between TEE applications and their Baseline counterparts (time
is in milliseconds). (PP: PayPal, BT: BrainTree, AP: AliPay.)

TEE Payment Applications

We implement Baseline applications in Android userspace to compare with TEE payment ap-

plications. The Baseline applications are written in C (same as the TEE applications). They

communicate with the proxy servers using the same APIs and their behaviors mimic the PayPal,

BrainTree and AliPay mobile applications. The only difference is that the Baseline applications

do not use any feature provided by TrustZone or Pearl-TEE; the messages sent by the Baseline

applications are not encrypted by the SE or Pearl-TEE keys. We measure time intervals that are

illustrated in the timeline in Figure 4.7 for each application. The intervals are numbered 1 to 7
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Figure 4.7: The steps used for performance comparison between the Baseline payment application
and the TEE-enabled payment application

in the order that payment messages travel through the system. The timing measurements we took

are as follows:

Local response time: the total time spent on the local user device from the payment button

click to the first payment message sent out to the proxy server, which is indicated in the figure by

the interval 1 (in the Baseline application case, only the normal-world part of the user device

is involved). This measures the time that the on-device payment system takes to process local

services and prepare the encrypted message to the server. This evaluates the overhead introduced

by Pearl-TEE in processing a user’s payment request.

Proxy processing time: the intervals 2 , 3 , and 7 indicate the time that the proxy server takes

to process requests from the user device. This includes encryption and decryption, verification of

hashes and processing of payment service SDKs, as well as the message travel time, which includes

the time taken to propagate through the network stacks of the device and the server as well as the

time taken to execute the protocol handshake. In order to measure the complete transaction time

locally on the device, we add a plaintext response message that gets sent 7 from the proxy server

back to the local payment application on the device.

Payment server processing time: the round-trip time between the proxy server and mobile

payment service providers. WAN delay and providers’ processing times cannot be controlled in our

experiment and can be affected by many factors in the network. The payment server processing

time includes intervals 4 , 5 , and 6 .

Transaction completion time: the time between the payment button click and the moment

when the user receives the confirmation of successful payment on their screen. We measure the total

end-to-end delay that a user experiences during the payment being processed (i.e., steps 1 to 7 ).

We set up the payment server and development board in the same LAN with a TP-Link AC1350

router of 450Mbps WiFi and 100Mbps wired bandwidth. The payment server runs on a Linux

desktop machine with a wired connection to the router. The board we run Pearl-TEE on has an

802.11n wireless connection to the router. The LAN delay between the board and the desktop

machine is less than 1ms.

We conducted 20 payment transactions on the TEE applications and the Baseline application,

and summarized the average time taken for these transactions in Table 4.3. We note that more
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Table 4.4: Performance overhead evaluation for TEE-Chat (time is in millisecond)

TEE-Chat Xabber

Local processing time 183.75 103.75
Message round-trip time 717.54 715.95
Overhead 81.59
Overhead % 9.95%

than half of the time is spent communicating with the payment providers’ servers ( 4 + 5 + 6 ). The

next major component is the network delay and processing time of our proxy server, which could

be reduced if it were directly integrated into the payment providers’ servers. The SDK processing

time on the proxy server is 29.0 ms on average for the Baseline application and 30.3 ms for the TEE

applications. We also estimate how much local response time contributes to the overall transaction

time with Local Process Percentage (LP%) calculated as (Local Response Time / Transaction Time

) × 100%.

We believe the total transaction time of less than 700 ms is tolerable in real payment scenarios,

even given a worse network condition on a cellular network and a real server. A short delay within

a second is still acceptable. Proxy server programs can be further optimized by re-writing them in

C.

TEE Secure Chat Application

To evaluate our TEE secure chat application, we compare the performance of TEE-Chat with the

original baseline Xabber application. We measure TEE-Chat performance by running it on our

development board and using it to talk to an Xabber application on a Google Pixel phone that has

the standard Xabber application running on it. The baseline Xabber measurement is conducted

between a vanilla Xabber application running on our development board and the same application

running on a Pixel phone. To eliminate the human-operation factor of inputting a message, we

modified the Xabber application running on the phone to automatically respond with a message

“Gotcha” as soon as it receives a chat message from the application on the development board.

We measure the following values for comparison between TEE-Chat and Xabber:

Local processing time: the time between when the user clicks the send button and the message

is sent out via the network. For TEE-Chat on Pearl-TEE, the local processing time includes the

time it takes to encrypt messages.

Message round-trip time: the time between when a message is sent from Pearl-TEE to when a

response is received from the phone. The message round-trip time includes the time that packets

travel in the network and the remote chat application processing time.

We measure the average of 10 samples and tabulate the results in Table 4.4. We can see that

the TEE-chat application on Pearl-TEE only introduces an average overhead of 81 ms, which is

less than 10% of the overall message sending/receiving round-trip time. We expect that in a real

environment, a user would hardly notice the difference.
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Table 4.5: Secure payment system performance breakdown

System Module Performance Overhead

Network cost & server waiting 59.3 %
Normal-world process 13.8 %
Payment server process 12.8 %
Pearl-TEE kernel operations 8.2 %
TEE application process 6.5 %
World-switching time 0.1 %

Performance Measurement Breakdown

We study the performance overhead of the Pearl-TEE system with a measurement of a few repre-

sentative events in our system. In this case, we use the TEE payment application as an example.

We collect the time consumed by each system component by instrumenting instructions in the entry

and exit functions in each component. These instructions use/call the ARM Performance Monitor

Unit (PMU), which guarantees the relative accuracy of the timing data. In Table 4.5, we can see

that most of the system execution time consists of running processes outside the device, including

server processing time, network communication time between the device and the proxy server, as

well as between the proxy server and the payment servers.

Batch Time-out Evaluation

Pearl-TEE enforces a non-restartable batch scheduling policy that terminates non-interactive appli-

cations after a fairly short time to ensure fairness. Here, we evaluate what settings for the time-out

value Tbatch might be reasonable using the payment applications we have implemented, since they

have a significant non-interactive component after the user submits the payment details. If Tbatch

is set too small, some transactions might not be able to complete. However, if Tbatch is too large,

then the user experiences a longer delay in the event of a network disconnection or server failure.

In this experiment, we vary the Tbatch from 350 ms to 850 ms and test each configuration 20 times

for the same TEE application (Alipay in this experiment), then collect the triggering rate of the

force-termination event.

Figure 4.8 shows that the force-termination is not triggered when Tbatch>780ms in more than

99% of cases, which is closely aligned with the message round-trip time plus some additional time

for computation. We believe that, with optimizations to the payment server, the value of Tbatch can

be further decreased in practice.

Memory Overhead

We separately evaluate the memory overhead of each module from our implementation in Table 4.6,

including TEE payment applications and TEE-chat. We measure the runtime RAM costs of each

listed system component. Note that the overall usage of runtime memory cost compared to the host

Android OS is negligible since mobile devices nowadays have typically more than 2GB of memory.



4.5. PERFORMANCE EVALUATION 66

 0

 20

 40

 60

 80

 100

 400  450  500  550  600  650  700  750  800

E
v
e
n

ts
 t
h

a
t 

ti
m

e
-o

u
t 

tr
ig

g
e

re
d

 (
%

)

Configuration of ∆T (ms)

Figure 4.8: Batch scheduling settings and force-termination trigger rate

Table 4.6: Memory usage statistics in Pearl-TEE System

System Module Runtime Memory Usage (KB)

Pearl-TEE 520
TEE payment application 9
TEE chat application 5
Normal-world kernel module 20
Normal-world user module 25
Proxy server for payment 340

4.5.2 Evaluation of Mint-TEE

We evaluate four aspects of Mint-TEE: (1) performance introduced by Mint-TEE, (2) reduction in

the wear rate of hardware counters due to aggregation, (3) increase in the TCB size due to Pearl-

TEE and Mint-TEE functionality and (4) the overhead in memory consumption of Mint-TEE and

TEE Apps. In the evaluation, each TEE application type is compared with a corresponding Baseline

application. The Baseline applications are executed on the same system, except that they are outside

TrustZone. We also evaluate the performance impact of Mint-TEE and monotonic counters to defend

against rollback attacks.

Performance Evaluation with TEE Apps

We set up the payment proxy server and development board in the same LAN with a TP-Link

AC1350 router of 450Mbps WiFi and 100Mbps wired bandwidth. The payment server runs on a

Linux desktop machine with a wired connection to the router. The board we run Mint-TEE on has

an 802.11n wireless connection to the router. The LAN delay between the board and the desktop

machine is less than 1ms.

For an evaluation of the effect of virtual counters for protecting persistent storage, we compare



4.5. PERFORMANCE EVALUATION 67

Table 4.7: Performance overhead for TEE Apps using virtual counters in comparison with the same
TEE Apps without virtual counters (time in seconds)

Task TBaseline TCounter Overhead TBaselineLocal TCounterLocal Overhead

TEE-PayPal 120.13 121.41 1.07% 42.36 43.54 2.79%
TEE-BrainTree 122.46 123.90 1.18% 43.22 44.48 2.92%
TEE-AliPay 122.17 124.32 1.73% 44.80 46.16 3.04%
TEE-Chat 60.00 63.20 5.33% 42.62 45.15 5.96%

the TEE Apps with a set of baseline apps which do not use virtual counters. We measure the

performance overheads by looping the TEE Apps and baseline apps and highlight the results in

Table 4.7. In the experiments, we compare the baseline run times of our TEE Apps not using

virtual counters with those of the same jobs using virtual counters. For payment applications

including PayPal, BrainTree and AliPay, the Baseline apps continuously make pre-defined payment

transactions, which are recorded as TBaseline. Under the same settings, these payment applications

run the same transactions, but with Mint-TEE virtual counters and record the time TCounter for

task completion. For TEE-Chat, we generate a random chat message every 5 seconds and send it to

a remote client which is also sending messages back. To provide persistent storage state protection,

the following counter increments need to be done:

• Before TEE payment app sends out a transaction request, a log of this request is stored in a

record file and the virtual counter for that file is incremented.

• When the local secret key of the TEE payment app needs to be updated, its file in persistent

storage is updated and the corresponding virtual counter is incremented.

• For TEE-Chat, when the chat client receives a message and writes it to the chat log file on

persistent storage, Mint-TEE will increment the virtual counter bound to the file. Similarly,

before the chat app sends out a message, the message record file is also updated and its virtual

counter is incremented.

• When the symmetric key file of TEE-Chat expires and gets updated to a new key, the file is

written to and its corresponding virtual counter is incremented.

In our evaluation for performance overhead, we consider the cases of virtual counter increments

due to TEE payment app transaction record updates and TEE-Chat message log file updates. In

our evaluation time scale, the key file updates are not expected to happen very frequently. We also

take statistics of how much execution time of the TEE App is spent on the local device for baseline

cases (TBaselineLocal) and for the cases with virtual counters (TCounterLocal). Hardware monotonic

counter emulation is done by adding empty cycles of approximately 0.1 milliseconds on each access

to one such counter and for SE seal operations. The results from real-world applications show that

the overhead of payment TEE Apps due to the use of virtual counters is around 3%, and for the

TEE-Chat app, which might have more frequent persistent storage access, is below 6%.

We implement another set of baseline apps in the Android userspace, to compare with TEE

applications for an end-to-end performance evaluation. For payment TEE Apps, the Baseline apps

are written in C (same as the TEE apps) and they communicate with the proxy servers using

the same APIs and behaviors as the PayPal, BrainTree and AliPay mobile applications. The only
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Table 4.8: Performance overhead for overall protection (time in seconds)

Task Baseline TEE Apps Overhead

PayPal 103.4 112.7 8.99%
BrainTree 144.3 155.2 7.55%
AliPay 172.6 191.3 10.83%
TEE-Chat 109.6 114.8 4.74%
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Figure 4.9: Evaluation of Hardware Monotonic Counter Wear-Out

difference is that the baseline apps do not use any feature provided by TrustZone; the messages sent

by the baseline apps are not encrypted by the SE or Mint-TEEkeys. For the TEE-chat app, the

baseline app we use is the original Xabber application and we measure TEE-Chat’s performance by

running it on our development board and using it to talk to a standard Xabber application running

on a Google Pixel phone. To avoid having to manually input messages, we modify the standard

Xabber application to automatically respond with a message “Gotcha” as soon as it receives a chat

message from the application on the development board. The results are shown in Table 4.8. The

numbers compare the execution times of baseline apps for a set of predefined tasks and the times for

TEE Apps execution overall, which gives a quantitative analysis of how much Mint-TEE costs for

all the security protection it provides. The end-to-end performance overheads of all our evaluated

TEE Apps are below 11%, with an average of 8%.
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Hardware Monotonic Counter Wear Reduction

Mint-TEE uses counter increment aggregation to reduce hardware counter wear. To evaluate its

effectiveness, we compare the number of virtual counter increments, which would each become

hardware counter increments if Mint-TEE’s aggregation were not use, with the actual number of

hardware counter increments Mint-TEE performs.

A key difficulty in performing this evaluation fairly is estimating the number and frequency of

virtual counter increments that typical TEE Apps are likely to perform under regular usage. Since

no real TEE Apps currently exist, we make a best effort by using the 3 payment apps and the

secure TEE-chat app we have ported (described in Section 4.4.3). We run them simultaneously by

executing pre-collected traces for 30 minutes. While this is only a small number of TEE Apps, we

feel this workload can give an indication of the type of counter wear reductions that can be expected.

Another factor that can affect the wear rate savings is the frequency of interrupts that the

commodity OS must service. An interrupt that arrives while a TEE App is executing results in a

transition from Mint-TEE to the commodity OS, and consequently a hardware counter increment

(if there have been any virtual counter increments). As a result, more frequent external interrupts

should result in a lower reduction in counter wear due to aggregation. We evaluate this effect by

periodically issuing FIQ interrupts from the commodity OS every 5, 10 and 15 seconds as well as no

external interrupts, and then immediately returning control to the Mint-TEE.

TEE-Chat uses multiple persistent storage files for chat logs, one for each contact in a chat. We

set the number of contacts in our experiment to be 6, which means that there are 6 clients of the

chat app sending messages to TEE-chat. The message arrivals follow a normal distribution with an

average rate of 20 seconds per message of each client. The chat server batches up the messages and

send them to TEE-chat every 15 seconds. The traces of the payment TEE Apps are generated by

collecting file accesses under manually created payment requests. To make the real-world scenario

realistic, one of the authors keeps making small payment requests consecutively using the three

payment apps, one after each successful payment.

The numbers of counter increments over time are shown in Figure 4.9. As evident from our

experiment, the wear-out rate can be reduced by as much as 55% with no external interrupts.

The interrupts from commodity OS affect the aggregation rate as expected: we observe from the

results that if secure applications are not getting too frequently interrupted, the hardware monotonic

counter wear-out can still be greatly reduced. To optimize the system in the future, we can design

the scheduling strategy to let a CPU core be dedicated to a secure TEE App in order to further

reduce wear-out of hardware counters.

Impact on TCB

Maintaining a small TCB for Mint-TEE is critical as it must have a higher level of assurance than the

commodity OS to confer any security benefit to TEE Apps. We list the lines of code (LOC) of each

module we implemented or modified, and compare them with the original secure OS OP-TEE which

Pearl-TEE is also based on. In implementing Mint-TEE on top of Pearl-TEE, we simultaneously

ported Pearl-TEE from OP-TEE v2.0 to v3.0. As a result, it is difficult to fairly separate LOC that

belong solely to Mint-TEE and those that belong to Pearl-TEE. As a result, we conservatively count

all lines of code added to the base OP-TEE v3.0 system against Mint-TEE.
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Table 4.9: Lines of code (LOC) of Different System Modules in the Implementation and Comparison
with Other OSs

Category System Unit Name LOC

Server Proxy Server 4,500

Commodity
OS

Android AOSP 25,000,000
Commodity OS user module 1,800
Commodity OS kernel module 1,500
User application – Payment 3,000
User application – Chat 50,000

TCB

OP-TEE 159,000
Mint-TEE 162,720
Added libraries (C) 2,500
Change to base TEE OS (C) 1,100
Change to base TEE OS (ASM) 120

TEE User Space TEE payment application 950
TEE-Chat 270

Table 4.9 compares the TCB sizes of Mint-TEE, OP-TEE as well as a typical commodity OS such

as Android AOSP for reference. As we can see, the base OP-TEE is several orders of magnitude

smaller than Android, and Mint-TEE only adds roughly 3,000 LOC to the OP-TEE for a 2.4%

increase in TCB size.

The 950 LOC for the TEE payment applications, 270 LOC for the TEE secure chat application,

and the 3, 000 LOC for the commodity OS application components represent the total amount of

application code for all three payment services in aggregate. We have made necessary changes to

the base TEE OS (Pearl-TEE and OP-TEE) by modifying the OS, ARM Trusted firmware and

adding new libraries such as the hash tree library to the OS kernel. As a part of the added libraries,

the data structure of our hash tree and VCM takes approximately 1, 700 LOC including the Merkle

tree library that takes 1, 000 LOC, which we ported from the the secure block device Library [71].

Among the code changed to base TEE OS, virtual counter management and related operations takes

up approximately 200 LOC. As can be seen that the majority of the functionality is implemented

on the side of the commodity OS.

Finally we show the commodity OS kernel and user modules that implement the message queue

as well as the code that persists the virtual counter tree. While these are not part of the TCB, their

small size shows that they can be added to a commodity OS with only a modest amount of effort.

Memory Overhead

We separately evaluate the memory overhead of each module from our implementation in Table 4.10,

including TEE payment apps and TEE-chat. We measure the runtime RAM costs of each listed

system component. Note that the overall usage of runtime memory cost compared to the host

Android OS is negligible since mobile devices nowadays typically have more than 2GB of memory.

4.6 Related Work

Providing security features for applications on the mobile platform is not a new problem. One of the

pioneering works in the 1990s that has explored and defined interesting problems is the Sanctuary
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Table 4.10: Memory usage statistics in Mint-TEE system

System Module Runtime Memory (KB)

Mint-TEE 590
TEE payment application 11
TEE chat application 10
Commodity OS kernel module 20
Commodity OS user module 25
Proxy server for payment 340

project [199]. The authors raised the question of how mobile applications can be protected from

malicious servers and proposed Partial Result Authentication Codes (PRAC) to ensure forward

integrity, which means that servers visited later are not able to modify the result of previously

visited servers. Trusted execution environments with hardware support were also discussed in the

paper to support mobile Java agents running in a secure-coprocessor environment. However, since

it was an early work, specific hardware and software platform support was not described.

4.6.1 TrustZone Isolation and TEE Application Framework

ARM TrustZone has been employed to design secure systems on mobile platforms [139]. Some

work has proposed merging TrustZone with TCG-styled trusted computing concepts to build a

trusted computing platform [189]. However, the Linux-based operating system is too large for

a TCB to ensure required security. A T&T framework [140] is designed to use NFC combined

with TrustZone to preserve a user’s privacy during the mobile payment process. AdAttester [102]

proposes a mobile advertisement framework that can attest that user clicks on ads are initiated by

the real user and displayed ads are intact based on TrustZone. Komodo [51] implements SGX-like

enclave protection that has features of attestation and execution isolation with verified software in

TrustZone. Sentry [30] is designed to protect sensitive data from memory attacks on DRAM using

TrustZone support. However, they have to assume that an attacker cannot compromise the integrity

of the associated TEE application, which is complementary to Pearl-TEE.

TLR [150] tries to minimize the software TCB of a .NET implementation and provide an isolation

runtime environment for the execution of mobile applications. However, they do not assume a trusted

path between the user and TEE application, which limits the domain of applications that can be

securely implemented. Moreover, in the use case of secure mobile transactions, TLR also cannot

authenticate the user. TrustOTP [164] uses a TrustZone supported one-time password system to

provide secure user authentication. However, like much other previous work, they assume that all

TEE applications are trusted. MTM [208] is proposed with a mobile trusted module in TrustZone

to provide trusted computing for payment applications, TrustPAY [207] is another framework to use

TrustZone for mobile payment applications, and similarly, TrustShadow [67] aims at protecting TEE

applications on IoT devices. However, none of them consider the case of malicious TEE applications.

SeCReT [88] is a framework that enhances the security of the channel between the secure world and

normal world, which is complementary to Pearl-TEE and tackles a different problem. Our Pearl-

TEE system provides full support for user authentication and secure communication between the

user and TEE applications, which protects users from all known phishing attacks. Also, our secure

OSes allow multiple mutually distrusting applications to run in the secure domain and protects their
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integrity.

Our framework provides full support for user authentication and secure communication between

user and payment applications. Also, our secure OS Pearl-TEE and Mint-TEE both allow multiple

mutually distrusting applications running in the secure domain and protects their integrity along

with other security properties.

4.6.2 Roll-back Protection

Preventing attacks that aim at rolling back application persistent state and providing liveness in

case of power or hardware failure are frequently seen topics. As early as 2006, there is work [151]

proposing the use of virtual monotonic counters with the hardware counters on available TPM

chips. Memoir [133] uses TPM NVRAM and PCR registers to protect the freshness of applications.

However, Memoir requires applications to be deterministic, a restriction that Mint-TEE does not

have. ADAM-CS [113] has an asynchronous monotonic service proposed to minimize the maximum

vulnerability window. Ariadne [162] extends its previous work ICE [161] to achieve liveness and

rollback protection with the assistance of hardware monotonic counters. However, Ariadne requires

two monotonic increments for every state update by the TEE App, which would accelerate the wear-

out rate of hardware counters. ROTE [114], on the other hand, designs remote counter services to

avoid the hardware counter wear-out problem, but the network delay in a real-world setting could

be as high as 800 ms. In comparison with the above work, Mint-TEE can protect the persistent

states of both TEE Apps and suspended TEE Apps, alleviate the wear-out problem of hardware

monotonic counters, scalability issues of the number of supported virtual counters, and achieve a

reasonable system delay in our prototype implementation.

Intel’s SGX SDK [85] also provides virtual counters backed by hardware monotonic counters.

Similar to Mint-TEE, SGX uses a hash tree—however, SGX’s hash tree is implemented directly

on persistent storage using SQLite while Mint-TEE implements its hash tree in shared memory,

allowing the commodity OS to implement its persistent storage for the tree any way it likes. More

importantly, Mint-TEE implements increment aggregation and counter aggregation to reduce the

wear on the hardware monotonic counters and allow virtual counters to be spread over an arbitrary

number of hardware counters.

While these works propose many TEE applications, and often assume the presence of monotonic

counters for ensuring the freshness of data, none explicitly discuss how scalability for such monotonic

counters can be achieved. One of Mint-TEE’s main design goals is to provide scalable freshness and

security for TEE Apps.

4.7 Summary and Discussions

In this chapter, we have proposed Pearl-TEE, a TEE OS design that enables multiple, mutually

distrusting TEE applications that conform to our abstract TEE application model to execute in

TrustZone. Pearl-TEE enables and assumes that arbitrary TEE applications will be installed and

run in TrustZone and ensures that each application enjoys storage security, execution and memory

security, the ability to attest application integrity and user identity to remote services as well as

the ability to perform network accesses and access trusted path hardware. The evaluation of our

prototype Pearl-TEE system and TEE applications shows insights that this framework can be applied
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to real-world applications such as mobile payment and secure, privacy-preserving online chat. Our

implementation of Pearl-TEE adds less than 3% to the TCB of the TEE OS and imposes less than

20% local processing overhead.

The Mint-TEE we have proposed based on Pearl-TEE, is a secure TEE OS that provides isola-

tion, freshness, liveness and scalability to mutually distrusting applications running in TrustZone.

Specifically, Mint-TEE borrows resources from the unstrusted commodity OS and secures those

resources with a scalable number of virtual monotonic counters for it and TEE Apps to use. Mint-

TEE implements two types of aggregation to reduce the wear rate on hardware monotonic counters

and allow multiple hardware counters to be shared across many virtual counters. Our evaluations

show that the performance overhead of our prototype can be lower than 10% in average with a

non-significant increase of the TCB size of 2.4%.

The lesson we learned from this chapter of Pearl-TEE/Min-TEE is that the initial target audience

for a hardware security extension might be relatively small, but as interest and usage expand to a

broader range of users, operating system support for adaptations may become necessary to address

evolving security requirements. This situation highlights the critical importance of collaboration

between hardware and software engineers to ensure that security extensions can be effectively used

by the operating systems, while the operating system design should also allow for the continuous

adaptation of security applications in response to the dynamic threat and changes of user application

requirements.



Chapter 5

Aion Attacks: Manipulating

Software Timers in Trusted

Execution Environment

Side-channel attacks pose a significant threat to secure software operating within a TEE. The TEE

is designed to provide a secure environment for applications to execute and be isolated from other

processes or from the malicious OS, however, side-channel attacks can hijack and manipulate the OS

to probe on the cache and other system resources to form channels that leak sensitive information

without needing to break into the TEE. In order to safeguard Intel SGX applications from these

attacks, researchers have developed mechanisms to detect cache-probing and frequent interrupts on

which these attacks depend. Frequently, these defenses rely on high-resolution timers. However, the

absence of a trusted high-resolution timer hardware module has led developers to utilize software

timers, which unfortunately underestimate the range of potential attacks. In this chapter, we present

Aion attacks [77] that manipulate the speed of a reference software timer to undermine defensive

measures against SGX side-channel attacks. Specifically, we introduce a CPU configuration attack

that exploits the CPU power management mechanism to alter the execution speed of the timer

thread, as well as a cache eviction attack that evicts the target timer counters and compels the

system to load them from memory rather than cache. We evaluated the aforementioned Aion

attacks and developed an analytical model, demonstrating that software timers cannot be enhanced

to accommodate the defenders under our attacks.

5.1 Motivation and Contributions of Aion Attacks

In order to protect against side-channel attacks on SGX applications [196, 18, 152, 14, 119, 70, 61,

35, 17, 21], various defensive mechanisms have been proposed [22, 128]. The threat model of Intel

SGX assumes that only CPUs are trustworthy; hence, the code and data of secure applications run

under protection within a secure enclave, isolated from other system software. While SGX side-

channel attacks have yet to be fully resolved, Intel has stated that they are expected and considered

to be “a matter of enclave developer” [89]. As a result, software developers bear the responsibility

74
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of ensuring enclave security against side-channel attacks.

Interestingly, both SGX side-channel attackers and defenders rely on high-resolution timers for

measuring the duration of certain events, such as memory/cache access time, or for counting the

occurrence of specific events, like interrupts. However, in the case of defenders, the absence of

hardware timers within a secure enclave necessitates the use of software-based timers for high-

resolution timing.

Defenders must ensure the accuracy of software timers, leading to careful design considerations

on how software timers can precisely emulate real-world time and protect them from attacks. All

software timers have some foundational assumptions about their accuracy, which we will explore in

detail with our analytical system model. These assumptions can be summarized into two types:

1. The CPU instructions execute at a relatively constant speed, and

2. The clock frequency at which the CPU operates remains within a well-defined range.

For instance, the normal assumptions of the defenders recognize that SGX must defend against an

adversary who might modify the processor clock frequency. Thus, they are resilient to an adversary

who can slow down the clock frequency by a factor of 3.25−4.25×, as this is the typical ratio between

the maximum and minimum operating clock frequency of modern processors. In this chapter’s

work, we show that both of these assumptions can be broken by a significant margin. We present

Aion attacks, which can be executed by both privileged and unprivileged attackers, and enable an

adversary to tamper with software timer accuracy by 2.5 − 202×. We also construct a model of

software timers and empirically demonstrate that secure software timers are not feasible on current

architectures. This renders all current software-timer-based SGX side-channel defenses useless.

Our Aion attacks employ two mechanisms to break the assumptions made by software timers.

The first attack manipulates the thermal management facilities of the processor to induce execution

slowdown below the lowest supported clock frequency of the processor, violating the assumption that

slowdowns are bounded by the lowest clock frequency. To the best of our knowledge, this is the first

instance of a security attack that exploits CPU thermal management without physically overheating

or damaging the CPU. Instead, we trigger thermal management features using software-only attacks.

The second attack generates cache evictions to decelerate the execution of instructions in the software

timer, violating the assumption that the execution time of instructions is relatively constant. We

demonstrate that these attacks can compromise the security properties of applications running in

SGX enclaves and enable existing side-channel attacks to evade detection by existing defenses. We

implement a prototype of Aion attacks and evaluate them in a real-world environment. We make

the following contributions in this chapter:

• We propose an analytical model which suggests that no existing software timers used in SGX

enclaves are reliable, indicating that current SGX side-channel defenses are ineffective if timers

are manipulated by attackers.

• We present two generic Aion attacks and demonstrate that they are able to effectively exploit

all existing SGX software timers, undermining current defense mechanisms.

• We evaluate two prototypes of Aion attacks on two different CPUs. Experimental results

reveal that both consistently break the desired properties of the software timers. With our
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mechanism, we demonstrate an end-to-end attack where existing side-channel attacks can

evade detection.

• We prove that, under our attack model, it is impossible to construct a software timer immune

to Aion attacks, thereby motivating the need for hardware support.

5.2 System Model

We first propose an empirical model that characterizes software timers through the analysis of

both the victim and defender. In this section, we provide detailed descriptions of the attack targets

and develop a general model for them.

5.2.1 Model of Software Timers

To establish a model of a software timer, we introduce the concept of “’wall-time”, denoted by

Tw hereinafter, as a hypothetical clock that remains accurate and synchronized with the real-world

time. We assume that all software timers are designed and implemented to serve the same purpose:

tracking the wall-time as precisely as possible and providing the current time when required. Given

the lack of dedicated hardware for time indication, we can safely assume that any software timer

relies on a sequence of instructions to track wall-time and emulate the behavior of an ordinary clock.

In comparison to the wall-time, which reflects the absolute time in reality, a software timer should

maintain a “’clock-time” Tc and make it accessible to other threads or processes in need of the

current time.

In an ideal case, the wall-time is proportional to the clock-time by a constant factor, allowing the

clock-time to mimic the wall-time through the execution of a sequence of instructions. The constant

factor is determined by the time taken to execute this sequence of instructions. We measure the

margin of error from wall-time and define a measure Mt that indicates the accuracy of the software

timer in comparison to the absolute time:

|∆tc − ∆tw|
∆tw

< Mt (5.1)

In the above form, the clock-times at t1 and t2 are Tc1 and Tc2, while the wall-times are Tw1 and

Tw2, with the elapsed times ∆tc and ∆tw, respectively. Mt is generally assumed to be so small in

practice that ∆tc ≈ ∆tw, and it is influenced by the execution speed of the sequence of instructions.

This speed is affected by both CPU execution speed and memory/cache access speed, so the timer

model can account for this by constraining the measure Mt.

We can now construct a generalized software timer using the above concepts and employ a global

variable VG to simulate the clock ticks. As different machines possess varying micro-architectures,

operation speeds, and cache access speeds, the same timer algorithm will have a variable parameter

Ic that reflects the relationship between the variable increase and the clock time. Ic represents the

average increase in clock time per value of VG, while VG1 and VG2 are the values of the global variable

at times t1 and t2. With this model, simulating a dedicated timer becomes the problem of using
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an increasing global variable to indicate the current time, where the parameter Ic allows for general

adaptability under the different settings of various machines.

In this manner, when a user or an application needs to measure some ∆tw and since ∆tc ≈ ∆tw

(previously assumed due to the small Mt), they can simply measure ∆tc to determine the elapsed

time in the clock-time, yielding the result in the following form:

∆tc = Tc2 − Tc1

= Ic · (VG2 − VG1)
(5.2)

In this software model, the primary challenge for system developers lies in determining the value

of Ic. All current software timer approaches assume this value to be relatively stable, as it would

result in a small accuracy measure Mt. Based on our previous empirical findings, we have:

Ic ∝
FCPU

TInc(VG)
(5.3)

From the above, the value Ic is proportional to the CPU execution speed, FCPU , and inversely

proportional to the time TInc(VG) required to increment the global variable VG. With these compo-

nents modeled, we must next examine the victims – the enclave applications and defenders – and

how they utilize the software timers.

To summarize, the software timer model measures the accuracy Mt of a software timer by

comparing the generated clock time to the wall time. The accuracy is influenced by an intermediate

parameter Ic, which depends on the execution speed of the CPU (FCPU ) and the time TInc(VG)

required to increment a global variable. To slow down a software timer, Equation 5.2 suggests that

the adversary should increase Ic, causing it to take longer to increment the clock variable by a certain

amount. To achieve a larger Ic, Equation 5.3 indicates that the adversary may either prolong the

execution of instructions or decrease the CPU speed.

With these components modeled, we must next examine the victims – the enclave applications

and defenders – and how they utilize the software timers.

5.2.2 Defender Model

For the sake of research and without loss of generality, we present an abstracted model of the side-

channel attack defenders. This simplified model allows us to analyze and understand the fundamental

concepts and mechanisms employed by the defenders while maintaining the applicability of our

analysis to a variety of specific defense strategies. The objective of an SGX side-channel defender is

to identify attacks. A number of defenses achieve this by measuring the rates or latency of specific

events, necessitating the use of a software timer. As an example, we consider two strategies from

previous work [22, 128] that utilize the rate or execution time of a measured event as a component

of an SGX side-channel defence:

• Cache hit time measurement: The Prime+Probe cache channel attacks on SGX enclaves ne-

cessitate the adversary code running on the same physical core as the victim thread [128], as

sharing the L1/L2 cache is essential for conducting the probe. One method to prevent this

attack involves filling a core entirely with the application’s own threads. To verify that two

threads share the same physical core, we can measure and compare the time taken by the
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two threads to access a shared variable in the L1/L2 cache: if it is an L1/L2 cache hit, the

access time should be within approximately 10 cycles, indicating shared physical CPU core

occupancy. A software timer must be employed for this measurement.

• Asynchronous Enclave Exits (AEXs) Counting: To deploy Prime+Probe cache channel attacks,

which grant the adversary a fine-grained cache channel for probing, the adversary actively and

frequently preempts the target SGX enclave using, for instance, the high-precision Advanced

Configuration and Power Interface (ACPI) or the High Precision Event Timer (HPET). The

preemptions trigger an AEX each time they interrupt the victim enclave, which serves as an

indicator of side-channel attacks if it occurs too frequently. Defensive mechanisms can count

the number of AEX events during a specific time period or measure the time taken by a known

sequence of executions [128, 22] and determine whether the rate of AEX events is excessively

high to raise an alert for side-channel attacks.

In general, these methods aim to measure the delay or frequency of a specific phenomenon.

For example, they may monitor whether there is an irregular rate of events NEv (such as AEXs)

occurring during a certain time period. Similarly, the delay of a variable access can be viewed as the

inverse of the number of times the variable is accessed within a specific time frame. As a result, all

tests fundamentally compare a measured rate of events, NEv, against a threshold, NTh, to determine

whether an attack is occurring or not in one of the possible scenarios:

NEv > NTh : attack = true (5.4)

One dilemma that that defenders face is the choice of threshold: Setting NTh too high will result

in missed attacks or false negatives, while setting NTh too low will lead to false alarms or false

positives. The typical solution is to establish the threshold based on a calibration run, during which

the system is assumed to not be under the influence of an attacker.

Nonetheless, even with this approach, the defense mechanism must account for the fact that the

measured rate of events NEv is dependent on both the true rate of events and the ratio between the

wall clock and the rate of increment of the clock variable:

NEv =
∆tw
∆tc

·REv (5.5)

where REv is the true rate of events according to the wall clock. Normally, we expect that ∆tw ≈ ∆tc,

so NEv ≈ REv.

However, recall that ∆tc is proportional to Ic in Equation 5.3. Even under benign conditions,

there is some variability in Ic, which may result in a certain number of false positives and false

negatives — typically, NTh is set slightly higher to bias the detection method towards fewer false

positives. However, as long as Ic is similar to the value of Ic during calibration when NTh is set,

this will constrain REv to be roughly equal to NEv. Since REv corresponds to how fast an attacker

can read a side-channel, constraining REv effectively slows the rate of information leakage to the

attacker. Nevertheless, if the attacker can arbitrarily increase Ic, they can also arbitrarily increase

the true rate of events REv without being detected. This allows them to probe the side-channel

faster and thus reduces the time required for the attack to extract sensitive information from the

enclave.
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Figure 5.1: A model of how a software timer works and is used by an application thread.

With this general model of a software timer thread, we now discuss why a best-effort software

timer design remains vulnerable to attacker manipulation.

5.2.3 Timer Countermeasures

We illustrate the general structure of a software timer in Figure 5.1. A software timer thread updates

a global clock variable, which is read by application threads to determine the current time.

An attacker aiming to tamper with the timer might attempt to interrupt the timer so as to make

the difference between ∆tc and ∆tw arbitrarily large. To defend against this, both Déjà Vu and

Varys employ TSX to detect if the timer has been interrupted. However, TSX can only protect the

component of the loop that generates the delay ∆tc, and cannot safeguard the update of the global

clock variable, as the clock variable is concurrently accessed by both the timer thread and application

threads. Consequently, the update of the global clock variable must be outside the TSX-protected

region.

To prevent an attacker from interrupting and delaying the thread as it updates the global variable,

TSX is combined with a randomized delay function inside the TSX region, and the global clock

variable is updated with the randomized delay. This makes it difficult for an attacker to predict

when the timer thread is outside of the TSX region and can be interrupted without detection.

Thus, we summarize that a secure timer, which provides a timing service to other secure application

threads, needs to include at least the following components:

1. A global clock variable VG inside the secure enclave that records the current clock time. The

clock time can be read from the clock variable by other threads in the same enclave.

2. A timer loop that increments the clock variable by an amount assumed to be proportional to
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Figure 5.2: Illustration of Intel cache slice and cache set structure.

the elapsed time.

3. A protection mechanism that can either prevent the timer loop from being interrupted or

detect if the loop has been interrupted. An example of such a mechanism is TSX.

4. If the entire loop cannot be protected from interruption, a random delay element ensures the

attacker cannot predict when the timer is in the unprotected region of execution, i.e., right

before the clock variable is incremented.

As we can see, a TSX-protected timer should ideally spend a minimal amount of time outside the

TSX region. In other words, the only action taken outside of the TSX region should be to increment

the clock variable.

With the added protection of the software timer loop, trivial attacks that manipulate the software

timer by frequently interrupting it and/or deprioritizing the timer thread in an OS thread scheduler

to make the software timer deviate from the wall clock would not work. Such scheduler attacks that

possess OS-level privilege would attempt to preempt the timer thread, requiring an interruption into

it. This interruption would be easily caught by the TSX mechanism, and the interrupted transaction

would be aborted and detected by the defender.

5.3 Attack Design

In this section, we introduce the Aion attacks, which comprise two primary types of exploitation

methods. Each of these methods can function independently, and they can also be combined to

enhance the effectiveness of the attacks.
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5.3.1 Aion-1: CPU Thermal and Frequency Attack

The Aion-1 attack manipulates the rate of increase of the clock variable, indicating the internal

time in the software timer thread, i.e., the FCPU in Equation 5.3 of our software timer model in

Section 5.2.1. Intuitively, this can be achieved by altering the CPU working frequency through

the CPU power management modules of the operating system kernel, causing the clock variable to

increase out of sync with the wall time. The strawman method of simply changing CPU frequencies

has been described [22], where procfs is utilized to control the CPU frequency from userspace in on-

demand mode, and its effect was generally considered to be limited by CPU frequency scaling. Taking

the Intel i7-6600U as an example: The processor base frequency (PBF) is 2.6GHz; the maximum

turbo frequency (MTF) is 3.4GHz. If the attacker gains control of a CPU power management

module, the minimum controllable frequency of a single core is 800MHz. Consequently, it was

widely believed that the maximum achievable scale-down of CPU frequency ∆tw/∆tc was between

3.25× and 4.25×, a value that most previous defenses could withstand while still preventing an

adversary from mounting an effective attack.

However, our attack can challenge the above assumptions using CPU thermal management fea-

tures. As mentioned in Section 2.5, Intel CPU thermal management is governed by a thermal

control circuit, with settings managed by a software adaptive thermal monitor. A process controlled

by the attacker with root privileges can trigger a thermal event on the CPU thermal control cir-

cuit with instructions that configure MSR registers, for example, IA32 THERM INTERRUPT (0x19B)

allows configuration of the thermal interrupt, enabling or disabling various thermal events, and

IA32 TEMPERATURE TARGET (0x1A2) allows configuration of the target temperature for the proces-

sor, can affect the behavior of the processor’s thermal control mechanisms. This not only causes the

CPU core frequency and voltage to be throttled down but can also force the processor into the HDC

mode, where CPUs are paused for part of the clock duty cycle. Thus, while the clock frequency

remains unchanged in HDC mode, the effective execution speed of the CPU is reduced below that

of the minimum clock speed, as the CPU is effectively idle for a fraction of the clock cycles. By

doing this, we can make the effective execution speed of a CPU approximately equivalent to that of

a 100MHz CPU.

According to our software timer model in Section 5.2, the accuracy of a software timer depends

on the execution speed of the CPU core on which the software timer thread runs. In side-channel

defensive mechanisms, defenders need to ensure the secure enclave occupies both hyper-threads on

the same physical core, preventing them from sharing L1/L2 cache with other, potentially malicious

threads. They achieve this by measuring the access latency of a shared variable to determine if

it hits the L1/L2 cache, since if both threads can hit the cache of the same clock variable within

around 10 cycles, they must share the same physical core. To evade detection, the Aion-1 attacker

only needs to slow down the software timer, causing the tester to believe that the cache hit time

is within 10 cycles during its calibration run, even if it actually hits the LLC and takes around 40

cycles or more, referring to Table 5.1. The attacker can also do the reverse, depending on which

thread they wish to slow down. In this way, any secure application that utilizes the software timer

will read values inconsistent with the wall time. This deception leads the defender to assume that

the variable access has hit in the L1 cache when it could have hit in the L2 or higher.

The effectiveness of the Aion-1 attack depends on the highest and lowest possible processor

execution speeds on a single CPU core. The processor execution speed can be considered equivalent
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Average CPU Cycles Standard DEV
L1 Cache 4.05 0.2
L2 Cache 10.36 0.52
LLC 40.32 0.87
DRAM 152.18 1.14

Table 5.1: Memory access latencies for different levels of the hierarchy, averaged over 10k accesses
and measured in CPU cycles.

to the average core frequency during a specific period. When the attack is being executed, the core

on which the software timer thread runs should be set to the lowest possible running speed, while

other threads, including the attacker threads, should be set to the highest running speed (or vice

versa, when necessary). Without the ability to reliably know its own clock speed, the software timer

can unknowingly run slower or faster than the original settings. This type of attack also has some

limitations, including:

• The attack can only occur if the attackers are able to access CPU MSRs, necessitating kernel

privileges. In SGX applications on multi-tenant cloud scenarios, an attacker might not be able

to obtain such privileges, as they would need to compromise the hypervisor.

• The attack also assumes the CPU should support thermal control features, including clock

modulation via MSRs to issue a software signal that activates the TCC. Most Intel CPUs

available on the market support these features, but not all of them do.

Due to these limitations of privilege and feature availability, we present another attack that

employs cache eviction to achieve the goal of manipulating the software timer, potentially as an

unprivileged attacker.

5.3.2 Aion-2: Cache Eviction Attack

The Aion-2 attack specifically targets the clock variable utilized in the secure software timer thread

through an attacker thread in user space. This is referred to as a cache eviction attack, as it

diminishes the execution speed of the reference software clock by evicting the clock variable from

the CPU cache to DRAM. In accordance with the software timer model presented in Section 5.2,

this attack takes advantage of the stability assumption concerning the cache/memory access speed

of the clock variable, namely, the TInc(VG) in Equation 5.3.

Intel L1/L2 caches are collectively employed by two logical threads on the same physical core,

while all threads utilize the LLC in unison. As the majority of Intel CPUs employ an inclusive cache

policy between distinct cache levels, the eviction of the cache line containing the clock variable from

the LLC will also result in its removal from the L1 and L2 cache. Consequently, when the software

timer thread must increment the clock variable, the thread is required to wait for additional cycles

to complete the request, as it must be served from DRAM. Based on our experimental findings,

accessing the same cache level necessitates nearly the same number of clock cycles (albeit not the

same wall time), and the average DRAM access time is approximately 150 cycles. This implies that

the attacker is aware of the extent to which the clock variable’s increment can be decelerated by

each eviction. For the remainder, the sole responsibility of the attacker threads in user space is

to evict the cache line where the clock variable is situated. It is important to note that since the



5.3. ATTACK DESIGN 83

clock variable, which indicates the internal time in the software timer thread, is not safeguarded by

TSX transactions, access to the clock variable will not instigate a transaction abort, irrespective of

whether it hits cache or DRAM.

In order to execute the attack, the attacker threads necessitate a minimum cache eviction set. A

minimum cache eviction set constitutes a collection of virtual addresses that enables a user thread

to ensure the targeted cache line is evicted from the cache. For instance, if the virtual address

of the clock variable address on a CPU with 4-way associative LLC is 0x00007E30, the attacker

could identify an eviction set of addresses that share the same cache set: 0x00013D30, 0x00026A30,

0x000E2730, 0x0009AB30. In accordance with the Intel cache structure, this signifies that they

should also be located on the same LLC cache slice. The allocation of LLC is relevant because cache

entries on different cache slices do not belong to the same cache set. Upon discovering the eviction

set, in order to guarantee that the clock variable is evicted from all cache levels, one merely needs to

access every address in the eviction set. Subsequently, when the cache entry is successfully evicted,

the secure timer thread must access the DRAM to read or write to the clock variable, which in turn

hinders the increment speed of the software timer ticks.

We now explain the process of discovering the cache eviction set. As depicted in Figure 5.2, the

physical address of each memory request is divided into three components when mapping the address

to an LLC cache line. The lowest bits of the address determine the offset within the line, while the

set bits establish the cache set to which it is mapped. In contemporary Intel CPUs, the LLC is

further segmented into slices, and an undocumented hash function maps the set and tag bits of the

addresses to a specific LLC cache slice. Although the hash function itself is undocumented, there

have been efforts [115] to reverse-engineer it. Alternatively, other techniques [174] can effectively

identify a minimum eviction set using user-level programs with a high degree of probability. We

employ existing methodologies for ascertaining an LLC eviction set and utilize them in our attack.

Upon locating a cache eviction set, as illustrated in Figure 5.3, the attacker thread can proceed

to access all the virtual addresses in the eviction set of the clock variable within the software timer

thread. This ensures that the clock variable is expelled from the cache, significantly reducing the

incrementing speed. The attacker can continuously access the eviction set and maintain the eviction

of the clock variable in a loop. Consequently, whenever the software timer thread accesses the clock

variable again and caches it, the cache entry will be actively evicted by the attacker once more.

As the attacker thread operates concurrently with the software timer thread, eviction of the

cache line containing the clock variable is probabilistic, given the absence of knowledge concerning

the precise hardware cache replacement algorithm employed by the CPU. Nonetheless, the attacker

can enhance the likelihood of cache eviction by parallelizing accesses to the cache eviction set.

The attackers can distribute the elements of the cache eviction set among various threads under

their control, ideally occupying all remaining available CPU cores with attacker threads. This

strategy transforms the single-threaded attack into a multi-threaded coordinated assault, providing

the attacker with a higher probability of evicting the target victim cache entry more effectively.

The attacker attains the maximum timer slow-down effect by ideally compelling each increment of

the clock variable to miss all cache levels and hit DRAM. Consequently, the software timer operates

at a slower pace relative to wall time at the maximum limit, which represents the theoretical worst

case for the reference timer. However, due to the inherent complexity of multi-core and scheduler

systems, it is challenging for an attacker with only user-level privilege to guarantee this outcome. In
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Figure 5.3: Illustration of the Aion-2: Cache eviction attack.

the evaluation section, we will demonstrate the practicality of the attack and present our findings.

In summary, the objective of both variants of the Aion attacks is to manipulate the accuracy

of the software timer, either by decelerating or accelerating it without alerting the victim system.

According to our software timer model, the attacker’s primary focus is on the accuracy measure Mt.

To compromise Mt, the malicious actor may either alter the execution speed of the CPU FCPU or

the time TInc(VG) required to increase the global clock variable.

5.4 Implementation

5.4.1 Reference Software Timer

In our experiments on Aion attacks, we employ a real-world software timer as an instantiation of

the general model delineated in Section 5.2. We opt for the software timer implementation from

Déjà Vu [22] due to two reasons: (1) it exhibits high accuracy for event rate measurement, and (2)

it is capable of detecting repeated interruptions and safeguarding itself from malicious preemptions

originating from privileged threads. This implementation not only encompasses an essential loop

that increments the clock variable, but also additional defensive code utilizing Intel TSX to shield

the software timer threads from frequent interruptions by malicious attackers, as demonstrated in

Listing 5.1:

• L1: The timer thread starts an infinite loop from an SGX enclave.

• L2: It enters into a TSX-protected zone, where any interruption to the middle of the TSX

zone will fall into a trap, generate an exception, and rollback to the beginning of the entry
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1 while ( i n f i n i t e l o o p f l a g ) {
i f ( xbeg in ( ) == XBEGIN STARTED) { /∗ TSX beg in s ∗/

3 asm volat i le {
” rdrand  %0\n\ t ”

5 : ”=r ” ( rand )
} ;

7 rand = ( rand & 0x7 ) + 1 ;
for ( i = 0 ; i < rand ; i++) {

9 for ( k = 0 ; k < 5 ; k++)
my udelay ( 1 ) ;

11 }
xend ( ) ; /∗ TSX ends ∗/

13 } else {
i n t f l a g ++;

15 }
cur r ent t ime = cur r ent t ime + rand ;

17 }

Listing 5.1: Reference Timer Thread Implementation in C

point. This protects the code within the TSX zone, and it can detect if malicious software is

trying to interrupt it too frequently.

• L3–7: It generates a random integer number between 1 and 8. Here the randomness is provided

by rdrand as the original authors use it, while other pseudo-random functions could also work.

• L8–11: This is a loop creating a delay proportional to the generated random value, so it is

harder for attackers to guess when TSX protection covers the thread execution. L12 and L16:

The code leaves the TSX-protected region and the clock variable is updated. As mentioned

in Section 5.3, the reason for ending the TSX zone before the timer tick number is updated is

that the clock variable is intended to be read from other threads concurrently. If the update

is in TSX zone then any concurrent read will abort the transaction and roll back the timer

thread.

The clock variable (current time in L16) is accessible to both the timer thread and the ap-

plication threads. The timer thread periodically increments the clock variable with some degree of

randomness. When the application thread requires a high-resolution time measurement for a specific

event, it first retrieves the clock variable’s value prior to the event and reads the same variable again

afterward to compute the interval. In this standard procedure, TSX protection does not apply to

the clock variable. Consequently, theoretically, anyone can access it without activating the TSX

or SGX trap as long as they are within the enclave. However, the timer’s accuracy is doubtful for

two reasons. Firstly, the thread execution speed is connected to the CPU clock speed because the

real-world time of instructions processed by the CPU is dependent on a clock speed not known or

controlled by enclave applications. Secondly, the time taken to access the clock variable, whether

from the timer thread or any other thread, cannot be assumed to be constant as there is no guaran-

tee regarding the cache or memory level it may hit. Thus, the software timer is not as reliable and

secure as previously believed, even when operating within an SGX enclave.

We demonstrate two distinct methods employed to disrupt the in-enclave software timer without
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the necessity of directly infiltrating the enclave. Nevertheless, these methods achieve the objective of

manipulating the timer, thereby confounding the defenders. Consequently, the defensive mechanisms

against side-channel attacks are rendered ineffective.

5.4.2 Implementing Aion-1: CPU Thermal and Frequency Attack

This type of attack concentrates on altering the speed of targeted CPU cores. The two methods

for manipulating CPU core speed include triggering thermal events to force a core into HDC mode

and directly adjusting CPU frequency via the power control module of the OS. Since HDC mode

prevents a CPU core from running for a certain percentage of the time, both methods can be

considered equivalent to making a CPU core run at a specific frequency, which we later refer to as

the ”equivalent frequency” in this section.

The thermal management attack, as illustrated in Algorithm 1, requires implementation within

a thread with root privilege. We trigger thermal events by modifying the respective MSRs:

IA32 CLOCK MODULATION and operating on the programmable bits of [3:1]. For direct frequency

adjustment, three kernel modules can be used for scaling the CPU core frequencies: intel pstate,

acpi-cpufreq, and p4-clockmod. After testing all of them, we discovered that:

1. intel pstate, as a new power management module, cannot achieve per-core frequency scaling,

and

2. p4-clockmod, as a relatively last-generation kernel driver, depends on the Intel speedstep-lib

driver, which is incompatible with our test CPUs. Consequently, we selected acpi-cpufreq

as the driver that facilitates the attacker thread.

We configure the kernel driver to utilize a “userspace” power governor, allowing a user-level

application with root privilege to set any CPU core to run at a specified frequency. In this case, the

attacker thread controls the CPU core frequency of the software timer thread and other threads.

Various methods can be employed to trigger CPU thermal events, such as configuring the TCC

offset of the CPU, increasing CPU workloads to stress the cores, obstructing physical airflow or

stopping the case fan from functioning, and sending a software signal to the CPU to enforce clock

modulation. We opted for the last approach, which only necessitates a write to an MSR register

0x19A for implementation. However, we believe that an attacker can employ a range of creative

approaches to generate thermal events.

In the attacker thread, we set the target execution speed for the software timer thread to Fc

and for other threads to Fx. The attacking thread initially obtains information on which CPU

core the software timer thread executes and then runs in a loop while Loop Flag is TRUE to set

the frequencies of the software timer thread and other threads. The attacker thread ceases when

Loop Flag is changed to FALSE.

5.4.3 Implementing Aion-2: Cache Eviction Attack

The cache eviction attack necessitates acquiring the address of the timer variable utilized in the

software timer thread in order to identify the cache eviction set. We operate under the assumption

that the victim SGX application’s image is publicly accessible, which is a reasonable supposition, as
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Algorithm 1: Aion-1: CPU Thermal and Frequency Attack

Data: Fc: Target equivalent frequency for core C

Fx: Target equivalent frequency for other cores

1 Get enclave application’s PID ;
2 Get software timer thread’s TID ;
3 Read /proc/PID/task/TID/stat and get CPU core number C that the software timer

thread runs on;
4 while Loop Flag do
5 Check CPU frequency F on core X ;
6 if X == C then
7 if F != Fc then
8 Either write to MSR(0x19a) to trigger thermal control of core C, or set core

frequency to Fc ;

9 end

10 else
11 if F != Fx then
12 Either set core frequency to Fx, or do nothing if this is a thermal-only attack ;
13 end

14 end
15 Set X as the number of next CPU core ;

16 end

the OS is expected to load it into an SGX enclave. The address can be ascertained through binary

analysis of the application image.

Once the address Addr t is found after loading the SGX application, the attack as shown in

Algorithm 2 can start to slow down the software timer: First, the attacker thread finds a cache

eviction set for Addr t. This can be done by an unprivileged user-level process using a group

reduction algorithm [174], or like in our experiment for the ease of implementation, use the page

map and get the physical address Addr p of Addr t to find the cache eviction set directly.

As illustrated in Listing 5.2, the undocumented hash function is necessary for determining the

LLC cache slice to which a given address belongs, once the physical address is obtained. We ac-

quire the hash function through reverse engineering, employing algorithms from prior work [115].

Subsequently, with the cache eviction set EV t at hand, the attacker thread can continuously access

the addresses within the eviction set in a loop, effectively evicting the software timer thread’s clock

variable from all cache levels. Consequently, this action slows down the timer, as each increment of

the clock variable necessitates accessing the DRAM rather than the cache.

We have optimized the attack by parallelizing the attacking loop: the addresses in the eviction

set EV t can be further divided and assigned to multiple threads. The attacker threads can keep

accessing the addresses in the same eviction set and evicting the target clock variable from the cache

faster, because the multithreaded attacker still shares the same LLC and it should take less time for

all addresses in EV t to be accessed to evict the target address Addr t.
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Algorithm 2: Aion-2: Cache Eviction Attack

Data: Addr t: Virtual address of the timer variable in the software timer

thread

N: Number of attacker threads

1 Find an eviction set EV t for Addr t ;
2 if N == 1 then
3 while Loop Flag do
4 for Addr in EV t do
5 Read Addr ;
6 end

7 end

8 else
9 Divide EV t into N sets: EV 1 ... EV N ;

10 for T in {1 ... N} do
11 Start a new thread Thread T ;
12 Thread T loops accessing set EV T until Loop Flag == FALSE;

13 end

14 end

5.5 Evaluation

5.5.1 Evaluation Purpose and Experiment Setup

Aion attacks are practical exploitations that can be employed on actual machines. To demonstrate

their effectiveness, we assess our implementations of both Aion-1 and Aion-2 attacks in a real-world

environment, targeting victim SGX enclave applications. For evaluation purposes, we present end-

to-end attacks incorporating a side-channel attack on the SGX enclave, combined with our Aion

attacks, in opposition to an implementation of an SGX side-channel attack detector serving as a

defense mechanism.

We carry out all experiments on two machines equipped with the following CPUs: (1) Intel

i7-6700K featuring 4 cores; and (2) Intel Xeon E3-1230 v6 also with 4 cores. Regarding the system

software environment setup, we utilize Intel SGX v2.11 SDK on top of Linux with kernel v5.4, and

all machines have hyper-threading enabled. The experiments in this section aim to demonstrate the

following aspects:

• Software timers in SGX enclaves are vulnerable to Aion attacks, which can manipulate the

reported clock time from outside the enclave.

• Without compromising the software timer of the defender, a representative cache-based side-

channel attack will be detected and prevented from exploiting the victim applications.

• With the help of Aion attacks, the same side-channel attacks can evade detection by the

defender.

In our experiments, the side-channel attack is implemented to extract an AES key employed for

repeated encryptions inside an SGX enclave. We employ the OpenSSL 0.9.7a library, known to be

vulnerable to cache timing attacks, as a proof-of-concept demonstration. The effectiveness of our

attack demonstration evaluated on the i7-7700K machine illustrated in Table 5.2.
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# of encryptions Success % Time takes (s)

5000 68.7 271
10000 90.5 520
100000 98.4 6534

Table 5.2: The Effectiveness of the Base Side-Channel Attacks on SGX Enclave

For the defense, we have implemented an SGX side-channel attack detector based on the Déjà

Vu paper [22]. Our experimental results are consistent with the data presented in the original work,

demonstrating that it can successfully detect at least 95% of the basic SGX side-channel attacks

under carefully adjusted parameters. The results for the i7-7700K machine are shown in Table 5.3.

The example test cases we used to run are extracted from the SPEC CINT 2006 benchmarks with

the same settings as the base side-channel attacks in Table 5.2.

Benchmark Delta Acc % False-positive %

Numeric sort

40 100 40
80 95 3
160 87 2
320 40 0

Fourier

40 100 46
80 96 4
160 74 2
320 30 0

Table 5.3: The Effectiveness of the SGX Side-Channel Attack Detector

In the subsequent parts of this section, we first present experiments and results illustrating the

successful manipulation of software timers in SGX enclaves using Aion attacks. We then demonstrate

an end-to-end attack, showing how our attacks can facilitate an existing cache-based side-channel

attack on SGX enclaves, effectively evading detection by a defender relying on a software timer.

5.5.2 Aion Attack Evaluation

Both types of Aion attacks share the common objective of manipulating the running speed of the

software timer, and their effectiveness will be assessed in this section. As previously analyzed, Aion

attacks can aid side-channel attackers in evading the detection of existing defensive mechanisms

Xeon E3-1230v6 i7-6700K
RF
(CT)

RD RD+TA TF TF+TA RD RD+TA TF TF+TA

Base 256.3
7.0

(37×)
337.4

8.7
(39×)

225.9
5.8

(39×)
302.5

7.9
(38×)

ST
(CE)

156.2
(1.6×)

5.2
(49×)

181.5
(1.9×)

6.1
(55×)

148.9
(1.5×)

4.7
(48×)

148.1
(2.0×)

4.1
(73×)

MT
(CE)

94.3
(2.7×)

2.3
(111×)

54.6
(6.2×)

1.8
(187×)

90.6
(2.5×)

1.9
(120×)

41.7
(7.3×)

1.5
(202×)

Table 5.4: Results of software timer readings affected by the Aion attacks. (RF: Randome Func-
tion, CT: CPU Thermal, Base: Baseline, ST: Single-Threaded, MT: Multi-Threaded, CE: Cache
Eviction.)
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that depend on the accuracy of the software timer. We evaluate the degree to which our attacks

can accelerate or decelerate the software timer, as this determines the likelihood of a successful

side-channel attack.

We combine the two types of Aion attacks and demonstrate their effectiveness in manipulating

the software timer as a unit test. We test the reduction rate (the extent to which the attack can

slow down the software timer) by the CPU thermal attack and cache eviction attack under various

settings.

The baseline workload runs in an SGX enclave as a simple loop that performs operations from

AES encryption. We compare the time intervals under different scenarios in Table 5.4, including:

• The baseline scenario where the timer is not under attack, and only affected by the thermal

attack at the row of “baseline”;

• A single-threaded attacker scenario where only one attacking thread of Aion-2 attack is run-

ning; and

• A multi-threaded attackers scenario where the number of Aion-2 attacking threads is the (#

of total hyper threads - 2), and the other two threads are taken by the software timer

thread and the application thread.

Another variant we compare in the evaluation shown in Table 5.4 is the different random func-

tions used in the software timer thread. Because randomness is not cost-free, all random number

generators require varying amounts of execution time, which may impact the time the software timer

thread spends in a loop to increment the clock variable. We use four different sets of functions for

randomness generation and combine them with or without CPU core execution speed manipulation

by the thermal attack:

(1). RD: RDRAND instruction;

(2). RD+TA, which combines CPU thermal attack and uses it under (1)’s settings of RDRAND instruc-

tion;

(3). TF, which is a simple pseudo-random number generator called T-Function [95];

(4). TF+TA, which combines the CPU thermal attack and uses it under the same settings of (3) for

the evaluation.

We note that since the T-Function() is highly efficient in execution, costing less than 30 cycles

after optimization, we did not perform a separate evaluation with no randomness generated, which

also makes sense in the scenario of real defense. Again, we ensure that the software timer thread,

the application thread, and the attacking threads in our evaluation do not share the same core to

prevent them from competing for the same processor resources. After each number, the number in

brackets (e.g., 202×) indicates its slow-down factor compared to the baseline.

From the results mentioned above, we observe that under various settings, the CPU thermal

attack is potent and can achieve a 30-40× slow-down on its own. Furthermore, both single-threaded

and multi-threaded attacking methods can effectively decelerate the software timer via the cache

eviction attack, and in all but the RD case, achieve a slow down that exceeds the range of slowdowns
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that previous systems claim to be able to defend. Moreover, when combined with the core frequency

manipulation attack, the effectiveness is further enhanced, in total slowing down the software timer

by a factor greater than 200 for software timer using T-function() under both types of Aion attacks,

and by a factor of about 120 for the software timer using RDRAND instruction under both types of

Aion attacks.

5.5.3 End-to-End Attack Evaluation

The previous experiments demonstrated the extent to which the Aion attacks impede the software

timer. However, the timer deceleration ratio alone may not sufficiently substantiate that the soft-

ware timer deceleration rate can effectively facilitate other side-channel attacks in evading detection

by SGX side-channel defense mechanisms. Therefore, we have conducted a comprehensive assess-

ment, implementing an end-to-end attack to elucidate the entire process, which amalgamates the

conventional SGX side-channel attack with our Aion attacks to circumvent the software timer upon

which defenders depend.

The end-to-end attack experiments encompass three components:

(1). A well-established side-channel attack on SGX;

(2). A defense mechanism designed to identify the side-channel attack in (1);

(3). Our Aion attacks, which have the potential to undermine the defensive strategy in (2).

In the experimental setup, the side-channel attack is executed utilizing the SGX-Step frame-

work [172] and employs a Prime+Probe [109] cache-based side-channel attack to retrieve an AES

key, which is repeatedly used for encryption operations within an SGX enclave. As a proof-of-

concept demonstration, we employ the OpenSSL 0.9.7a library, known to be susceptible to cache

timing attacks and compatible with the SGX environment. On our Intel i-7 6700K machine, the

success rate of key extractions surpasses 98.4% over 100,000 rounds of victim encryption operations.

For the defensive component, we have examined our implementation of the SGX side-channel

attack defender, based on the defense paper [22]. Our findings align with the evaluation data

presented in the original work, indicating that the defender successfully detects at least 95% of

fundamental SGX side-channel attacks under a trained threshold value δ. This threshold value is

obtained and computed by executing standard applications in SGX enclaves without any attacks,

thus accounting for and monitoring the typical number of AEX events occurring and initiating the

alarm upon detection of an anomalously high quantity of such events. The outcomes within the

Intel i7-6700K machine environment are displayed in the Baseline Defence column of Table 5.5, with

the RDRAND randomness generator employed in the software timer loop.

Distinct from the previous evaluation that demonstrates the impact of Aion attacks on the

software timer, the end-to-end attack assessment merges our two variants of Aion attacks with basic

side-channel attacks and the SGX side-channel attack defender. We gauge the efficacy of our attacks

in supporting the base side-channel attack in evading detection by the defender. Experiments were

conducted on two SGX-equipped machines, with the defender employing RDRAND as the randomness

generator and utilizing both types of Aion attacks combined. The results are presented in Table 5.5.

Evidently, under Aion attacks, the defender detects fewer than 2% of side-channel attacks when

employing the typical threshold value of 80. When the threshold value is set to 40, the accuracy
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Benchmark
Baseline Defence Defence Under Aion Attack

Threshold Acc % FP% Threshold Acc % (E3) Acc % (i7)

Numeric sort

4 100 97 4 95 94
40 100 40 40 17 15
80 95 3 80 2 2
160 87 2 160 1 0
320 40 0 320 0 0
640 9 0 - - -
1280 3 0 - - -

Fourier

4 100 98 4 95 92
40 100 46 40 19 18
80 96 4 80 2 1
160 74 2 160 0 0
320 30 0 320 0 0
640 10 0 - - -
1280 2 0 - - -

Table 5.5: End-to-end evaluation of Aion attacks against existing defences.

ranges between 15-19%; however, without knowledge of the ongoing Aion attacks, the defender would

not opt for a lower threshold value, risking a high false-positive rate. These findings indicate that

the combined Aion attacks can effectively aid the base side-channel SGX attack in evading detection

by SGX defensive software reliant on a software timer.

In summary, our results reveal that software timer-based defense mechanisms are not feasible in

the presence of timer tampering induced by Aion attacks. Comparing the left portion of Table 5.5,

which displays false-positive rates under benign conditions at various Eth thresholds, with the right

portion of Table 5.5, which illustrates detection accuracy following tampering with the Aion attack,

it is evident that the detection rate is comparable to the false-positive rate. At the threshold of 80,

both false-positive rates under benign conditions are within the range of 3-4%, while the detection

rates under attack are between 1-2%. Even upon decreasing the threshold to 40, the detection

rates only vary from 14-19%, while the false-positive rates escalate to 40-46%. Consequently, it is

implausible for the defender to select a threshold that ensures effective detection while under attack

and simultaneously maintains false positives at acceptable levels. This pattern persists across all

thresholds. Therefore, our empirical analysis substantiates that employing a software timer in any

defense is infeasible due to the adversary’s capacity to manipulate the timer.

5.6 Related Work

5.6.1 General Side-Channel Attacks

We review existing cache-based side-channel attacks from a multi-dimensional point of views, and

put them into categories by the techniques they adopt, and discuss how cache noise are discussed

or measured in the literature. We will also go through both qualitative and quantitative metrics in

our descriptions of the different side-channel attacks throughout this section.

We cover the threat models that the side-channel attacks are using cache-related side channels,

in which the micro-architectural channels the attackers rely on is the hardware implementation of an

Instruction Set Architecture (ISA). Some works we mention may include micro-architectural features
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Exploitations Attack Features
Targeted

Cache Level
Targeted
Crypto-lib

Year of
First Publish

Prime+Probe

Preemptions in intervals [124] L1-D AES 2006
Preemptions in intervals [80] L1-I RSA 2007
Huge Pages [2] LLC AES 2015
Multi-threading [146] LLC DSA 2018
Sliding window [16, 116] LLC ECDSA 2009
Intel SGX [152] LLC ECDSA 2017
Interrupts across cores [109] LLC ElGamal 2015

Flush+Reload

Page sharing [68, 87] LLC AES 2011
Sliding window [10, 198] LLC RSA 2014
Shared library [185] LLC ECDSA 2014
Protocol responses [86] LLC TLS 2015
Montgomery ladder [55] LLC ECDH 2017

Flush+Flush Inclusive cache [63] LLC AES 2016
Prime+Abort Intel TSX [41] LLC AES 2017
Evict+Time Lookup Tables [130, 78] L1-D AES 2006
Evict+Reload Shared library [64] LLC AES 2015
Load+Reload Cache way predictor [106] L1-D AES 2020

Table 5.6: Summary of cache-based side-channel attack examples

as extensions to standard ISA e.g., Intel TSX and SGX. We do not consider the following attacks

and threat models: physical side channels including electromagnetic channel, power consumption

channel, hardware acoustic channel, and transient execution channel. We also do not include the

scopes of network side channels that exploit network protocol features such as RSA paddings. The

transparent execution attacks like Spectre and Meltdown are not in our scopes either.

Table 5.6 shows examples of attacks categorized by exploitation techniques and attacking targets.

Each specific type of attacks has a target cache level and a target cryptographic algorithm, and they

may belong to an exploitation method such as Prime+Probe and Flush+Reload that we will describe

later. In the table we briefly describe the core features of each attack and the approximated year

of its first occurrence. We next review the attacks in two categorizations by exploitation techniques

and target encryption algorithms.

Flush+Reload

The Flush+Reload [198, 68, 87, 10, 185, 86, 55] technique is applicable when the attacker shares

the same data pages with the victim and is capable of flushing out a selected set of cache lines. To

mount this type of side-channel attack, the attacker first flushes a memory line from the cache, and

waits for a fixed period of time when the victim may access the line of memory that would cause

the line to be fetched into the cache again. After the wait, the attacker accesses the same memory

line and times the duration of the access: if the victim had accessed the line, the duration would be

much shorter because it is in the cache. Then, the attacker just needs to repeat the above steps and

analyze the memory access pattern by the victim, and deduce the secret key. The attacker can use

instructions such as clflush to target a particular cache line and flush it out of the cache.

The fact that the Flush+Reload method is affected by cache noise was recognized when it was

first published [198]. However, they only mentioned that different architecture can have variance in

noise level, e.g., some machines are more noisy than others. Other works either mentions the noise
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could be filtered out by neural networks [68], or indicate that normally noise is observed to be stable

in a certain amount [87], while no quantitative results are given on how different level of noise would

impact the attacker’s capability of extracting keys.

Prime+Probe

Unlike the Flush+Reload technique, the Prime+Probe [109, 80, 2, 146, 16] method needs to create

an eviction set that collides with the victim’s cache set, meaning that accessing the addresses in the

eviction set would make sure to evict the victim’s set from the cache. The prime step is for the

attacker to fill in the cache set with the lines from the eviction set. The attacker then waits for an

amount of time for the victim to access the memory line that causes a line from the eviction set

to be evicted. The attacker continues into the probe step to check in iterations if the victim had

any memory line removed from the cache by measuring the cache access time: if the victim had

evicted a cache line, the access time would be longer. Through repeating these steps, the memory

access pattern of the victim can be analyzed and secret keys can be deduced. The Evict+Time [130,

78] technique is similar to the Prime+Probe in the first phase of prime, then the attacker will wait

for the victim executing its thread and evicts cache lines, during this period of time, the attacker

measure the timing differences of the victim’s execution that reveals which lines were accessed.

Among the above reviewed works, when Prime+Probe was first proposed, the authors discussed

some optimization methods on how to measure probe time, and recognized a trade-off between

reducing cache noise for attackers and increasing probe time [109]. However, including the original

work and the follow-ups [16], they only have limited discussions on how noise can be reduced, but

none of them has an elaborated analysis on it can be measured and controlled. One work by Inci et

al. [80] shows how sensitive the attacks to cache noise by measuring the key recovery effectiveness

with presence of cache noise and when the level of noise is controlled comparing the results against

a noise-free environment.

Flush+Flush

The Flush+Flush [63] attack is similar to Flush+Reload in the pre-settings and assumptions about

the attacker. For the steps of the exploitation also start from flushing the cache lines shared between

the attacker and the victim, and waiting for the victim to access the memory. Then, the second

step is to flush the cache line again: because the clflush instruction in x86 takes less period of

time when the memory line is not in the cache, the second flush would abort early if the victim had

accessed the memory line that is brought to the cache again. By recording the period of time that

flush instruction takes, the memory access pattern can be analyzed for the use of calculating the

secret keys. Comparing with Flush+Reload techniques, the Flush+Flush method is more efficient

because the second flush can set up the cache for the next round, and thus it is one-step faster.

The paper mentions that its technique has better noise-resistance in attacking accuracy than

other methods like Prime+Probe and Flush+Reload, but the noise level is not quantitatively mea-

sured and the performance evaluation results have no controlled group with different levels of cache

noise.
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Evict+Reload

The Evict+Reload [64] attack replaces the Flush step in the Flush+Reload technique by eviction. It

is a different way of doing Flush+Reload on ARM CPUs, because it does not use flush instructions

of x86. Instead, it takes a step to find a eviction set of addresses that can replace victim’s memory

line out the the cache. The second step is the same as Flush+Reload, and other attacking techniques

like Load+Reload [106].

The two papers both mentioned that in comparison with Prime+Probe, they are less susceptible

to noise, but how exactly the impact of noise would apply on the attackers are not evaluated.

Prime+Abort

The Prime+Abort [41] uses features in Intel Transactional Memory (TSX) hardware extension. In

the operation, the attacker first primes cache sets and waits for the victim thread to execute and

the TSX system will abort automatically because it monitors the cache behavior and when victim

thread accesses a critical address, an abort will be sent to the attacker. This technique differentiates

from other attacks because it does not have to specifically time cache accesses. The authors of the

work have a discussion on countermeasure, where they admit that injecting noise may make such

attacks much harder if not impossible, while they also did not present a measurement study with

the presence of controlled noise.

All the two or three phases attacks above have the common characteristics. During the different

phases, the cache accessing pattern of the attacker and the sensitivity to cache noise might be

different. In the common part, they all need to first prepare the target cache set or cache lines by

priming or flushing and wait for the victim thread to access the cache, then finally after the victim

access, the attackers need to either reload content to cache, flush the cache, or measure the timing

of certain operations on cache, or wait for other transactional signals. While between two phases

of each attack, the attacker expects the victim thread to access the cache lines of interest, and the

cache noise injected here would be treated by the attackers as the victim accesses too. We show the

abstracted procedures that used by each type of cache-based side-channel attacks in Fig. 5.4.

5.6.2 General Side-channel Detection

A fraction of defensive strategies depends on the results from a detector that is supposed to recognize

side-channel attacks. After receiving alerts from side-channel attack detector, the mitigation could

work to eliminate threats. There have been various ways to detect a cache-based side-channel attack,

through static analysis, trace analysis or runtime dynamic execution.

Symbolic execution

CaSym [15] establishes two abstract cache models for automatic detection of cache channels using

symbolic execution to track both program and cache states, and the symbolic states are sent to SMT

solver to decide whether a cache channel exists. Two cache models are used in CaSym: the “infinite

model” and the “age model”. In both models, a cache state is represented as a set of symbolic

memory addresses for variables and array elements, while infinite model has infinite cache size and

associativity and age model traces distance of each memory access from the last access. The two

abstract cache models are used to model concrete cache replacement policies like LRU and FIFO,
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Figure 5.4: Abstracted attacking procedures to categorize different types of techniques used by
cache-based side-channel attacks.

and different settings of cache line size and associativity, with different precision and generality of

cache channel detection.

CacheD [179] uses symbolic execution towards a single trace to detect side channels. Like all trace-

based analysis methods, it underestimates the attack surface and thus has code coverage problems

because it only explores one or multiple dynamic execution paths and cannot detect side channels

due to conditional branches to confidential data or unexecuted code. In addition, the entire trace

of accessed memory addresses should be secret-independent in CacheD’s policy, which will cause

cryptographic implementations that preloaded keys to be false-positives, because all key-dependent

memory will result in cache hits.

Static analysis

CacheS [178] performs a static analysis on binaries to detect cache-based side channels. It models

the secret key-dependent memory accesses and control flow. The model is passed to an SMT solver

to detect leakage areas that can be exploited by side channel attacks. CacheAudit [43] is also a

tool framework for static analysis of cache side channels. The framework needs program binary and

cache configurations as input, and output the analysis on the probability of side channel existence

by covering all possible executions.

The research on symbolic execution and static analysis based side-channel detection does not

have to consider the impact of cache noises since it normally has nothing to do with them.

Trace-based dynamic analysis

DATA [186] is a tool to log dynamic execution traces and uses differential analysis for detecting side

channels. Stacco [192] and MicroWalk [187] both use dynamic binary instrumentation for detecting
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side-channel leaks, while the former focuses on the scenarios in Intel SGX, and the latter focuses

on general closed-source binaries. Nights-watch [122] uses a machine learning approach to recognize

attacks based on information from hardware performance counters.

Either by applying performance monitor or by collecting software execution traces, such methods

could be potentially affected by the level of cache noise naturally or deliberately added into the

system. However, they have missed such opportunities to make the factor of cache noise accountable

and measurable.

Runtime detector

Some runtime detectors can monitor the CPU performance counters to detect side-channel attacks in

real-time (SCADET [148], CloudRadar [205], SpyDetector [100], Chiappetta et al [25]). The issue of

false positives is common for all these methods, and the mechanisms here leave the detection results

to system administrator for a proper resolution instead of mitigating the attacks by themselves.

Each of the techniques closely depends on specific cryptographic algorithm they use. For example,

the system of SpyDetector [100] uses a semi-supervised anomaly detection model for detection of

general runtime side-channel attacks on AES. SCADET [148], with a similar approach, focuses on

tracking a specific type of side-channel attack, i.e., Prime+Probe. CloudRadar [205] tests their

runtime detector on IaaS cloud systems using Open Stack as an example, and requires cloud users

to provide application signatures for it to decide whether the protected application is running. With

the user-provided information, it can achieve a low false positive rate of detection. Chiappetta et

al. [25] uses hardware performance counter for side channel identification in real time, the cache

hits and misses information is collected by the detector and fed into a machine learning model as a

classifier to make the final decision. The model learns on features of cache misses, cache accesses,

and the number of processes in the execution windows, and gives a prediction of the workload level.

The system should raise an alarm for a possible attack if a window is not within the cluster. For

each cryptographic algorithm, a different prediction model should be specifically trained and tied

to it. Since each application also requires a different window size, the generality of the prediction

model is in question. The high-false positive rate (up to 30%) may also become a main obstacle that

prevents the application of such mechanisms.

The judgement of the runtime detector is expected to be affected by cache noise. For example,

SCADET [148] mentions that in their experiments, real noise like browsers and network applications

could be added, but the level of noise is also not measured. Similarly, other works of runtime detectors

do not consider evaluating how much likelihood cache noise would introduce false positives and what

the consequences are.

Some scheduler-based mitigation approaches [92, 173] rely on a runtime detector against side-

channel attacks. For example, Biscuit [92] detection strategy is based on the statistics that the

side-channel attack victim process has at least 5 times the number of cache misses than in the

normal execution. The detection of side-channel attacks relies on the prediction of cache misses in

loops, which is then sent to a compiler-assisted scheduler that decides how much time share should

be given to each process, according to the cache footprint of the loop. The scheduler also relies on

the monitor finding which process causes victim to miss cache heavily, and de-prioritize the suspect

to mitigate the attack. The mitigation comes with the cost of performance overhead up to 11%.

Besides, the scheduler assumes the number of side-channel attacking threads is less than 8.
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5.6.3 General Side-channel Attack Mitigation

hardware-based Mitigation

SHARP [197] proposes a cache replacement policy to defend against cache-based side-channel at-

tacks. The core of the hardware change is to eliminate the inclusive shared cache replacement policy,

which means that an attacker should no long evict the probe address to cause victim’s cache on other

processes also evicted. In SHARP replacement algorithm, the hardware needs to tag a line of cache

belonging to “private cache” in order to protect it. The replacement decider is a decision tree with an

event counter that keeps the counts of the cache line to be replaced is shared. When the event count

reaches certain preset threshold, an interrupt will be generated to prevent the suspected process

from running. Note that this new cache replacement method is only tested on simulators. In addi-

tion, to prevent side-channel attackers from invoking cache flush instructions, the defender restricts

user from executing them. The side-effect of this approach includes user cannot use instruction like

clflush in their legit use cases when updating memory location.

Wang et al. [182] designs a new hardware cache systems to mitigate cache side-channel attacks.

Two approaches have been raised to tackle the cache interference problem: Partition-Locked cache

(PLcache) and Random Permutation cache (RPcache). PLcache’s strategy is dynamically partition-

ing the cache that the cache lines of interest are locked in cache as a “private partition”, which is not

evictable by other cache accesses not belonging to this private partition. In this way, cache inter-

ference is eliminated because the hardware can prevent undesired eviction when protected processes

put data into a private/locked cache. Some ISA changes are required to perform the lock/unlock

operations with new load/store instructions e.g., ld.lock/ld.unlock, st.lock/st.unlock. The

drawback is that by locking up caches, it degrades the cache utilization and consequently affect

performance. RPcache’s strategy, unlike PLcache, allows cache sharing. It tackles the cache in-

terference problem by randomizing cache accesses, so no useful information about which cache line

was evicted can be inferred by the attacker. In RPcache, the hardware keep the mapping between

memory and cache randomized, such that the attacker cannot infer critical information about victim

process from knowing which cache lines have been accessed.

A follow-up work [181] to the RPcache strategy [182], that it diversifies cache mapping to obfus-

cates cache accesses. The proposed technique is called dynamic memory-to-cache remapping, which

means that a memory line can be mapped to any cache line at run time using a ReMapping Table

(RMT). RMT can be continuously updated by cache replacement algorithm every time a cache line

replacement occurs.

However, the above two approaches are still vulnerable against alternative cache attacks [97]

outside their original threat model, so new patches [98] have been proposed to fix them by intro-

ducing techniques such as preloading to secure PLcache with hardware changes, and use software

permutation instead of permutation hardware in RPcache for randomizing the cache address maps.

Gruss et al. [62] proposes a method of cache access randomization that defends the type of side-

channel attacks that only exploit the reuse of a previously cached or accessed critical data. In the

threat model, the attackers do not need to generate any cache contention, they only need to calculate

the correlation of the addresses of two memory accesses by analyzing reuse of the caches. The new

cache fill policy randomizes the cache fill in the previous default “demand fetch” policy which makes

cache fills correlated with demand memory accesses and leaks information about previous memory



5.6. RELATED WORK 99

accesses. The paper shows that randomizing cache fill would fix these problems by de-correlating

the relationship between cache fill and demand memory access.

CEASER [141] targets at mitigating conflict-based cache-channel attacks such as Prime+Probe,

Evict+Reload by address encryption and remapping. The key inspiration of this technique is com-

bining cache address encryption and randomized mapping, as it finds out that accessing cache with

encrypted addresses would be scattered to different sets of cache, which serves the purpose of remap-

ping better. CEASER uses low-latency block-cipher (LLBC) to encrypt physical line-addresses into

encrypted line-addresses, and the latter is only visible to the LLC, so that all store and prefetch

requests access the cache with only physical line-addresses: the CEASER works like a transparent

address converter. The performance overhead based on their pin-based simulator shows under 1%

overhead. The vulnerabilities of CEASER is pointed out by Qureshi [142] , for example, replacement

policy like LRU can still be exploited under low remap-rate of CEASER. One of the solutions that

it proposes to solve this issue is to partition the cache and map cache lines into different sets in

partitions.

Sapper [104] proposes a hardware design language “Sapper” that specialized in designing security-

critical hardware components by enforcing information flow policy. The language is a state-machine-

based language that can support checking possible information leaks due conditional execution and

other operations. A compiler that supports synthesizable subset of Verilog is needed for Sapper to

insert dynamic checks in the hardware designed. While Sapper being a general HDL, SecVerilog [204]

focuses on timing leakage channels as a Verilog extension: it assures timing-sensitive noninterference

of information flow, such that cache channels would not exist. SecVerilog has a type system that

statically controls information flow and verifiable. The evaluation of SecVerilog is based on MIPS and

its cache design, assisted proof by Z3, enforcing timing label contracts to eliminate cache channels.

The performance overhead with timing channel protection is claimed to be 12.2% - 21%.

Software-based Mitigation

CacheBar [209] proposes two techniques to mitigate side-channel attacks on LLC. The first method

makes copies of shared pages and keeps them private to prevent processes from sharing sensitive

cache lines. In this way, they dedicatedly protect processes that have shared library pages doing

cryptography functions from being traced by side-channel attackers to flush their cache lines by

applying Flush+Reload or Flush+Flush attacks. The second method simply limits the number of

cache lines that a process can access. In this way, Prime+Probe and Evict+Reload can no longer

traverse the entire eviction sets, or it cannot record all the cache accesses by the victim to analyze

the timing information.

The side effects of above approaches include performance overhead introduced by creating private

pages. Also, limiting cache access is not good for performance of benign processes as well, the

overhead can be up to 25%.

StealthMem [94] proposes the idea of “stealth pages” which are isolated pages allocated for each

process. The stealth pages are mapped to unique cache sets that are not shared with other pages.

To protect critical processes such as the ones of cryptographic applications, StealthMem assumes

critical data and functions are strictly within these stealth pages, so the source code of the protected

applications need to be modified to add explicit constraints. The stealth page method is essentially

a software-version approach of cache partitioning, as it also reduces the utility of LLC and the
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Type Countermeasure Examples Brief Descriptions

Isolate/Random Cache
Cache coloring [94, 28, 155] Allocate cache or pages by coloring
Cache sharing limit [209, 42] Limit cache accesses of co-located threads
Cache randomization [108] Randomizing the cache mapping

Insert Cache Noise
Düppel [206] Adding noise by cache cleansing.
Cache Decay [91] Randomly causing cache entries to decay
Server-side solution [57] Flushing selected caches lines repeatedly

Scheduler-based defence
Biscuit [92] De-schedule suspicious threads
Scheduler-based defense [173] Enforcing minimum runtime

Transform Program
Raccoon [144] Obfuscate programs
Software diversity [32] Auto-generate replicas of programs

Table 5.7: Summary of side-channel defence

reduction expands with the number of CPU cores. The overhead reported is up to 11% on 4-core

CPU with 6 VMs.

Program transformation technique [190] is proposed either to make CPU cycles and cache misses

to be independent of critical data like keys, so that the side-channel attackers cannot infer secret

information from recording patterns of cache hit and misses, or to make programs execution to

cover as many as possible branches so cache accesses pattern should be confused to cache attackers.

The program transformation has impact on delay and throughput of running processes, the average

overhead is 50% and worst case is up to 225%.

Other similar approaches can make replicas of programs [32] to cover cache access patterns of the

victim program and confuse the attackers who wants to probe the cache or measure certain cache

operations. Both methods of program transformation can create a noisy cache environment for the

attackers to achieve their defensive targets, while the latter gives an extensive and quantitative study

on cache noise inserting: The noise is considered to be a composition of “random system noise” and

cache noise manually added with an insertion rate. With different cache noise insertion rates, they

evaluate the effectiveness against Prime+Probe and Evict+Time attacks.

Dynamic page coloring is another software approach to mitigate side-channel attacks, which also

directs how memory pages are mapped to cache lines. Shi et al. [155] ensures that a group of pages

with same color will always be mapped to a fixed set of cache lines to prevent undesired cache

sharing, however this approach incurs heavy performance overhead up to 2.2x.

Düppel [206] defends virtual machines from cache channel attacks happening on public clouds

without needing to change the hypervisors. The method they use is injecting noise from VM OS

kernel, so attackers who need to observe the cache timing would fail. The noise that Düppel adds by

repeatedly cleaning L1/L2 cache alongside the executing of tenant VM workloads. The performance

overhead of Düppel when no attacks happening is less than 7%, and false-positive rate is below 3%

(caused by its detector).

Some works use existing hardware features/extensions to protect the system from side-channel

attacks: CATalyst [107] uses Intel Cache Allocation Technology (CAT) hardware feature to divide

the cache into cache partitions. Because the number of CAT-supported cache partitions is limited,

CATalyst further uses software page coloring within the secure cache partition to block interferences.

The performance overhead depends on how much cache is reserved for secure cache partitioning:

With the case of 10% reserving, according to SPEC an PARSEC benchmarks is in average less than
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1%, with 6.5% as the worst case. When larger part of reserved cache partition, the overhead can be

up to 6%, and 45% in some worst case.

Cloak [62] uses hardware transactional memory (TSX) features to protect SGX enclaves from

cache-channel attacks, by preventing cache misses on critical code. The approach can be used to

hide the cache access patterns from attackers, because the TSX can guarantee that in the event

of conflicting concurrent memory accesses, the transaction aborts and all corresponding changes

are rolled back. The overhead statistics from SGX evaluation is -0.8 – 248% depending on how

memory-intense the evaluated jobs run in the enclave.

Varadarajan et. al [173] try to guarantee a principle of “soft isolation” among VM scheduling.

The method protects the security properties by enforcing minimum runtime guarantee (MRT) for

vCPUs to prevent high-frequency of preemption, and restricting the attacker’s capability of con-

ducting enough number of interrupts in limited time. The approach can disrupt the malicious VMs

that are trying to record victim VM’s cache access patterns. Moreover, to provide soft isolation, the

mechanism needs to clean CPU states between preemption, which degradates the performance of the

cloud infrastructure and slows down all the VMs running on cloud. Biscuit [92] requires information

received from a side-channel attack detector that recognizes which thread is a suspicious malicious

one, and limit the execution of the suspect by putting it to the end of scheduling queue. Sprabery

et al. [160] makes changed to the Linux default CFS scheduler to help defend side-channel attacks

by forcing protected threads and other threads to be temporally isolated, such that the chances are

reduced that the attacker can share the same cache with the victim thread.

We finally summarize a subset of the mitigation techniques into Table 5.7, which is a selection

of defence that work directly on cache.

5.6.4 Cache-Based Side-Channel Attacks and Defence in SGX

Cache-based side-channel attacks on SGX are based on general cache channels like Prime+Probe [124]

and Flush+Reload [198]. The basic idea of such attacks is to measure the access times to a series

of specific addresses and use the information to infer whether they are in cache or not. By learning

the victim’s memory access patterns, attackers can retrieve confidential data like private keys.

These attacking methods have been widely applied to exploit SGX applications. Malware Guard

Extension [152] develops a Prime+Probe type of attack with the help of a high-resolution timer to

distinguish cache hit and miss and uses the LLC cache channel. CacheZoom [119] also falls into the

category of Prime+Probe attack while it keeps interrupting the victim enclave and obtains high-

resolution information about its cache access. Brasser et al.[14] show the practicality of conducting

a cache-channel attack using L1 cache to extract RSA keys of the victim application running in an

SGX enclave. Other side-channel attacks[61, 35, 180] are based on similar methods, with a common

strategy of probing a high-resolution time of the victim enclave application’s cache access and then

inferring secret data from the enclave.

Defensive mechanisms against cache-based side-channel attacks also depend on high-resolution

timers and have to implement their own software timers inside the SGX enclave when needed.

Varys [128] defends against cache-based side-channel attacks by enforcing security-sensitive threads

reserved on the same CPU physical cores, allowing it to detect attacker threads attempting to ac-

cess shared CPU resources. In their design, thread allocation detection depends on a high-resolution

software timer inside the SGX enclave. Déjà Vu [22], as another strategy of protection from cache-
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channel attacks, constructs a more complex software high-resolution timer assisted by Intel TSX.

Part of the software timer is protected by TSX for detecting repeated interruptions from the attack-

ers, but not all of the timer thread is under TSX’s protection due to software timer use cases.

5.7 Summary and Discussions

Side-channel attacks pose significant threats to TEEs, including Intel SGX. While software-based

defenses have been proposed for detecting and preventing cache-based side-channel attacks, the

absence of a reliable hardware timer for secure applications to utilize within the enclave renders

such solutions susceptible to Aion attacks. In this chapter, we devise and implement two variants of

Aion attacks: one predicated on manipulating the software timer thread execution speed by inducing

CPU thermal events, and the other concentrating on cache eviction to decelerate the rate at which

the target timer increases. Both approaches can effectively alter the speed of the software timer in

an SGX enclave, thereby invalidating defensive strategies reliant on precise high-resolution software

timers. We further contend that, within our general software timer model, devising a dependable

timer purely in software to render the defense usable and effective in detecting side-channel attacks

is unattainable, unless the defense can tolerate up to a 200x slowdown of their timer, which is

improbable.

The crux of the issue, as demonstrated through our model analysis, lies in the erroneous assump-

tion made by system designers when utilizing a software timer to measure the duration of critical

events. They presume that the increment speed of the variable employed in the software timer is

nearly constant and cannot be significantly altered by an adversary. However, this assumption fails

to consider the drastic changes in execution speed that can transpire when accessing a global vari-

able, resulting from variations in CPU frequency or manipulations of cache behavior. By disrupting

the high-resolution measurement of time, Aion attacks can exploit existing defence.

The lessons we learned from this chapter of Aion attacks emphasize the importance of metic-

ulously examining hardware features that may initially seem inconsequential but can undermine

software defenses using hardware security extensions. This realization highlights the need for thor-

ough testing, analysis, and ongoing research and development to stay ahead of potential security

threats. A comprehensive approach, considering both hardware and software aspects and their

interactions, is essential when evaluating and designing security solutions.



Chapter 6

Discussion and Conclusion

6.1 Discussion

From the lessons we have learned through the three pieces of work in this thesis, we have a few

topics that were not covered in the previous chapters yet we think worth discussing in the end of

this thesis:

1. Deprecation of Security Hardware Extension

On-chip resources are finite, thereby necessitating hardware designers to judiciously evaluate

and select the functionalities and instructions they intend to support. Consider the Intel MPX case;

the hardware extension was initially introduced into the development emulator in 2012, eventually

incorporated into CPU production in 2015, and later listed as removed by Intel in 2019. This life

cycle of the hardware extension was punctuated with years of code contributions and critical reviews

from software developers across different communities, aimed at optimizing operating system kernels,

runtime libraries, and compilers.

For instance, within the GNU/Linux open-source community, the journey of MPX support was

notable. It was included as early as GCC 5.0 and then phased out in GCC 9.1. Similarly, Linux kernel

extended its support for MPX from version 3.19 to 5.6, and the QEMU emulator maintained support

for it from version 2.6 to 4.0. The effort encompassed contributions from numerous developers,

extending beyond open-source platforms to include proprietary software like Visual Studio and the

Intel C++ compiler, and encompassing numerous academic projects.

Though the extension was initially greeted with enthusiasm by the security community, its short

three-year lifespan ended up being a disappointing aspect. A key lesson derived from this case study

emphasizes that software features developed in conjunction with a specific hardware extension should

be planned with a clear vision of their lifecycle, whether short or long. This is due to the inherent

unpredictability concerning the feasibility and longevity of the hardware, making such a strategic

approach all the more vital.

2. Trade-Off Between Open and Close TEEs

Enduring hardware features such as ARM TrustZone present similar challenges to the devel-

oper community. As discussed in Chapter 4, most personal mobile devices are shipped with ARM
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processors supporting TrustZone, and the developer’s guide is readily available to the public [56].

However, a significant majority of end users operate mobile systems with closed TEEs, which stands

in contrast to the open TEE system proposed in this thesis.

The disadvantages of open TEEs are as apparent as the benefits we described in the Pearl-TEE

and Mint-TEE systems. For instance, the attack surface is more or less broadened by allowing third-

party applications into the TEE, setting up and maintaining remote attestation services become

necessary, and it becomes imperative to educate users to identify phishing attacks designed to trick

them into installing malicious TEE apps.

Manufacturers of mobile devices need to contemplate these factors when deciding whether to

incorporate an open TEE solution into their products. Therefore, another critical lesson we have

learned from this study is the ongoing tension between openness and closeness. This dichotomy

invariably influences software feature development and manufacturers’ decisions regarding secure

operating systems. It underscores the inherent trade-offs to consider in the pursuit of security and

flexibility for users, and how these impact both software development and hardware manufacturing

decisions.

3. Responsibility for Hardware-Related Security Vulnerability

As detailed in the Aion attack background in chapter 5, it’s evident that cache-based side-channel

attacks can potentially be addressed by either software defense measures or hardware modifications.

Intel provides a secure coding guidance [82] for developers, which recommends practices such as

constant time code and compiler optimization to mitigate side-channel attacks. Conversely, software

developers are advocating for additional hardware support to tackle these issues.

Our Aion attack case study elucidates this dilemma. The lack of a high-resolution hardware timer

inside the SGX enclave necessitated the creation of software timers for defense, which unfortunately

proved to be vulnerable. This scenario underlines a valuable lesson: hardware designers and software

developers need to operate interdependently to bolster the security of the computing environment.

Security threats like side-channel attacks are not exclusively the domain of either software developers

or hardware designers. Instead, they demand a cooperative and collaborative approach to problem-

solving, highlighting the inseparable interconnectedness of software and hardware considerations

when addressing complex security challenges.

For a summary of the above discussions, we emphasize the importance of hardware and software

co-design for operating system security, which is each chapter of the thesis has in common. By

integrating both hardware and software elements, it allows for a robust and resilient security system

that leverages the strengths of each to bolster the other. This theme has been consistently echoed

throughout this thesis, highlighting the necessity of adaptability and innovative thinking in facing

the dynamic landscape of operating system security threats. By examining each chapter’s focus

within the scope of software and hardware combined design strategy, we gain a comprehensive

understanding of its value in achieving efficient, effective, and cost-sensitive security solutions.

6.2 Conclusion and Future Work

In this thesis, we have explored the challenges associated with operating system security in the con-

text of implementing hardware security extensions. The complexity of software security properties

often contrasts with the simplified security models employed by hardware extensions. This discrep-
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ancy can lead to situations where software developers must deviate from the original design intent

of the hardware extensions, whether for benign or malicious purposes.

We have examined three cases in this thesis, each focusing on distinct security issues, such as

memory protection, TEE OS security applications, and side-channel attacks and defense within

TEEs. The common lessons gleaned from these research projects can be summarized as follows:

The standard usage of hardware security extensions, as proposed by CPU designers, may not

always fully align with the ideal expectations of software security scenarios and requirements. For in-

stance, in the case of LMP, the original use of MPX instructions can impose performance penalties in

certain situations, such as when using second-level tables for bound storage. Similarly, ARM Trust-

Zone was not initially designed to support third-party applications, and some hardware resources,

like monotonic counters, are limited due to wear-out concerns. In these cases, software system de-

velopers must devise innovative ways to adapt the standard use of the hardware to address security

requirements and usage scenarios.

Hardware security extension designs may not initially account for a comprehensive range of

security threats. For example, in the case of the SGX side-channel problem, cache channels were

not considered the responsibility of the CPU design. As a result, software developers must leverage

available hardware resources to create defenses that must be rigorously verified to ensure that they

uphold the desired security properties.

In conclusion, the relationship between hardware security extensions and software security prop-

erties is a complex and evolving landscape. This thesis highlights the need for ongoing collaboration

between hardware designers and software developers to create robust, adaptable, and secure systems

that can effectively address the ever-changing threat landscape.

In our future work, we aim to broaden the scope of operating system security research by exploring

new hardware extensions, such as Intel SGX 2.0, AMD SEV (Secure Encrypted Virtualization),

and ARM CMSE (Cortex-M Security Extensions). These cutting-edge technologies present unique

opportunities and challenges for securing software systems, and understanding their potential impact

on operating system security is crucial. Furthermore, the Aion attacks research has inspired us to

investigate defense mechanisms that can effectively detect and prevent such attacks while minimizing

performance degradation. Balancing security and performance is a critical aspect of designing robust

solutions, and our future work will focus on achieving this delicate balance. By extending our research

to encompass these new hardware extensions and novel defense strategies, we hope to contribute

to the ongoing efforts to strengthen the security and resilience of software systems in the face of

evolving threats and emerging technologies.
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on Asia Conference on Computer and Communications Security (ASIACCS’17). Abu Dhabi,

UAE, 2017.



BIBLIOGRAPHY 108

[23] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Wald-

spurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. “Overshadow: A Virtualization-

based Approach to Retrofitting Protection in Commodity Operating Systems”. In: Proceed-

ings of the 13th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS). ASPLOS’08. Seattle, WA, USA, 2008.

[24] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert Deng. “ROPecker: A

Generic and Practical Approach for Defending against ROP Attacks”. In: Proceedings of

the 21st Annual Networked & Distributed System Security Symposium (NDSS). San Diego,

California, 2014.

[25] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. “Real time detection of cache-based side-

channel attacks using hardware performance counters”. In: Journal of Applied Soft Computing

volume 49 (Dec. 2016), pp. 1162–1174.

[26] Tzi-Cker Chiueh and Fu-Hau Hsu. “RAD: A Compile-Time Solution to Buffer Overflow

Attacks”. In: Proceedings of the The 21st International Conference on Distributed Computing

Systems. Washington, DC, 2001.

[27] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioannidis. “HCFI:

Hardware-enforced Control-Flow Integrity”. In: Proceedings of the 6th ACM Conference on

Data and Application Security and Privacy. New Orleans, Louisiana, Dec. 2016.

[28] David Cock, Qian Ge, Toby Murray, and Gernot Heiser. “The last mile: An empirical study of

timing channels on seL4”. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security (CCS ’14). Scottsdale, AZ, Nov. 2014, pp. 570–581.

[29] Matthew Cole and Aravind Prakash. “Simplex: Repurposing Intel Memory Protection Exten-

sions for Secure Storage”. In: Proceedings of the Secure IT Systems: 27th Nordic Conference.

Reykjavic, Iceland, Nov. 2022.

[30] Patrick Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara, Himanshu Raj,

Stefan Saroiu, and Alec Wolman. “Protecting Data on Smartphones and Tablets from Memory

Attacks”. In: Proceedings of the 20th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS). Istanbul, Turkey, Mar. 2015.

[31] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive, Report

2016/086. URL: https://ia.cr/2016/086. 2016.

[32] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. “Thwart-

ing cache side-channel attacks through dynamic software diversity.” In: Proceedings of the

Network and Distributed System Security Symposium (NDSS ’15). San Diego, CA, Feb. 2015,

pp. 8–11.

[33] John Criswell, Nathan Dautenhahn, and Vikram Adve. “Virtual Ghost: Protecting Applica-

tions from Hostile Operating Systems”. In: Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS). Salt

Lake City, Utah, 2014.

[34] Cyrus Lee. Huawei Pay launched in China. http://www.zdnet.com/article/huawei- pay-

launched-in-china/. Last accessed: 2023-06-02. 2016.

https://ia.cr/2016/086
http://www.zdnet.com/article/huawei-pay-launched-in-china/
http://www.zdnet.com/article/huawei-pay-launched-in-china/


BIBLIOGRAPHY 109

[35] Fergus Dall, Gabrielle Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad

Moghimi, and Yuval Yarom. “CacheQuote: Efficiently Recovering Long-term Secrets of SGX

EPID via Cache Attacks”. In: Proceedings of the International Workshop on Cryptographic

Hardware and Embedded Systems (CHES). Amsterdam, Netherlands, 2018.

[36] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. “The Performance Cost of Shadow

Stacks and Stack Canaries”. In: Proceedings of the 10th ACM Symposium on Information,

Computer and Communications Security. Singapore, 2015.

[37] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick Koeberl, Dean

Sullivan, Orlando Arias, and Yier Jin. “HAFIX: Hardware-assisted Flow Integrity Extension”.

In: Proceedings of the 52nd Annual Design Automation Conference. San Francisco, California,

2015.

[38] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. “Stitching the

Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow Integrity Protection”. In:

Proceedings of the 35th IEEE Symposium on Security and Privacy. San Jose, California, May

2014.

[39] Asmit De, Aditya Basu, Swaroop Ghosh, and Trent Jaeger. “Hardware assisted buffer protec-

tion mechanisms for embedded RISC-V”. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems volume 39.issue 12 (2020), pp. 4453–4465.

[40] Remi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik Ekberg. “Camouflage:

Hardware-assisted CFI for the ARM Linux kernel”. In: Proceedings of the 57th ACM/IEEE

Design Automation Conference (DAC). San Fransico, CA, July 2020.

[41] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. “Prime+Abort: A

Timer-Free High-Precision L3 Cache Attack using Intel TSX”. In: Proceedings of the 26th

USENIX Security Symposium (USENIX Security ’17). Vancouver, BC, Canada, Aug. 2017,

pp. 51–67. isbn: 978-1-931971-40-9.

[42] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Ponomarev.

“Non-monopolizable caches: Low-complexity mitigation of cache side channel attacks”. In:

ACM Transactions on Architecture and Code Optimization (TACO) volume 8.issue 4 (2012),

pp. 1–21.
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