
Exploring Strategies for Guiding Symbolic Analysis
with Machine Learning Prediction

Mingyue Yang, David Lie, Nicolas Papernot
Department of Computer Engineering

University of Toronto & Vector Institute
Toronto, Canada

Email: myshirley.yang@mail.utoronto.ca, {david.lie,nicolas.papernot}@utoronto.ca

Abstract—To improve the scalability of symbolic analysis tools,
one observation is that analysis resources are wasted on analyzing
unsatisfiable paths, which are not possible in reality. While exist-
ing works attempt to predict the satisfiability of a program path
without spending resources to analyze it, the performance of these
predictor models are far from perfect. In this work, we attempt to
understand how model predictions, even if imperfect, can be most
effectively used to reduce the time required to analyze satisfiable
paths. This work studies the sometimes complex interactions
between model performance, analysis domain properties such
as the distribution of path analysis costs and distribution of
satisfiable paths, the design of symbolic analysis tools being used,
and the algorithm used to prioritize and select paths for analysis.
Using a novel simulation methodology, we study this problem
and find that a number of factors can have as large an effect on
symbolic analysis performance as improved predictors. Finally,
we conclude with a couple of observations about how to best
integrate machine learning prediction into symbolic analysis.

I. INTRODUCTION

Symbolic analysis is widely used in areas such as software
verification, vulnerability finding and detecting privacy leak-
age [4], [11], [6], [20]. In the broadest sense, symbolic analysis
works by executing a program (or some abstraction of it)
with symbolic inputs (as opposed to concrete program inputs),
and tracking the state of the program symbolically along the
execution paths. A set of constraints can then be derived
from the state and solved to generate concrete inputs that
would execute the same path on the real program. However,
real world applications may have a large number of paths,
and thus require a significant amount of time and computing
resources to perform symbolic analysis. Resources are wasted
on collecting and solving constraints that cannot be satisfied by
any concrete input. These paths are unsatisfiable and cannot be
triggered in the real world. Ideally, one would avoid spending
resources on unsatisfiable paths.

Unfortunately, there is no way to determine whether a
path is satisfiable or not without collecting and solving its
constraints. As a mitigation, a number of existing works
use machine learning to predict which paths will be satisfi-
able [15], [10], [19], [16], [14]. However, these models either
do not have high performance or are not generally applicable
to all path constraints, which limit their effectiveness.

As it has proven difficult to improve the accuracy of predic-
tions from these models, we take a different approach, which

is to study the trade-offs of how machine learning models can
be incorporated into a symbolic analysis tool across a range
of model prediction performance. Specifically, we focus on
factors that can influence how to integrate a predictor into
symbolic analysis, such as the performance of the predictor,
the design of the symbolic analysis tool, and the distribution of
satisfiable versus unsatisfiable paths in analyzed applications.
Our research goal is to broadly answer how these factors
can interact to improve path analysis throughput for a
symbolic analysis tool.

In this work, we evaluate strategies with two different
domains and their corresponding tools: TIRO for Android
applications [17] and Mythril for smart contracts [1]. We also
develop a novel simulation tool that allows us to easily study
the trade-offs between how predictions are applied to prioritize
paths for analysis. In summary, our paper makes the following
contributions:

1) We study and clarify the trade-offs and lessons on
applying machine learning prediction for path analysis in
symbolic analysis tools. We aim for results not specific
to properties of the tools themselves or the application
domains the tools are used to analyze, but the general
situations they represent.

2) We design and use a novel symbolic execution sim-
ulation tool to quickly prototype and derive different
symblic analysis strategies. We are not aware of any
other work using simulation to study the performance
of symbolic analysis tools.

II. BACKGROUND

A. Background for Symbolic Analysis

Symbolic analysis explores a given program by assuming
symbolic program inputs instead of using actual input values.
It aims to determine what input is required to execute paths
in the program. A path starts from an entry point of program
execution, and ends at some point inside the program. We
broadly consider symbolic analyses as having two iterative
phases: path finding and path analysis. During path finding,
symbolic analysis tools discover paths in the program using
various methods such as static analysis, concrete execution or
abstract interpretation. During path analysis, the tool extracts



and solves the path constraint allowing it to determine an
input, which if it exists, will cause the path to be executed.
Optionally, between path finding and path analysis, tools can
implement a path selection phase. This phase selects a subset
of paths according to some criteria for analysis. Satisfiability
prediction naturally fits into such path selection phases: for
example, paths predicted as more likely to be satisfiable can
be prioritized for path analysis.

B. Baseline Symbolic Analysis Tools

We assume the use of supervised machine learning to train
a predictor for path satisfiability. We thus need a training set
of labeled paths from a distribution that can be reasonably
learned. As such, we assume that such a distribution would
arise in domains where a large number of programs use a com-
mon set of APIs, and hence paths from such programs would
perform similar operations before and after calling such APIs.
As a result, in this work we use two such domains and their
corresponding tools for study: TIRO, which is a tool designed
to perform symbolic analysis on Android applications [17] and
Mythril, which is designed for smart contracts [1]. Moreover,
these tools differ in their design, which also allows us to
explore how machine learning prediction can be incorporated
into different symbolic analysis designs.

1) Path Finding and Path Analysis: TIRO and Mythril
have vastly different path finding and analysis designs. TIRO
is a targeted symbolic analysis tool, which means that it targets
paths whose end points meet a certain criterion. It does this by
indiscriminantly finding paths during its path analysis phase,
but only selecting those that meet its targeting criteria during
path selection (TIRO specifically targets locations performing
de-obfuscation). As such, the paths analyzed by TIRO are
independent—while a path may have constraints that are a
subconstraint of another path, TIRO does not explicitly track
this and is not aware of such dependencies if they exist.

In contrast, Mythril is not targeted and tries to exhaustively
explore every path in a program, making it more similar to
other conventional symbolic execution tools like KLEE [4].
Thus, Mythril switches from path finding to path analysis
whenever it hits a branch, so that it can check for the
satisfiability of all successor paths of the branch, and solve
for an input that can reach each successor path. Mythril
then iteratively searches for all paths that include the satis-
fiable successor paths. This results in predecessor-successor
relationships between paths, as each discovered path has
constraints that are a subconstraint of a previously found path,
and thus paths in Mythril are dependent on one another.

2) Path Analysis Costs: There are some differences and
similiarities in path analysis time of TIRO and Mythril. To
collect data, we run TIRO on 2,000 of the most popular
Google Playstore apps downloaded in 2019, and discard apps
with fewer than 100 paths and 1 hour of path analysis time.
This results in 997 apps for TIRO. Also, we run Mythril on
3,845 smart contracts [21] with unique code hashes and names.
Overall, we collect 4,243,189 paths for TIRO, and 78,977,920
paths for Mythril. As shown in Table I, unsatisfiable paths

TABLE I: Path Processing Cost for TIRO and Mythril

Scenario mean (ms) std (ms)
TIRO Path Finding 33 514
TIRO Path Analysis 9,436 43,378

TIRO Unsatisfiable Path Analysis 1,447 21,160
Mythril Path Finding 6.4 462
Mythril Path Analysis 889 1658

Mythril Unsatisfiable Path Analysis 1656 3239

TABLE II: Distribution of Paths with Different Analysis Time
TIRO Mythril

Analysis Time Num Paths Analysis Time Num Paths
Sat : Unsat Total Paths Sat : Unsat Total Paths

<10ms 1.00 59,768 (1.41%) <10ms 10.8 1,417,117 (31.5%)
10ms-100ms 0.0344 745,541 (17.6%) 10ms-100ms 28.7 717,611 (16.0%)

100ms-1s 0.0815 1,501,044 (35.4%) 100ms-1s 12.9 1,759,171 (39.1%)
1s-10s 1.35 1,209,168 (28.5%) 1s-10s 9.2 575,545 (12.8%)

10s-100s 18.6 658,899 (15.5%) >10s 0.0499 27,542 (0.613%)
>100s 15.4 68,769 (1.62%) N/A

take shorter than average time to analyze for TIRO, while for
Mythril, unsatisfiable path analysis takes longer than average.

However, for both tools, path analysis, regardless of sat-
isfiability, is generally several magnitudes more expensive
than path finding. This means for both tools, it is potentially
beneficial to avoid analyzing unsatisfiable paths, and use the
saved time to find and analyze other paths that are more likely
to be satisfiable.

3) Distribution of Satisfiable Paths: Because TIRO is
targeted and Mythril is not, there are differences in the
distribution of paths they find and analyze. Table II shows
the distribution of paths, as well as the split between sat-
isfiable and unsatisfiable paths, by analysis time (i.e. cost).
We note that in general, the path analysis time is dominated
by constraint analysis, whose running time grows with the
number of constraints, and is roughly proportional to the
length of a path. Because Mythril is not targeted, and it
must find and analyze shorter predecessor paths before it can
find and analyze the longer successor paths, Mythril’s path
distribution generally has more shorter paths than TIRO, which
only targets paths that end in a point in the code that may
be performing de-obfuscation. In addition, since Mythril only
finds and explores paths that have a satisfiable predecessor,
most of the short paths in Mythril tend to be satisfiable,
with a sat:unsat ratio of 10.8 for paths that take less than
10ms to analyze, while most paths that run more than 10s are
unsatisfiable. In contrast, TIRO has a more normal distribution
of path lengths and analysis time, with the majority paths
having analysis times between 100ms-10s. In addition, shorter
running paths between 10ms-1s are mostly unsatisfiable, while
paths that take more than 10s are mostly satisfiable.

III. METHODOLOGY

A. Symbolic Execution Simulator

To enable faster prototyping and controlled exploration of
the design space, we build a symbolic execution simulator that
estimates the time required to analyze a program. Because the
running time of symbolic analysis tools is often dominated by
the number of paths and the time to analyze the paths (i.e.
extract and solve constraints), we expect that our simulator

2



can provide reliable predictions about the relative execution
times when the order and prioritization of paths selected for
analysis by our predictor changes. To build this simulator,
we begin by running the underlying symbolic analysis tool
without simulation to collect a corpus of paths found, along
with the satisfiability and time to analyze each path.

Our analysis is performed on a corpus of paths from
programs in Section II-B2. For TIRO, we use 997 apps
previously mentioned. For Mythril, we use 2,229 out of the
3,845 unique contracts due to time limitations [21]. We use
an overall memory limit and timeout limit for the analysis, as
well as a timeout for every path. For TIRO, we use 4 threads,
240GB of memory, a 5-minute timeout per path and a 24-
hour overall timeout. For Mythril, we use 8GB of memory,
a 10s timeout per path and a 2-hour overall timeout. Paths
that exceed the memory limit are excluded. In TIRO, paths
that exceed any timeout are excluded, while in Mythril, paths
that exceed any timeout are marked as unsatisfiable. For paths
whose satisfiability cannot be determined, we still mark them
as satisfiable, because these paths and their successors are
potentially worth exploring. Furthermore, we estimate costs
such as path feature extraction, model prediction and time
for saving/restoring analysis states by implementing these
components and timing their execution. We acknowlege bias
that may be introduced in these data collection methods.

Some assumptions from our simulation may not be satisfied
by all symbolic analysis techniques. For example, we assume
the analysis time for each path is fixed, and techniques such
as caching constraints for reuse [18], [13] and incremental
constraint solving [7] are out of our scope. Also, the default
implementation of Mythril performs analysis at every instruc-
tion instead of every branch. However, we collect paths that
end at branch and return instructions instead of at any executed
instruction, as the constraints required to reach instructions in
the same basic block usually have the same satisfiability: we
currently do not consider exceptions within basic blocks.

B. Simulating Improved Prediction Accuracy

We anticipate that advances in representations for pro-
gram analysis tasks may result in improved machine learning
predictions in the future. Since we know the ground-truth
satisfiability of each path, we can thus simulate and evaluate
the performance of different symbolic analysis designs for
increased and decreased model performance. However, models
typically do not have uniform performance across all paths
as some paths are easier to predict than others. For example,
previous work has shown that machine learning predictors can
have different accuracies across satisfiable and unsatisfiable
paths, as well as across path analysis times [19].

We thus train baseline random forest models to predict
path satisfiability, and then simulate a predictor of a different
performance by applying an improvement adjustment to the
model’s output satisfiability likelihood: if a path is actually
satisfiable, then we add the improvement adjustment, and
otherwise we subtract the improvement adjustment if the path
is unsatisfiable. We then clamp the resulting value to between

(a) TIRO (b) Mythril

Fig. 1: Adjusted Model Performance
0 and 1. Consequently, a positive improvement adjustment
makes the model more accurate, while a negative improvement
adjustment makes it less accurate. In the extreme case, an
improvement adjustment greater than 0.5 results in the model
always returning correct predictions, while an improvement
adjustment less than -0.5 results in a model that always gives
incorrect predictions.

C. Model Performance

As Figure 1 shows, increasing improvement adjustment in-
creases the model performance for both datasets. For Mythril,
as the model performance with 0 improvement adjustment is
low, we use a default improvement adjustment of 0.15 to get
decent model performance in Sections V-A and V-B.

IV. DESIGN SPACE EXPLORATION

A. Overview

A naı̈ve approach for using a predictor is to use it to
filter out and discard paths that are predicted as unsatisfiable.
However, mispredictions from the predictor can cause sym-
bolic execution to miss many satisfiable paths. For example,
this can cause missing malicious behaviors for TIRO and
undetected vulnerabilities for Mythril. Particularly, when there
are dependencies among paths, missing a parent path would
cause symbolic analysis to miss all child paths initiating
from it, resulting in a large number of paths missed. For
example, while our predictor on Mythril has 97.3% accuracy
for satisfiable paths across applications, discarding all paths
predicted as unsatisfiable will cause it to miss 57.7% of
paths averaged over all applications. This is because wrongly
discarding a path not only misses that path but also all the
successor paths that depend on the discarded path.

Therefore, instead of discarding unsatisfiable paths, we
prioritize the analysis of certain paths using output satisfiable
likelihood from the predictor. This means no satisfiable path is
missed. With the prioritization technique used, we aim to save
time required to analyze some number of satisfiable paths.

B. Design Criteria

We define the following criteria that outlines the dimensions
along which we explore the design space.

1) Types of Symbolic Analysis: As shown in Section II-B1,
TIRO and Mythril are different types of symbolic analysis
tools. TIRO targets specific paths that lead to given API calls,
while Mythril explores all paths in a given program. These
two tools have different path finding, path analysis and path

3



dependency relationships. We evaluate both TIRO and Mythril,
for the two types of symbolic analysis designs they represent.

2) Constructing Path Set: The path selection phase should
have access to a set of paths that the predictor assigns priorities
to. We call this set the path set. To have this set of paths to
choose from, our simulation experiments do not analyze a path
as soon as it is found, but insert found paths into a path set,
and paths in the path set are ranked using outputs from the
predictor. We only select the top ranking path from the path
set for analysis.

We formally define a dependent path set as a path set where
paths that are known to share constraints (i.e. constraint of
one path is the subconstraint for another path in the set). In
contrast, an independent path set is one where paths that are
not known to share constraints. As discussed in Section II-B,
TIRO generates an independent path set: because TIRO only
finds paths that reach particular targets and no known depen-
dency exists between found paths, it is not possible for TIRO
to generate a dependent path set. On the other hand, while
Mythril by default generates a dependent path set since every
path found has a predecessor with its subconstraint, we can
simulate a version of Mythril that produces an independent
paths set. This is done by combining path finding with path
selection: we implement a path finding algorithm that only
explores the successors of a path when the path is selected
from path set for analysis. Since paths selected are removed
from the path set, this guarantees that no predecessor and
successor can present in the path set at the same time, making
the path set independent.

3) Path Set Size Limit: We can set a path set size limit
for an independent path set with TIRO or a dependent path
set with Mythril. With this limit, we only select paths for
analysis when the path set size hits the limit. With a simple
path selection strategy that selects the path predicted as most
likely satisfiable, generally one may expect larger path set sizes
to have better performance: larger path set size allows path
selection to have more candidate paths to choose from. For
more complex ranking objectives and path selection strategies,
however, path set size can have subtle effects as discussed in
Section V-A3.

In contrast, we cannot set a path set size limit for Mythril’s
independent path set. Recall that to enforce path independence,
a path’s successors cannot be added to the path set unless its
predecessor is selected for analysis, thus removing it from the
path set. This is in conflict with the need to find enough paths
to reach the size limit before selecting a path for analysis.
Thus, it is not possible to enforce a path set size limit for
Mythril when it is configured to use an independent path
set – the path set size limit can only work for Mythril on
a dependent path set.

4) Path Pruning: We observe that path dependency can be
used to infer satisfiability. If a path is satisfiable, then all its
predecessor paths are all satisfiable, as otherwise no input can
reach the satisfiable path. Similarly, if a path is unsatisfiable,
none of its successor paths can be reached and these paths are
thus all unsatisfiable. Therefore, we can omit the analysis for

predecessors of satisfiable paths and successors of unsatisfiable
paths, because their satisfiability is already determined. In our
simulator, as soon as the analysis of a path is finished, based
on its satisfiability, we can prune all predecessors/successors
of the path from the path set, and the pruned paths will no
longer be selected or analyzed.

Thus, path pruning can be applied on a dependent path set.
However, it cannot be applied on independent path sets, as
there exists no dependency among paths in the set.

5) Ranking Objective: We propose the following ranking
objectives for selecting paths from the path set. These different
objectives can be used under different scenarios.

Sat Ranking: An obvious ranking objective is to prioritize
paths with higher satisfiable likelihood, so paths that are more
likely to be satisfiable are analyzed earlier.

Unsat Ranking: Path pruning, however, favours analyzing
unsatisfiable paths earlier, as this can help prune unsatisfiable
successor paths earlier. Path pruning also favours analyzing
satisfiable paths later, so when longer satisfiable paths are ana-
lyzed, analysis cost for shorter satisfiable paths can be saved as
they are pruned. Thus, with unsat ranking, we prioritize paths
with a higher unsatisfiable likelihood: 1− sat likelihood.

6) Filtering Paths for Immediate Analysis: We can add an
analysis filter before path selection, to allow immediate anal-
ysis of paths that meet certain requirements, before sending
them to path selection. The analysis of these path have higher
priority than all paths in the path set.

Immediate Timeout Filter: For cases when there are a large
number of short-running satisfiable paths, as soon as a path
is found, we can analyze it for a period of time. If the
path analysis finishes within a timeout, there is no need to
proceed to path selection as the path analysis is completed. If
the analysis does not finish within the timeout, we save the
analysis state for this path, and add this path to the path set
for path selection. We name this timeout immediate timeout
filter. Later, when the path is selected for analysis, we restore
its analysis state to analyze it again.

If a path does not finish analysis within the immediate
timeout filter, its analysis time is also counted towards the total
analysis time. Moreover, when using Mythril’s independent
path set, as soon as path analysis completes within the im-
mediate timeout filter, we also inform path finding to explore
successor paths.

Prediction Threshold Filter: We can also allow immediate
analysis of a path, if it is highly likely to be satisfiable. We can
set a value for the prediction threshold filter, and analyze a
path before path selection if its satisfiable likelihood is above
the prediction threshold filter. Paths that are not analyzed
immediately are sent to path selection for analysis later.

7) Model Performance: We study the effect of model
performance on symbolic analysis by increasing or decreasing
the improvement adjustment for model output, as described in
Section III-B.

4



C. Metric

In general, symbolic analysis is limited by computing
resources. As a result, users of symblic analysis generally
implement a time limit on the analysis tool. We thus use the
percentage of time saved at different points of the analysis as a
metric to evaluate the effectiveness of different design points.
Specifically, we use the amount of time required to analyze a
certain % of satisfiable paths as compared to the run of the
baseline implementation of the tool used to collect data for the
simulator. By evaluating the time savings at different points,
we can evaluate if a design confers more savings earlier or
later in the analysis.

As the analysis of all paths in each application proceeds, we
take a checkpoint as every 5% of the satisfiable paths in the
application is analyzed until all paths have been analyzed. At
each checkpoint, we measure the time savings compared to the
baseline. We then average the time savings across all applica-
tions to compute an average saving at every checkpoint. This
approach treats applications with many paths and few paths
equally, so the result will not be dominated by applications
that have a large number of paths.

V. EVALUATION

In this section, we evaluate the performance of different path
selection strategies. We explore options in our design space
as described in Section IV. As mentioned in Section III-C,
we use a default model improvement adjustment of 0.15 in
Sections V-A and V-B. We do not adjust the accuracy of
TIRO’s baseline model.

Also, our metrics take checkpoints at every 5% of satisfiable
paths analyzed. However, our final checkpoint is taken not
when 100% of satisfiable paths are analyzed, but when the
satisfiability of all paths are determined, including all satisfi-
able and unsatisfiable paths in the analyzed application.

Our later evaluation sections answer the following research
questions:

• RQ1: For each symbolic analysis tool, what are the best
ranking objectives and path sets for using a predictor?

• RQ2: How can analysis filters be leveraged to obtain
more time savings?

• RQ3: How does performance of symbolic analysis
change with the performance of the predictor?

A. RQ1: Path Set Evaluation

In this section, we simulate our two symbolic analysis tools
with different types of path sets and different path set size
limits. We evaluate the basic sat ranking and unsat ranking
objectives. The option to use path pruning for dependent path
set is also examined.

For these cases, we sweep the path set size limit to see
the effect on time savings to analyze the same percentage of
satisfiable paths. From this, we can limit later experiments to
a single or a small range of path set sizes. In this section,
the baseline run for time saving measurements is the original
symbolic analysis without any path set.

Fig. 2: Time Savings for TIRO’s Independent Path Set, Sat
Ranking (Baseline: Vanilla)

1) TIRO + Independent Path Set: We evaluate the time
savings for TIRO’s independent path set with different path
set size limits. Sat ranking is used with this path set, as it
prioritizes satisfiable paths. As mentioned, our baseline run is
from the original symbolic analysis tool without any path set
ranking. We denote this baseline as Vanilla in our figures.

Figure 2 shows that a larger path set size increases the time
savings at all analysis checkpoints. This is because a larger
path set allows the symbolic analysis to have more candidate
paths to select from and thus prioritizes paths that are more
likely to be satisfiable.

2) Mythril + Independent Path Set: We evaluate Mythril’s
independent path set with sat ranking. We do not apply
path pruning as it is not necessary for independent path sets
(discussed in Section IV-B4). Consequently, we use the sat
ranking objective and omit unsat ranking, which is beneficial
only with path pruning. Also, as shown in Section IV-B2,
there is no option to adjust path set size limit for Mythril’s
independent path set, because path finding is impacted by path
selection. Therefore, there is no parameter tuning required
when using Mythril’s independent path set on its own.

The time savings for Mythril’s independent path set are
shown as the no-filter option in Figure 4. Mythril’s indepen-
dent path set has a slow down at the earlier stage of the
symbolic analysis, but achieves slight time savings after the
50% checkpoint. At the 95% analysis checkpoint, it can save
about 3.4% of time.

The reason is that in Mythril, paths visited at early stage
of the analysis are shallow and have small analysis cost. The
extra cost for finding deeper paths and maintaining path set
thus becomes large compared to saved time for path analysis.
For example, at the 5% checkpoint, maintaining a path set
takes up 5.12% of time, while this overhead is 0 for the
baseline. Also, as the path set keeps a number of candidate
paths, the time required to find these candidate paths also
adds up. Thus, although Mythril’s independent path set omits
analysis of about 1/3 encountered unsatisfiable paths at the 5%
checkpoint, it still takes longer. However, this effect inverts
later on in the analysis since the paths analyzed later tend
to be longer and have higher analysis cost. At this stage, path

5



analysis cost overwhelms cost for path finding and maintaining
path set. This results in a speedup for Mythril’s independent
path set at later stage of the analysis.

This means Mythril’s independent path set on its own saves
time when larger analysis time is used, and in particular, when
the user is willing to spend enough computing resources to
analyze at least 50% of satisfiable paths. It only benefits users
who are willing to spend the time to do analyses close to
completion for each application instead of only a shallow
analysis. Note Mythril’s independent path set does not provide
an overall time saving, as it reorders the paths for analysis
rather than omitting to analyze any of them.

3) Mythril + Dependent Path Set: For Mythril’s dependent
path set, we study the effect of sat/unsat ranking objectives and
path pruning.

Effect of Path Pruning: Path pruning plays a crucial role
in Mythril’s dependent path set, as it avoids analysis cost
of satisfiable predecessors and unsatisfiable sucessors. In our
experiments, the analysis cost becomes several times greater
without path pruning. This means path pruning should be
applied along with dependent path set to save time.

Sat Vs. Unsat Ranking + Path Pruning: The option to
use sat/unsat ranking objective is evaluated with Mythril’s
dependent path set. Path pruning is turned on as it can
provide savings. We compare the sat ranking and unsat ranking
objectives in Figure 3. For ease of demonstration, we limit
the minimum time savings in Figure 3 to -40% (actually a
slowdown), and clip negative values below this number.

With path pruning, the unsat ranking performs much better
than sat ranking. The unsat ranking option in Figure 3a can
achieve time savings at several checkpoints and overall, while
sat ranking in Figure 3b only adds more analysis time overhead
compared to the baseline for almost all checkpoints. While
this sounds counterintuitive, this is because path pruning saves
analysis time for satisfiable predecessors and unsatisfiable
successors. As discussed in Section IV-B4 and Section IV-B5,
delaying the analysis of satisfiable path is desirable as it
provides more possibilities for saving, in case their satisfiable
successor is analyzed. Also, analyzing unsatisfiable paths
earlier can provide savings by omitting the finding/analysis
of their unsatisfiable successors in future for Figure 3a. This
also explains why sat ranking should not be used: it causes
unsatisfiable paths and their successors to stay in the path set
for longer, and savings from satisfiable paths to be eliminated
as they are picked early, resulting in an overall slow down.

In addition, both ranking objectives have startup overhead
at early analysis stage. One explanation is the same reason for
slow down in the early stages of Mythril + independent path
set: saved path analysis cost is not as significant compared to
added path finding cost and strategy overhead.

Also, Figure 3a shows when the path set size limit increases
from 5 to 50 for unsat ranking, startup overhead and time
savings overall both increase. This is because when the path
set becomes large, more satisfiable paths are left in the path set
not analyzed. At the early analysis stage, as unsatisfiable paths

(a) Unsat Ranking + Path Pruning

(b) Sat Ranking + Path Pruning

Fig. 3: Time Savings for Mythril’s Dependent Path Set + Path
Pruning (Improve Adj = 0.15, Baseline: Vanilla)

are prioritized for analysis, it requires more time to analyze
the same number of satisfiable paths, resulting in a slow down.
In contrast, as analysis proceeds, these satisfiable paths left
in the path set are pruned once their satisfiable successors
are analyzed, causing time savings overall and in the later
stage of the analysis. However, as the path set limit further
increases to 75 and 100, more unsatisfiable paths are added to
the path set. As there are more candidate unsatisfiable paths in
the path set, it is less likely for individual unsatisfiable paths
to be selected. As these unsatisfiable paths keep staying in the
path set without being selected, their unsatisfiable successors
are visited/analyzed without being pruned. This thus causes a
slowdown for almost all analysis checkpoints.

Therefore, Mythril’s dependent path set benefits from path
pruning and unsat ranking. With this combination, it is desir-
able to keep the path set size limit below 50. Within this range,
a larger path set size is desirable to analyze more paths, while
a smaller path set size is better when fewer paths are to be
analyzed. While the improvement from Mythril’s dependent
path set on its own is not much, it can be combined with
analysis filters to achieve better savings as shown later.

6



B. RQ2: Immediate Analysis Filter

We study the effect of immediate analysis filters and pre-
diction threshold filter on different combination of symbolic
analysis tools and path sets. To measure time savings, we use
the vanilla baseline run, which is the original analysis tool
without any path set ranking, same as in Section V-A.

1) TIRO + Independent Path Set: Our experiment shows
the timeout filter is overall not helpful to TIRO’s independent
path set. As shown in Section II-B3, for TIRO, there are not
a big proportion of the satisfiable paths under 1s: indeed,
paths between 10ms-1s are mostly unsatisfiable. Thus, using
a small timeout filter below 1s prioritizes unsatisfiable paths,
and causes significant slowdown. A larger timeout filter is also
not as helpful: because most paths regardless of satisfiability
can finish within the time filter, the ability for the path set to
prioritize analysis of satisfiable paths is eliminated.

Also, we find the prediction threshold filter does not provide
extra time savings for TIRO’s independent path set. This
is because this filter allows immediate analysis of all paths
above the prediction threshold, where as without the filter,
only the path with highest predicted satisfiable likelihood is
selected for analysis. Therefore, compared to the no-filter
option, the prediction threshold filter causes TIRO to select
more unsatisfiable paths for immediate analysis, and thus does
not save time.

2) Mythril + Independent Path Set: We now analyze the
effect of analysis filters on Mythril’s independent path set. We
find the immediate timeout filter to be more effective than the
prediction threshold filter for Mythril.

Immediate Timeout Filter: For Mythril’s independent path
set, a well-tuned timeout filter value can bring in time savings.
As shown in Figure 4, a small timeout filter between 50ms
to 1s provides good time savings. This immediate timeout
filter is effective because for Mythril, paths that finish within
1s are mostly satisfiable. Because the timeout filter allows
short-running satisfiable paths to be analyzed first before long-
running satisfiable paths, it requires less time to analyze the
same number of satisfiable paths. As the time filter increases
from 10ms, more short running satisfiable paths can pass
the time filter to be analyzed immediately and save time.
However, for paths that do not finish within the timeout, the
time filter thresholds spent to analyze these paths are also
counted towards the required analysis cost.

There is thus a tradeoff between having a large and small
timeout filter. For Mythril, the optimal timeout filter is at
250ms, where it has 11% of time savings at the 5% checkpoint,
and around 5% of time savings before the 95% checkpoint.

Prediction Threshold Filter: We find time savings from
even a well-tuned prediction threshold filter to be minor. A
prediction threshold value of 0.5-0.6 can reduce the startup
overhead at early analysis stage, as described in Section V-A2,
where path analysis cost is small for shallow paths. This is
because the satisfiability predictor is blind to path analysis
cost. The most likely satisfiable path picked from the path set
is not always the cheapest. Without the prediction filter, when a

Fig. 4: Effect of Immediate Timeout Filter on Mythril’s Inde-
pendent Path Set, Sat Ranking (Improve Adj= 0.15, Baseline:
Vanilla)
path and its deeper satisfiable successors are predicted as more
likely satisfiable than other shallow satisfiable paths in the path
set, symbolic analysis keeps exploring and analyzing these
deep paths and their successors. As deeper paths generally take
longer to analyze, this results in more computation overhead
at early analysis stage. In contrast, the prediction filter saves
time by allowing immediate analysis of all paths above the
prediction threshold, instead of focusing analysis on a number
of deep satisfiable paths that require more analysis time.

However, a prediction threshold smaller than 0.3 causes
overall slowdown, as only very few satisfiable paths with
satisfiable likelihood smaller than this value can be prioritized
by the path set. A prediction threshold greater than 0.7
causes the performance of the filter to approach the no-filter
option: as the small number of paths with predicted satisfiable
likelihood greater than the threshold are very similar to the
ones prioritized by the path set using satisfiable likelihood.

On Mythril’s independent path set + prediction threshold
filter, the optimal saving at the prediction threshold of 0.6 is
minor compared to the immediate timeout filter. However, its
decreased startup overhead demonstrates possible savings from
taking path analysis time into account, which is a direction for
future work.

3) Mythril + Dependent Path Set: For Mythril’s dependent
path set, both the immediate timeout filter and the prediction
threshold filter have opportunities to provide a good amount
of time savings.

Immediate Timeout Filter: For the immediate timeout filter,
our experiments use a path set size of 20 for Mythril’s
dependent path set, as it has a good performance. In Figure 5a,
small timeout filter values from 5ms-100ms provide time
savings for all analysis checkpoints. The optimal 5ms timeout
filter improves the overall time saving from around 8% to
over 31%. This is because, as mentioned in Section V-B2,
short-running paths in Mythril are likely to be satisfiable. With
path pruning, the timeout filter allows opportunities to finish
analysis of a short-running satisfiable path and prune all its
satisfiable parent paths in the path set that can take more
analysis time. Also, prioritizing short-running satisfiable paths

7



(a) Immediate Timeout Filter, Path Set Size =20

(b) Prediction Threshold Filter, Path Set Size = 30

Fig. 5: Effect of Analysis Filters on Mythril’s Dependent
Path Set, Unsat Ranking, Path Pruning (Improve Adj = 0.15,
Baseline: Vanilla)
itself is favorable, as it requires less time to analyze the same
number of satisfiable paths.

Thus, for Mythril’s dependent path set, an immediate time-
out filter with small timeout can achieve good time savings.

Prediction Threshold Filter: As shown in Figure 5b, a large
prediction threshold above 0.9 brings significantly more time
savings for Mythril’s dependent path set. This is because a
high prediction threshold filter prioritizes analysis of a small
number of satisfiable paths, with the rest of satisfiable paths
inserted into the path set. With path pruning, this omits a large
number of satisfiable predecessor paths in the path set with
immediate analysis of a small number of satisfiable paths.

However, a small prediction threshold filter of 0 does
not provide much savings because all paths are immediately
analyzed without being inserted into the path set. As the
prediction threshold increases from 0 to 0.7, more unsatisfiable
paths are discarded by the filter and inserted into the path set.
As a result, an unsatisfiable path is less likely to be selected
as it has more candidates to compete against. In turn, more
satisfiable successors are visited and analyzed. This causes the
curve for time saving performance to become worse.

Overall, it is preferable to use a high prediction threshold

value for the prediction threshold filter. While the savings
from the prediction threshold filter is not as significant as the
timeout filter, it is still able to achieve good time savings.

C. RQ3: Model Performance
We study how the performance of symbolic analysis is

affected upon change in model performance. We try different
values of the improvement adjustment and evaluate their
impact. Note for model performance, the baseline that time
savings we measure against is the scenario with an improve-
ment adjustment of 0, and other parameters unchanged. This is
different from the baseline of our previous evaluation sections,
which is the original analysis without any path set.

1) Basic Path Sets: For simplicity, we first study how
model performance affects path sets without any analysis filter.
Sat/unsat ranking objective and path set size limits are chosen
using evaluation from Section V-A.

TIRO + Independent Path Set: Our experiments find the time
savings generally increases, when a bad predictor improves (as
improvement adjustment increases from -0.5 to 0). However,
as the improvement adjustment further increases beyond 0,
the time savings decrease. This is because in TIRO, a large
number of satisfiable paths are long-running, taking more than
10s (Section II-B3). When the model performance is already
high, further increasing the improvement adjustment results in
a number of long-running satisfiable paths being analyzed. As
these satisfiable paths take more time to run, it requires more
time to analyze the same number of satisfiable paths.

Therefore, for TIRO’s independent path set, it is preferable
to have a satisfiable predictor with reasonable performance,
but does not prioritize too many long-running path.

Mythril + Independent / Dependent Path Set: Next, change
in model performance is evaluated on Mythril’s independent
path set with sat ranking, as well as Mythril’s dependent path
set with path pruning and unsat ranking. In both scenarios, the
performance of symbolic analysis generally increases when the
improvement adjustment increases, as shown in Figure 6.

In Figure 6a, for Mythril’s independent path set, when the
model performance is very poor or very good, the time saving
is insensitive to changes in the improvement adjustment. In
contrast, from Figure 6b, for Mythril’s dependent path set,
changing performance of a very poor or close-to-perfect model
has much larger effect on time savings. This is because
Mythril’s dependent path set stops exploring unsatisfiable
successors when an unsatisfiable path is first hit. Even when
a very poor or very good model is used, it does not make
much difference as the unsatisfiable paths Mythril visits or
omits are bounded. However, with path pruning and dependent
path set, it can potentially provide either a large time savings
by omitting satisfiable predecessors or significant performance
degradation by keeping unsatisfiable successors in the path set.
The change in model performance can thus still affect time
savings from symbolic analysis even when the model is close
to perfect or very poor.

Thus, for Mythril’s independent path set, improving
mediocre models brings in much more time savings than

8



(a) Independent Path Set

(b) Dependent Path Set, Path Set Size = 20

Fig. 6: Effect of Model Performance on Mythril (Baseline:
Improve Adj = 0)

improving models that already perform well. For Mythril’s
dependent path set, however, improving model performance
generally results in a small increase in time savings.

2) Path Set + Analysis Filter: We further examine the
effect of model performance on path sets combined with
immediate analysis filters. We pick Mythril’s independent path
set with timeout filter, and Mythril’s dependent path set with
timeout and prediction threshold filter. These combinations
and their parameters are selected as they bring in general
performance improvement from Section V-B. Studies on com-
binations that do not improve symbolic analysis by much are
omitted, as these combinations are not worth applying.

Mythril’s Independent Path Set + Timeout Filter: We
evaluate the effect of model performance change on Mythril’s
independent path set, with an optimal immediate timeout filter
value of 250ms. We find the time saving is the best at the
default improvement adjustment of 0.15 in Section V-B2.
Although we find better model performance decreases time
saving, it is mostly because the better model prioritizes long-
running satisfiable paths as the independent path set explores
deeper, more time-consuming paths. In fact, the percent of

time spent on analyzing satisfiable paths increases with in-
crease in improvement adjustment.

Although analyzing deeper paths is not always undesirable,
when the goal is to minimize analysis time, an unfortunate side
effect is that the model may correctly pick these long-running
paths and end up hurting analysis throughput. Ultimately,
effective models need to take analysis time prediction into
account as well, which could be interesting future work.

Mythril’s Dependent Path Set: We evaluate the effect of
model performance on Mythril’s dependent path set with
immediate timeout filter and prediction threshold filter respec-
tively. The path set size, timeout filter and predictin threshold
filter values are parameters with best performance selected
from Section V-B3.

• Mythril’s Dependent Path Set + Timeout Filter
With the selected timeout filter, time savings generally

increase as the improvement adjustment increases. However,
when the improvement adjustment increases beyond 0.1, the
increase in time savings becomes insignificant. With the time
filter and a relatively good model, Mythril’s dependent path
set can already omit a good number of satisfiable paths and
avoid analyzing more unsatisfiable paths. As part of the time
saving comes from a well-tuned time filter, keeping increasing
model performance is not as helpful.

Thus, for Mythril’s dependent path set with timeout filter,
it comes with good time savings to improve models that do
not perform very well, but continuing to improve models that
already have good performance brings in little benefit.

• Mythril’s Dependent Path Set + Prediction Filter
With the selected prediction filter, the relationship between
time savings and model performance is unstable. Time sav-
ings decrease as the improvement adjustment increases from
−0.5 to −0.3: more unsatisfiable paths are discarded by the
prediction filter and inserted into the path set. Since the path
set contains more unsatisfiable candidate paths to select from,
unsatisfiable paths stay in the path set for longer and thus more
unsatisfiable paths are visited/analyzed. In addition, the time
savings decrease when the improvement adjustment increases
from 0.15 to 0.5: as the improvement adjustment increases,
more satisfiable paths have their satisfiable likelihood above
the prediction threshold. These satisfiable paths are analyzed
immediately, and their analysis time cannot be saved since
they are not inserted into the path set and cannot be pruned.

Therefore, due to complex effect with the prediction thresh-
old filter, improving the model performance is not necessarily
a good option.

D. Cross-Validation

To check how results generalize across different subsets of
apps, we randomly split apps from both TIRO and Mythril into
5 folds. We measure time savings for each fold of apps upon
changing parameters. Despite variability of path analysis time
across folds, trends and optimal parameters in Sections V-A,
V-B, and V-C generally hold within the same folds. However,
in some folds, a perfect model for both Mythril’s dependent

9



and independent path sets without any filter does not result
in the best time savings before the 20% checkpoint. This
is possibly due to good models picking long running paths,
whose analysis time is significant at early stage of analysis.

VI. RELATED WORK

To save time for symbolic execution, recent works build
machine learning models for path satisfiability prediction.
ICON [15] and DeepSolver [14] use DNNs to predict con-
straint satisfiability for symbolic execution. Their models only
allow constraints with fixed sizes. They query the constraint
solver only when a path is predicted as unsatisfiable or when
the constraint size does not satisfy their models’ requirements.
Paths that are predicted satisfiable are skipped without analysis
and the satisfiability of these paths are left unknown. This is
different from our analysis which determines the satisfiability
of all paths found. We believe it brings valuable information
to certainly know whether a path is satisfiable, especially for
targeted symbolic analysis tools like TIRO.

Learch [8] and Homi [5] learn models and probabilities to
prioritize program state exploration. They improve code cover-
age of the symbolic execution tool KLEE [4] with predecessor-
successor relationships during path finding. But they do not do
pruning using dependencies between program states. This is
similar to our Mythril’s independent path set scenario. They
also directly learn path selection strategies instead of using a
path satisfiability predictor like in our strategies.

Yang et al. [19] uses path-level code features instead of
constraint features to predict path satisfiability for the Android
app analysis tool TIRO. PCC [16] extracts features from path
constraints and predicts the fastest solver. Luo et al. [10]
adaptively updates its model to gain knowledge specific to
analyzed programs, and predicts whether a constraint can be
solved under timeout. Unlike these existing works that try to
improve model performance for savings, we explore ways to
use model prediction for better symbolic analysis, even when
the model is not super accurate.

Instead of predicting constraint satisfiability, some existing
works approximate parts of the program when constraints are
too complex to solve [9], [3], [12], [2]. These works attempt
to solve for inputs when constraint solving is difficult, rather
than to prioritize path analysis.

VII. LIMITATIONS AND THREATS TO VALIDITY

We estimate strategy overheads such as model prediction,
pushing elements to list, feature extraction and restoring
analysis states. The two tools we work on also have their path
analysis time generally several magnitudes more expensive
than our estimated costs. Thus, some performance improve-
ments in our work may not exist for scenarios that have large
strategy overheads compared to path analysis time.

We only use random forest models with path features
collected during symbolic analysis on our two tools. The
performance of our evaluated predictors may not be rep-
resentative of all satisfiability predictors. Also, we adjust
model performance by adding an improvement adjustment to

model output satisfiability likelihood. This may not precisely
represent the distribution of model prediction upon change in
model performance in real world.

Our analysis is limited to two symbolic analysis tools for
Android apps and smart contracts. The smart contracts we
analyze are also relatively small programs. These programs
may not be fully representative of all programs in general.

As mentioned in Section III-A, there may be bias in our
data collection, and assumptions from our simulation may not
hold for all symbolic analysis tools.

VIII. CONCLUSION

In conclusion, our study has demonstrated several valuable
lessons for applying machine learning prediction to symbolic
analysis. First, while existing works focus on improving path
satisfiability prediction, our experiments show that as most
likely satisfiable paths are not necessarily the cheapest to
analyze, prioritizing such paths can lead to a drop in analysis
throughput at early stages in a symbolic analysis run. This
suggests that when the analysis resources per application is
limited, it would be best to not only predict satisfiability, but
extend the model to predict analysis cost. Second, leveraging
the distribution of path costs and satisfiability for a particular
problem domain can be as effective as improving performance
of the predictor. For example, adding a well-tuned timeout
filter, Mythril’s dependent path set can achieve good savings
with a reasonably good model. Further improving the model
performance in this setting brings little extra time saving.

Finally, we summarize a few key rules of thumb for
incorporating model prediction into symbolic analysis. First,
for TIRO, a moderate to large path set size is desirable,
while for Mythril, extremely large path set sizes result in
too many unsatisfiable paths being added to the path set,
ultimately reducing analysis throughput. Second, while path
pruning leverages path dependencies for time savings, counter-
intuitively, prioritizing unsatisfiable paths instead of satisfiable
paths works well with path pruning on Mythril’s dependent
dataset. This combination achieves an overall time saving for
analyzing all paths. Lastly, for Mythril, in which most short-
running paths are satisfiable, adding an immediate timeout
filter with a small timeout value significantly improves time
savings for most analysis checkpoints. Similarly, the prediction
threshold filter also confers results, when it is able to prioritize
these short paths.

IX. ACKOWLEDGEMENTS AND DATA AND CODE
AVAILABILITY

This research was supported by a Tier 1 Canada Research
Chair in Secure and Reliable Systems, NSERC Alliance Grant
ALLRP-586310-23, and NSERC Discovery Grant RGPIN-
2018-05931. We also thank CIFAR for a Canada CIFAR
AI Chair. Resources used in this research were provided in
part, by the Province of Ontario, the Government of Canada,
and companies sponsoring the Vector Institute. Our data and
simulation code is available at https://github.com/dlgroupuoft/
simulate-predicted-symbex.

10

https://github.com/dlgroupuoft/simulate-predicted-symbex
https://github.com/dlgroupuoft/simulate-predicted-symbex


REFERENCES

[1] “Mythril,” https://github.com/ConsenSys/mythril, 2023.
[2] B. K. Aichernig, R. Bloem, M. Ebrahimi, M. Tappler, and J. Winter,

“Automata learning for symbolic execution,” in 2018 Formal Methods
in Computer Aided Design (FMCAD). IEEE, 2018, pp. 1–9.

[3] L. Bu, Y. Liang, Z. Xie, H. Qian, Y.-Q. Hu, Y. Yu, X. Chen, and X. Li,
“Machine learning steered symbolic execution framework for complex
software code,” Formal Aspects of Computing, vol. 33, no. 3, pp. 301–
323, 2021.

[4] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in OSDI, vol. 8, 2008, pp. 209–224.

[5] S. Cha and H. Oh, “Making symbolic execution promising by learning
aggressive state-pruning strategy,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 147–158.

[6] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,”
in 22nd USENIX Security Symposium (USENIX Security 13), 2013, pp.
463–478.

[7] B. N. Freeman-Benson, J. Maloney, and A. Borning, “An incremental
constraint solver,” Communications of the ACM, vol. 33, no. 1, pp. 54–
63, 1990.

[8] J. He, G. Sivanrupan, P. Tsankov, and M. Vechev, “Learning to explore
paths for symbolic execution,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp.
2526–2540.

[9] X. Li, Y. Liang, H. Qian, Y.-Q. Hu, L. Bu, Y. Yu, X. Chen, and
X. Li, “Symbolic execution of complex program driven by machine
learning based constraint solving,” in 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2016,
pp. 554–559.

[10] S. Luo, H. Xu, Y. Bi, X. Wang, and Y. Zhou, “Boosting symbolic
execution via constraint solving time prediction (experience paper),” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 336–347.

[11] C. S. Păsăreanu and N. Rungta, “Symbolic pathfinder: symbolic execu-
tion of java bytecode,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, 2010, pp. 179–180.

[12] S. Shen, S. Shinde, S. Ramesh, A. Roychoudhury, and P. Saxena,
“Neuro-symbolic execution: Augmenting symbolic execution with neu-
ral constraints.” in NDSS, 2019.

[13] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: reducing, reusing
and recycling constraints in program analysis,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, 2012, pp. 1–11.

[14] J. Wen, M. Khan, M. Che, Y. Yan, and G. Yang, “Constraint solving with
deep learning for symbolic execution,” arXiv preprint arXiv:2003.08350,
2020.

[15] J. Wen, T. Mahmud, M. Che, Y. Yan, and G. Yang, “Intelligent constraint
classification for symbolic execution,” in 2023 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2023, pp. 144–154.

[16] S.-H. Wen, W.-L. Mow, W.-N. Chen, C.-Y. Wang, and H.-C. Hsiao, “En-
hancing symbolic execution by machine learning based solver selection,”
in Proceedings of the NDSS Workshop on Binary Analysis Research,
2019.

[17] M. Y. Wong and D. Lie, “Tackling runtime-based obfuscation in android
with TIRO,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 1247–1262.

[18] G. Yang, C. S. Păsăreanu, and S. Khurshid, “Memoized symbolic
execution,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis, 2012, pp. 144–154.

[19] M. Yang, D. Lie, and N. Papernot, “Accelerating symbolic analysis for
android apps,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW). IEEE, 2021, pp.
47–52.

[20] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, 2013, pp. 1043–1054.

[21] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network,” in IJCAI, 2020, pp.
3283–3290.

11

https://github.com/ConsenSys/mythril

	Introduction
	Background
	Background for Symbolic Analysis
	Baseline Symbolic Analysis Tools
	Path Finding and Path Analysis
	Path Analysis Costs
	Distribution of Satisfiable Paths


	Methodology
	Symbolic Execution Simulator
	 Simulating Improved Prediction Accuracy
	Model Performance

	Design Space Exploration
	Overview
	Design Criteria
	Types of Symbolic Analysis
	Constructing Path Set
	Path Set Size Limit
	Path Pruning
	Ranking Objective
	Filtering Paths for Immediate Analysis
	Model Performance

	Metric

	Evaluation
	RQ1: Path Set Evaluation
	TIRO + Independent Path Set
	Mythril + Independent Path Set
	Mythril + Dependent Path Set

	RQ2: Immediate Analysis Filter
	TIRO + Independent Path Set
	Mythril + Independent Path Set
	Mythril + Dependent Path Set

	RQ3: Model Performance
	Basic Path Sets
	Path Set + Analysis Filter

	Cross-Validation

	Related Work
	Limitations and Threats to Validity
	Conclusion
	Ackowledgements and Data and Code Availability
	References

