Stream Processing with Adaptive Edge-Enhanced Confidential
Computing

Yuqgin Yan
yugin.yan@mail.utoronto.ca
University of Toronto
Toronto, Ontario, Canada

Aastha Mehta
aasthakm@cs.ubc.ca
University of British Columbia
Vancouver, British Columbia, Canada

ABSTRACT

Stream processing is becoming increasingly significant in various
scenarios, including security-sensitive sectors. It benefits from keep-
ing data in memory, which exposes large volumes of data in use,
thereby emphasising the need for protection. The recent devel-
opment of confidential computing makes such protection techno-
logically feasible. However, these new hardware-based protection
methods incur performance overhead. Our evaluation shows that
replacing legacy VMs with confidential VMs to run streaming appli-
cations incurs up to 8.5% overhead on the throughput of the queries
we tested in the NEXMark benchmark suite. Pursuing specialised
protection for broader attacks, such as attacks at the edge with more
physical exposure, can push this overhead further. In this paper,
we propose a resource scheduling strategy for stream processing
applications tailored to the privacy needs of specific application
functions. We implement this system model using Apache Flink, a
widely-used stream processing framework, making it aware of the
underlying cluster’s protection capability and scheduling the appli-
cation functions across resources with different protections tailored
to the privacy requirements of an application and the available
deployment environment.

CCS CONCEPTS

« Security and privacy — Distributed systems security; « In-
formation systems — Stream management.

KEYWORDS

Security, Data Streaming, Trusted Execution Environment, Confi-
dential Computing, Stream Processing Framework

ACM Reference Format:

Yugqin Yan, Pritish Mishra, Wei Huang, Aastha Mehta, Oana Balmau, and David
Lie. 2024. Stream Processing with Adaptive Edge-Enhanced Confidential
Computing. In 7th International Workshop on Edge Systems, Analytics and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EdgeSys 24, April 22, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0539-7/24/04...$15.00
https://doi.org/10.1145/3642968.3654819

Pritish Mishra
pritish@cs.toronto.edu
University of Toronto
Toronto, Ontario, Canada

Oana Balmau
oana.balmau@cs.mcgill.ca
McGill University
Montreal, Quebec, Canada

Wei Huang
wh.huang@mail.utoronto.ca
University of Toronto
Toronto, Ontario, Canada

David Lie
david.lie@utoronto.ca
University of Toronto

Toronto, Ontario, Canada

Networking (EdgeSys °24), April 22, 2024, Athens, Greece. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3642968.3654819

1 INTRODUCTION

Stream processing is an increasingly important computing para-
digm that facilitates on-the-fly data analysis. It plays a crucial role
in enabling businesses to adopt an agile and responsive operational
approach [17] and can be used in several critical edge applications,
such as ML inference, real-time detection of fraudulent credit trans-
actions [14], and monitoring patient health data. A key feature of
stream processing is the ability to place computation close to data,
with the objective of optimising for bandwidth, latency, and com-
putational costs. However, many stream processing applications
also handle security-sensitive data and code; thus, ensuring the
confidentiality of data and the integrity of the computation can
also be an important concern.

To alleviate the security concerns of applications hosted in un-
trusted and third-party platforms (e.g., cloud platforms), CPU ven-
dors have proposed hardware primitives for confidential computing.
For instance, AMD’s SEV [9], SEV-SNP [4] and SEV-TIO, Intel’s
TDX [6], and ARMv9’s CCA [13] extensions all provide some form
of a trusted execution environment (TEE), which provides hardware-
assisted cryptographic protection for code and data executing on
these platforms. Further, many of the latest iterations of these mech-
anisms enable confidential VMs to run on top of an untrusted hy-
pervisor, enabling the protection of entire legacy system images
through a “lift-and-shift” approach.

However, these TEE mechanisms come with a cost. The encryp-
tion and decryption of memory, as well as checks against tampering
for integrity, impose runtime overheads on workloads executing
in protected TEE environments. Further, transitions in and out of
TEE execution modes may also incur overheads. Finally, current
hardware-based TEEs do not provide complete protection and, in
particular, may be vulnerable to side-channel and physical attacks,
which would require more sophisticated mitigation mechanisms
that impose even more overhead.

This is particularly relevant to edge services, where an edge
datacenter [15] may be less secure against physical attack than a
cloud datacenter. Current server-side TEEs have been designed with
cloud datacenter threat models in mind and do not take into account
physical attacks. For example, they do not account for attacks where
an attacker can snoop the memory bus [10] or replace the DRAM


https://doi.org/10.1145/3642968.3654819
https://doi.org/10.1145/3642968.3654819

EdgeSys "24, April 22, 2024, Athens, Greece

with an older snapshot. Defending these is possible with additional
measures, such as using secured or encrypted memory [3, 7], but
with additional performance overhead or hardware cost.

Thus, a key question is, “How should the security and privacy
objectives be incorporated with the existing objectives of band-
width, latency and compute cost when deploying stream processing
systems?” Rather than being a universal cost imposed on every op-
erator of a streaming application, a more nuanced approach could
examine and assign a security requirement to each operator based
on the privacy requirements of the data that the operator operates
on and produces. This requirement would then be incorporated
into the scheduling decisions for the placement of the operators—
operators with a security requirement may then be scheduled on
nodes that provide a commensurate level of security protection
using one or more of the security mechanisms we have mentioned
so far. This would enable operators with a lower or no security re-
quirement to be scheduled on faster or less specialised, commodity
hardware, while operators with a higher security requirement can
be scheduled on slower or more specialised secure hardware.

In this work, we make the following contributions:

e We propose a security measure that can be used as an ad-
ditional factor for making scheduling decisions in stream
computing systems.

e We prototype a framework that uses this measure by extend-
ing task slot scheduling strategies in Flink [5], a representa-
tive stream processing framework.

The remainder of this paper is organised as follows. In Section 2,
we describe the general design of stream processing and the possi-
ble cost of applying confidential computing. Then we present our
system design in Section 3 with motivating examples of existing
benchmarks. We evaluate the performance in realistic environments
with different configurations in Section 5. Finally, we conclude this
paper with plans for future work in Section 6.

2 BACKGROUND & MOTIVATION

2.1 Stream Processing Overview

Stream processing frameworks use a dataflow execution model
where an application is represented as a directed acyclic graph
(DAG) whose vertices represent operators and edges represent the
data streams connecting the operators. Each operator encapsulates
programming logic, such as data filtering, stream aggregation, or
function evaluation. Users use the framework to specify a logical
plan of the operators and the data flows between the operators.

Resource scheduling in stream processing frameworks allows
applications to exploit horizontal/vertical scalability such that data
streams are partitioned and processed at different locations simul-
taneously and independently. Operators in a given topology can
be scaled dynamically with a given parallelism degree, generating
multiple replicas to execute simultaneously on top of distributed
resources. The logical plan submitted by the user is converted into
a physical plan that defines the placement of these replicas on avail-
able computing resources, and a scheduler uses this plan to spawn
these replicas dynamically.

Flink [5] is a representative scale-out stream processing frame-
work supporting such rich stream processing semantics. Extending
the standard resource scheduling abstraction, Flink pre-allocates

Yugin Yan, Pritish Mishra, Wei Huang, Aastha Mehta, Oana Balmau, and David Lie

the computing resources for a given streaming application but of-
fers additional flexibility by allowing multiple operators to share a
single computing resource.

2.2 Confidential Computing and the Cost

In traditional virtualisation, the hypervisor has full control over
VMs, including direct access to and manipulation of a VM’s mem-
ory. Confidential computing establishes a secure environment for
VMs, safeguarding them against potentially untrustworthy hypervi-
sors by preventing unauthorised access and modification. Through
hardware assistance, the hypervisor’s ability to access and modify
a VM’s private memory and critical state is curtailed. VMs can
selectively share their state with the hypervisor. This architecture
safeguards the confidentiality and integrity of data within a confi-
dential VM, ensuring that sensitive information remains protected
from unauthorised access or tampering.

Confidential computing introduces various types of overhead
during VM execution. For example, confidential computing en-
crypts and decrypts data for confidentiality, though this cost is
mitigated with hardware acceleration. Similarly, integrity protec-
tion also incurs overhead during state changes such as memory
writes and TLB installations. Finally, protection domain switches
in and out of confidential computing mode incur overhead due to
an increased number of checks by trusted security modules and
the use of bounce buffers for I/O events can impose extra costs on
I/O-intensive workloads [11].

In addition, the cost can vary based on the hardware design,
the computing environment, and level of desired security. For in-
stance, despite advancements in hardware, SEV-SNP is susceptible
to ciphertext side channel attacks [12]. This vulnerability arises
from the hypervisor’s ability to access encrypted memory com-
bined with the deterministic nature of ciphertext when a VM writes
the same plaintext to the same physical address. Such a scenario
undermines the security of legacy applications, and software miti-
gation is required [16]. Conversely, Intel TDX mitigates this issue
by allowing the hypervisor only to read a fixed NULL value for
memory belonging to a Trusted Domain (TD), effectively isolating
the VM’s memory from software access. However, it maintains
extra metadata information, and TDX-compatible hardware has not
yet achieved widespread availability, limiting its adoption.

With its potential for physical exposure, the edge computing
scenario opens up additional attack vectors that could compro-
mise confidentiality and integrity guarantees. Fortunately, there
have been proposals aimed at enhancing protection at the DRAM
side [3, 7], extending the trusted computing boundary at the cost of
maintaining and checking extra information during memory events
with advanced DRAM technologies. These solutions leverage ad-
vanced DRAM technologies to maintain and verify additional infor-
mation during memory events, enhancing security at the expense
of increased overhead. However, it poses a challenge of availability,
as the complexity of these technologies makes them more difficult
to bring to market.

Side-channel attacks and microarchitecture vulnerabilities re-
main persistent concerns for shared trusted hardware, a situation ex-
acerbated in the post-Spectre and Meltdown landscape. Researchers



Stream Processing with Adaptive Edge-Enhanced Confidential Computing

have shown that cross-VM-boundary attacks exploiting microarchi-
tecture vulnerabilities are feasible, and the confidentiality of VMs
is at risk due to the non-encryption of data inside the enclaves. A
common strategy involves isolating VMs by preventing them from
sharing the physical cores. However, implementing this strategy ef-
fectively requires disabling hyperthreading at the BIOS level due to
the hypervisor’s untrusted status in confidential computing’s threat
model and its privileged ability to manipulate the system’s sched-
uler. While mitigating security risks, it can significantly impact a
system’s multi-core performance.

3 DESIGN

The objective of our design is to extend existing stream processing
scheduling mechanisms to take into account - a) the protection
requirements of data, which is determined by the sensitivity of
the exposed data, and b) the security level of computational nodes,
which can be determined by their hardware and software features,
as well as their physical security. To achieve this, we propose that
this extension take into account three properties for nodes and data
types in streaming applications: (1) a set of protection capability
descriptions (Section 3.1); (2) a label indicating the set of protection
capabilities each node in a stream processing cluster can provide
(Section 3.2); (3) a protection-aware way of writing the stream
applications (Section 3.3).

3.1 Protection Capability Description and
Protection Profile

The protection capability is described by protection levels and
security concerns. Table 1 gives an example of a confidential-
computing-centric protection capability description. The protec-
tion levels in this table represent the support level for confidential
computing. For example, for AMD EPYC processors, only SEV with
both ES and SNP extensions enabled can be placed in Level 3, as
only the SNP extension supports integrity protection from a ma-
licious hypervisor. The protection level can be verified via remote
attestation, a security process commonly provided as a component
of confidential computing infrastructure, used to verify that a re-
mote computer system is in a specific state, including the hardware
and firmware information.

The security concerns in the table describe issues that have not
been completely or commonly resolved by current confidential
computing designs. If available, security can be enhanced with
certain practices. The values are a nullable boolean, signifying
whether a concern is considered to be mitigated on the resource
node. NULL value indicates a trustworthy measurement cannot
be performed. This value is assigned to the node through remote
attestation and other information such as the instance type, its level
in the hierarchy (cloud, edge, etc.), or CPUID obtained with trusted
procedures such as CPUID filtering [4].

Mitigation of security concerns comes with performance cost or
availability issues. Cipherfix [16] mitigates ciphertext side-channel
issues through runtime instrumentation, imposing a significant
mean performance overhead ranging from 2.4x to 17.5x across vari-
ous cryptographic libraries. In edge computing contexts, SecDDR [7]
offers a novel approach to countering physical replay attacks by

EdgeSys '24, April 22, 2024, Athens, Greece

oS00

Protection Level 3 Protection Level 1

Figure 1: Yahoo! Streaming Benchmark: The job graph and the ex-
pected partitioning of different protection levels

incorporating security logic into the ECC chip, necessitating ad-
vancements in processing-in-memory technologies. Meanwhile,
InvisiMem [3] mitigates both address side-channel and memory
timing vulnerabilities, ensuring data freshness with a reasonable
performance overhead of 15.21%. However, it depends on a pack-
etised interface rather than the traditional DDR interface, which
might limit its broader applicability.

A protection profile is derived by specifying the protection level
and the values of the security concerns.

3.2 Protection Provisioning in Cluster

We assume the controller containing a cluster’s resource manager
is a trusted service in a secure environment. For example, it can
be deployed on self-managed machines with trusted hypervisor
software and physical protection. The cluster controller registers
the computing nodes into the processing cluster with a protection
profile describing the maximum protection a node can provide.
The protection profile specifies the maximum protection level the
node can be allocated to and assigns values for each entry in the
list of security concerns according to the description in Section 3.1.

3.3 Protection Request in Application

To utilise the protection that the worker nodes in a cluster can
provide, the application needs to indicate the protection it requires
to deal with potential threats. For each operator in the logical plan,
the application developer can provide each operator with a pro-
tection profile, describing the minimum protection level and the
accepted values for each entry of the security concerns, taking into
consideration the sensitivity and privacy needs of the data and the
potential threats of the processing environment.

3.4 Scheduling

After an application is submitted to the cluster, each operator
spawns parallel replicas according to the parallelism value speci-
fied for the operator. Each replica inherits the protection profile
from the operator. During scheduling, the cluster scheduler aims
to satisfy the constraint of the protection request specified in the
protection profile: the protection level provided by a node must
be larger than or equal to an operator’s request, and the security
concerns in the node’s protection profile must be the values the task
can accept. The scheduling cannot succeed if no node can satisfy
the protection request.



EdgeSys "24, April 22, 2024, Athens, Greece

Yugin Yan, Pritish Mishra, Wei Huang, Aastha Mehta, Oana Balmau, and David Lie

Table 1: An example of a confidential-centric protection capability description: Each node in a cluster must be at a protection level and declare
its security concerns. The security concerns have three possible values: yes, no, and unspecified. Refer to Section 3.1 for details.

Protection Level | Security Description

1 Legacy VMs without confidential computing support, or no attestation report is provided

also falls into this level.

2 The attestation report indicates key security-related confidential computing extensions are not enabled, such as a
SEV-enabled VM without SEV-ES or SEV-SNP. A confidential-computing-enabled VM with outdated firmware

3 The attestation report indicates the security-related confidential computing extensions are fully enabled (SEV with
SEV-ES and SEV-SNP on the AMD platform, or TDX-enabled on the Intel platform). The firmware is up-to-date.

Security Concerns | Security Description

Performance/Availability Implication

chitecture security
tecture attacks.

Same-core microar- | The attestation report indicates whether the hyperthreading is turned | Performance degradation on multi-core
off. If so, it mitigates generic same-core side-channel and microarchi- | performance by halving the number of

physical threads.

side channel
has this side channel, but TDX does not.

Software ciphertext | It indicates whether a node is vulnerable to the ciphertext side channel | It requires code auditing or runtime miti-
by software access from the hypervisor. For example, the current SEV | gation or prevents deployment onto some

architecture if such concern exists, such as
SEV.

ing (edge)
TDX, and the data is encrypted.

Memory bus snoop- | The attacker can monitor the bus signals. For example, the ciphertext | Advanced DRAM design can mitigate this
side channel exists even with the read-blocking guarantee provided by | issue at a relatively low-performance cost

but has manufacturing and availability

physical
(edge)

access | replay a recorded older packets.

Replay attack with | The attacker may either replace the DRAM with a stale snapshot or | issues.

o0

Protection Profile determined by Auction Policy

Figure 2: NEXMark Q7: The protection level required by this query
is determined by the auction policy.

3.5 Example: Yahoo! Streaming Benchmark

The Yahoo! streaming benchmark [2] is an advertising application
whose logical plan is presented as a DAG in Figure 1. The applica-
tion first ingests click events from a Kafka input stream. A click
event contains a user ID, a page ID, an advertisement ID, the event
type, the timestamp of the event, and the IP address of the event
source (@.) The application then filters the events with the type
“view” and discards the events with other types (@) and projects
them so that only the advertisement ID and the event timestamps
are further processed (@)). The advertisement ID is then trans-
formed into a campaign ID (@) through a join operation that looks
for the campaign ID that the advertisement ID belongs to. The
tuple (campaign ID, timestamp) is then fed into a time window
aggregation node (@) to count the number of campaigns viewed
in a time window. At last, it updates the campaign counts in Redis
periodically until the window is closed ().

We assume that the attacker is at a privileged level, is honest-
but-curious, and keeps monitoring and recording the data during
processing but does not tamper with the integrity of computing.
This is a rational scenario, considering an attacker may wish to
stealthily extract sensitive information. Although the protection

policy could be application-dependent, we chose one that protects
the information of users, as opposed to that of the advertisement
campaign from potential monitoring. Consequently, the source
node, the filter node, and the projection nodes request protection
level 3 with confidential computing enabled, and the following
processing request protection level 1. The expected splitting is
displayed in Figure 1.

3.6 Example: NEXMark Benchmarks

The NEXMark benchmark [1] simulates an auction scenario with
three types of events: person, auction, and bids. Each event type is
described with several attributes. We found that the bid event is the
major type being processed in most of the queries in the benchmark
suite, which does not exhibit strict confidentiality requirements in
real life: there are scenarios where the prices of bids are publicly
revealed and others where confidentiality is required. Q7 (Figure 2)
computes the highest bid per period. It ingests the bid events as the
input stream (@), fed into a windowed aggregator which outputs
the max price during a period (@), and the output joins with the
bid price again to retrieve the other bid information (@)). This
query only processes the bid event, and its protection request is
determined by auction policy. With the policy information, a flexible
protection profile for requesting protection can be generated and
constrain the operator scheduling.

4 IMPLEMENTATION

We implemented the design based on Apache Flink enabling the
Flink cluster to provide protection according to a Flink application’s




Stream Processing with Adaptive Edge-Enhanced Confidential Computing

request. We create a class, ProtectionProfile, containing the at-
tributes reflecting the definitions in the protection capability de-
scription (Section 3.1). We attach this as a part of the Resource class.
During the cluster initialisation, when a TaskManager (worker)
joins, it reports to the cluster’s resource manager with Resource
information attached with ProtectionProfiles. For simplicity
(as we focus more on the scheduling part), we did not implement
the verification procedure, where the JobManager (controller) trig-
gers the remote attestation and parses the report submitted by the
TaskManager. We leave it as a future work.

For Flink application development, we implemented support for
the DataStream API, specifying the application logic in the flavour
of a Java application instead of a table-based SQL interface. We
utilise Flink’s slot-sharing group to achieve confidential-computing-
aware development and scheduling. A slot-sharing group specifies
which operators can be collocated in the same execution slot. When
constructing a slot-sharing group, the application developer can
attach a ResourceProfile of the slot-sharing group to indicate the
resource requirement for executing the tasks inside the group, con-
taining the requested protection profile as well. We add an interface
for specifying the ProtectionProfile for each operator. During
scheduling, the scheduler compares the protection profile of the slot
(PPsj0¢) and the protection profile of the slot-sharing group (PPssg)
while checking whether a slot can satisfy the protection request
of a slot-sharing group, which holds iff the following conditions
hold: (1) PPgj,;.protection_level > PPsgq.protection_level
(2) PPgo;.security_concern; C PPsgg.security_concern;, as
Section 3.4 indicates.

5 EVALUATION

Our environment of evaluation is an AMD 3rd EPYC 7543 server
with 256 GiB memory. We used the snp-latest branch of the
AMDESE /AMDSEYV repository on GitHub and compiled kernel images
with git commit 6b29377@dac? for both the host and the guests.

Our evaluations are done within the following protection envi-
ronment: @ at protection level 1, where the SEV is not enabled;
(2) at protection level 3 with AMD SEV-SNP enabled; and (3) at
protection level 3, mitigating the concern of same-core microarchi-
tecture security by disabling SMT when booting up the host and
only provisioning half of the physical threads for the guest VM. In
all protection environments, the disks are LUKS-encrypted.

It is worth noting that our evaluation was conducted only within
a limited combination of protection environments. This limitation
stems from the constraint that the DRAM designs detailed in Sec-
tion 3.1 have yet to enter production and market, preventing us
from conducting a concrete evaluation.

Experiment 1: Latency.  Yahoo! streaming benchmark has an
aggregation window operator. It defines the latency of this query
with the attributes of this window (the window size, the last update
after the window closes, and the start time of the window) as it
is the central operation and produces the results to the sink. For
every window opened at time Typen, records arrive in this win-
dow and contribute to the aggregation results until the window is
finally closed. When the window is closed, the final aggregation
result is written into the Redis sink at time Tjgs; ypdate- Assume
the window length is t,,;,40- the official definition of the latency

EdgeSys '24, April 22, 2024, Athens, Greece

4500
BN 1PL3VMonly
4000 | wmm 2 PL3 VMs

’g 3500 J 1PLLVM + 1PL3 VM

23000
g
2 2500
=
Z 2000
E

1500

;-‘—.;
5000 15000 25000
Load (tps)

1000

Figure 3: 99 percentile latency distribution of 8 times of running
Yahoo streaming benchmark where TM stands for TaskManager, PL
stands for protection level. Load is measured in the number of input

events per second.
U Vi 2v! CP
0.994 ‘
Q1

(A"

-

=)
©

o
o

)
IS

=)
N

Normalized Throughput

8vCP
.0 96 I g""’I
. - PL-1 - PL1
- PL3 - PL3
0.0

Figure 4: Comparison of normalised throughput results for running
NEXMark benchmark

tis € = (Tiast_update — Topen) — taindow- The results are displayed

in Figure 3, showing the distribution of the 99" percentile of the
latency under different loads (the number of records generated per
second). We evaluate three configurations, where each VM has one
vCPU: (1) 1 VM at environment (2) with all processing components
(green), (2) 2 VM at environment (2) with component placement
shown in Figure 1, except for the fact that they are placed in two
VMs with the same protection environment (blue) (3) 1 VM at envi-
ronment (1) and 1 VM in (2) with component placement displayed
in Figure 1 (pink). The results in Figure 3 show that adding comput-
ing resources by splitting operators can have the benefit of reducing
latency, especially when the load is high, and the use of tailored
protection can not only relax the constraints to make the scheduler
have more candidates VMs to schedule but also have the potential
of reducing latency by placing partial computing in an environ-
ment with less overhead of accessing memory. However, adding
resources in the way of the transition from Configuration 1 to 2
(and 3 as well) requires changing local network traffic to cross-VM
traffic at the stream represented as the edge between operator €
and @ in Figure 1, whose cost can be more significant in a real-life
setting with VMs located on different physical machines.

Experiment 2: Throughput. = We use the NEXMark benchmark
suite to evaluate the throughput under different protection capaci-
ties. We select Q1 as a representative instance of a simple stateless
operator, MAP, and Q4, Q5, and Q7 as instances of stateful operators
with large operator states. The data source generates the input data
in memory and uses the Blackhole connector [8] as the sink to
remove the effect of the source and the sink’s performance. We
remove the checkpointing mechanism by setting the interval to a
large value so it is never triggered.

Experiment 2.1 We have three worker VMs. Each of the three VMs
has one TaskManager with one task slot, and the total parallelism



EdgeSys "24, April 22, 2024, Athens, Greece

-
=)

0.85 0.84

o
o

0.73 0.75

=)
IS

N PL-1, SMT-on, 4 vCPU/VM, 4 Slots/VM
W PL-3, SMT-off, 2 vCPU/VM, 4 Slots/VM
Emm PL-3, SMT-off, 2 vCPU/VM, 2 Slots/VM

Q1 Q4 Q5 Q7
Query

. o s
o

o
N

5
a
<
=)
3
<4
<
IS
o
@
N
©
E
S
z

4
15}

Figure 5: Throughput comparison of configurations with and with-
out SMT enabled across stateless and stateful operators.

is set to 3. We compare the performance of protection environment
(D and (3). In both, we allocate abundant (i.e., 8 vCPUs per VM) or
limited (i.e., 2 vCPUs per VM) resources. The results are displayed
in Figure 4, where the overhead is normalised (we treat @ as the
baseline). With abundant vCPU resources, Q1 shows almost no
degradation in overhead, while the queries with larger state sizes
have 3.9%-8.5% overhead. We infer that Q1 has low overhead be-
cause each record is generated, ingested, and processed by the same
core within a short temporal distance, resulting in asynchronous
memory write and having almost no influence on the throughput.
The overhead becomes visible for queries with stateful operators
with relatively large states since the operator state does not fit in
the cache, and re-accessing them causes more memory events.

Since confidential computing consumes more CPU cycles during
network I/O, we explore whether limiting CPU resources could
result in larger overhead in our benchmarks [11]. Due to the op-
erator chaining optimisation and the properties of the workloads,
these queries are not network I/O intensive, even with the network
shuffling between operators, where intermediate results are trans-
ferred across the network stack to one of the partitions of the next
operator due to changes in the key space. As a result, reducing
the vCPU resources does not reflect a larger overhead caused by
contention between the extra vCPU cycles for network I/O and the
vCPU resources for processing.

Experiment 2.2 This experiment shows the system cost with SMT
in stream processing by comparing three configurations. All of
them involve 3 VMs with one TaskManager each: (1) In protection
environment @ with 4 vCPUs, and each TaskManager contains 4
task slots. The parallelism is 12. (2) In the protection environment
(3) with 2 vCPUs, each TaskManager contains 4 task slots. The
parallelism is 12 as well. (3) In the protection environment (3)
with 2 vCPUs/VM, each TaskManager contains 2 task slots. The
parallelism is 6. In the three configurations, (2) and (3) reflect the
VM size shrinkage due to the concern of microarchitecture attacks.

Figure 5 shows the performance cost of SMT varies across dif-
ferent queries, with Q1 showing minimal performance degradation
while others demonstrate greater sensitivity. This discrepancy can
be attributed to several factors: (1) Similar to the explanation of the
previous experiment, Q1’s records are generated and immediately
processed with good cache locality. The execution units of a single
thread are kept busy, and due to the contention of the execution
units, SMT does not benefit from it; (2) Stateful operation involves
more state fetches with larger states. Therefore, a single thread
has more idle time and can benefit from interleaving the execu-
tion of hyperthreads. As a result, they are SMT-sensitive, meaning
switching SMT on and off has a greater impact on performance

Yugin Yan, Pritish Mishra, Wei Huang, Aastha Mehta, Oana Balmau, and David Lie

cost. (3) SMT can introduce contention of cache resources, so the
performance degradation it causes is much less than halving the
throughput.

6 CONCLUSION

This work presents the limitations and cost of deploying current
stream processing applications in a confidential computing envi-
ronment and proposes a resource scheduling strategy to balance
the needs of privacy and performance for streaming applications.
In our future work, we will expand our cost model to support a
wide range of applications, such as video processing and graph
processing, which could have worse performance implications for
confidential computing, and integrate our design into the SQL APIL.
We will also study edge security, enhancing the security against
physical attacks at a low cost.

7 ACKNOWLEDGEMENTS

Funding for this project was provided in part by DND-IDEaS Con-
tract MN3-011.

REFERENCES

[1] 2024. Nexmark Benchmark. https://github.com/nexmark/nexmark

[2] 2024. Yahoo Streaming Benchmark. https://github.com/brianfrankcooper/YCSB

[3] Shaizeen Aga and Satish Narayanasamy. 2017. Invisimem: Smart memory de-
fenses for memory bus side channel. ACM SIGARCH Computer Architecture News
45, 2 (2017), 94-106.

[4] AMD. 2020. Strengthening VM isolation with integrity protection and more.
White Paper, January 53 (2020), 1450-1465.

[5] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[6] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu
Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2023. Intel TDX
Demystified: A Top-Down Approach. arXiv preprint arXiv:2303.15540 (2023).

[7] Ali Fakhrzadehgan, Prakash Ramrakhyani, Moinuddin K Qureshi, and Mattan
Erez. 2023. SecDDR: Enabling low-cost secure memories by protecting the DDR
interface. In Proceedings of the 53rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 14-27.

[8] Apache Flink. 2024. BlackHole SQL Connector. https://nightlies.apache.org/
flink/flink-docs-release-1.18/docs/connectors/table/blackhole/

[9] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.
White paper (2016), 13. https://www.amd.com/content/dam/amd/en/documents/
epyc-business-docs/white- papers/memory-encryption-white-paper.pdf

[10] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada Popa. 2020.

An Off-Chip attack on hardware enclaves via the memory bus. In Proceedings of

the 29th USENIX Security Symposium (USENIX Security 20).

Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang, Haibing Guan, and

Haibo Chen. 2023. Bifrost: Analysis and Optimization of Network I/O Tax in

Confidential Virtual Machines. In Proceedings of the USENIX Annual Technical

Conference (USENIX ATC 23). 1-15.

[12] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-

escu, and Yinqian Zhang. 2022. A systematic look at ciphertext side channels on

AMD SEV-SNP. In Proceedings of the IEEE Symposium on Security and Privacy

(SP). IEEE, 337-351.

Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,

and Gareth Stockwell. 2022. Design and Verification of the ARM Confidential

Compute Architecture. In Proceedings of the 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad,

CA, 465-484.

Kaushikkumar Patel. 2023. Big Data in Finance: An Architectural Overview.

International Journal of Computer Trends and Technology 71, 10 (2023), 61-68.

[15] Hugh Taylor. 2022. Defending the edge data center. https://securityboulevard.
com/2022/07/defending-the-edge-data- center/

[16] Jan Wichelmann, Anna Pétschke, Luca Wilke, and Thomas Eisenbarth. 2023. Ci-
pherfix: Mitigating Ciphertext Side-Channel Attacks in Software. In Proceedings of
the 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 6789-6806.

[17] Alex Woodie. 2023. Yes, Real-Time streaming data is still growing. https://www.
datanami.com/2023/07/12/yes-real-time- streaming- data-is-still-growing/

—_
o

[13

[14


https://github.com/nexmark/nexmark
https://github.com/brianfrankcooper/YCSB
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/blackhole/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/blackhole/
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://securityboulevard.com/2022/07/defending-the-edge-data-center/
https://securityboulevard.com/2022/07/defending-the-edge-data-center/
https://www.datanami.com/2023/07/12/yes-real-time-streaming-data-is-still-growing/
https://www.datanami.com/2023/07/12/yes-real-time-streaming-data-is-still-growing/

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Stream Processing Overview
	2.2 Confidential Computing and the Cost

	3 Design
	3.1 Protection Capability Description and Protection Profile
	3.2 Protection Provisioning in Cluster
	3.3 Protection Request in Application
	3.4 Scheduling
	3.5 Example: Yahoo! Streaming Benchmark
	3.6 Example: NEXMark Benchmarks

	4 Implementation
	5 Evaluation
	6 Conclusion
	7 Acknowledgements
	References

