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Abstract

The adoption of large cloud-based models for inference has been hampered by concerns about the

privacy leakage of end-user data. One method to mitigate this leakage is to add local differentially

private noise to queries before sending them to the cloud, but this degrades utility as a side effect.

Our key insight is that knowledge available in the noisy labels returned from performing inference

on noisy inputs can be aggregated and used to recover the correct labels. We implement this

insight in LDPKiT, which stands for Local Differentially-Private and Utility-Preserving Inference

via Knowledge Transfer. LDPKiT uses the noisy labels returned from querying a set of noised

inputs to train a local model (noiseˆ2 ), which is then used to perform inference on the original

set of inputs. Our experiments on CIFAR-10, Fashion-MNIST, SVHN, and CARER NLP datasets

demonstrate that LDPKiT can improve utility without compromising privacy. For instance, on

CIFAR-10, compared to a standard ϵ-LDP scheme applying the Laplacian noise on each data sample

with ϵ = 15, which provides a weak privacy guarantee, LDPKiT can achieve similar accuracy with

ϵ = 7, offering an enhanced privacy guarantee. Moreover, the benefits of using LDPKiT increase at

higher, more privacy-protective noise levels. For Fashion-MNIST and CARER, LDPKiT’s accuracy

on the sensitive dataset with ϵ = 7 not only exceeds the average accuracy of the standard ϵ-LDP

scheme with ϵ = 7 by roughly 20% and 9% but also outperforms the standard ϵ-LDP scheme with

ϵ = 15, a scenario with less noise and minimal privacy protection. We also perform Zest distance

measurements to demonstrate that the type of distillation performed by LDPKiT is different from

a model extraction attack.
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Chapter 1

Introduction

1.1 Introduction

Cloud providers, such as Google, Amazon, and Microsoft, offer Machine Learning as a Service

(MLaaS) [1], which enables the use of large, feature-rich Machine Learning (ML) models in sev-

eral privacy-sensitive applications, such as personalized medicine and medical imaging [2], mobile

healthcare apps, and surveillance [3]. At the same time, privacy concerns surrounding the MLaaS

platforms arise during the widespread adoption and use of MLaaS. While users have privacy concerns

regarding both training and inference stages of MLaaS platforms [4]–[7], in this work, we focus on

privacy concerns with regard to the inference services.

A malicious MLaaS provider can monitor or inspect a user’s queries during inference and use the

information for purposes the user did not consent to. In 2016, for instance, Yahoo secretly complied

with the US government’s digital communication surveillance and used its custom spam and child

pornography detection system to monitor users’ emails [8]–[10]. More recently, the Amazon Ring

Doorbell was found to have disclosed users’ video and audio footage to the police without authoriza-

tion [11]. Ever since Large Language Models (LLMs) have gained popularity, many organizations

have banned their members from using them due to the fear of data leakage [12], [13]. Even with

a trusted provider, a compromised platform could enable an adversary to infer users’ queries via

side-channels [14].

To tackle these privacy concerns, previous work has proposed applying homomorphic encryption

schemes [15], [16] or hardware-enforced trusted execution environment [17] to protect inputs during

inference. However, both schemes are primarily designed to protect against a malicious platform

and implicitly trust the ML model provider—a malicious model can still leak arbitrary information

about its inputs and would require some form of auditing. In addition, hardware-based schemes are

prone to side-channel attacks [18]–[20], while homomorphic schemes can impose large overheads. An

alternative to these schemes, which does not trust the entire model or platform and imposes virtually

no performance overhead, is Local Differential Privacy (LDP), which adds random LDP-provable

noise to each of the user’s queries before transmitting them to the cloud for inference [21]. However,

this “standard” application of LDP noise to the ML model’s inputs results in noise in the model

outputs, leading to loss of utility.

We propose LDPKiT, which stands for Local Differentially-Private and Utility-Preserving In-

1



1.2. MOTIVATION 2

ference via Knowledge Transfer, a privacy-protective framework that recovers utility by training a

local model. In standard applications of LDP, each query is independent, and information from the

model’s prediction on one query does not help improve its predictions for others. Rather than being

content with the loss of utility of each query individually, LDPKiT records both the (noised) query

inputs and the (noisy and erroneous) labels returned from the cloud model (i.e., noiseˆ2 ) to form

a private training set, which is used to train a local model. As a result, LDPKiT’s training of a

local model enables it to leverage collective knowledge from a batch of queries to improve the overall

utility. However, if the local model is trained on too few points, its accuracy may not be sufficient to

exceed that of using the labels directly from the standard usage of LDP. Thus, there exists a lower

bound on the number of queries the user is willing to make for LDPKiT to be practical. Finally,

one might wonder whether, as the number of points used to train the local model increases, it will

ever become competitive with the cloud model—in other words, is this a type of model extraction

attack? To study this, we also compare the local model with the cloud model and measure their

model distances using the Zest framework [22].

Our analysis is guided by the following research questions:

RQ1. Does LDPKiT recover utility impacted by LDP noise?

RQ2. How does the number of queries impact LDPKiT?

RQ3. How does LDPKiT differ from an adversarial model extraction attack?

1.2 Motivation

As discussed above, we focus on inference data privacy protection. Here are some real-world examples

that motivate the thesis.

1.2.1 Image/Video

Once the personal image is uploaded to the Internet, the action cannot be revoked, and you have

no control over its future usage [23]. Demonstrated by the news about Pope Francis in 2023 [24],

as generative models and AI Deep Fake technology become more sophisticated, it is difficult for

a human to distinguish fake from the truth. Not to mention how threatening it becomes if the

adversary intends to do something bad with the user’s personal photo or video, such as fraud and

blackmail [25]. For example, when the user enables FaceID on her mobile devices, she must scan

her face and disclose the facial information to device manufacturers. While the intended use of this

facial data is to authenticate and unlock the device, there is a risk that third-party manufacturers

can misuse this information, potentially even sell user data, for profit if they have ill-founded privacy

policies [26], [27]. A more serious scenario is when companies release their users’ private information

to the government for “political or socially beneficial uses”. One infamous example is that Amazon

was revealed to have shared Ring’s video doorbell footage with the police without users’ permission in

2022 [11]. The government may ask service providers for unauthorized information release and collect

customers’ biometrics without consent. In the above cases where the user needs to provide facial

data to access personalized services, such as FaceID or smart door locks, our method safeguards

the user’s identity. Our approach protects the user’s data privacy by providing an LDP privacy

guarantee before data transmission to the cloud for computation. This means that the ML models
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deployed on the cloud only have access to perturbed images, eliminating the necessity of sharing the

user’s actual photos with any third party.

1.2.2 Audio

Similarly, voice is considered sensitive personal information that can reveal one’s identity. Telecom-

munication fraud, such as fraudulent calls that intend to record the user’s voice for future abuse,

can lead to severe financial loss. Traditional fraudulent calls aim to deceive the user into providing

her bank account information for monetary purposes; however, more advanced telecommunication

scams succeed as long as the user responds. The scammer can capture the user’s unique voice sig-

nature, and just like DeepFake, the scammers can impersonate the user and authorize fraudulent

charges, and even conduct criminal activities such as blackmailing the user’s close contacts [28],

[29]. As smart home devices gain popularity, more people use them and enjoy the customizability

and convenience these services bring. Using voice-controlled virtual assistants imposes privacy risks,

given that they can record a user’s voice and even recognize the speaker. Many motion detection

services also have complimentary audio capture capability. In benign use cases, additional audio

functionalities are appreciated (e.g., theft prevention and car accident analysis). However, another

criticism of the Amazon Ring doorbells scandal is that the footage provided to the police did not have

automatic audio recording eliminated [11]. Therefore, the government also obtained the customers’

audio identity information without consent. LDPKiT has not been tested on the audio modality

and we leave it as future work.

1.2.3 Text

Email spam checkers detect malicious and viral emails and block their delivery to inboxes. However,

it is theoretically possible for an email service or spam checker to eavesdrop on the message content,

store it without the user’s awareness, and use it for purposes other than spam detection. Spam

checks are generally conducted in the cloud rather than locally on a user’s device for multiple

reasons, e.g., storage and processing power limitation, real-time synchronization, and email filtering

infrastructure [30]. In 2016, multiple sources [8]–[10] reported that Yahoo’s customized system, which

was intended for spam and child pornography detection, secretly complied with the US government’s

digital communication surveillance. Yahoo spied on and scanned all the incoming emails according

to the government’s demands. As digital communication grows, it becomes common for government

agencies like the FBI to ask tech companies for users’ messages. If companies such as Yahoo decide

to obey their orders, severe privacy breaches will happen. Unfortunately, data leakage had already

happened by the time this action was discovered and reported. Applying our technology safeguards

sensitive information without compromising the utility of the main task. In the text scenario,

LDPKiT protects the privacy of target email content by querying the remote model with a sanitized

email instead of the original one.

1.3 Contribution

In summary, this thesis makes the following contributions:
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• The design and implementation of LDPKiT are presented, the framework that incorporates

knowledge transfer techniques for privacy protection.

• LDPKiT can achieve high inference accuracy and mitigate privacy risks for sensitive queries

with the (noisy) knowledge gained from the cloud model on privacy-preserving (noised) queries.

• The evaluation of LDPKiT is conducted on image and text modalities with multiple models

and datasets.

• The discussion and comparison of different strategies and experimental results are presented.

1.4 Thesis Structure

The following chapters of this thesis are organized as follows. Chapter 2 introduces some related

background concepts in trustworthy machine learning and specific design techniques. Chapter 3

outlines the detailed design of LDPKiT. Chapter 4 evaluates and analyzes LDPKiT on image and

text classification datasets with multiple representative models and demonstrates the difference of

LDPKiT from an adversarial model extraction attack. Chapter 5 discusses some limitations and

future directions of the work. Lastly, Chapter 6 draws a short summary of the thesis.



Chapter 2

Background and Related Work

2.1 Machine Learning

Machine Learning (ML) provides automated data analysis methods that detect relationships in the

data and solve problems under uncertainty [31]. Based on the nature of the data available, ML

tasks can be categorized into different classes, such as supervised learning when training inputs are

labelled, unsupervised learning when unlabeled inputs are given, and reinforcement learning where

an intelligent agent takes actions in a certain environment and records the new states and reward

values, in order to optimize the cumulative reward as a result.

2.1.1 Neural Networks

A Neural Network (NN), also known as Artificial Neural Network (ANN), is a computational model

inspired by biological neural networks. It has applications in ML and Artificial Intelligence (AI)

for pattern recognition and complex problem solving such as classification, regression, and clus-

tering [32]. A neuron is a computational node or unit that processes input data, computes with

functions, and outputs results to other neurons. Each input to a neuron can be multiplied by a

weight and associated with an additional bias term to indicate the input’s significance. An NN

consists of layers of neurons. A simple forward neural network (forward propagation) has an input

layer, hidden layer(s), and an output layer. The input layer receives the data input where each

neuron represents an individual feature in the input data. Hidden layer(s) are the layers between

the input and output layers that perform the computation. The output layer produces the final

result(s). An activation function that introduces non-linearity to the model is applied at the end of

each layer. Common examples include Sigmoid, Hyperbolic Tangent (Tanh), and Rectified Linear

Unit (ReLU).

A Deep Neural Network (DNN) is an ANN with multiple hidden layers and a substantial amount

of neurons, enabling them to learn complex and hierarchical data representations. Examples in-

clude Convolutional Neural Networks (CNNs) for image data processing, Recurrent Neural Net-

works (RNNs) for sequential data and natural language processing, and Generative Adversarial

Networks (GANs) for synthetic data generalization.

5
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2.1.2 Training and Inference in Machine Learning

Training and inference are two fundamental stages in the lifecycle of an ML model.

Training

Training refers to the process of teaching an ML model to make predictions on pre-collected data

(i.e., input). The input is usually in a vector form known as features. Choices of ML models

include NNs, Support Vector Machines, Linear Regression models, etc. The hypothesis space in an

ML problem is the set of all possible functions/hypotheses that a learning algorithm considers as

potential solutions. The space is parameterized by a vector representing the parameters or weights

and biases of an ML model. By utilizing the training data, the goal of this learning algorithm is to

solve an optimization problem and find the best hypothesis that approximates the actual relationship

between input features and the target output. Gradient, a vector that represents the direction and

slope of a function, plays a crucial role in model training. In ML, this function is usually a loss

function that quantifies the difference between the predictions and expected outputs of the training

data. Examples of common loss functions are Cross-Entropy (CE) Loss for classification tasks and

Mean Squared Error (MSE) for regression tasks. In a Supervised Learning procedure, for instance,

the model can iteratively adjust its parameters to minimize errors in its predictions based on the

gradient information of a loss function. The gradient of a loss function with respect to each parameter

is calculated by taking the partial derivatives of the loss function with respect to each parameter.

We can then evaluate the model’s performance using labelled test data, which is exclusive from

the training data, to test whether the model generalizes to unseen data points during the training

process. In a multi-class classification scenario, we train the ML model to classify each input into

one of the problem’s classes. We record model accuracy by counting the proportion of predictions

that match the actual class labels in the test data.

For example, training an NN in a Supervised Learning setting involves five stages:

1. Forward Propagation: Obtain the predicted output from the received input data.

2. Loss Calculation: Compute the training loss using a loss function on a labelled dataset.

3. Backward Propagation: Calculate the gradients of loss with respect to the model parameters

(weights and biases).

4. Gradient Descent: Update the model parameters with the calculated gradients, aiming at loss

minimization.

5. Iteration: Repeat steps one to four until loss converges or a stopping condition is met.

Inference

Once the ML model is trained, it can be deployed to make predictions about new, unseen input data

by applying its learned parameters. For example, in a multi-class classification task, the output of

the ML model is the predicted class label of each input. The prediction can be in different forms.

Hard label refers to the most likely class the model thinks the input belongs to. Soft label refers to

a vector of probabilities representing the likelihood for the input to each class of the classification

problem. Top-k prediction refers to the top k highest-probability predictions made by the model
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based on an input. Confidence value/score is a presentation of top-k prediction that indicates how

certain the model is about the predictions. The confidence value is often expressed as a probability.

A hard-label prediction can also be referred to as a top-1 prediction.

2.1.3 Knowledge Distillation

Knowledge distillation [33], [34] is a subset of model compression techniques, aiming to reduce the

ML model’s size and computational cost while maintaining its accuracy. The goal of knowledge

distillation is to save computational resources and costs by distilling a large teacher model into

a relatively smaller student model with comparable performance. It can be categorized based on

the knowledge form: response-based knowledge, feature-based knowledge, and relation-based knowl-

edge [34]. Feature-based knowledge distillation encourages the student to learn from both the output

of the final layer and the outputs of intermediate layers, such as feature maps [35], [36] and attention

maps [37]. Similarity-preserving knowledge distillation measures the similarity between teacher and

student models’ activation maps and reflects it on distillation loss to boost the distillation effective-

ness [38]. Relation-based knowledge distillation, on the other hand, studies the relationships between

different feature maps among model layers [39]. However, these two common knowledge distillation

techniques require white-box access to the teacher model’s internals, which differs from our scenario

(i.e., the teacher/cloud model is proprietary). Response-based knowledge distillation aims to train

a lightweight student model to mimic a sophisticated and complex teacher model’s behavior based

on the teacher’s response from the last output layer (i.e., soft labels). Meng, et al. [40] proposed

a conditional knowledge distillation where students can selectively learn from ground-truth labels

to boost accuracy. However, knowing the actual label is a hard assumption and differs from our

problem setting. Knowledge distillation techniques can also be used adversarially, becoming model

extraction, which is covered in Section 2.2.1.

2.1.4 Machine Learning as a Service

Machine Learning as a Service (MLaaS) refers to a cloud computing service provided by service

providers for profit. Examples of cloud service providers include Amazon Web Services (AWS),

Google Cloud, Microsoft Azure, and IBM Watson. They offer a variety of ML tools for data pro-

cessing, training, and inference/deployment phases with accessible monitoring and management

interfaces, allowing users to use sophisticated ML features without the need for substantial invest-

ment in their own infrastructure development. For inference support, cloud service providers can

offer query API access to pre-trained models spanning different ML tasks and charge users on a

per-query basis. Depending on the amount of information they are willing to disclose, providers

may opt to reveal details about the model architecture and confidence scores for interpretability or

simply provide the final hard labels [41].

2.2 Trustworthy Machine Learning

In the field of information security, the CIA triad (confidentiality, integrity, and availability) is

fundamental to creating and maintaining secure data and systems. Similar concepts also apply

to ML-based systems. Confidentiality ensures that the information is only accessible to authorized
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entities. Integrity ensures that the information is unaltered, accurate, and trustworthy over its entire

lifecycle. Availability ensures that the information and resources are accessible to authorized entities

whenever needed. In ML-based systems, the information and resources include data and ML models

involved.

2.2.1 Model Confidentiality

Model Extraction

Model extraction/stealing is a realistic adversarial attack that infringes the intellectual property

(IP) of ML models, where the attacker reproduces a model by stealing the model’s parameters,

decision boundaries, or functionalities. It can be done via a prediction query interface [42]. Model

extraction attacks become a real concern with the prevalence of MLaaS systems. The motivations

for the adversaries to steal a model are often cost-driven, i.e., when the cost of training their own

model exceeds the cost of model extraction in order to reach the same performance. The attacker

aims to replicate the victim model’s high performance with a minimal number of queries, ensuring

the theft requires less effort than training a new model from scratch. A representative work of model

extraction is proposed by Tramèr, et al. [42]. It aims to create a replica of a high-performance and

confidential model based on input-output information via a publically accessible API. This query-

based stealing attack does not require access to the original model’s parameters or architecture;

hence, it demonstrates the feasibility of a model extraction attack. Many prior works demonstrate

successful model extraction with various levels (i.e., partial or zero) of knowledge on the victim

model and training data (i.e., black-box, data-free, hard-label setting) [43]–[47]. Related defenses

include watermarking schemes that embed information into model parameters or training datasets for

future ownership claim [48]–[51], fingerprint-based methods that extract model characteristics such

as decision boundaries [52], [53], and verification-based proof of ownership for IP protection [54], [55].

Analyses of model extraction [41], [56] are also in active research. Rather than model compression or

extraction/stealing, we incorporate knowledge transfer for privacy preservation in a non-adversarial

manner to recover the utility loss brought by LDP. We also quantitatively demonstrate that LDPKiT

differs from an adversarial model extraction attack in Section 4.4.

2.2.2 Data Confidentiality and Privacy

Privacy denotes an individual (or organization)’s ability to choose whether, when, and to whom the

personal (or organizational) information is to be disclosed [57], [58]. It is complementary to the CIA

triad, especially confidentiality.

A privacy breach happens when data existence or data content is exposed to an unauthorized

party. Similar to ML model confidentiality, the occurrence of privacy-related attacks and defenses

on data can also be classified into training and inference phases.

Training Data Privacy

A membership inference attack is a type of adversarial attack on ML models where the attacker aims

to determine whether a specific data point exists in the (proprietary) training dataset used to train

the model [7]. To exploit data content, a model inversion attack attempts to infer and reconstruct
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the input data from the model’s outputs [59]. Gradient-based data reconstruction attacks extract

input data from the model’s gradient information [60]–[62]. This type of attack requires some knowl-

edge of the ML model’s internals, so it is typically applied in a Federated Learning (FL) setting. As

for countermeasures, differentially-private models (e.g., with DP-SGD) can mitigate model inference

attacks by their nature [7], [63]–[65]. Confidence masking [66], [67] and regularization [68]–[70] are

also common defenses against membership inference attacks. A model inversion attack can be miti-

gated by adding noise or perturbing and rounding to confidence scores before making them available

as outputs and minimizing the input-output dependency [71]. Gradient-based data reconstruction

attacks in FL can be mitigated by secure aggregation [72], [73] with communication-efficient learning

algorithms such as FedSGD and FedAVG [62], [74].

Inference Data Privacy

Privacy breaches during inference time (i.e., ML models are trained and deployed) are more straight-

forward. The concerns come from an unauthorized third party having access to the inference inputs

that contain sensitive information. The third party can be an honest-but-curious model owner, a

malicious platform that deploys the ML model, or a compromised platform that may unintention-

ally leak private information to other adversarial attackers. As mentioned, this thesis focuses on the

privacy concerns of inference data and aims to provide a privacy protection solution on inference

data when using an ML model deployed on an honest-but-curious platform.

LDPKiT provides an inference data privacy protection solution with LDP noise injection to

the sensitive data before data transmission. Other privacy protection techniques also exist during

inference time. One class of privacy protection methods is data encryption with homomorphic

algorithms, which suffers from high computational overheads [15], [16]. In contrast, LDPKiT is

more efficient, as it does not require complicated computation to be performed for each query.

Hardware-assisted inference in Trusted Execution Environments (TEEs) is another approach [17].

A TEE is a secure area within a processor that provides a safe environment for sensitive code

execution and prevents unauthorized access. For instance, Slalom puts the computation in a TEE

to address inference privacy on remote services [17]. However, Slalom does not protect against the

risks of side-channel attacks. Since TEEs have access to the original data, privacy breaches can still

happen if the attackers compromise the TEEs [19], [20], [75]. Side-channels are not a threat for

LDPKiT since it does not transmit the original data, and any privacy leakage is bounded by the

LDP noise.

2.2.3 Integrity and Availability

An ML model’s integrity and availability can be compromised by attacking its training dataset. The

goal is to induce undesired model behavior, especially model outputs (e.g., low quality/accuracy

and constrained access). The adversary can poison the training data by data injection (inject

adversarial samples) or data manipulation (alter training data/label) to corrupt model training or

slow down the computation speed [76], [77]. The adversary may also modify the model by logic

corruption (tampering with the ML algorithm) [78]. Similarly, during inference time, the adversary

can breach model integrity through evasion attacks by manipulating the input data, leading to

incorrect predictions [79]. Additionally, energy-latency attacks can be employed to harm the model’s
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availability, which significantly increases the computational energy consumption, potentially causing

a Denial of Service (DoS) for the deployed models [80]. Related defenses and analyses are in active

research [81]–[84].

2.3 Implementation Background

2.3.1 Differential Privacy

According to Dwork [85], Differential Privacy (DP) refers to the insensitivity of model output on

one data point, i.e., addition or removal of one data point should not affect model performance.

It is a rigorous mathematical notion of privacy that helps prove the existence of privacy in ML

mechanisms.

DP can be used either locally [86] or globally [63]–[65], and both methods provide provable

privacy guarantees.

Global Differential Privacy

Global Differential Privacy (GDP) is a privacy guarantee applied to the outputs of queries from a

computation instead of the data samples themselves. Hence, a trusted curator or aggregator who

has access to raw data is required in the setting to apply this privacy-preserving mechanism before

publishing the sensitive data.

Definition 2.3.1. ϵ-Differential Privacy A randomized algorithm A satisfies ϵ-Differential Pri-

vacy if, for any two input datasets, D and D′ that differ at most one element and for any subset of

output S, the following equation holds:

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] (2.1)

There also exists different DP variants [87]–[90]. For example, (ϵ, δ)-Differential Privacy is defined

as follows [90].

Definition 2.3.2. (ϵ, δ)-Differential Privacy A randomized algorithm A satisfies (ϵ, δ)-Differential

Privacy if, for any two input datasets, D and D′ that differ at most one element and for any subset

of output S, the following equation holds:

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ (2.2)

In both equations, ϵ refers to the upper bound on the privacy loss. The smaller ϵ, the tighter the

bound, and the stronger the privacy guarantee. δ in the second equation is a bias or relaxation term

indicating the probability of accidental information leak. Hence, (ϵ, δ)-DP provides a more relaxed

bound than ϵ-DP. One key property of DP is that the more robust the privacy guarantee a DP

algorithm provides, the less utility (prediction accuracy) the model has.

Local Differential Privacy

The above section provides definitions for GDP. GDP shares original input data with a trusted data

curator, which is responsible for applying noise to the aggregated data. In this case, the curator
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has access to the original sensitive data. To remove this point of trust, LDPKiT uses an LDP

mechanism. LDP is a more decentralized DP mechanism. It was first introduced by Warner [91]

as a survey technique to deal with randomized responses. Now, it is widely used in a local setting

where the user perturbs her private data before transmitting them to an untrusted server. This

privacy-preserving mechanism does not require a trustworthy central curator, since the data points

are anonymized at the source as part of the data collection and pre-processing.

Definition 2.3.3. ϵ-Local Differential Privacy. We define ϵ-LDP as follows [85]: A randomized

algorithm A satisfies ϵ-LDP if for all pairs of values and all sets S of possible outputs, where

S ⊆ Range(A),

Pr[A(v1) ∈ S] ≤ eϵ Pr[A(v2) ∈ S] (2.3)

A lower ϵ value indicates a tighter bound of the equation and a stronger privacy guarantee.

GDP and LDP have different application scenarios. GDP is more suitable for a controlled

environment with a trusted curator, whereas LDP is preferred when local data sources do not

trust the curator and wish to control their own data privacy, or when data aggregation is not

required. Generally, GDP leads to higher utility and prediction accuracy for the same level of

privacy protection (i.e., noise level) compared to LDP because noise is added to aggregated results

rather than to each individual data point, which amplifies the perturbation in LDP. Nevertheless,

a common challenge of DP schemes is to find a balance between utility and privacy.

LDP noise can be injected into different phases during inference. While we add ϵ-LDP noise to

original inputs before offloading inference to the cloud, similar to [21], noise can also be injected into

inference frameworks deployed on a split computation setting [92]–[95], where the DNN is partitioned

between the cloud and edge devices. These schemes involve a white-box model, so noise can be added

to intermediate representations, which is different from our setting.

2.3.2 Active Learning

Active Learning (AL) [96] is an ML strategy in which the learning algorithm interactively queries

an oracle (e.g., a human annotator) to generate a labelled training dataset. In our problem setting,

the oracle is the untrusted cloud model. The goal is to train the model with fewer data points while

maintaining performance; hence, the key is to select informative or representative instances to query

and train the model. This learning technique is particularly useful when labelled data is scarce or

expensive.

In general, AL can be categorized into three scenarios based on where the queried instances come

from, i.e., pool-based, stream-based selective sampling, and query synthesis. Pool-based AL selects

query candidates from an existing data pool based on an information measurement score associated

with each instance in the data pool. Stream-based AL can handle stream data, as the learner can

immediately decide whether the upcoming data point should be labelled or discarded. Since the

decision is on the fly, the setting is also called online AL, and decisions are made independently

without comparison among different instances [97]. In the query synthesis AL scenario, the learner

can generate its own data samples to label [98]. However, because the model needs to create

samples based on the knowledge it has, it can introduce human-unreadable samples that are useless

in training. Hence, this scenario is not as well-developed as the other two.
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Among all scenarios, pool-based selective sampling is the most common case and aligns with

our problem setting. The instances to be labelled are selected iteratively using a querying strategy.

Different querying strategies calculate the information measurement score of instances (i.e., infor-

mativeness and representativeness) differently. To rank samples based on their representativeness,

querying strategies include cluster-based sampling [99] that utilizes cluster structure, density-based

sampling [100] that considers the distribution and information density of instances and the expected

loss on unlabeled data [101]. On the other hand, uncertainty-based sampling is the most studied

sampling method for ranking instances based on their informativeness [102], [103]. Intuitively, the

samples with higher classification uncertainty provide more information to the model. Under this

category, there are three different strategies: uncertainty sampling, which selects the data point close

to the decision boundary; margin sampling, which selects the data point whose top two prediction

probabilities are close; and entropy sampling, which selects the data point with the largest output

entropy value.

Definition 2.3.4. Entropy Sampling. In our case, we use entropy sampling, since we have a

multi-class problem. Mathematically, entropy can be represented by a function U such that:

Uentropy(x) = −
N∑
i=1

p(xi) log p(xi) (2.4)

In this context, high entropy indicates that the predicted probabilities are distributed more evenly

across different classes, suggesting higher uncertainty and an increased likelihood of being selected

for querying. Training the model with the most uncertain instances allows it to learn more effectively

with fewer samples compared to using random sampling (i.e., random order of training data).

2.4 Loss Functions

As discussed in Section 2.1.2 above, the choice of loss function is important in model training. In

this section, we introduce the loss functions used in our design. Since we assume a supervised

multi-class classification task with a hard-label setting in our scenario, we use CE Loss in our

implementation. We also extend our experiments to training with softmax values provided, so we

incorporate Kullback–Leibler Divergence (KLDiv) Loss in the loss function as a variant.

2.4.1 Cross-Entropy Loss

Cross-entropy measures the difference between two probability distributions for a given random

variable or set of events. In ML, it can be used to measure the difference between the ground-truth

label and the model’s predicted probability distribution. For a batch of N data samples and C

classes, CE Loss is defined as follows:

Definition 2.4.1. CE Loss.

CE(y, ŷ) = − 1

N

N∑
j=1

C∑
i=1

yji log(ŷji) (2.5)

In this equation, yji refers to the ground-truth label for the j-th example in the i-th class. ŷji



2.5. EVALUATION METRICS 13

refers to the model’s predicted probability for the j-th example in the i-th class, and typically, it

is the softmax function output of the model under training. The goal is to minimize the difference

between the predicted probabilities ŷ and the ground truth labels y.

2.4.2 Kullback–Leibler Divergence Loss

Kullback-Leibler Divergence (KLDiv) loss is commonly used in knowledge distillation, which also

measures the difference between two probability distributions. Specifically, it is used to measure the

information loss by approximating one distribution with another. In LDPKiT, we use KLDiv loss

when we study the effect of the remote model’s softmax values on utility recovery.

For a batch of N data samples and C classes, KLDiv Loss is defined as follows:

Definition 2.4.2. KLDiv Loss with Temperature Scaling.

KL(PT ∥QT ) =
1

N

N∑
i=1

C∑
j=1

PT,j(zi) log

(
PT,j(zi)

QT,j(zi)

)
(2.6)

where

PT,j(zi) =
ezj/T∑C
k=1 e

zk/T
(2.7)

and

QT,j(zi) =
eẑj/T∑C
k=1 e

ẑk/T
(2.8)

In a teacher-student knowledge distillation scenario, zi refers to the teacher model’s logits for i-th

class, and ẑi refers to the student model’s logits for i-th class. The temperature parameter, denoted

as T , is a scaling factor that softens the probabilities. The probability distributions PT and QT are

the temperature-scaled softmax outputs from the teacher and the student model, respectively. The

goal of KLDiv loss is to make the student model’s softened prediction probability distribution, QT ,

as close to the teacher model’s softened probability distribution, PT , as possible.

LDPKiT supports image and text modalities. The above loss functions are applied to image

modality only. We omit the loss function choice for text modality as the details are discussed in

[104].

2.5 Evaluation Metrics

A Confusion Matrix is particularly useful in the performance evaluation of a classification algorithm.

It contains four components:

• True Positive (TP): The number of data samples where the classification model correctly

predicts as the positive class.

• True Negative (TN): The number of data samples where the classification model correctly

predicts as the negative class.

• False Positive (FP): The number of data samples where the classification model incorrectly

predicts as the positive class
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• False Negative (FN): The number of data samples where the classification model incorrectly

predicts as the negative class

To evaluate the classification model performance with LDPKiT, we use the accuracy metric, which

is the ratio of correct predictions over the total number of predictions. The accuracy metric in-

dicates how often the classification model makes correct predictions, which is one of the perfor-

mance metrics derived from the Confusion Matrix. Accuracy can be calculated using the formula:

Accuracy = TP
TP+TN+FP+FN.

Additionally, as mentioned in Section 1, we use Zest distance [22] to demonstrate how LDPKiT

differs from an adversarial model extraction attack. Zest utilizes Local Interpretable Model-Agnostic

Explanations (LIME) [105] to create local linear approximations of models at each reference data

point. By calculating the Cosine Distance between the weights of these linear approximations, Zest

can compare the global behaviors of different models and identify the existence of model extrac-

tion. The detailed model extraction attack detection procedure will be discussed in Section 4.4 of

Chapter 4.



Chapter 3

Design and Implementation

3.1 Threat Model

Our goals are to protect sensitive user queries when using an ML cloud service during inference

time and to recover some accuracy loss due to privacy-protective LDP noise added to the queries.

Traditionally, DP seeks to bind the probability of an adversary being able to distinguish whether or

not a user’s contribution is present in the results of a query, providing a level of privacy protection

for the user. In our scenario, the user is a customer of the cloud service, so the user’s identity is

already known to the cloud service provider, and so is the source of all the data the user submits. In

addition, the user’s data is not used for training and will not be made part of any dataset, so there

is no threat of a membership inference attack on the user by an adversary querying the cloud model.

Instead, our goal is to bound the probability that an attacker, e.g., the cloud provider, can infer

whether the content of a user’s query (i.e., one data point in the user’s sensitive dataset) matches

that of a particular value. This provides a form of plausible deniability as an adversary cannot say

with certainty what the user’s original query input was. However, LDPKiT may leak information

about the distribution of the queries. We assume that the user’s queries share the same distribution

as the cloud model’s training data, meaning the cloud model is familiar with the distribution of the

user’s queries. This assumption is reasonable because ML tasks are typically specialized, and the

user is more likely to select cloud services that match her specific needs. We also assume the cloud

model provider is honest but curious. It honestly answers the user’s queries but may record both

the queries and their results to infer information about the user. We also restrict access to the cloud

model by assuming that the cloud model returns hard labels only, which makes knowledge transfer

more difficult [42], [106].

3.2 Preliminaries

We use the notations in Table 3.1 throughout the thesis.

Note that Dpriv can be a predefined or dynamically generated set of i.i.d. data points. We denote

the number of queries (i.e., size of Dpriv) as |Dpriv|. Similarly, the size of Dval is denoted as |Dval|.
As described above, we use SIDP to denote the standard privacy-preserving inference scheme.

Our definition of standard LDP-provable noise injection mechanism, or SIDP, has two steps: adding

15
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Table 3.1: Notations used throughout the thesis.

Notation Type Description
MR Model Remote model hosted by the cloud provider
ML Model Local model hosted by the user

Dpriv Dataset Sensitive dataset for which the user wishes to query and attain labels
from MR; Each data sample (query) in the dataset is i.i.d.

Dval Dataset Validation dataset for model evaluation on unseen data, separate
from the training process; Each data sample in the dataset is i.i.d.

SIDP Methodology Standard privacy-preserving inference scheme with LDP
LDPKiT Methodology Our privacy- and utility-preserving inference scheme with LDP
LDPKiT-AL Methodology LDPKiT with AL query selection strategy

Noise Injection Stage
Data Pre-processing 

with LDP

LDPKiT

SIDP

Cat

(Noisy Data)

(SIDP Noisy Results)

Training with 
Noise^2

Dog

(MR)

(ML)Dog

Inference

(MR)

Figure 3.1: LDPKiT system overview.

LDP noise to queries before sending them to MR, and MR returning noisy prediction results (with

some errors) on the noisy queries.

Figure 3.1 presents an overview of LDPKiT, which has three stages: noise injection, remote

inference/SIDP, and local training. Prior to querying MR for inference, LDPKiT adds ϵ-LDP [85]
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or ϵ-Utility-optimized Metric LDP (UMLDP) noise to the sensitive data points in Dpriv, depending

on the modality. Once MR returns inference results, LDPKiT enters the local training stage. We

elaborate on our design in the following sections.

3.3 Noise Injection

LDPKiT adds Laplacian noise to the sensitive queries in Dpriv to obtain the ϵ-LDP guarantee [85]

for image data and conducts text sanitization with ϵ-UMLDP privacy guarantee [107] for textual

data. We define ϵ in the context of LDP; hence, the same amount of noise is added to each data

sample in Dpriv based on the ϵ value. Specifically, since we focus on providing plausible deniability

for each query and we make the assumption that each query from Dpriv is i.i.d., the formulation of

ϵ-LDP holds for each data point in Dpriv. In other words, the privacy leakage is not cumulative and

is bounded by ϵ per query.

As a recap, ϵ-LDP is defined in Section 2.3.1 with the following equation for all pairs of input

values (v1, v2) and all sets of outputs S:

Pr[A(v1) ∈ S] ≤ eϵ Pr[A(v2) ∈ S]

Definition 3.3.1. Laplacian Mechanism. The Laplacian mechanism of LDP adds noise drawn

from the Laplacian distribution, with the probability density function (PDF) defined as follows for

a variable z and a scaling factor λ:

L(z, λ) =
1

2λ
exp

(
−|z|

λ

)
(3.1)

We prove that LDPKiT’s noise injection scheme satisfies the definition of ϵ-LDP with the Lapla-

cian mechanism as follows.

Theorem 3.3.2. LDPKiT’s noise injection algorithm satisfies ϵ-LDP where ϵ =
∆f

λ

Proof. Let v be the original data and f(v) be the query and computation function performed on

the data with function sensitivity, ∆f = maxv1,v2 ∥f(v2) − f(v1)∥1. We define the randomization

algorithm A with Laplacian mechanism such that for any input value v, A = f(v) + Z, where Z is

sampled from the Laplacian distribution L(z, λ) with scaling factor λ set to
∆f

ϵ .

The probability that A has an output s ∈ S given an input v can be expressed as:

Pr[A(v) = s] = Pr[f(v) + Z = s]

= Pr[Z = s− f(v)]

=
1

2λ
exp

(
−|s− f(v)|

λ

)
for all s ∈ S.

To satisfy ϵ-LDP, we need Equation 2.3 to hold for any output s ∈ S and any input pairs v1 and

v2.

By substituting the PDF of Laplacian distribution’s new expression into the Equation 2.3, we

get
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1
2λ exp

(
− |s−f(v1)|

λ

)
≤ eϵ 1

2λ exp
(
− |s−f(v2)|

λ

)
which simplifies to

exp
(

|s−f(v2)|−|s−f(v1)|
λ

)
≤ eϵ

With λ =
∆f

ϵ , the equation becomes:

exp

(
ϵ · |s− f(v1)| − |s− f(v2)|

∆f

)
≤ eϵ (3.2)

for all pairs of v1 and v2.

Since |s− f(v1)|− |s− f(v2)| ≤ ∆f by the definition of function sensitivity, Equation 3.2 always

holds.

Laplacian noise is suitable for certain types of data, such as images. However, it would severely

damage the semantic meaning of textual data because they are context-dependent and discrete.

Hence, we use ϵ-UMLDP [107], an LDP notion tailored for NLP tasks with promising model ac-

curacy (utility). ϵ-UMLDP [107] performs text sanitization on a vocabulary V by splitting V into

sensitive (VS) and insensitive (VN ) vocabularies based on the word rareness. The intuition is that

insensitive words such as “a/an/the” are more frequently used in the English context. In contrast,

sensitive words that contain private information such as birthdate, address, and password are used

less frequently. The definition of ϵ-UMLDP is as follows.

Definition 3.3.3. ϵ-UMLDP [107]. If the user has a sensitive word x ∈ VS and an insensitive

word y ∈ VN , The probability to replace x with y is as follows:

Pr[M(x) = y] = C · exp (−ϵ · d(ϕ(x), ϕ(y)))∑
y′∈VN

exp (−ϵ · d(ϕ(x), ϕ(y′)))
(3.3)

where d(ϕ(x), ϕ(y)) = 4
∣∣∣ 1−eCosine Sim(ϕ(x),ϕ(y))−1

eCosine Sim(ϕ(x),ϕ(y))−1

∣∣∣ and C is a constant normalization factor.

The complete proof of ϵ-UMLDP can be found in the original paper [107]. This normalized

probability distribution provides ϵ-UMLDP privacy guarantee. It retains some semantic information

for utility preservation by replacing the sensitive token x in VS with the most semantically similar

sanitized (insensitive) token y in VN before sending it to an untrusted third party. We modify the

original implementation of ϵ-UMLDP slightly to make the dataset-dependent ϵ values comparable

to those used in the image analysis.

The details and analyses of these changes are discussed as follows. As described in Defini-

tion 3.3.3, we made some slight modifications to the ϵ-UMLDP formula from the original text

sanitization paper [107]. In the original paper, the token sanitization probability controlled by the

privacy budget, ϵ, is as follows:

Pr[M(x) = y] = C ·
exp

(
− 1

2ϵ · d euc(ϕ(x), ϕ(y))
)∑

y′∈VN
exp

(
− 1

2ϵ · d euc(ϕ(x), ϕ(y′))
) (3.4)

In our implementation, we remove the 1
2 normalization factor before ϵ and more importantly,

instead of Euclidean Distance, we use a scaled Cosine Similarity metric for token embedding distance
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measurement. Specifically,

d(ϕ(x), ϕ(y)) = 4

∣∣∣∣1− exp(Cosine Sim(ϕ(x), ϕ(y))− 1)

exp(Cosine Sim(ϕ(x), ϕ(y))− 1)

∣∣∣∣ (3.5)
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Figure 3.2: Relationship between the scaled cosine similarity and distance metrics of two token
embeddings.

We replace Euclidean Distance with Cosine Similarity because it is more commonly used in mea-

suring the differences among embeddings in NLP tasks [108]–[110]. We scale the results of Cosine

Similarity between two embeddings with the function 4
∣∣∣ 1−exp(Z−1)

exp(Z−1)

∣∣∣, where Z is Cosine Sim(ϕ(x), ϕ(y)),

so that the more similar two tokens, ϕ(x) and ϕ(y), are, the smaller d(ϕ(x), ϕ(y)) becomes, and the

likelihood of replacement increases more drastically. Similarly, we penalize the dissimilar tokens to

preserve utility. Figure 3.2 shows the scaled Cosine Similarilty function. As the similarity approaches

1.0, d(ϕ(x), ϕ(y)) approaches zero. We do not need to worry about d(ϕ(x), ϕ(y)) becoming zero be-

cause the sets of sensitive and insensitive tokens are mutually exclusive. Same as the original paper,

the likelihood of the replacement increases when the two tokens are more similar, i.e., d(ϕ(x), ϕ(y))

is smaller. We make the above changes so that the ϵ values we present in Section 4 are comparable

to the values we use for image benchmarks. These changes do not augment the effect of the original

ϵ-UMLDP implementation.

More details regarding applying ϵ-UMLDP in LDPKiT are discussed in Yang’s thesis report [104].
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3.4 Privacy-preserving Inference and Local Model Training

with Noiseˆ2

When noise is added to a model input, it will translate into noise in the predicted label of the model

output. One way to remove noise is through repeated queries, which is why most DP schemes define

a “privacy budget” for repeated queries. Because the noise added by the LDP mechanism is inde-

pendent of the underlying inputs, repeated queries to the cloud model with different random noise

will progressively leak more information [111], [112]. Our intuition is that the repeated responses

that the cloud model returns to the user should similarly leak more information about the “true

label” that the cloud model would have predicted in the absence of LDP noise. We test this intuition

by conducting a simple experiment on 1k random data samples in CIFAR-10 [113] with ResNet-152

(MR) and ResNet-18 (ML) [114]. We apply LDP noise on the 1k i.i.d. samples, repeatedly query

each sample 1k times, and train for 200 epochs. The amount of LDP-provable Laplacian noise we

add to each sample satisfies ϵ-LDP where ϵ = 5. To mitigate the random noise among different

runs and different datasets, we evaluate it on three different sets of 1k random data points, and we

run each experiment three times (9 runs in total). Since MR returns different responses each time

on the same samples with a different noise, these responses can “collaborate”, and the assembled

knowledge can be transferred to ML throughout training. The experimental results show that ML

gains enough knowledge about the original data samples to improve the prediction accuracy on them

by 14.14%, from 63.89% to 78.03%, with statistical significance indicator p = 0.0018 (i.e., p < 0.05

indicates that the result is statistically significant). It demonstrates that ML can learn to remove

noise given noisy labels. However, repeatedly querying the same samples with noise will also leak

private information about the samples to MR over time, which is undesirable. We, thus, investigate

whether ML can learn about original samples when presented with noisy labels from querying dif-

ferent noisy samples. As a result, each i.i.d. element of Dpriv is queried with a single application of

noise, thus preserving LDP privacy guarantees for each query.

To realize our idea, LDPKiT first sends these privacy-preserved queries to MR and stores MR’s

predictions for further training on ML. LDPKiT trains ML with noised data from a sensitive

dataset, Dpriv, and MR’s noisy predictions on those noisy data (hence noiseˆ2). We then use ML

to infer the correct labels on the original (noise-free) samples in Dpriv. LDPKiT can also be applied

to an online learning setting where the user can iterate the entire process and periodically train ML

using MR’s predictions on new inference queries.

Advanced ML training techniques such as AL [96], and core-set strategies [100] can be used for

query selection if Dpriv is large. Related evaluations are presented in Section 4.5.



Chapter 4

Evaluation

In this section, we answer our three research questions in Section 1.1 with empirical analysis.

RQ1. Does LDPKiT recover utility impacted by LDP noise?

RQ2. How does the number of queries impact LDPKiT?

RQ3. How does LDPKiT differ from an adversarial model extraction attack?

4.1 Experimental Setup

We evaluate LDPKiT on two modalities: image and text. The ML models we use in image classifica-

tion benchmarks are ResNet-152 (MR) [114], ResNet-18 (ML) [114] and MobileNetV2 (ML) [115] .

We evaluate LDPKiT on three diverse datasets, namely CIFAR-10 [113], Fashion-MNIST [116], and

SVHN [117]. For the NLP benchmark, we use a customized transformer-based model [118], where

MR has two encoder blocks and ML has one, denoted as Transformer EN2 and Transformer EN1

(See more information in [104]). We run the experiments on CARER’s emotion dataset [119].

As discussed in our setting, we have a sensitive dataset (Dpriv) of size |Dpriv|. Each data sample

(i.e., query) from Dpriv is i.i.d., and the differentially private noise applied to each data sample does

not depend on others; hence, each data sample has its individual privacy budget, ϵ, and privacy

leakage does not accumulate. Two parties are involved: MR deployed on a remote cloud and ML

deployed on the user’s trusted local device. ML is a model randomly initialized with random weights.

We assume that MR only returns the hard labels. The user’s goal is to obtain accurate predictions

on the sensitive data points in Dpriv from the cloud-hosted MR while minimizing privacy leakage.

We construct differentMR for different tasks and datasets. For image modality, we train ResNet-

152 on 35k, 35k, and 48,257 data points for CIFAR-10, Fashion-MNIST, and SVHN, respectively.

For text modality, we train Transformer EN2 on 210k data points for CARER. Then, we create Dpriv

and a validation dataset, denoted as Dval, using the left-out portion of the datasets that are unseen by

MR. Dval is isolated from the training process and evaluates ML’s generalizability on unseen data.

For CIFAR-10, Dpriv has 15k data points, and the Dval has 10k data points. For Fashion-MNIST

and SVHN, |Dpriv| is 25k for both datasets, and the sizes of Dval are 10k and 26,032, respectively.

Since CARER has over 410k data points, about 5× larger than image benchmarks, Dpriv, in this

case, is larger, containing 70k data samples, and the Dval has 10k samples. As a reference, when

no privacy protection exists and thus no noise is added, MR’s accuracies on Dpriv of CIFAR-10,

21
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Fashion-MNIST, SVHN, and CARER are 87.85%, 93.49%, 95.20%, and 91.00%. The accuracies on

Dval are 87.10%, 93.22%, 96.30%, and 90.00%, respectively. For all the experiments, we gradually

expand Dpriv and train ML on noisy data and labels iteratively to study the effect of |Dpriv|. In

each iteration, LDPKiT randomly selects a small batch of samples from Dpriv (1.5k for CIFAR-10,

2.5k for Fashion-MNIST and SVHN, and 7k for CARER NLP benchmark), adds LDP noise, and

then sends them to MR to attain noisy labels. The ϵ values we present in our evaluation are 15, 10,

7, 5, and 3 across all the benchmarks, which are generally accepted by the industry standard [120],

[121]. As a recap, ϵ is defined in the context of LDP, so we add the same amount of noise to each

data sample in Dpriv before querying. We also assume that each query in Dpriv is independent, so

the information inferred from one data sample does not leak information from other data samples in

Dpriv (i.e., privacy leakage on Dpriv is not cumulative). We collect and report ML’s accuracies on

the original samples in Dpriv and Dval, where ML is trained on noisy data from Dpriv with different

noise levels (noiseˆ2).

We run our experiments on two machines. One has two GPUs with models NVIDIA GeForce

RTX 3090 and 4090 with 24GB of dedicated memory and an Intel 12th Gen i7-12700 CPU with 12

cores and 64GB of RAM. The other has two NVIDIA GeForce RTX 4090 GPUs and an AMD Ryzen

Threadripper PRO 5955WX CPU with 16 cores and 64GB of RAM. The underlying OS are 64-bit

Ubuntu 22.04.3 LTS and Ubuntu 24.04 LTS, respectively. We use Python 3.9.7 and PyTorch v2.1.2

with CUDA 12.1. All experiments are repeated over three random seeds to determine the statistical

significance of our findings. We conduct the dependent two-sample t-test on our results and collect

the p values. We find that most of the improvements are statistically significant (i.e., p < 0.05) with

few outliers. We mark the accuracies that have p > 0.05 with an asterisk (*) in Tables 4.1 and 4.2.

For image modality, we train MR with a learning rate of 0.1 for 200 epochs on each dataset. MR

is trained on 35k data points for CIFAR-10 and Fashion-MNIST, 48,257 data points for SVHN and

210k data points for CARER. We use CE Loss and SGD optimizer [122] to train MR for each image

dataset. Dpriv and Dval are split from the remaining data points unseen by MR, where Dpriv is used

to train and evaluate ML, and Dval is used for pure model generalizability evaluation. Specifically,

CIFAR-10 has 15k data points in Dpriv, Fashion-MNIST and SVHN have 25k, and CARER has

70k. As for Dval, its size is 10k for both CIFAR-10 and Fashion-MNIST, 26,032 for SVHN, and 10k

for CARER. We train ML in an iterative learning process instead of one-shot learning to study the

effect of |Dpriv|. In each iteration, ML randomly selects 1.5k, 2.5k, and 2.5k data samples from Dpriv

for CIFAR-10, Fashion-MNIST, and SVHN, respectively. Thus, the total number of iterations is 10

for all benchmarks to finish querying the entire Dpriv. The epoch number in each iteration is set to

100 for CIFAR-10 and Fashion-MNIST and 50 for SVHN. ML’s learning rate is set to 0.1 for all

image benchmarks. We use CE loss as our loss function. We use Adam optimizer [123] for CIFAR-

10 and Fashion-MNIST and SGD optimizer for SVHN throughout the experiments presented in

Sections 4.2 to 4.5.1. We provide auxiliary experimental results on image benchmarks in Section 4.5

where LDPKiT is applied with AL or with MR’s softmax values returned. We use Entropy Sampling

as AL’s query strategy and incorporate KLDiv loss (See definition 2.4.2) in the loss calculation

when MR returns softmax information. For KLDiv loss, we set the hyperparameters α to 1.0 and

temperature, T , to 20. We keep all the other parameters and hyperparameters the same as above.

For text modality, we train MR and ML with a learning rate of 0.0001 for 20 epochs on CARER.

ML randomly picks 7k data points from Dpriv in each iteration and trains for 20 epochs per iteration,
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10 iterations in total, to query the entire 70k dataset split of Dpriv. If ML’s training dataset is the

entire noised Dpriv, eventually, ML is trained on 15k data points for CIFAR-10, 25k data points for

Fashion-MINST and SVHN, and 70k data points for CARER. The final accuracies in Figures 4.6 to

4.12, Tables 4.1 and 4.2, as well as all the Zest distances, are reported assuming ML is trained on

the entire split of Dpriv.
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Figure 4.1: Comparison of accuracies on Dpriv between SIDP and LDPKiT with different ϵ values.

4.2 RQ1: Utility Recovery

We record the final accuracies on the entire Dpriv at the last epoch of training (i.e., 15k for CIFAR-10,

25k for Fashion-MNIST and SVHN, and 70k for CARER) and show the difference of final accuracies

on Dpriv between SIDP and LDPKiT in Figure 4.1. Our results show that LDPKiT can almost

always achieve higher inference accuracy than SIDP, except in a few cases when the least noise

is added (i.e., ϵ = 15). However, there is barely privacy protection in the case of ϵ = 15 (See

Figures 4.2 to 4.5 for samples with different noise levels). As a recap, the ϵ value represents the

amount of Laplacian noise added to each data sample in Dpriv, and its value corresponds to the

value of ϵ in the LDP scheme. As more LDP noise is added to Dpriv to preserve privacy, the gap in

utility that LDPKiT provides over SIDP also increases. Therefore, LDPKiT offers greater benefits

in regimes with stronger privacy protection and correspondingly more noise.

In contrast, when privacy protection is weak, and the ϵ value is high (e.g., ϵ = 15), LDPKiT’s

improvement becomes minimal. We tabulate the numerical accuracies on Dpriv obtained in our ex-
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Original data

Masked data with epsilon value = 15.0

Masked data with epsilon value = 10.0

Masked data with epsilon value = 7.0

Masked data with epsilon value = 5.0

Masked data with epsilon value = 3.0

Figure 4.2: SVHN data samples with different noise levels.

Original:  [‘[CLS]’, ‘i’, ‘feel’, ‘sir’, ‘alex’, ‘ferguson’, ‘is’, ‘a’, ‘keen’, ‘admire’, ‘##r’, ‘and’, ‘would’, 
‘love’, ‘to’, ‘have’, ‘him’, ‘back’, ‘but’, ‘only’, ‘time’, ‘will’, ‘tell’, ‘[SEP]‘]

Substituted (ε=15): [‘[CLS]’, ‘i’, ‘feel’, ‘##cia’, ‘##py’, ‘side’, ‘is’, ‘a’, ‘keen’, ‘close’, ‘##r’, ‘and’, 
‘would’, ‘love’, ‘to’, ‘have’, ‘him’, ‘back’, ‘but’, ‘only’, ‘time’, ‘will’, ‘tell’, ‘[SEP]‘]

Figure 4.3: CARER text data sample with ϵ-UMLDP noise (ϵ = 15).

periments in Table 4.1. Our experiments show that LDPKiT provides better privacy with essentially

no loss of accuracy compared to SIDP. For instance, on CIFAR-10 with ResNet-18, SIDP provides

an average accuracy of 84.98% at ϵ = 15, while LDPKiT is able to provide a roughly equivalent

accuracy of 84.39% for a much stronger level of privacy at ϵ = 5. In contrast, at the same level of
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Original:  [‘[CLS]’, ‘i’, ‘feel’, ‘as’, ‘if’, ‘that’, ‘by’, ‘itself’, ‘would’, ‘ve’, ‘given’, ‘more’, ‘lyrical’, ‘##ly’, ‘talented’, ‘r’, 
‘amp’, ‘b’, ‘artists’, ‘like’, ‘jill’, ‘scott’, ‘a’, ‘wider’, ‘platform’, ‘without’, ‘selling’, ‘out’, ‘on’, ‘what’, ‘they’, 
‘believe’, ‘[SEP]‘]

Substituted (ε=5): [‘[CLS]’, ‘i’, ‘feel’, ‘as’, ‘if’, ‘that’, ‘by’, ‘itself’, ‘would’, ‘ve’, ‘given’, ‘more’, ‘won’, ‘##ly’, 
‘talented’, ‘r’, ‘amp’, ‘b’, ‘artists’, ‘like’, ‘travel’, ‘rid’, ‘a’, ‘increasingly’, ‘ask’, ‘without’, ‘current’, ‘out’, ‘on’, 
‘what’, ‘they’, ‘believe’, ‘[SEP]‘]

Figure 4.4: CARER text data sample with ϵ-UMLDP noise (ϵ = 5).

Original: [‘[CLS]’, ‘i’, ‘feel’, ‘cause’, ‘all’, ‘of’, ‘the’, ‘most’, ‘amazing’, ‘poets’, ‘that’, ‘iv’, ‘##e’, ‘ever’, ‘and’, 
‘when’, ‘i’, ‘use’, ‘the’, ‘word’, ‘poet’, ‘i’, ‘mean’, ‘ben’, ‘webster’, ‘or’, ‘billie’, ‘holiday’, ‘or’, ‘maya’, ‘pe’, ‘##lis’, 
‘##ets’, ‘##kaya’, ‘or’, ‘the’, ‘incredible’, ‘carmen’, ‘ama’, ‘##ya’, ‘[SEP]‘]

Substituted (ε=3): [‘[CLS]’, ‘i’, ‘feel’, ‘cause’, ‘all’, ‘of’, ‘the’, ‘most’, ‘amazing’, ‘same’, ‘that’, ‘iv’, ‘##e’, ‘ever’, 
‘and’, ‘when’, ‘i’, ‘use’, ‘the’, ‘word’, ‘some’, ‘i’, ‘mean’, ‘saying’, ‘iv’, ‘or’, ‘does’, ‘lou’, ‘or’, ‘##ant’, ‘warm’, 
‘having’, ‘more’, ‘very’, ‘or’, ‘the’, ‘who’, ‘doomed’, ‘valuable’, ‘decided’, ‘[SEP]‘]

Figure 4.5: CARER text data sample with ϵ-UMLDP noise (ϵ = 3).

privacy of ϵ = 5, SIDP only achieves an average accuracy of 63.21% by comparison. Similarly, for

CARER, SIDP provides an accuracy of 87.12% at ϵ = 15, while LDPKiT achieves an accuracy of

84.75% at ϵ = 3. This trend is also present in Fashion-MNIST and SVHN. The experimental results

demonstrate that LDPKiT can recover a majority of the utility loss due to the addition of LDP

noise.
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SIDP lines in the plots give the average accuracy across all queries at a given ϵ.

Figure 4.6: ResNet-18’s accuracies on Dpriv and Dval of CIFAR-10.

4.3 RQ2: Influence of |Dpriv| on LDPKiT

Figures 4.6 to 4.12 illustrate the accuracy of ML on Dpriv and Dval as a function of |Dpriv| at various
values of ϵ, along with the average accuracy of SIDP on Dpriv at the same values of ϵ (as dotted lines)

on CIFAR-10, Fashion-MNIST, SVHN and CARER, respectively. The accuracy plots of LDPKiT

and SIDP on the expanding Dpriv are presented in Appendix 6.1. We observe that accuracies on

Dpriv and Dval both exhibit similar and increasing accuracies as |Dpriv| increases. Moreover, we
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SIDP lines in the plots give the average accuracy across all queries at a given ϵ.

Figure 4.7: ResNet-18’s accuracies on Dpriv and Dval of Fashion-MNIST.
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SIDP lines in the plots give the average accuracy across all queries at a given ϵ.

Figure 4.8: ResNet-18’s accuracies on Dpriv and Dval of SVHN.
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Figure 4.9: MobileNetV2’s accuracies on Dpriv and Dval of CIFAR-10.

observe that for each noise level, there exists a lower bound of |Dpriv|, i.e., a cross-over point, where

the increasing LDPKiT accuracy (solid lines) exceeds the average SIDP accuracy (dotted lines).

When |Dpriv| is too small, it is not sufficient to train a ML that can outperform SIDP. Hence,

|Dpriv| needs to be larger than this cross-over point for LDPKiT to be beneficial. We notice that
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SIDP lines in the plots give the average accuracy across all queries at a given ϵ.

Figure 4.10: MobileNetV2’s accuracies on Dpriv and Dval of Fashion-MNIST.
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SIDP lines in the plots give the average accuracy across all queries at a given ϵ.

Figure 4.11: MobileNetV2’s accuracies on Dpriv and Dval of SVHN.
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Figure 4.12: Transformer EN1’s accuracies on Dpriv and Dval of CARER emotion dataset.

the |Dpriv| where the cross-over point occurs is dataset-dependent. For CIFAR-10 and CARER, the

cross-over points are lower when more noise is added. In other words, fewer queries are needed for

LDPKiT to outperform SIDP in a more privacy-protective setting. As shown in the Subplot 4.6a
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Table 4.1: Comparison of final accuracies on Dpriv between SIDP and LDPKiT.

Dataset Model Strategy Accuracy on Dpriv (%)

LDP (ϵ=15) LDP (ϵ=10) LDP (ϵ=7) LDP (ϵ=5) LDP (ϵ=3)

CIFAR-10
ResNet-152 (MR) SIDP 84.98 81.42 74.38 63.21 37.03
ResNet-18 (ML) LDPKiT 87.77 (±0.28)* 87.03 (±0.11)* 86.20 (±0.16) 84.39 (±0.13) 79.81 (±0.52)

MobileNetV2 (ML) LDPKiT 87.74 (±0.11) 86.68 (±0.14)* 85.60 (±0.23)* 83.12 (±0.76) 75.21 (±0.58)

Fashion-MNIST
ResNet-152 (MR) SIDP 89.28 83.96 72.55 57.50 39.41
ResNet-18 (ML) LDPKiT 92.73 (±0.34) 92.60 (±0.15) 92.28 (±0.30) 91.61 (±0.21) 79.69 (±0.21)

MobileNetV2 (ML) LDPKiT 92.63 (±0.03) 92.11 (±0.11) 90.67 (±1.15) 90.42 (±0.22) 76.88 (±0.49)

SVHN
ResNet-152 (MR) SIDP 90.94 83.96 73.38 60.16 38.51
ResNet-18 (ML) LDPKiT 92.17 (±0.64)* 90.71 (±0.85) 87.98 (±0.78) 87.27 (±1.07) 83.81 (±1.16)

MobileNetV2 (ML) LDPKiT 88.40 (±0.63) 86.33 (±2.15)* 83.74 (±0.44) 78.54 (±4.00) 75.77 (±3.63)

CARER Transformer EN2 (MR) SIDP 87.12 83.53 79.63 76.13 72.38
Transformer EN1 (ML) LDPKiT 89.86 (±1E-3) 89.14 (±1E-3) 88.11 (±2E-3) 87.05 (±2E-3) 84.75 (±4E-4)

Accuracy* indicates that the accuracy has a p > 0.05. The values recorded in parentheses are the standard deviations of the accuracies.

Table 4.2: Comparison of final accuracies on Dval between SIDP and LDPKiT.

Dataset Model Strategy Accuracy on Dval (%)

LDP (ϵ=15) LDP (ϵ=10) LDP (ϵ=7) LDP (ϵ=5) LDP (ϵ=3)

CIFAR-10
ResNet-152 (MR) SIDP 84.28 80.50 74.00 62.96 36.84
ResNet-18 (ML) LDPKiT 87.01 (±0.25) 86.47 (±0.19) 85.70 (±0.12)* 83.98 (±0.14) 79.35 (±0.61)

MobileNetV2 (ML) LDPKiT 86.99 (±0.27) 86.31 (±0.16) 85.07 (±0.31)* 82.50 (±0.70) 74.93 (±0.50)

Fashion-MNIST
ResNet-152 (MR) SIDP 89.12 83.68 72.19 56.95 38.97
ResNet-18 (ML) LDPKiT 92.29 (±0.42) 92.10 (±0.31) 91.82 (±0.33) 91.26 (±0.28) 79.42 (±0.27)

MobileNetV2 (ML) LDPKiT 91.92 (±0.06) 91.55 (±0.21) 90.30 (±1.13) 89.93 (±0.21) 76.63 (±0.54)

SVHN
ResNet-152 (MR) SIDP 92.63 86.04 74.60 59.95 36.82
ResNet-18 (ML) LDPKiT 93.12 (±0.83)* 91.81 (±0.34) 89.54 (±0.87) 89.22 (±1.59) 85.42 (±1.46)

MobileNetV2 (ML) LDPKiT 89.06 (±0.47) 87.21 (±2.33)* 85.29 (±0.48) 80.13 (±4.09) 77.26 (±3.31)

CARER Transformer EN2 (MR) SIDP 87.21 83.65 78.86 73.41 62.77
Transformer EN1 (ML) LDPKiT 87.09 (±2E-3)* 86.34 (±1E-3) 85.49 (±6E-3) 84.64 (±5E-3) 82.53 (±4E-3)

Accuracy* indicates that the accuracy has a p > 0.05. The values recorded in parentheses are the standard deviations of the accuracies.

of Figure 4.6, the cross-over point for ResNet-18 on CIFAR-10 (Dpriv) is around 5k queries when

ϵ = 3. The cross-over point increases to 8k when ϵ = 10. In contrast, we observe a different trend

for Fashion-MNIST and SVHN. In these cases, the cross-over points are similar across all ϵ values.

For instance, the cross-over points for Fashion-MNIST are around 2.5k for all ϵ, and for SVHN, the

cross-over points are around 5k for ResNet-18 and 2.5k for MobileNetV2. We even notice a few

instances where a cross-over point occurs at a smaller |Dpriv| when less noise is added. For example,

the cross-over point for SVHN occurs around 4k for ϵ = 5 and over 5k for ϵ = 3. Overall, fewer

queries are generally needed for LDPKiT accuracy to exceed the average SIDP accuracy compared

to CIFAR-10 and CARER. We suspect these differences can be attributed to Fashion-MNIST and

SVHN being easier to train ML models on and, thus, having accuracies on these datasets that

increase faster relative to the size of Dpriv. However, further investigation is needed to fully explain

this dataset-dependent difference.

One may argue that LDPKiT’s effectiveness is highly dependent on |Dpriv|, and |Dpriv| should be

as high as possible to make LDPKiT become beneficial. This is not true because LDP only bounds

privacy leakage—it does not make it non-existent—so every additional query the user makes still

leaks some amount of information. On the other hand, the gains in ML accuracy see diminishing

returns at large |Dpriv|. Therefore, the user may wish to set an upper bound of |Dpriv|, i.e., a stopping
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point, based on their desire for privacy and the decreasing benefits of querying MR for LDPKiT.

We observe that more queries are required for cases with higher and more privacy-protective noise

levels to reach this upper bound across all the benchmarks. Training on Fashion-MNIST and SVHN

reaches such an upper bound at a relatively earlier stage compared to other datasets, i.e., the

accuracy remains high (saturates) after about 5k queries are made, except for the cases ϵ = 3 in

SVHN and ϵ = 3 or 5 in Fashion-MNIST. Training MobileNetV2 on CIFAR-10, however, seems not

to reach the stopping point even at the end when ϵ < 7 (See Figure 4.9). Again, we believe that it

is because Fashion-MNIST and SVHN are relatively easier datasets for which to train models than

CIFAR-10. One way for the user to determine the stopping point to prevent further privacy leakage

is to monitor the accuracy on a small labelled Dval. For instance, when ML has a decent accuracy

on Dval and increasing |Dpriv| brings minimal accuracy improvement on Dval, the user can stop

querying MR and rely on ML for predictions so long as future samples fall in the same distribution

as Dpriv.

We tabulate the detailed accuracies on Dpriv and Dval in Tables 4.1 and 4.2. The experimental

results show that LDPKiT has greater benefits when more LDP noise is added (i.e., stronger privacy

protection). As shown in Figures 4.6 to 4.12, ML’s accuracies on Dpriv and Dval illustrate similar

trends. Hence, when |Dpriv| is large enough, LDPKiT generates a trustworthy local model that can

accurately predict unseen sensitive data points. The user can utilize the accuracy on a Dval as a

reference to determine the stopping point of querying MR to prevent further privacy leakage.

In LDPKiT, instead of training ML with original samples, we train it on noised samples, as

described in Section 3.4. Intuitively, the additive noise will likely change some of the features in the

original samples, so the noised samples will more strongly correspond to the noised labels predicted

by MR for knowledge transfer. We compare local training with noisy or original data samples and

observe that training ML with noisy samples yields greater recovery of accuracy, especially when

there is more noise. Furthermore, since ML is trained on noisy data, LDPKiT is inherently immune

to membership inference attacks if ML is ever leaked.

Table 4.3: Normalized Zest distance results with Cosine distance metric on MR and ML.

Dataset MR ML
LDP LDP LDP LDP LDP

(ϵ=15) (ϵ=10) (ϵ=7) (ϵ=5) (ϵ=3)

CIFAR-10 ResNet-152 ResNet-18 1.6158 (±0.11) 1.5996 (±0.17) 1.6625 (±0.09) 2.0300 (±0.09) 2.4117 (±0.19)
MobileNetV2 1.6214 (±0.40) 1.8454 (±0.48) 1.9999 (±0.33) 1.9877 (±0.46) 2.4639 (±0.15)

Fashion-MNIST ResNet-152 ResNet-18 6.7820 (±0.35) 6.9049 (±0.46) 6.3640 (±0.30) 6.6078 (±0.97) 7.2531 (±0.70)
MobileNetV2 4.0097 (±0.43) 4.9466 (±0.79) 5.0017 (±0.88) 5.5704 (±0.02) 4.7690 (±0.52)

SVHN ResNet-152 ResNet-18 1.2497 (±0.13) 1.2374 (±0.04) 1.2303 (±0.07) 1.3165 (±0.02) 1.4662 (±0.07)
MobileNetV2 1.2760 (±0.03) 1.2664 (±0.06) 1.3534 (±0.13) 1.3507 (±0.06) 1.4850 (±0.01)

The values recorded in parentheses are the standard deviations of the accuracies.

4.4 RQ3: Difference from Model Extraction

Although our method requires knowledge transfer from a remote model to a local model, it is

different from the adversarial model extraction attack [43]–[47]. LDPKiT has orthogonal goals. The

motivations for model stealing are often cost-driven, and model stealers aim to replicate the victim

model’s high performance with minimal queries, ensuring the theft requires less effort. In contrast,
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Table 4.4: Normalized Zest distance results with l1 distance metric on MR and ML.

Dataset MR ML
LDP LDP LDP LDP LDP

(ϵ=15) (ϵ=10) (ϵ=7) (ϵ=5) (ϵ=3)

CIFAR-10 ResNet-152 ResNet-18 1.9518 (±0.12) 1.9349 (±0.11) 2.0276 (±0.24) 2.4261 (±0.20) 2.4096 (±0.26)
MobileNetV2 1.5970 (±0.35) 1.9575 (±0.62) 1.8453 (±0.20) 1.8167 (±0.39) 2.0948 (±0.27)

Fashion-MNIST ResNet-152 ResNet-18 13.7488 (±4.68) 12.4642 (±2.38) 10.6427 (±0.57) 11.0902 (±6.00) 8.2408 (±1.75)
MobileNetV2 7.4141 (±0.87) 2E+04 (±2E+04) 4E+05 (±7E+05) 2E+05 (±3E+05) 23.8558 (±33)

SVHN ResNet-152 ResNet-18 1.0320 (±0.05) 1.0314 (±0.01) 1.0535 (±0.03) 1.0829 (±0.01) 1.1469 (±0.04)
MobileNetV2 1.0807 (±0.01) 1.0693 (±0.01) 1.1058 (±0.04) 1.0980 (±0.04) 1.1501 (±0.01)

The values recorded in parentheses are the standard deviations of the accuracies.

Table 4.5: Normalized Zest distance results with l2 distance metric on MR and ML.

Dataset MR ML
LDP LDP LDP LDP LDP

(ϵ=15) (ϵ=10) (ϵ=7) (ϵ=5) (ϵ=3)

CIFAR-10 ResNet-152 ResNet-18 1.7896 (±0.11) 1.7336 (±0.17) 1.8137 (±0.07) 2.1129 (±0.21) 2.3295 (±0.26)
MobileNetV2 1.6507 (±0.60) 1.9063 (±0.66) 2.0075 (±0.66) 1.8500 (±0.70) 2.1929 (±0.32)

Fashion-MNIST ResNet-152 ResNet-18 24.49 (±9.24) 24.89 (±6.65) 16.68 (±2.14) 21.39 (±17.70) 19.27 (±8.33)
MobileNetV2 11.81 (±4.02) 2E+05 (±2E+05) 5E+06 (±8E+06) 3E+06 (±5E+06) 159 (±258)

SVHN ResNet-152 ResNet-18 1.0570 (±0.05) 1.0505 (±0.01) 1.0520 (±0.02) 1.0935 (±0.01) 1.1600 (±0.03)
MobileNetV2 1.1115 (±1E-3) 1.1062 (±0.03) 1.1332 (±0.05) 1.1405 (±0.02) 1.1859 (±0.01)

The values recorded in parentheses are the standard deviations of the accuracies.

Table 4.6: Normalized Zest distance results with l∞ distance metric on MR and ML.

Dataset MR ML
LDP LDP LDP LDP LDP

(ϵ=15) (ϵ=10) (ϵ=7) (ϵ=5) (ϵ=3)

CIFAR-10 ResNet-152 ResNet-18 1.4464 (±0.13) 1.3011 (±0.45) 1.3546 (±0.12) 1.6950 (±0.57) 3.0270 (±1.39)
MobileNetV2 2.9533 (±3.10) 2.2410 (±1.05) 5.8475 (±4.54) 2.9826 (±0.68) 3.1735 (±0.93)

Fashion-MNIST ResNet-152 ResNet-18 55.25 (±22.98) 64.39 (±22.42) 26.29 (±6.97) 54.08 (±53.51) 53.06 (±20.29)
MobileNetV2 22.24 (±10.35) 6E+05 (±7E+05) 3E+07 (±5E+07) 2E+07 (±3E+07) 711 (±1188)

SVHN ResNet-152 ResNet-18 1.1684 (±0.07) 1.1758 (±0.09) 1.0846 (±0.11) 1.1766 (±0.09) 1.2666 (±0.13)
MobileNetV2 1.3340 (±0.28) 1.5230 (±0.48) 1.2335 (±0.20) 1.5855 (±0.14) 1.6242 (±0.19)

The values recorded in parentheses are the standard deviations of the accuracies.

our ultimate goal is to protect the privacy of inference data. The reason the user stops querying

MR is not necessarily due to monetary concerns but to prevent further privacy leakage.

We answer RQ3 quantitatively using Zest distances [22] as our evaluation metrics, which are the

distances between two models computed based on LIME’s model-agnostic explanations [105]. We

use Zest because of its architecture independence, the model’s black-box access requirement, and

its perfect accuracy in model extraction detection with Cosine distance metric. Zest supports l1,

l2, l∞ norm and Cosine distances. The authors of Zest claim that it is capable of detecting model

extraction attacks with 100% accuracy when using Cosine distance [22], which is the metric we

present in Table 4.3. According to the Zest paper [22], we detect model extraction in the following

steps:

1. Calculate the Zest distance between the two models to compare, i.e., Dz(MR,ML), where

ML is trained on the entire data split of the noisy Dpriv, disjunctive to MR’s training dataset.

2. Calculate a reference distance by computing the average distance between five pairs of the
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victim and extracted models, denoted as MV and ME, where ME are generated by training

on MV’s labelled training dataset, i.e.,

Dref =
1

5

5∑
i=1

Dz(MVi,MEi).

Here, MV has the same model architecture as MR, and ME has the same model architecture

as ML, but trained on the same dataset as MV, rather than the noisy Dpriv.

3. Calculate the normalized Zest distance, i.e., Dz = Dz

Dref
.

4. Determine the existence of model extraction by comparing Dz with threshold 1.

Dz < 1 indicates MR and ML are similar models and model extraction occurs.

Dz > 1 indicates MR and ML are dissimilar, and thus no model extraction attack exists.

We present the normalized Zest distances, Dz, with the Cosine distance metric in Table 4.3. We

present the results of the rest of the distance metrics (l1, l2 and l∞) in Tables 4.4, 4.5 and 4.6.

According to the paper [22], Zest also has text modality support. However, that part of the code

is not released to the public, so we can only report the results on image modality in our paper.

As explained above, an adversarial model extraction attack occurs when Dz < 1. Table 4.3 shows

that LDPKiT does not contribute to model theft at any noise level since all Dz > 1, and the

distance increases as the noise level increases (i.e., better privacy protection but farther from model

extraction), which are the regimes that we expect LDPKiT to be used in.

From these results, we surmise that LDPKiT has several key differences from model steal-

ing/extraction. First, one of the goals of a model extraction attack is to generate a model with

similar performance as the victim model [42]. At fairly privacy-protective noise levels, such as ϵ = 5

and ϵ = 3, MobileNetV2 trained on CIFAR-10 only achieves roughly 83% and 75% accuracy, re-

spectively, while MR has an accuracy of 88%—a significant gap in performance. Notably, since

ML is not competitive with MR, LDPKiT does not violate the terms of use for major commercial

models [124]. Moreover, in LDPKiT, the user will stop training once accuracy gains diminish to

protect privacy, so they are unlikely to achieve much higher accuracy. Second, model extraction

attacks seek to maximize the accuracy of the extracted model with as few queries as possible. Effi-

cient model extraction requires samples that are in the distribution of MR’s training set [45]. Since

LDPKiT queries inputs with noise added, they are not likely to be in the distribution MR is trained

on and, thus, are not a query-efficient method for knowledge transfer. Finally, as demonstrated by

our experiments with Zest, the extracted model does not behave very similarly to MR, and its main

benefit is in recovering utility for Dpriv.

4.5 Auxiliary Experimental Results

This section shows two additional sets of experimental results on LDPKiT: (i) when MR’s detailed

softmax values are provided for training, and (ii) when the AL query selection strategy is applied.
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Figure 4.13: Comparison of ML’s prediction accuracies on Dpriv between SIDP and LDPKiT
with/without MR’s softmax values on CIFAR-10.
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Figure 4.14: Comparison of ML’s prediction accuracies on Dpriv between SIDP and LDPKiT
with/without MR’s softmax values on Fashion-MNIST.
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Figure 4.15: Comparison of ML’s prediction accuracies on Dpriv between SIDP and LDPKiT
with/without MR’s softmax values on SVHN.

4.5.1 LDPKiT with KLDiv Loss

As mentioned in Section 2.4 and 4.1, the loss function we use in LDPKiT (without AL) is CE loss

(See Definition 2.4.1). In this section, we use a different loss function than CE. In Section 2.4, we
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introduce a common loss function for knowledge distillation, KLDiv loss (See Definition 2.4.2). In

this set of evaluations, we use a combined loss function, defined as follows:

Definition 4.5.1. Combined KLDiv + CE Loss Function for LDPKiT-AL

Losstotal = α · T 2 ·KLDiv(PT ∥QT ) + CE(y,Q) (4.1)

We follow the same notations as Section 2.4 in this equation, where PT is MR’s softmax prob-

ability distribution with temperature scaling, Q is ML’s softmax probability distribution, and QT

is the probability distribution Q softened with temperature scaling. α · T 2 is a scaling factor that

determines the significance of KLDiv Loss. In our experiments, we set α to 1.0 for simplicity and T

to 20.

The difference in accuracy is not significant whether or notMR’s softmax values are provided. As

the bar graphs in Figures 4.13, 4.14 and 4.15 show, providing MR’s softmax probability distribution

is more beneficial in a more privacy-protective noise level (i.e., ϵ = 3). For Fashion-MNIST, the

prediction accuracy of ResNet-18 and MobileNetV2 on Dpriv has increased by 10.4% and 8.7%,

respectively, when trained with ResNet-152’s softmax outputs with ϵ set to 3. However, when ϵ is

increased to 15, softmax information brings a minimal increase in prediction accuracies. Therefore,

for CIFAR-10, Fashion-MNIST, and SVHN image benchmarks, having access to MR’s softmax

information does not help with utility recovery significantly, unless the ϵ value is very low. We

suspect that providing softmax values would be more beneficial for a more complex dataset or when

dealing with a more challenging ML task than supervised image classification.
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Figure 4.16: Effect of AL on ML’s accuracy on Dpriv of CIFAR-10.

4.5.2 LDPKiT with AL

As mentioned in Chapter 3, LDPKiT is expected to work well with advanced training strategies such

as AL. In this set of experiments, we apply Entropy Sampling as our query selection strategy (See

Definition 2.3.4). In this section, we have a slightly different hyperparameter choice from previous

sections (i.e., Adam Optimizer for ML training in LDPKiT in Sections 4.2 to 4.5.1), here we use

SGD optimizer in training for both LDPKiT and LDPKiT-AL and present the accuracy comparisons

in Figures 4.16 to 4.21. Note that the fluctuations in accuracy plots are not caused by the use of

AL strategy, but brought by the use of SGD optimizer in training.
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Figure 4.17: Effect of AL on ML’s accuracy on Dpriv of Fashion-MNIST.
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Figure 4.18: Effect of AL on ML’s accuracy on Dpriv of SVHN.
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Figure 4.19: Effect of AL on ML’s accuracy on Dval of CIFAR-10.

The accuracies on Dpriv of the image benchmarks show that LDPKiT with AL (LDPKiT-AL)

outperforms LDPKiT slightly after the first iteration(s) of training. This is anticipated because

ML are initialized randomly, and the initial set of data points selected by AL can be considered as

random sampling with a randomly initialized model. We also observe that when all the available

data points in Dpriv have been queried, ML’s accuracies on Dpriv are similar regardless of AL.

This is also expected as, in both cases, the final training datasets will eventually be the same. As
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Figure 4.20: Effect of AL on ML’s accuracy on Dval of Fashion-MNIST.

Number of Queries

A
cc

ur
ac

y 
(%

)

0

25

50

75

100

0 5000 10000 15000 20000 25000

LDPKiT (ε=10) LDPKiT (ε=7) LDPKiT (ε=5)
LDPKiT (ε=3) LDPKiT-AL (ε=10) LDPKiT-AL (ε=7)

LDPKiT-AL (ε=5) LDPKiT-AL (ε=3)

(a) ML (ResNet-18)

Number of Queries

A
cc

ur
ac

y 
(%

)

0

25

50

75

100

0 5000 10000 15000 20000 25000

LDPKiT (ε=10) LDPKiT (ε=7) LDPKiT (ε=5)
LDPKiT (ε=3) LDPKiT-AL (ε=10) LDPKiT-AL (ε=7)

LDPKiT-AL (ε=5) LDPKiT-AL (ε=3)

(b) ML (MobileNetV2)

Figure 4.21: Effect of AL on ML’s accuracy on Dval of SVHN.

Figure 4.18 Subplot 4.18a shows, for example, when ϵ is set to 3 (i.e., the green lines), LDPKiT-AL

starts to outperform LDPKiT after the first iteration of training (after querying 2.5k data points).

This advantage starts to disappear near the end of the training process (after querying 20k data

points out of the total 25k data points in Dpriv). In the end, LDPKiT and LDPKiT-AL achieves

similar prediction accuracies on Dpriv of SVHN, 83.81% and 84.87%, respectively. The relationship

between the accuracy gap of LDPKiT and LDPKiT-AL and the ϵ values is unclear. There also exist

few instances where LDPKiT and LDPKiT-AL have similar accuracies on Dpriv, such as all ϵ cases

in Figure 4.17 Subplot 4.17b.

The effect of AL on accuracies on Dval are shown in Figures 4.19, 4.20, and 4.21. The accuracy

difference is more obvious in CIFAR-10. For instance, as the red lines in Figure 4.19 Subplot 4.19a

show, the accuracy gap between LDPKiT-AL and LDPKiT can reach 10% when ϵ = 7. LDPKiT-AL

demonstrates similar accuracies as LDPKiT in Fashion-MNIST and SVHN benchmarks. We suspect

that it is because these two datasets are less complex to train on. Similar to the observations on

Dpriv, there is no explicit relationship between the accuracy gap and the ϵ values.

Overall, the accuracy improvement brought by AL is not significant, except for CIFAR-10. We

suspect that it is because we have a small Dpriv (i.e., 15k, 25k, and 25k for CIFAR-10, Fashion-

MNIST, and SVHN, respectively), and the improvement is dataset- and data sample-dependent.

AL’s effectiveness may increase when we expand Dpriv or evaluate on more complicated datasets
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and ML tasks. Further investigations are needed to thoroughly study the contribution of AL to

utility recovery.



Chapter 5

Limitations and Future Work

5.1 Relationship between privacy guarantee and assumptions

on queries in Dpriv

As discussed in Chapter 3, LDPKiT provides a form of plausible deniability such that an adversary

cannot infer the user’s original data input. The per-query ϵ-LDP privacy guarantee only holds under

the assumption that each data point in Dpriv is i.i.d.. If the data points are not i.i.d., our privacy

guarantee will be weakened by their mutual information.

5.2 Dataset and task extension

As for the limitations in evaluation, we only tested on supervised learning, specifically classification

tasks. One future work is to study the privacy risks and protection in other learning problems and

extend the evaluation to regression tasks or unsupervised clustering tasks. Moreover, our current

evaluation is on relatively small datasets. We can expand our evaluation on larger and more complex

datasets to study the effect of the cloud model’s softmax output information and the AL training

strategy on utility recovery. Furthermore, as discussed in Section 1.2, we can extend the evaluation

to the audio modality.

5.3 Alternative selection/generation strategies

Also, our privacy-preserving queries in the thesis only refer to sensitive queries with LDP noise

applied. As a future direction, we can design alternative query selection or generation strategies. In

other words, instead of adding noise to the original queries for privacy protection, we can compose

our privacy-preserving (sanitized) Dpriv. For instance, we can explore synthetic query generation

techniques (i.e., generate substitute image data with GANs and text data with LLMs). Another

area for further exploration in the image modality is to study the latent space of image data. One

of the query selection strategies can be using similarity metrics (e.g., Cosine Similarity) to choose

comparable queries from existing public datasets. These selected public queries can then replace

sensitive queries in Dpriv based on their latent space information.
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5.3.1 Different LDP noise insertion point

In LDPKiT, we only considered the case of inserting LDP noise into the inference data inputs. With

the above-mentioned synthetic query generation techniques, we can further explore the possibility

of using differentially private GANs and LLMs for data generation.

5.3.2 Different points to apply similarity metrics

To study and compare the latent space of two images using similarity metrics, we typically consider

comparing the feature vectors from the penultimate layer of the ML model that processes the data.

However, more possibilities exist, such as comparing the vectors from preceding layers.

5.4 Deployment on real-world frameworks

As a next step, we can deploy LDPKiT in a more realistic use case scenario and evaluate its ac-

curacy/privacy trade-off. One potential platform for this evaluation can be an edge computing

network, such as StarlingX [125], an open-source, distributed cloud edge native platform.



Chapter 6

Conclusion

LDPKiT is an inference framework that preserves the privacy of data in a sensitive dataset when

using malicious cloud services by injecting LDP noise. Since all the privacy protection measures are

applied before transmitting to the remote server, the protection still exists even if the cloud service

is deployed on a compromised platform or the cloud model is leaked. The key insight is that partial

knowledge about the real data, though noisy, still exists in the noisy labels returned from the cloud

model. LDPKiT put this insight into use by aggregating the partial knowledge from noisy queries

and then training a local model with the knowledge. The experimental results demonstrate that

LDPKiT can recover the prediction accuracy on private data throughout training while preserving

privacy. LDPKiT has greater benefits when the noise level increases, which are the more privacy-

protective regimes we expect LDPKiT to be used in. We also quantitatively demonstrate that the

level of knowledge transfer in LDPKiT does not construct an adversarial model extraction attack. For

future steps, alternative strategies for query selection and generation can be explored. Additionally,

further evaluation of LDPKiT can be conducted on more complex datasets, advanced ML tasks, and

diverse use case scenarios.
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[42] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing Machine Learning

Models via Prediction APIs.,” in USENIX security symposium, vol. 16, 2016, pp. 601–618.

[43] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical Black-

Box Attacks against Machine Learning,” in Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security, ser. ASIA CCS ’17, Abu Dhabi, United Arab

Emirates: Association for Computing Machinery, 2017, 506–519, isbn: 9781450349444. doi:

10.1145/3052973.3053009. [Online]. Available: https://doi.org/10.1145/3052973.

3053009.

[44] J. Zhang, C. Chen, and L. Lyu, “IDEAL: Query-Efficient Data-Free Learning from Black-Box

Models,” in The Eleventh International Conference on Learning Representations, 2022.

[45] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model extraction,” in

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021,

pp. 4771–4780.

[46] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. K. Shevade, and V. Ganapathy, “Activethief:

Model extraction using active learning and unannotated public data,” in The Thirty-Fourth

AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Ap-

plications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February

7-12, 2020, AAAI Press, 2020, pp. 865–872. doi: 10.1609/AAAI.V34I01.5432. [Online].

Available: https://doi.org/10.1609/aaai.v34i01.5432.

[47] T. Orekondy, B. Schiele, and M. Fritz, Knockoff Nets: Stealing Functionality of Black-Box

Models, 2018. arXiv: 1812.02766 [cs.CV].

[48] B. D. Rouhani, H. Chen, and F. Koushanfar, DeepSigns: A Generic Watermarking Framework

for IP Protection of Deep Learning Models, 2018. arXiv: 1804.00750 [cs.CR].

[49] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding Watermarks into Deep Neural

Networks,” in Proceedings of the 2017 ACM on International Conference on Multimedia

Retrieval, ACM, 2017. doi: 10.1145/3078971.3078974. [Online]. Available: https://doi.

org/10.1145\%2F3078971.3078974.

[50] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot, Entangled Watermarks

as a Defense against Model Extraction, 2021. arXiv: 2002.12200 [cs.CR].

[51] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, Turning Your Weakness Into a Strength:

Watermarking Deep Neural Networks by Backdooring, 2018. arXiv: 1802.04633 [cs.LG].

[52] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “DeepMarks: A Secure Finger-

printing Framework for Digital Rights Management of Deep Learning Models,” in Proceedings

of the 2019 on International Conference on Multimedia Retrieval, ser. ICMR ’19, Ottawa

ON, Canada: Association for Computing Machinery, 2019, 105–113, isbn: 9781450367653.

https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1609/AAAI.V34I01.5432
https://doi.org/10.1609/aaai.v34i01.5432
https://arxiv.org/abs/1812.02766
https://arxiv.org/abs/1804.00750
https://doi.org/10.1145/3078971.3078974
https://doi.org/10.1145\%2F3078971.3078974
https://doi.org/10.1145\%2F3078971.3078974
https://arxiv.org/abs/2002.12200
https://arxiv.org/abs/1802.04633


BIBLIOGRAPHY 44

doi: 10.1145/3323873.3325042. [Online]. Available: https://doi.org/10.1145/3323873.

3325042.

[53] S. Wang and C.-H. Chang, “Fingerprinting Deep Neural Networks - a DeepFool Approach,”

in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1–5.

doi: 10.1109/ISCAS51556.2021.9401119.

[54] A. Dziedzic, M. A. Kaleem, Y. S. Lu, and N. Papernot, Increasing the Cost of Model Extrac-

tion with Calibrated Proof of Work, 2022. arXiv: 2201.09243 [cs.CR].

[55] Y. Liu, K. Li, Z. Liu, et al., “Provenance of Training without Training Data: Towards

Privacy-Preserving DNN Model Ownership Verification,” in Proceedings of the ACM Web

Conference 2023, ser. WWW ’23, Austin, TX, USA: Association for Computing Machinery,

2023, 1980–1990, isbn: 9781450394161. doi: 10.1145/3543507.3583198. [Online]. Available:

https://doi.org/10.1145/3543507.3583198.

[56] A. Dziedzic, N. Dhawan, M. A. Kaleem, J. Guan, and N. Papernot, On the Difficulty of De-

fending Self-Supervised Learning against Model Extraction, 2022. arXiv: 2205.07890 [cs.LG].

[57] J. Saltzer and M. Schroeder, “The protection of information in computer systems,” Proceed-

ings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975. doi: 10.1109/PROC.1975.9939.

[58] M. Abadi, U. Erlingsson, I. Goodfellow, et al., “On the Protection of Private Information in

Machine Learning Systems: Two Recent Approches,” in 2017 IEEE 30th Computer Security

Foundations Symposium (CSF), IEEE, 2017. doi: 10.1109/csf.2017.10. [Online]. Available:

https://doi.org/10.1109\%2Fcsf.2017.10.

[59] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks That Exploit Confidence

Information and Basic Countermeasures,” in Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security, ser. CCS ’15, Denver, Colorado, USA:

Association for Computing Machinery, 2015, 1322–1333, isbn: 9781450338325. doi: 10.1145/

2810103.2813677. [Online]. Available: https://doi.org/10.1145/2810103.2813677.

[60] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shumailov, and N. Papernot,

When the Curious Abandon Honesty: Federated Learning Is Not Private, 2023. arXiv: 2112.

02918 [cs.LG].
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Appendix

6.1 Alternative presentation of accuracy comparisons between

LDPKiT and SIDP in RQ2

In Section 4.3, we compare LDPKiT’s accuracy on a growing Dpriv with the averaged SIDP accuracy

on the entire Dpriv. Alternatively, we can present the accuracy plots of LDPKiT and SIDP on a

varying Dpriv as we increase the number of queries in the following Figures 6.1, 6.2 and 6.3.

Since no training is involved in the SIDP evaluation process, Dval remains constant; therefore,

this alternative presentation of accuracy plots does not apply to Dval.
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Figure 6.1: ML’s accuracies on Dpriv of CIFAR-10.
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Figure 6.2: ML’s accuracies on Dpriv of Fashion-MNIST.
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Figure 6.3: ML’s accuracies on Dpriv of SVHN.
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