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Abstract—As more critical services move onto the web, it has
become increasingly important to detect and address vulnerabil-
ities in web applications. These vulnerabilities only occur under
specific conditions: when 1) the vulnerable code is executed and
2) the web application is in the required state. If the application
is not in the required state, then even if the vulnerable code
is executed, the vulnerability may not be triggered. Previous
work naively explores the application state by filling every field
and triggering every JavaScript event before submitting HTML
forms. However, this simplistic approach can fail to satisfy
constraints between the web page elements, as well as input
format constraints. To address this, we present EvoCrawl, a web
crawler that uses evolutionary search to efficiently find different
sequences of web interactions. EvoCrawl finds sequences that can
successfully submit inputs to web applications and thus explore
more code and server-side states than previous approaches. To
assess the benefits of EvoCrawl, we evaluate it against three state-
of-the-art vulnerability scanners on ten web applications. We find
that EvoCrawl achieves better code coverage due to its ability
to execute code that can only be executed when the application
is in a particular state. On average, EvoCrawl achieves a 59%
increase in code coverage and successfully submits HTML forms
5× more frequently than the next best tool. By integrating IDOR
and XSS vulnerability scanners, we used EvoCrawl to find eight
zero-day IDOR and XSS vulnerabilities in WordPress, HotCRP,
Kanboard, ImpressCMS, and GitLab.

I. INTRODUCTION

Since 2017, broken access control and XSS code injection
have been consistently ranked among the most prevalent
vulnerabilities in OWASP Top 10. As stated in OWASP’s 2021
report [1], 94% of tested applications exhibited some form of
broken access control or injection vulnerabilities, underscoring
the need for developers to safeguard their web applications
against these defects. There are two main approaches to detect-
ing such vulnerabilities: static analysis and dynamic analysis.
Static analysis tools [2], [3], [4], [5] require the application’s
source code, which limits their applicability to applications
written in other programming languages. Conversely, dynamic
analysis can be agnostic to the programming language, but
can only detect vulnerabilities if they occur during the tool’s

application exploration. Therefore, dynamic analysis focuses
on exploring as much code as possible.

Web vulnerability scanners are often paired with a web
crawler, which attempts to maximize the code coverage of an
application by scanning as many pages as possible. However,
simply crawling pages is not sufficient to maximize code
coverage. This is because some code in a web application is
associated with functionality that can only be triggered when
the application is in a specific server-side state. For instance,
in GitLab, a web-based revision control system, functions
that enable users to manipulate code repositories require a
repository to be created first. As a result, a vulnerability
scanner will be unable to test any of that code if it is
unable to interact with GitLab and create new repositories.
Therefore, to achieve good code coverage, and thus find more
vulnerabilities, a web crawler must explore both web pages
and application states.

This importance has not been lost in previous approaches to
web application vulnerability detection. For example, Black-
Widow [6] and Enemy of the State [7] incorporate HTML
forms into their navigation graph, and submitting these HTML
forms enables them to explore different server-side states.
In addition, to handle AJAX-enabled dynamic web pages,
BlackWidow also adds JavaScript events to its navigation
graph. Triggering JavaScript events can enable additional fields
and elements on a web page, allowing BlackWidow to submit
more data and explore more server-side states.

However, to correctly submit data to a web application
that will modify the server-side state, a web crawler must
satisfy both ordering and formatting constraints on interactions
with HTML elements and trigger JavaScript events in the
right order. For example, to submit data via a form, the web
application may impose an ordering constraint that requires
the crawler to first enter data into text fields, or select the
correct options from dropdown boxes or radio buttons, before
hitting the submit button. Similarly, a web application may
impose formatting constraints such that fields that require a
date or an e-mail must have well-formed inputs. Finding a
sequence that meets ordering constraints requires a search over
all possible sequences of interactions with HTML elements
and JavaScript events (which we collectively refer to as web
elements), which grows exponentially with the number of
such elements and events. BlackWidow and Enemy of the
State naively avoid searching this large space by filling in
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every input field in HTML forms, and only enumerating all
sequences of JavaScript events and HTML forms. While this
reduces the search space, it increases the chances that they
will violate formatting constraints, as some web pages contain
optional fields, which could have been left blank.

To address this, we propose EvoCrawl, which overcomes
both ordering and formatting constraints, enabling it to submit
more data and explore more server-side states than previous
approaches. EvoCrawl achieves this by performing a fine-grain
search of sequences of interactions with web elements, in-
cluding individual HTML fields. Searching subsets of HTML
fields enables EvoCrawl to submit a larger diversity of inputs
to the web application and generate a larger diversity of
server states. In addition, filling some fields and leaving others
blank enables EvoCrawl to successfully submit data in cases
where EvoCrawl finds a field’s formatting constraints are too
difficult for EvoCrawl to infer, but which also happens to
be optional. The drawback with this approach is that a fine-
grain search results in a larger search space, which EvoCrawl
addresses with two key innovations. First, EvoCrawl uses an
evolutionary algorithm with a fitness function that enables it
to focus its search on sequences that are able to successfully
submit inputs, or reveal more web elements to interact with.
Second, to further reduce the search space, EvoCrawl detects
dependencies between web elements, enabling it to eliminate
sequences that violate these dependencies.

To measure the improvements these two techniques confer,
we evaluate EvoCrawl on 10 modern web applications and
compare its performance against three modern black-box scan-
ners: BlackWidow [6], JAK [8], and CrawlJAX [9]. EvoCrawl
can also be combined with various detector modules to de-
tect different types of vulnerabilities. We have implemented
IDOR (Insecure Direct Object Reference) and XSS (Cross-
Site Scripting) vulnerability detectors in EvoCrawl. The IDOR
vulnerability detector (IVD) not only automatically categorizes
resources but also exhibits a low rate of false positives when
detecting IDOR vulnerabilities. Inspired by BlackWidow [6],
the XSS vulnerability detector (XVD) injects XSS payloads
containing unique integers into every feasible input field.
By monitoring and tracking these integers, the XVD can
identify the relationships between input sources and sinks,
subsequently exposing the payloads. These detectors enable
EvoCrawl to find 8 zero-day IDOR and XSS vulnerabilities.
We have responsibly disclosed all vulnerabilities and the
developers have either fixed or acknowledged all except two
of them.

The following are our main research contributions:

• We identify that successfully and efficiently executing
client-side events is a significant impediment to web
application exploration, which should be overcome for
web vulnerability scanners to increase code coverage and
find vulnerabilities.

• We present EvoCrawl, which combines an evolution-
ary search algorithm with standard crawling to more
comprehensively explore web application code to find

vulnerabilities. EvoCrawl is openly available at https:
//github.com/dlgroupuoft/evocrawl

• We integrate all the detector modules into EvoCrawl
and evaluate its performance by comparing it against
3 modern scanners on 10 web applications. EvoCrawl
successfully identifies eight zero-day bugs in WordPress,
HotCRP, Kanboard, ImpressCMS, and Gitlab. It achieves
an average code coverage increase of 59% and outper-
forms BlackWidow by submitting HTML forms with the
POST method 5 times more frequently.

This paper is structured as follows: Section III offers a
description of EvoCrawl’s design, while Section IV elaborates
on its implementation details. Section V compares EvoCrawl
on the metrics of code coverage and the ability to submit
HTML form inputs to an application against other state-
of-the-art web vulnerability scanners. We then evaluate the
vulnerability detection ability of EvoCrawl and detail the new
vulnerabilities found in Section VI, followed by Sections VII
and VIII, outlining the limitations of EvoCrawl and reviewing
related works in the field. Finally, we draw conclusions in
Section IX.

II. MOTIVATION

As mentioned in Section I, modern web pages heavily use
JavaScript to asynchronously update and modify web pages.
The crawler needs to trigger certain JavaScript events to make
additional web elements or links accessible. Therefore, Black-
Widow [6] incorporates JavaScript events into its navigation
graph. By enumerating all possible sequences of JavaScript
events and HTML forms, BlackWidow aims to find the se-
quences that satisfy the dependencies or constraints imposed
by the web pages. However, as the numbers of JavaScript
events and HTML forms increases, the search space expands
exponentially. Even a small web page with just 10 JavaScript
events and 1 HTML form would generate a search space of
n11 for sequences of n interactions, which can quickly become
too large to search even for modest values of n.

A sequence here refers to some JavaScript events and/or
HTML forms placed in a certain order, and the targeted
sequences are the ones that can reveal new links or explore
server-side states after their executions. To find targeted se-
quences inside this vast search space, we need the crawler
to accomplish two steps: 1) reduce the search space and
2) search for the targeted sequences efficiently. Certain web
elements including ones that listen to the JavaScript events are
dependent on each other. Specifically, certain web elements are
not visible or active unless the user interacts with other web
elements first. For instance, the form in Fig. 1 is only visible
and active after interacting with the arrow button in the red
box that can expand the component, or specific elements may
become visible only following certain prerequisite interactions.
By enforcing the dependency information on the order of
sequences, EvoCrawl avoids trying impossible sequences, thus
reducing the search space.

EvoCrawl can accomplish the first step by tracking and
enforcing dependencies. Then, to search the remaining space
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Fig. 1: An Illustrative Example for WordPress

efficiently, we propose the use of an evolutionary genetic
search algorithm, which is a good fit for this problem. First,
its crossover operation allows the crawler to generate varia-
tions of sequences based on previously successful sequences.
Second, with feedback from the web browser and database,
the evolutionary search can use a fitness function to identify
the sequences more likely to reveal new links and explore
application states.

Additionally, unlike BlackWidow, which attempts to fill in
all input fields to submit a form, EvoCrawl searches for various
sequences of interactions for form submission. This variation
in approach is necessary because some input fields, such as
those requiring very specific formats like“YEAR-MONTH-
DAY,” cannot have their values easily inferred by heuristics.
For forms containing these complex input fields, EvoCrawl
can find different sequences for submission. These sequences
may include filling in all fields or omitting some of the fields.
The intuition is that while EvoCrawl may not generate the
correct values for complex input fields, it can still find the
sequence that successfully submits the form by bypassing
these fields. For instance, in a user registration process on a
website, fields like “username”, “password”, and “email” must
be completed, whereas others like“birthday” or“time zone”
are optional and can be left blank. However, for non-optional
fields requiring inputs that heuristics cannot infer, EvoCrawl
still fails to submit the related form.

III. DESIGN

We integrate the dependency tracking mechanism and the
genetic algorithm into the Evolutionary Search Module (ESM)
of EvoCrawl. For each web page, the ESM evolves through
several generations. In each generation, it begins by generating
sequences of web element interactions, which involve three
different operations: crossover, mutation, and random combi-
nations. The crossover operation allows the ESM to concate-
nate two sequences together so the generated sequences can
inherit the properties of the previous sequences. The ESM
employs the mutation operation to enforce dependency track-

ing within the sequences and utilizes random combinations to
introduce diversity into the generated sequences.

Following the sequence generation, the ESM executes these
sequences via the User interface (UI) in the browser and
evaluates them using a fitness function. During the execution
of each sequence, the fitness function assigns a score to the
sequence based on feedback from the server-side database
and the client-side browser. The fitness function indicates how
“good” the sequence is in achieving its objectives.

Additionally, during the execution of each sequence, the
crawler constructs and updates a dynamic map based on its
observed dependency information. Within this map, each in-
teraction is associated with elements that only become visible
after the crawler executes the interaction. Subsequently, the
crawler introduces mutations to the sequence to enforce the
constraints outlined in the dynamic map

EvoCrawl’s evolutionary search algorithm focuses on
searching for sequences of interactions on a page in a web
application. However, to be effective, it needs to be run on
as many pages in the web application as possible. This is
partially achieved by taking new URLs it discovers during its
search and storing them as targets for later search sessions.
However, the rate at which it discovers these new pages is
affected by the large search space of application web pages. As
a result, EvoCrawl is actually composed of two modules that
perform two types of searches. The Evolutionary Search Mod-
ule (ESM) performs the aforementioned evolutionary search of
interaction sequences, while a Page Collection Module (PM)
interacts with each web element only once to rapidly collect
different links.

Figure 2 illustrates the architecture of EvoCrawl. Through-
out the scanning process, both the PM and ESM exchange
pages they have found: the ESM uses these as target pages
for its evolutionary search, and the PM uses these as starting
points to crawl for more pages and other web elements.
Both modules exchange URLs with the two vulnerability
detectors: the IDOR vulnerability detector (IVD) and the XSS
vulnerability detector (XVD). The IVD classifies the URLs
and assesses the access control level of the private ones.
The XSS vulnerability detector generates JavaScript payloads,
which are injected by both PM and the ESM into the web
application (sources), and also monitors for the successful
execution of these payloads (sinks). We describe each of these
components in more detail below.

A. Page Collection

The objective of the Page Collection Module (PM) is to find
URLs that can be passed to the Evolutionary Search Module
(ESM). To do this, it recursively searches the web application
by identifying web elements and interacting with them. Each
interaction that triggers DOM changes is called an EV ENT ,
and is associated with the URL of the page on which it is found
to form a tuple < URL,EV ENT >, which we call a seed.
To perform its search, the PM stores seeds in a queue, with
which it iteratively performs a three-stage crawling process on
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Fig. 2: Block Diagram of EvoCrawl

each seed, which consists of links crawling, events crawling,
and forms crawling.

During the links crawling stage, the PM performs the
following steps. First, it executes the seed by navigating to
the URL specified in the current seed. If the value of EVENT
is not empty, the associated DOM event is triggered. Once
the seed execution is successful, the crawler extracts all href
values from the anchor elements on the web page. These href
values are then used to construct new seeds, which will be
added to the end of the queue if they are not already in the
queue or have not been visited before.

During the event crawling stage, the PM interacts with
each interactable element on the web page to determine if the
element can invoke a DOM event. If, after each interaction,
the DOM changes without refreshing the page or navigating to
other pages, the crawler identifies the corresponding element
as the trigger for a DOM event and generates a new seed.
This seed includes the URL of the current page and the CSS
selector of the element that triggered the event.

The PM does not combine different events to construct
new seeds. If there are two events on the web page: Event
1 and Event 2, the crawler will only generate two new
seeds < URL,Event1 > and < URL,Event2 > but
not < URL,Event1, Event2 > since it cannot track the
dependencies among these events. It does not try combinations
of events and instead, leaves that task to the ESM.

In the form crawling stage, the PM first collects all forms
by identifying the elements with the form tag and then tries
to submit all of them immediately. For each form, it tries to
interact with all the elements inside it sequentially. During the
submission, if the PM detects any mutations on the DOM of
the form, it will dynamically capture and interact with the new
elements. For example, after clicking on the submit button, if
a confirmation window pops up, the PM can detect the new
elements inside the window and also interact with them.

B. Evolutionary Search

The design of the Evolutionary Search Module (ESM)
in EvoCrawl is inspired by genetic algorithms commonly
used in optimization problems. However, traditional genetic
algorithms typically aim to find a single optimal solution by
iteratively improving the fitness of a population of candidate
solutions through natural selection. In contrast, the objective
of the evolutionary search module in EvoCrawl is not to seek
a single optimal solution but to explore and uncover as many

relevant solutions as possible. It searches for sequences that
aim to achieve two goals: explore server-side states and
reveal unseen links within the application.

For each page, the ESM evolves sequences through multiple
generations. Each generation includes two steps: “Sequence
Generation” and “Sequence Evaluation”, where sequences in
each generation are generated from sequences that received a
high fitness score in previous generations. Therefore, to find
sequences that realize the previously mentioned two goals, the
genetic algorithm first needs to identify sequences that can lead
to optimal descendants. Based on this, we design the fitness
function to assign scores to each sequence by using feedback
from the browser and web application database during the
execution of the sequence. The score reflects the capability
of a sequence to generate a new sequence that can satisfy the
two goals.

1) Sequence Generation & Evaluation: Each sequence con-
sists of multiple genes arranged in a specific order. We define
each gene as a web element interaction pair. For instance,
when starting with a seed (page URL), the Evolutionary
Search Module (ESM) first navigates to the page URL, extracts
all interactable elements including elements that listen to
JavaScript events, elements belonging to HTML forms, etc.
from the page, and constructs genes based on these elements.
For example, an “input” HTML element can lead to genes
such as “input-click” or “input-typeText”

To generate new sequences, the ESM either randomly
combines these genes or performs crossover on previous
sequences. For crossover, it selects sequences that received
the highest scores from the fitness function in the previous
generation and recombines them to create new sequences. For
example, if Sequence 1 and Sequence 2 are the sequences with
the highest scores, the ESM will concatenate the first half of
Sequence 1 with the last half of Sequence 2 to produce a new
sequence. Then, the ESM places the submit buttons at the
end of each sequence to increase the chances of successfully
submitting the filled inputs.

We evaluate a sequence by executing it. The ESM navigates
to the page URL and then iterates through all the genes in a
sequence. In each iteration, it interacts with the corresponding
element based on the interaction type. For example, to evaluate
the sequence in Figure 3, it first types texts into “input2” and
“input1”, clicks on “button1”, “a2”, and “a1”, and finally types
texts to the “textarea”. After each interaction, the ESM checks
the browser’s URL field to see if it has been navigated to
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another page. If clicking on an element navigates the ESM to
another page, the ESM will automatically record the new URL,
send it to the Page Collection module, navigate back to the
previous URL, and continue executing the next gene. By doing
this, ESM constrains the search space of the evolutionary
algorithm to the current page and thus explores more states
of it.

To generate input values for “input” and “textarea” ele-
ments, the ESM initially checks for value and placeholder
attributes. The value attribute typically stores the default value,
and the placeholder attribute typically contains a hint of the
expected value. If these two attributes do not exist, the ESM
heuristically searches for the keywords: URL or email across
all attribute values within the elements. If the ESM finds
a match, it generates texts conforming to the corresponding
format. For example, if the ESM identifies the keyword
“URL” in one of the attribute values, it will generate texts:
www.esm{i}.com, where i is a unique integer used to identify
the injected input. Otherwise, it submits a default input that is
configured by the user. The default inputs in our experiments
are: esm{i}. The ESM’s fitness function will then implicitly
determine if the generated input meets the element’s input
constraints.

2) Dependency Tracking & Enforcement: During the “Se-
quence Evaluation” step, if the execution of a gene triggers
a JavaScript event and reveals new elements on the page, the
ESM infers that the new element depends on the triggered
JavaScript event, and can track dependency information by
linking the newly revealed elements directly to the gene trig-
gering the changes. We note that due to the non-determinism
of pages, some false dependencies may be inferred by the
ESM using this heuristic, but in practice, we find that such
false dependencies are very rare. In the “Sequence Generation”
step, the ESM enforces these tracked dependencies in its
mutation function. For example, suppose clicking “button1”
triggers a JavaScript event and partially updates the web page,
causing anchor element “a3” to appear. Figure 3 represents
this sequence update visually. Since “a3” is dependent on
“button1”, it has been added after “button1” in the example
sequence. If multiple elements appear after clicking “button1”,
the mutation function will randomly select some new elements
and add them after “button1”. By enforcing the dependency
information, the ESM prevents the generation of sequences
that violate the order of dependent elements, thereby reducing
the search space.

3) Gene Elimination: We mentioned that the ESM navi-
gates back to the previous URL if executing a gene causes the
ESM to jump to another page while evaluating the sequence.
However, navigating to a new page can still disrupt the
sequence’s execution, as any JavaScript events triggered by the
sequence up to that point may be reset due to the page refresh.
Consequently, whenever ESM encounters a gene that results
in navigating to another page, it will remove this gene and all
sequences that contain that gene from the search space. Once
removed, a gene is excluded from all subsequent sequences.

Fig. 3: Mutating Sequences

4) Fitness Function: During the “Sequence Evaluation”
step, ESM uses a fitness function to find sequences having
higher possibilities to generate good sequences in the next
generation. Only sequences with the highest fitness scores can
survive to the next generation and be used by the ESM to
generate new sequences. A good sequence is defined as one
that either results in HTML form submissions or the discov-
ery of new links. Specifically, the fitness function leverages
feedback from both the browser and the server-side database
and employs heuristics to infer which sequence can generate
good sequences in the next generation.

The fitness function assigns each sequence an initial, uni-
form fitness score that undergoes dynamic updates throughout
sequence execution. This score represents the possibility of the
sequence producing good descendants in the next generation.
Actions that could lead to HTML form submissions or induce
new elements in the current DOM are rewarded, while actions
hindering these objectives are penalized. Notably, actions such
as text input to a field, sample file uploads, form submissions,
or triggering JavaScript events increase the fitness score. A
successful form submission is determined by inspecting the
server-side web application’s database after executing the
entire sequence. To detect this, the input text generated by
the ESM for each input field contains a unique tainted value.
ESM then queries whether the tainted value is injected into the
database by the executed sequence. This injected text serves
as an indicator of a successful form submission. Conversely,
if the ESM executes a gene but the corresponding element
is currently invisible, the fitness function will punish the
sequence, as this indicates an incorrect order of the elements’
interactions. The fitness function is computed as:
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TABLE I: Fitness Function Weights and Objectives

Weight Value Objective (oi)

w1 40 Number of Form Submissions
w2 20 Number of Filled Inputs
w3 20 Number of Uploaded Files
w4 15 Number of Triggered JS Events
w5 -2 Number of Invisible Elements

f =
∑

oi · wi (1)

oi represents the objective variable, while wi denotes the
associated weight parameters. The weight values and their
corresponding objectives are presented in Table I. We found
empirically that this set of weights successfully helps the
EvoCrawl outperform other crawlers, so we did not fine-tune
them for each application. However, these weights are tunable
and can be further studied in future work.

We design the fitness function to reward sequences whose
genes trigger JavaScript events during execution because these
JavaScript events can dynamically update the webpage and
reveal previously unseen elements, such as those in forms or
containing new links. We want such sequences to survive to
the next generation, enabling the ESM to explore the new
elements introduced by the JavaScript events these sequences
trigger.

The fitness function significantly rewards sequences that
successfully submit a form. This incentivizes the function to
find sequences that not only fill in essential fields but also
include optional ones, thereby inserting more data into the
database. For instance, consider a short sequence discovered
by the ESM: “filling in field A and clicking the submit button.”
If this sequence leads to a successful form submission, it
receives a high score due to the substantial reward for “form
submission.” In subsequent generations, many sequences are
generated based on this initial sequence. One resulting possi-
bility could be: “filling field A, filling field B, and clicking the
submit button” (assuming A and B belong to the same form). If
this new sequence also successfully submits the form, it earns
a higher score than the previous one because of the additional
reward for “typing text into more input fields.” Consequently,
in the next generation, newer sequences are generated based
on this enhanced sequence. Through this iterative process,
EvoCrawl can find sequences that fill in more input fields for
each form, resulting in a diversity of server-side states.

The fitness function also helps EvoCrawl avoid sequences
that include fields with constraints it cannot satisfy. Suppose
there is a field C whose input constraints EvoCrawl is unable to
satisfy. Any sequence that includes field C will receive a lower
score than the short sequence. This is because the amount
it loses for failing to attain the “form submission” reward
outweighs the amount it gains for “typing text into inputs.”
Consequently, EvoCrawl will prioritize sequences that do not
include field C.

Fig. 4: An Example Sitemap for WordPress - Blank Node:
Page URL, Grey Node: Restful API, Blue Node: Ajax URL

C. Vulnerability Detectors

EvoCrawl is designed to allow modular integration of vul-
nerability detectors, which are utilized as EvoCrawl explores
the application. In this study, we demonstrate EvoCrawl’s
ability to detect authorization and injection vulnerabilities,
which have become increasingly prevalent [10]. In particular,
we search for Insecure Direct Object References (IDORs)
and Cross-Site Scripting (XSS). These two detectors operate
independently and can be executed either individually or in
conjunction with each other.

1) XSS Vulnerability Detector: We integrate the XSS Vul-
nerability Detector (XVD) directly into both the ESM and
the PM. For the PM, after each submission of a form, the
XVD replaces the input value with its XSS payload. For the
ESM, the XVD directly replaces all text generated by the
evolutionary crawler with the XSS payload.

The XSS payload of our XVD is similar to the payload used
by BlackWidow. If the payload injected into each input field is
successfully executed by the JavaScript Engine of the browser,
a unique integer will be pushed into a global list that is pre-
inserted into the HTML header of the web page. The unique
integer is generated using a UNIX timestamp to avoid two
input fields being inserted with the same value. By checking
the values in the global list, we can know which payload has
been executed and further trace it to the source input field.

2) IDOR Vulnerability Detector: Unlike XVD, we couldn’t
find an existing IDOR vulnerability detection tool that we
could easily integrate with EvoCrawl, so we designed our own.
The IVD utilizes two users with distinct access control levels:
an admin user and a non-admin user. We assume that any page
or resource accessible via UI navigation should be accessible
to the current user. The IVD initiates the process by employing
the admin user to crawl and collect resources within the web
application. Subsequently, it utilizes the non-admin user to
identify and exclude public resources accessible via the UI for
both user types. Finally, the IVD assesses the access control
level of private resources (those not accessible to the non-
admin user via the UI). It does so by attempting to access
these private resources directly using the non-admin user’s
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credentials. If the non-admin user can access these private
resources, despite their exclusivity to the admin user’s UI, it
signals potential vulnerabilities within the system.

We first describe how the IVD collects resources and filters
out public ones. During the crawling process of PM and ESM,
the IVD automatically captures all requests sent from the
browser, extracts the request URLs, and builds them into a
sitemap. EvoCrawl’s sitemap thus captures all navigation paths
between URLs found during crawling, including those that re-
sult from interacting with JavaScript events, anchor elements,
and any other HTML elements that EvoCrawl interacts with.
Each node in the sitemap represents a URL and the edge
between the two nodes represents the HTML element that
triggers the transition from the source URL to the destination
URL. Figure 4 is an example sitemap for WordPress.

Then, the IVD uses another user with a different privilege
level from the crawler user to test if each edge in the
sitemap is accessible and also marks the corresponding edge
by replaying every interaction of both the crawler module and
evolutionary search module. If the replayer (a module inside
the IVD) manages to replay the interaction by using the related
element’s CSS selector, the corresponding edge will be labeled
as accessible (i.e. public) to the replayer and vice versa. It is
important for the replayer to correctly replay the interaction
and mark the right edge since mistakenly labeling an edge
can cause the IVD to misclassify an object, which leads to
both false positives and false negatives. We also note that it
is important that both the crawler and replayer operate on the
same web application instance, in lockstep. This is because
we need the replayer to see the same web application state as
the crawler, to avoid missing public resources. For example,
the crawler could create a public object and then subsequently
delete it. If the replayer tries to access the same object on
another instance, or outside of lockstep with the crawler, it
might mistakenly believe the object to be private, and this
will lead to a false positive when it finds it is able to access
it later during detection.

After the replayer tests all the edges, the IVD can know
which resources are private by parsing the sitemap. Con-
sidering the example in Figure 4, if element “a2” can be
accessed by the replayer while element “a1” cannot, the
edit.php?post type=page is considered a public re-
source while the site-editor.php is considered private.
There might be different paths to reach the same resource.
If one of the paths can be accessed by the replayer, the
destination node will be considered public. After gathering all
the private URLs, the IVD will directly send forged requests
to them and check their access control levels by analyzing
received responses.

After collecting private resources, it tests whether they can
be accessed by an unprivileged user. To do this, IVD sends
three forged requests to each private resource as three different
users. Then, the responses are parsed to decide whether each
resource is appropriately protected. We refer to this as the
triad test. In the triad test, the session cookies are obtained
after automatically logging in with the user’s credentials. The

first, userA, is the user used by the crawlers. The second,
userB, is the user that was used during replaying, and the
third, userC, must be at the same privilege level as userB.
The IVD uses two steps to determine whether the responses
disclose private information to the attackers. The first step
uses keyword matching while the second step compares re-
sponses. Empirically, for each application, we observed that
most “access denied” responses share common sentences. We
use these sentences to identify responses with proper access
control. Based on our experiments, 5 sentences are enough for
each tested application. We call these sentences access-denied
sentences. If the responses received by the attackers do not
contain any access-denied sentences, they are further passed
to the second step parser to decide whether there are broken
access controls. For now, we manually collected the access-
denied sentences for each application. It is possible that we
failed to capture all the denied sentences. In this case, we rely
on the second step parser to check the access controls.

For the second step parser, simply comparing userA’s re-
sponse and userB’s response is insufficient, because we would
not know if the response-differences comes from the page
contents or just user-specific data such as username, and
user email on the webpage. This is where userC is needed.
Since both userB and userC are at the same privilege level
and neither must have access to the private resources, their
responses must be similar with differing in only user-specific
content. Thus, we can detect the user-specific data and ignore
it when comparing userB’s response with the userA’s response.

IV. IMPLEMENTATION

EvoCrawl is built using a customized version of Test-
Cafe [11]. TestCafe is an end-to-end web application testing
framework. It provides browser automation capabilities along
with useful features like capturing all requests-responses sent
and received, checking if an HTML element is visible on
screen, interacting with an element, and running the JavaScript
code in the browser.

We inject the rrweb script—a tool designed for recording
and replaying user interactions on the web—into the header
of each page. This integration enables the capture of newly
visible elements for the PM and the ESM, as well as the
recording of interactions for IVD. The rrweb’s recording mod-
ule can capture any mutations happening on the current page
with low overheads by using the MutationObserver function.

EvoCrawl uses Kafka as a durable queue for storing seeds.
Both modules publish newly discovered page URLs to the
queue and consume from it using separate consumer groups,
simulating multiple queues.

ESM and PM operate as separate processes with distinct
cookie sessions. Applications like Opencart or phpBB include
tokens in their page URLs that need to be matched with the
corresponding cookie values. When exchanging seeds (page
URLs) between ESM and PM, the token values must be
automatically replaced with the appropriate ones for each
module. To achieve this, both modules perform two tasks:
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Fig. 5: Each bar presents the results of EvoCrawl compared with another crawler. The blue bar represents the unique lines
covered by EvoCrawl, the orange bar denotes the common lines covered by both crawlers, and the red bar shows the unique
lines covered by another crawler. (BW-BlackWidow, JAK-JAK, CJ-CrawlJAX)

identifying token names and replacing their values. We com-
pare the redirect URLs after logging in from both modules to
determine token names. By comparing the query strings of the
URLs, we infer which parameters differ and consider them as
tokens. Once token names are obtained, the modules extract
their values from the URLs and replace tokens in incoming
seeds. However, this approach only works for persistent tokens
present in all page URLs. Tokens that appear in only some
URLs cannot be identified and captured by EvoCrawl, leading
to the exchange of invalid seeds. While this slows down
EvoCrawl, it does not break the entire system.

A. rrweb

rrweb consists of two modules: recording and replaying. The
recording module assigns unique rrweb-IDs with timestamps
to DOM elements for event tracking. The replaying module
replays interactions based on the recorded rrweb-IDs and
timestamps. However, when EvoCrawl’s public filter module
replays interactions as another user, the rrweb-IDs may lead to
incorrect elements due to dynamic DOM changes. To address
this, we only use rrweb’s recording module and implement
our replaying mechanism ourselves.

B. Initial Setup

We need to configure the application to have basic users
and enable automatic logins to the application. This minor,
one-time manual effort to register three users is a prerequisite
for running EvoCrawl on a web application.

V. EVALUATION

In this section, we present an empirical evaluation of
EvoCrawl. We evaluate EvoCrawl along two metrics: the
amount of code coverage attained and the number of HTML
forms successfully submitted. The latter is an indicator of the
number of server-side web application states EvoCrawl is able
to explore. We evaluate the code coverage of EvoCrawl against
three state-of-the-art academic crawlers: BlackWidow, JAK,
and CrawlJAX. We exclude the scanners in the web security
community such as skipfish [12], Arachni [13], and w3af [14]
etc., since BlackWidow [6] has previously demonstrated sig-
nificant improvement over them. We assessed all 4 crawlers
on 10 modern web applications. We evaluate the ability of
EvoCrawl to submit HTML forms against BlackWidow since
it is the best-performing crawler and the only one specifically
designed to explore the server-side state.
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TABLE II: Applications for Experiments

Functionality Version Github Stars Used in other work

WordPress Blog 6.4.3 2.3k [6], [7]
HotCRP Content Management System v3.0b3 319 [6]
Dokuwiki Content Management System 2022-07-31“Igor” 4k
Drupal Content Management System 9.3.15 4k [6]
Humhub Social Software Platform 1.12.1 6.2k
Opencart eCommerce 4.0.0 7.3k
phpBB Forum 3.8.8 1.8k [6], [8], [7]
ImpressCMS Content Management System 1.4.4 27
Kanboard Project Management System 1.2.22 8.2k
Gitlab DevSecOps Platform 11.5.1 23.6k

A. Experiment Setup

Each crawler runs on a 4-CPU virtual machine with 6GB
memory. The CPU type of the virtual machine is Intel(R)
Xeon(R) Gold 6336Y. To guarantee a fair comparison, we
reset all tested web application instances before each crawling
session. This ensures that all scanners commence from the
same initial state, minimizing any potential disparities caused
by differing application states.

For coverage experiments, since EvoCrawl uses both the
page collection module and the evolutionary search module
to interact with a web application, we also run two processes
in parallel for other crawlers to let them have the same CPU
resources as EvoCrawl. We used lines of code as a metric for
coverage and generated a coverage report indicating which
lines had been hit for each request sent to the server. The
coverage report for the PHP application is generated by using
Xdebug [15] and php-code-coverage [16]. For the application
in Rails production, we use Coverband [17] to collect coverage
results. Also, we disabled the vulnerability detectors for all
scanners since we want to focus on testing the ability to crawl
the web application.

To detect a successful form submission, we record the text
that each crawler filled into each form and log all transactions
that modify the database tables. If the text filled by the
crawlers appears in any of the transactions, we consider the
corresponding form to be successfully submitted.

The public filter of IVD requires an attacker to replay
the interactions of both the crawler module and the ESM to
classify the collected URLs. We set the privilege level of the
attacker to be the second highest and the crawler user to be
the highest.

As for the configurations for the tested crawlers, we manu-
ally set up the login credentials for all of them and prevented
them from crawling on the user page, the basic configuration
page, and the extension/plugin installation page of each web
application, because crawling on those pages may change
the login credentials or cause the web application to crash.
Moreover, we prevent all crawlers from interacting with logout
buttons to make sure they always stay logged in. Each testing
process was run for 24 hours. In addition, we ran EvoCrawl
5 times because of the randomness of the evolutionary algo-
rithm.

For the ESM, all the parameters including the sequence
length, the number of generations, etc. are fixed for all the
benchmarks. We use the default settings for CrawlJAX with
unlimited crawling depth and states. We also enable it to click
on event handlers. For JAK, we follow the same configuration
the developers provided in the example file. For the form sub-
mission experiment, since we need to search the injected text
to detect whether the form has been successfully submitted,
we need scanners to generate unique text for each field. While
EvoCrawl already supports this, BlackWidow generates the
same texts for all the fields. Hence, we modify BlackWidow’s
implementation to support unique text injection. This modi-
fication is exclusive to the form submission experiment and
does not apply to the coverage experiment, where we use
BlackWidow’s original design.

In selecting targets on which to evaluate EvoCrawl, we
sought applications that were both representative and had been
used in other academic research. For this evaluation, we define
a representative set of applications as 1) representing a variety
of functionalities and 2) having an active user base and being
actively maintained. Table II provides information on our
set of selected applications. The “type” column in the table
indicates the diversity of the applications, while the number
of GitHub stars approximates their user base. Furthermore,
all applications are in their latest versions and are actively
maintained at the time of writing. Finally, we cite other works
that have also used the particular application in other studies.

B. Code Coverage

Figure 5 presents the final code coverage achieved by each
crawler across all tested applications after a 24-hour run
which is presented proportionally. We provide the absolute
values for the coverage results in the Appendix. The blue bar
represents the number of unique lines covered by EvoCrawl,
the orange bar indicates the number of lines covered by
both crawlers, and the red bar shows the number of unique
lines covered by other crawlers. We do not include results
for JAK and CrawlJAX on Opencart and phpBB, as these
crawlers cannot handle the token implementations of these
web applications. EvoCrawl has the highest coverage on all
the tested applications over other scanners. Even for the next
best scanner BlackWidow, EvoCrawl outperforms it and has
an improvement ranging from 6% to 192% across different
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TABLE III: This Table presents p-value results for each application between EvoCrawl and BlackWidow, with both EvoCrawl
and BlackWidow run 5 times on each application.

WordPress HotCRP Dokuwiki Drupal Humhub ImpressCMS Kanboard Opencart phpBB GitLab

p-value 0.00096 0.000007 0.00082 0.004448 0.000031 0.000502 0.000719 0.000009 0.000159 0.000120

applications. Table III presents p-values comparing EvoCrawl
with BlackWidow, highlighting significant differences between
them.

1) Case Studies of the Coverage Results: We include a
case study of why EvoCrawl achieves better coverage than
BlackWidow.

HotCRP. BlackWidow achieves lower coverage on HotCRP
because it hits the “cancel” button before reaching the “save”
button during the submission of certain forms, while the ESM
of EvoCrawl can find the sequence of interactions that omit the
cancel button but click on the “save” one. This is especially
important for HotCRP, as the crawler must submit certain
forms before exploring related code blocks. For example, a
crawler needs to first successfully submit a paper, before it
can successfully crawl on the “reviews for the paper” page.
Moreover, BlackWidow fails to enter the correct values for
some input fields inside certain forms. For these forms, the
ESM can find the sequence that leaves these difficult input
fields blank and only fills in fields that heuristics can infer.

Kanboard. EvoCrawl is the only scanner that successfully
creates tasks inside the projects on Kanboard. Similar to
HotCRP, there are input fields inside the task creation form
whose values cannot be resolved by all the scanners. Instead
of filling in the wrong values like other scanners do, the
ESM of EvoCrawl successfully finds sequences that leave
these fields blank and manages to create the tasks, thereby
further executing the code related to task modification and
management.

WordPress. EvoCrawl’s improved coverage on WordPress
mainly comes from two factors. First, the evolutionary search
module of EvoCrawl manages to install different themes on
WordPress and further explores the code blocks of these
themes. Second, although BlackWidow can create draft posts
on WordPress, it fails to publish them, since publishing posts
requires the crawler to trigger a JavaScript event after filling in
the form. EvoCrawl is the only crawler that finds this sequence
of interactions, while BlackWidow fails to find it.

Opencart. One of the factors contributing to BlackWidow’s
lower coverage is its inability to submit forms in Opencart.
For successful form submission, the crawler must trigger a
JavaScript event after filling in the input fields. However,
BlackWidow’s strategy of enumerating all possible combi-
nations of JavaScript events and HTML forms results in an
excessively large search space. This vastness prevents it from
identifying the correct sequence needed to submit the form.
Additionally, certain page links within Opencart remain hidden
until the crawler triggers a combination of JavaScript events,
which BlackWidow fails to find.

TABLE IV: This Table presents the results of the HTML form
submission. The data includes Unique forms submitted by
EvoCrawl, Common forms submitted by both crawlers and
Unique forms submitted by the BlackWidow

Unique-EvoCrawl Common Unique-BlackWidow

WordPress 8 7 2
HotCRP 17 6 3
Humhub 25 3 2
Drupal 70 11 33
Kanboard 17 5 0
phpBB 15 12 10
ImpressCMS 7 2 3
Opencart 15 0 1
Dokuwiki 6 8 2
Gitlab 30 1 1

For other applications, EvoCrawl generally has better re-
sults for two reasons. First, it does not spend time trying
combinations of unrelated events. Therefore, it has time to
extensively navigate the application and interact with more
pages and forms than BlackWidow does. Second, for certain
forms, EvoCrawl is the only tool that finds the correct se-
quences to submit inputs. The two factors together lead to a
higher coverage achieved by EvoCrawl in terms of the overall
exploration of the application.

C. HTML form submissions

Table IV presents the number of successfully submitted
HTML forms, which is an indication of how well EvoCrawl
explores server-side state. We only compare EvoCrawl with
BlackWidow, since the other two crawlers are not specifically
designed to explore the server-side states.

We monitor all the data transactions happening on the server
side and track all the inputs inserted into the database. We
further collect which HTML forms have been successfully
submitted during scanning while using the action attribute
to represent each form. We do not collect submissions other
than HTML forms because they are difficult to track.

For all applications, EvoCrawl is able to submit more
forms than BlackWidow, one of the reasons that EvoCrawl
submits more forms than BlackWidow is due to EvoCrawl’s
efficiency. The genetic algorithm and dependency tracking
enable EvoCrawl to search intelligently and spend less time
on each page. Consequently, it has more time to explore
additional pages, thereby discovering and submitting more
forms.

Upon closer inspection, we find that EvoCrawl outperforms
BlackWidow on HotCRP, Humhub, and Kanboard because it
can bypass optional fields with strict constraints. BlackWidow

10



Fig. 6: Each bar presents the results of EvoCrawl compared
with EvoCrawl without dependency tracking. The blue bar
represents the unique lines covered by EvoCrawl, the orange
bar denotes the common lines covered by both crawlers, and
the red bar shows the unique lines covered by EvoCrawl with
no dependency tracking.

fails to submit these forms because it either enters the wrong
values to certain input fields or interacts with elements in
the wrong order. Moreover, it further misses the forms that
depend on the successful submission of these previous forms.
For example, BlackWidow fails to submit a paper on Hotcrp
and therefore cannot detect the forms that assign the paper and
review the paper. It also fails to create tasks inside the project
page on Kanboard, and cannot create new spaces on Humhub
as well.

There are cases where BlackWidow submits forms that
EvoCrawl does not in our experiments (i.e. in Drupal and
phpBB). We found that this is a result of differences in
seed scheduling between BlackWidow and EvoCrawl, which
causes them to explore slightly different portions of the
applications, and thus interact with different forms. The forms
that BlackWidow submitted were not analyzed by EvoCrawl.
Overall, EvoCrawl still submits more forms than BlackWidow,
indicating that EvoCrawl has a faster crawling speed and form
submission rate than BlackWidow.

D. Benefits of Dependency Tracking

As discussed in Section III, the ESM employs dependency
tracking to reduce the search space. To evaluate the effec-
tiveness of this feature, we implement EvoCrawl-nodt, which
is a version of EvoCrawl with dependency tracking disabled,
so that no dependency information is used during sequence
generation. Figure 6 illustrates the code coverage of EvoCrawl-
nodt compared with EvoCrawl.

For most applications, dependency tracking largely en-
hances code coverage. However, for some applications, the
coverage results between the two configurations are similar.
Upon further inspection, we discovered that these applications
do not heavily rely on JavaScript events to reveal links or
forms, unlike others. Consequently, dependency tracking does
not substantially increase coverage for these applications.

TABLE V: Results of Vulnerability Detection Experiments

WordPress Humhub ImpressCMS Kanboard
EvoCrawl 2/2 0/1 2/2 2/3

BlackWidow 1/2 0/1 0/2 1/3

For phpBB and WordPress, EvoCrawl-nodt executes a no-
table amount of lines that EvoCrawl does not cover. This
discrepancy is mainly because EvoCrawl and EvoCrawl-nodt
crawl on different sets of pages. The dependency tracking
allows EvoCrawl to find sequences that respect the order
of the web elements. This enables EvoCrawl to find new
elements that only the execution of these sequences can reveal.
If these new elements include anchor elements with links
to new pages, EvoCrawl will add them to the queue and
crawl them, while EvoCrawl-nodt does not find these and
ends up crawling other pages. Consequently, this results in
longer queues for EvoCrawl than EvoCrawl-nodt, as some
pages are only in the queue of EvoCrawl but not in the queue
of EvoCrawl-nodt. Due to the large number of web pages in
phpBB and WordPress, EvoCrawl cannot finish crawling all
the pages within the 24-hour limit, thereby failing to crawl on
the pages at the end of the queue. However, the total coverage
of EvoCrawl is always larger than that of EvoCrawl-nodt.

VI. VULNERABILITIES

We now evaluate the ability of EvoCrawl to detect vulnera-
bilities, as well as detail the new vulnerabilities that EvoCrawl
has discovered.

A. Experiments on Known XSS Vulnerabilities

To compare EvoCrawl’s detection ability on known XSS
vulnerability detection with other crawlers, we conducted
24-hour experiments on both EvoCrawl and BlackWidow
using vulnerable versions of web applications. To do this,
we selected versions of web applications with previously
found vulnerabilities that were documented in enough detail
that we could 1) reproduce the environment and conditions
under which the vulnerabilities can be triggered; 2) confirm
that triggering the vulnerabilities does not require a crafted
payload that bypasses sanitizers, since both EvoCrawl and
BlackWidow specialize in finding injection points, but not in
crafting payloads to bypass sanitizers; and 3) have not been
previously found by either EvoCrawl or BlackWidow, ensuring
that both tools have an equal chance of detecting the selected
vulnerabilities. We used the CVE Details website [18] to find
information on known vulnerabilities. The specific versions
tested were WordPress-4.7.2, Kanboard-1.2.8, ImpressCMS-
1.4.4, and Humhub-1.11.0.

Table V presents the results of the known vulnerability
detection experiments. EvoCrawl outperforms BlackWidow on
all tested applications. Below, we provide a detailed analysis
of the vulnerability detection performance of EvoCrawl and
BlackWidow for each application.

Humhub. Both EvoCrawl and BlackWidow fail to detect
the vulnerability because it requires the crawlers to re-login as
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another user to manifest. Although both crawlers successfully
injected payloads into the injection point, which is the “name”
field of the Humhub Space, they could not complete the
necessary steps to detect the vulnerability.

Kanboard. EvoCrawl successfully detects 2 out of 3 vul-
nerabilities in Kanboard. The vulnerability that both EvoCrawl
and BlackWidow fail to detect, similar to the one in Humhub,
requires the crawler to re-login as another user. The vulner-
ability detected only by EvoCrawl requires the crawler to
first create a “task” under a “project” in Kanboard and then
inject the payload into the “external link” field within the
task. As mentioned in subsection V-B, BlackWidow fails to
leave some fields blank when submitting the form to create
tasks. Consequently, it cannot submit the task creation form
and detect this vulnerability.

ImpressCMS. EvoCrawl successfully captures two vulnera-
bilities in ImpressCMS on the “edit user” page and the “blocks
admin” page. For the first vulnerability, BlackWidow fails
to bypass the input constraints of a field within the form,
while EvoCrawl finds the sequences of interactions that leave
it blank. For the second vulnerability, the form containing
the injection field exists in a hidden part of the application;
BlackWidow fails to find the correct interaction sequences to
reveal it.

WordPress. Both EvoCrawl and BlackWidow find the
vulnerability in the “taxonomy name” field, but BlackWidow
fails to find the vulnerability in the “upload filename” field.
This is because BlackWidow attempts to iterate through all
the combinations of JavaScript events, which slows down the
crawler.

B. Zero-day XSS Vulnerabilities Detection

We test EvoCrawl using the latest versions of benchmarks
previously used in our coverage experiment our coverage
experiment. This demonstrates the ability of EvoCrawl to
uncover Zero-day XSS vulnerabilities.

EvoCrawl has identified 5 zero-day XSS vulnerabilities
across 10 web applications, all of which have been reported.
Among these, a vulnerability in HotCRP and a vulnerability in
Kanboard have been patched. Two WordPress vulnerabilities
have been acknowledged, yet they won’t be addressed as
the injection point for the XSS attack is not included in the
threat model that WordPress developers consider. The second
vulnerability in HotCRP will not be fixed as the requirements
for exploitation are outside what the developer considers the
expected usage model of HotCRP.

For WordPress, EvoCrawl identifies two stored XSS vul-
nerabilities, which can only be exploited by admin or editor
users. The developers have decided not to address these
vulnerabilities as admins and editors are considered trusted
in their threat model.

In HotCRP, we find one stored XSS vulnerability and one
reflected XSS vulnerability. The stored XSS vulnerability has
been acknowledged by the developers and will be fixed in
future versions of the application. The reflected XSS bug in

HotCRP, however, cannot be exploited by attackers as it is
only visible to admin users and protected by a CSRF token.

For Kanboard, EvoCrawl successfully identifies one stored
XSS vulnerability, which has been reported to the developers
and will be patched in future versions.

EvoCrawl generates one false positive in Humhub.
EvoCrawl detects one injection field that allows the website
owner to inject a custom script for tracking page statistics.
Since the web developer intentionally designed the field to
accept script as input, we conservatively counted this as a
false positive for EvoCrawl.

C. IDOR Vulnerabilities

Table VI presents the results of the IVD evaluation. To
assess its performance, we collected a variety of metrics. These
include the total number of URLs discovered by EvoCrawl,
the number of URLs classified as private, the number of
URLs classified as public, and the number of false positives.
Additionally, we categorized vulnerable endpoints into two
groups: those arising from the site builder’s incorrect config-
uration or privilege settings (Vul-Type1), and those resulting
from improper code implementation by web developers (Vul-
Type2).

As described in the design section, the IVD relies on a
sitemap to classify resources as public or private. Resources
reachable from both the admin and unprivileged users’ UI are
classified as public. Conversely, if the paths exist only in the
admin UI, IVD classifies the resources as private. However,
some public resources may also lack paths in the unprivileged
UI of the application, leading the IVD to misclassify these
public resources as private. Because these resources are in
fact public, when the IVD later finds that they are accessible to
unprivileged users and reports them, the resources will result in
false positives. This issue is particularly evident in applications
like phpBB and HotCRP, which account for 374 out of 385 and
35 out of 39 false positives, respectively. For the remaining
false positives, the reason is that the crawler itself is not able to
find all existing navigation paths for a public resource within
the allotted time.

Regarding Vul-Type1, the IVD has uncovered multiple
endpoints that directly expose application resources such
as images and JavaScript files. For example, some of the
detected endpoints resemble http://localhost/path/
sample.png. Attackers could access these resources by
sending requests targeting these endpoints without authenti-
cation. Although the application code itself does not cause
these vulnerable endpoints, we still believe it is important for
the crawler to identify such endpoints. This capability helps
site builders ensure that the privilege settings for each folder
are configured appropriately.

For Vul-type2, the IVD discovers 3 vulnerable endpoints
across 10 web applications. All of these vulnerabilities have
been reported. In the case of ImpressCMS, one vulnerability
has been acknowledged and the patch for it is currently under
development. Another vulnerability is still under inspection.
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TABLE VI: IDOR Vulnerability Detector Results

URLs Private URLs Public URLs FP Vul-Type1 Vul-Type2
WordPress 1025 379 646 9 106 0
HotCRP 526 415 111 39 3 0
Humhub 10729 9451 1278 0 5 0
Drupal 1908 1242 666 4 55 0

Kanboard 7973 4511 3462 17 0 0
phpBB 1684 1527 158 385 0 0

Opencart 1202 870 332 4 60 0
Dokuwiki 3121 864 2257 8 13 0

ImpressCMS 615 593 22 0 111 2
Gitlab 1382 640 742 27 63 1

The vulnerability in Gitlab has been reported and will be
addressed in a future version.

D. Summary of New Vulnerabilities Found

In total, EvoCrawl has identified eight vulnerabilities in pop-
ular web applications such as WordPress, HotCRP, Kanboard,
ImpressCMS, and Gitlab. Out of these, six vulnerabilities have
been acknowledged and confirmed by the developers. The
details of each vulnerability are as follows:

• WordPress (acknowledged but not fixed): The two XSS
injection points of WordPress are the comment field
and the post title field. Both of these fields lack proper
sanitization, allowing editor users or admin users to inject
custom scripts into them. According to the WordPress
security policy, XSS injection points that can only be
exploited by higher-level users will not be fixed.

• HotCRP (acknowledged and fixed) [19]: One XSS injec-
tion point on settings/decisions page. Chair or
admin users can inject custom scripts into the decision
name field.

• HotCRP (reported but not acknowledged): EvoCrawl
identified a reflected XSS injection point on the
settings/reviews page, specifically in the round
name field. However, this injection point is only accessi-
ble to admin users and is protected by a CSRF token, so
the developer does not consider it a vulnerability.

• Kanboard (acknowledged and fixed) [20]: One XSS in-
jection point on settings/api page, enabling admin
users to inject scripts to the application URL field.

• ImpressCMS (acknowledged and being fixed): An IDOR
vulnerability on endpoint userinfo.php?id=1. At-
tackers can acquire other users’ information by changing
the value of the id parameter.

• ImpressCMS (reported and still under inspec-
tion): An IDOR vulnerability on endpoint
/libraries/image-editor/image-edit.
php?image_id=1&uniq=. Attackers can force
browsing to the private images by changing the
image id.

• GitLab (acknowledged and fixed): An IDOR vulnerability
on endpoint autocomplete/users.json?
search=&active=true&current_user=true.
The AJAX request targeting at this endpoint reveals all

users’ information including avatar URL, username and
states, etc.

VII. LIMITATIONS

Parameter Tuning. For optimal results, EvoCrawl currently
requires manual parameter adjustments within the fitness func-
tion. In the future, we aim to conduct a more comprehensive
analysis of the influence of each parameter. Our goal is
to design a system that can autonomously fine-tune these
parameters, enabling adaptation to the specific needs of each
tested application.
Seed Selection. In many cases, various URLs can direct to the
same or highly similar pages within applications. For example,
pages displaying objects with different sorting criteria may
possess distinct URLs. As EvoCrawl relies on page URLs
as seeds for crawling, there’s a potential for redundancy,
where the tool might spend time crawling pages it has already
processed, thereby decreasing efficiency further. In future de-
velopments, we will try to implement more effective methods
for distinguishing between different pages. Instead of relying
solely on page URLs, we aim to employ techniques such as
DOM comparison to achieve greater accuracy and precision.

VIII. RELATED WORK

A. Access Control Vulnerability Scanners

[4], [5], [3], [21] detect access-control vulnerabilities in a
white-box manner. However, only doing state analysis can lead
to missing certain links, since some of them are generated
during the run time. Overall, white-box methods are always
limited by the language of the source code, therefore, making
it hard to generalize for all websites or web applications.

Yelp’s Fuzz-lightyear is a framework designed to automate
IDOR discovery through stateful fuzzing [22]. It leverages
the Swagger or OpenAPI specifications of a web application,
first proposed in the RESTler paper by Atlidakis et al. [23].
RESTler was designed to be a generic bug-detecting tool.
Therefore, it can only detect the bugs that cause the app server
to respond with an HTTP 500 (Internal Server Error) code
and cannot detect if a purposely formed malicious request
succeeded.

AuthScope by Zuo et al. [24] has a similar approach to
EvoCrawl’s IVD in that it focuses on automatically executing
a mobile app and detecting vulnerable authorizations. They
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perform differential traffic analysis to recognize the protocol
fields in the request structure which are then automatically sub-
stituted to check for correct authorizations. They also develop
a targeted dynamic activity explorer to automatically log in to
the app and explore the app activities in a prioritized depth-
first search approach to get post-authentication messages. This
works well for mobile apps due to the layered structure of
the in-app activities. They, however, do not handle dynamic
resource generation. Furthermore, they assume that all post-
login resources are private and therefore may still have a lot
of false positives even after pruning public activities/interfaces
accessible prior to login.

B. Web Crawlers
BlackWidow by Eriksson et al. [6] and jAk by Pellegrino

et al. [8] also build their navigation graph with client-side
JavaScript events and HTML forms. However, they search the
target sequences by enumerating the nodes in their navigation
graph, causing the crawlers to waste extra time exploring
events that are not related, decreasing the overall performance.
Furthermore, they capture the JS events by hacking the
addEventListener function dynamically each time a page
has been loaded. This method is not robust and sometimes
misses events on the page.

Enemy of the State by Doupé et al. [7] uses static links and
forms to build the navigation graph but misses the JavaScript
events on the client side. Since many modern web applications
heavily rely on SPA (single-page applications) and AJAX
techniques, it is hard for Enemy of the State to fully explore
these websites.

Crawljax by Mesba et al. [9] uses a state machine to
guide the crawling process. Each state represents a unique
DOM (Document Object Model) of the web page. However,
CrawlJAX cannot track dependencies among different states.

There are other black-box scanners [25], [26] but they
mainly focus on vulnerability detection. Deemon [25] is able
to detect the CSRF vulnerability by modeling the behavior of
the application, while Pellegrino and Balzarotti [26] proposed
an automatic tool to detect logic errors with analysis on
interaction traces.

Recently, grey-box fuzzing techniques have gained traction
for testing web applications [27], [28], [29]. However, it is
worth noting that [27], [28] are specifically designed for testing
PHP applications, limiting their applicability. Additionally, the
effectiveness of Witcher [29] is related to the performance of
the black-box scanner it incorporates.

C. Evolutionary Search in Web
Attwood et al. [30] summarize some works that use evo-

lutionary search in web security, but none of them use it to
crawl web applications. [31] and [32] both use evolutionary
algorithms to generate payloads that are more likely to pass
through the server sanitizer and find an XSS vulnerability.
However, the evolutionary algorithms are used to generate
input payloads and not for crawling. On the other hand,
EvoCrawl’s goal is to try revealing as many sources as possible
but not generate inputs that successfully pass sanitizer checks.

D. Machine Learning in Web Scanning

Lee et al. [33] propose Link, a black-box scanner that
applies reinforcement learning to adapt the generated XSS
payloads for each input field by observing the received
responses. Link iterates through URL-Parameter pairs and
adapts payloads based on the received response after each
attack. However, it mainly focuses on adapting the payloads
while EvoCrawl tries to maximize the code coverage of an
application.

Mind2Web [34] is a generalist web agent that utilizes
Large Language Models (LLMs) to complete tasks based
on language instructions and by parsing HTML. However,
it still requires specific language instructions for each task,
which limits its ability to automatically scan applications.
Consequently, LLM-based web agents have not yet been a
good fit for automatic vulnerability detection.

IX. CONCLUSION

Our experiments show that using an evolutionary search
algorithm in conjunction with dependency tracking enables
EvoCrawl to perform a fine-grain search of web applications.
This enables EvoCrawl to attain greater code coverage and
submit more inputs to web applications than previous ap-
proaches. In particular, we use evolutionary search to gen-
erate sequences of web interactions to target certain favorable
events, such as successfully submitting forms and finding new
fields and elements through which defect triggering can be
submitted to the web application. We find that dependency
tracking also plays an important role in reducing the search
space of web interaction sequences.
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APPENDIX

Table VII presents the absolute value of the coverage results
of EvoCrawl when compared with other crawlers.

For the coverage experiments, the keywords that are used
by the crawlers to avoid crawling on user pages, configuration
pages, and plugin installation pages:

b l o c k e d p a g e s : [ mode= cooki , %2F d i s a b l e ,
modulesadmin , d a t a b a s e , atom , p r o f i l e ,

upda te − core , password , ma in tenance ,
p l u g i n , u s e r / 1 / e d i t , u s e r / 2 / e d i t , u s e r
/ 3 / e d i t , CorePluginsAdmin ,
UsersManager , page= c o n f i g , peop le ,
r o l e s , a u t h e n t i c a t i o n , use rmanager ,
u s e r / u se r , = a c l , page= e x t e n s i o n , mode=
cook ie , e d i t u s e r , r =admin%2F s e t t i n g ,
viewpmsg , l o g o u t , s i g n o u t , j a v a s c r i p t ,

l o g i n , s i g n i n , mode= auth , atom ,
a u t h e n t i c a t i o n , acp board , a c p c a p t c h a
, d e l e t e c o o k i e s , admin%2
F a u t h e n t i c a t i o n , U s e r L i s t C o n t r o l l e r , r
= l d a p%2Fadmin , admin%2Fmodule , %2
Faccount , u s e r%2F d e l e t e , u s e r%2F e d i t ,
mode= r e g d e t a i l s , u s e r s , f c t = use r ,
U s e r M o d i f i c a t i o n C o n t r o l l e r ,
U s e r C r e d e n t i a l C o n t r o l l e r ,
T w o F a c t o r C o n t r o l l e r ]
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TABLE VII: This Table presents the coverage results of EvoCrawl compared with other crawlers. Column A\B presents the
number of unique lines executed by EvoCrawl. Column A∩B shows the number of common lines covered by both crawlers.
Column B\A denotes the number of unique lines executed by the other crawler.

Crawler BlackWidow JAK CrawlJAX
A\B A ∩ B B\A A\B A ∩ B B\A A\B A ∩ B B\A

WordPress 57398 45868 3368 58721 44545 1063 67905 35361 673
HotCRP 10706 17679 331 14447 13938 131 11412 16973 250
Dokuwiki 4191 12531 284 3099 13623 44 8885 7837 22
Drupal 42460 54691 21437 15843 45460 1195 46545 14758 767
Humhub 10064 21606 1741 16392 15279 398 22463 9207 290
ImpressCMS 6157 16485 622 8418 14224 624 11638 11004 390
Kanboard 10130 5246 4 9626 5750 1193 10681 4695 488
Opencart 8353 14500 672
phpBB 21781 14142 11616
GitLab 10775 172367 617 19398 163744 419 14323 168819 2652

TABLE VIII: This Table presents the coverage results
of EvoCrawl compared with EvoCrawl-nodt Column A\B
presents the number of unique lines executed by EvoCrawl.
Column A∩B shows the number of common lines covered by
both crawlers. Column B\A denotes the number of unique
lines executed by the EvoCrawl-nodt.

Crawler EvoCrawl-nodt
A\B A ∩ B B\A

WordPress 29676 73590 21738
HotCRP 8578 19807 627
Dokuwiki 91 16631 112
Drupal 2321 58982 1318
Humhub 576 31094 34
ImpressCMS 1039 21603 604
Kanboard 4484 10892 246
Opencart 1151 21675 59
phpBB 8926 17340 3113
GitLab 3034 180108 2131

The full list of the access-denied sentence used by the IVD
of EvoCrawl is:

{
d r u p a l : [ Access den ied , n o t

a u t h o r i z e d , page n o t found ,
p e r m i s s i o n i s r e q u i r e d , que ry
argument i s i n v a l i d ] ,

w o r d p r e s s : [ Not Allowed , i n v a l i d
nounce , has e x p i r e d , page n o t
found , w o r d p r e s s e r r o r ] ,

dokuwik i : [ For admins only , have
enough r i g h t , p e r m i s s i o n d e n i e d ] ,

o p e n c a r t : [ do n o t have p e r m i s s i o n t o
a c c e s s ] ,

h o t c r p : [ Page i n a c c e s s i b l e , n o t found
, R e d i r e c t i o n , i s − e r r o r ] ,

kanboard : [ didn ’ t f i n d t h i s
i n f o r m a t i o n , Access F o r b i d d e n ] ,

humhub : [ You a r e n o t p e r m i t t e d , Could
n o t f i n d r e q u e s t e d page , E r r o r ] ,

phpbb : [ n o t a l l o w e d ] ,
impresscms : [ n o t a l l o w e d ] ,

g i t l a b : [ Not Found ]
}

APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact has been published in Zen-
odo: https://doi.org/10.5281/zenodo.13617803. The GitHub
Repository for the same is https://anonymous.4open.science/
r/evocrawl-0BF8/. The README file inside the artifact in-
cludes the necessary steps for running the Artifact on target
applications.

2) Hardware dependencies: None.
3) Software dependencies: Our code only supports Linux

(Ubuntu preferred) operating system. The code depends on
Node v12.22.12 and npm 6.14.16, and a variety of node
modules. A requirements installation instruction can be found
in the README.

4) Benchmarks: Our codes have been evaluated on 10
web applications including: WordPress-6.1.1, Drupal-9.3.15,
HotCRP-v3.0b3, Dokuwiki-2022-07-31 “Igor”, ImpressCMS-
1.4.4, phpBB-3.3.8, Gitlab-11.5.1, Kanboard-1.2.22, Opencart-
4.0.0, and Humhub-1.12.1.

B. Artifact Installation & Configuration

The Installation and Configuration steps for the Artifact can
be found in the repository README.

C. Experiment Workflow

The high-level workflow of the experiments is: 1) install and
configure the web application (benchmark) 2) enable coverage
tracking and database logging for the benchmark 3) install and
configure the artifact 4) execute the artifact on the benchmark.

D. Major Claims

• (C1): EvoCrawl achieves an average code coverage in-
crease of 59% and outperforms BlackWidow by HTML
forms with the POST method 5 times more frequently.

• (C2): EvoCrawl successfully identifies eight zero-day
bugs in WordPress, HotCRP, Kanboard, ImpressCMS,
and GitLab.
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E. Evaluation

We provide experiment instructions to demonstrate that our
artifact is functional, configurable, and usable. While the in-
structions can partially reproduce the results, full reproduction
requires conducting each experiment for 24 hours on each
benchmark.

1) Experiment (E1): [Coverage and HTML form Experi-
ment] [30 human minutes + 8 compute-hour]: Run the artifacts
on the web applications (benchmarks) with coverage tracking
and data binary log enabled. Collect the global coverage
(number of lines executed) and the number of submitted
HTML forms after an 8-hour execution.

[Preparation]
• Install the target benchmark with coverage tracking and

database binary log enabled. The installation guide and
Dockerfile for benchmarks can be found within the ex-
periments/ folder of the repository.

• Follow the web application default configuration process
provided by the web application, and Register an admin
user on the web application instance.

• Complete the requirements of the Artifacts by updating
the login credentials of the web application in the con-
figuration files within the Artifacts. Detailed steps can be
found in the root README file of the repository.

[Execution] Run the crawl/monit.py with MODE parameter
set to crawler. The monit.py script will start all the crawler
processes and shut them down after 8 hours (this duration
can be changed). Detailed steps can be found in the Crawler
section of the root README file in the repository.

[Results] The README file within the experiments/ folder
contains instructions on collecting the coverage and number
of submitted forms from the artifact on the benchmark after
the experiment.

2) Experiment (E2): [XSS Vulnerability Detection Exper-
iment] [30 human minutes + 8 compute hours]: Run the
artifacts on the web applications (benchmarks) with coverage
tracking and data binary log enabled. Collect the number of
XSS vulnerabilities detected after an 8-hour execution

[Preparation] Same as Experiment E1.
[Execution] Run the crawl/monit.py with MODE parameter

set to XSS. The rest are the same as Experiment E1.
[Results] Within the data/[target benchmark] folder of the

repository, the sources.json and the sinks.json files should list
the sources and the sinks of the XSS vulnerabilities. Matching
between sources and sinks can be achieved using unique
identifiers assigned by the artifact. The original experiment in
the paper lasted for 24 hours, so 8 hours may not be enough
to expose all the bugs.

3) Experiment (E3): [IDOR Vulnerability Detection Ex-
periment] [30 human minutes + 8 compute-hours]: Run the
artifacts on the web applications (benchmarks) with coverage
tracking and data binary log enabled. Collect the number of
IDOR vulnerabilities detected after an 8-hour execution

[Preparation] Same with Experiment E1 but need to reg-
ister two additional users with lower-level privileges on the

web application instance. The configuration file within the
artifact also needs to be updated. Detailed steps for updating
configurations can be found in the root README file of the
repository.

[Execution] Run the crawl/monit.py with MODE parameter
set to IDOR. The rest are the same as Experiment E1.

[Results] Within the repository, run the script detect.sh.
The script will list all the vulnerable endpoints for IDOR
vulnerabilities.
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